1
|
Euler KN, Hauck SM, Ueffing M, Deeg CA. Bovine neonatal pancytopenia--comparative proteomic characterization of two BVD vaccines and the producer cell surface proteome (MDBK). BMC Vet Res 2013; 9:18. [PMID: 23343349 PMCID: PMC3560244 DOI: 10.1186/1746-6148-9-18] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 01/16/2013] [Indexed: 11/10/2022] Open
Abstract
Background Bovine neonatal pancytopenia (BNP) is a disease syndrome in newborn calves of up to four weeks of age, first observed in southern Germany in 2006. By now, cases have been reported in several countries around the globe. Many affected calves die within days due to multiple haemorrhages, thrombocytopenia, leukocytopenia and bone marrow depletion. A certain vaccine directed against Bovine Virus Diarrhoea Virus (BVDV) was recently shown to be associated with BNP pathogenesis. Immunized cows develop alloantibodies that are transferred to newborn calves via colostrum intake. In order to further elucidate BNP pathogenesis, the purpose of this study was to characterize and compare the protein composition of the associated vaccine to another vaccine directed against BVDV not related to BNP and the cell surface proteome of MDBK (Madin-Darby Bovine Kidney) cells, the cell line used for production of the associated vaccine. Results By SDS-PAGE and mass spectrometry, we were able to detect several coagulation-related and immune modulatory proteins, as well as cellular and serum derived molecules being shared between the associated vaccine and MDBK cells. Furthermore, the number of proteins identified in the BNP related vaccine was almost as high as the number of surface proteins detected on MDBK cells and exceeded the amount of proteins identified in the non-BNP related vaccine over 3.5 fold. The great amount of shared cellular and serum derived proteins confirm that the BNP associated vaccine contained many molecules originating from MDBK cells and vaccine production. Conclusions The respective vaccine was not purified enough to prevent the development of alloantibodies. To narrow down possible candidate proteins, those most likely to represent a trigger for BNP pathogenesis are presented in this study, giving a fundament for further analysis in future research.
Collapse
Affiliation(s)
- Kerstin N Euler
- Institute of Animal Physiology, Department of Veterinary Sciences, LMU Munich, Veterinärstr 13, München D-80539, Germany
| | | | | | | |
Collapse
|
2
|
Mizuno K, Bächinger HP, Imamura Y, Hayashi T, Adachi E. Fragility of reconstituted type V collagen fibrils with the chain composition of α1(V)α2(V)α3(V) respective of the D-periodic banding pattern. Connect Tissue Res 2012; 54:41-8. [PMID: 23092503 DOI: 10.3109/03008207.2012.734876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The triple-helical domains of two subtypes of type V collagen were prepared from human placenta, one with the chain composition of [α1(V)](2)α2(V) (Vp112) and the other with the chain composition of α1(V)α2(V)α3(V) (Vp123) with limited pepsin treatment. In order to characterize the triple-helical domain of the type Vp123 collagen molecule, the reconstituted aggregate structure formed from the pepsin-treated collagen was compared by using transmission electron microscopy. The diameter of the fibrils reconstituted from types pepsin-treated type Vp123 collagen and type Vp112 collagen was highly uniform and less than the D-periodicity at all the temperatures examined, suggesting that the major triple-helical domain of both subtypes has a potency to limit their lateral growth. Both fibrils were approximately 45 nm in width and showed the D-periodic banding pattern along their axes at 34°C. In contrast to type Vp112, the reconstituted type Vp123 fibrils showed no banding pattern along their axes when they were reconstituted at 37°C. The banded fibrils once reconstituted from type Vp123 at 34°C tend to lose their characteristic pattern within 60 min when they were incubated at 37°C. One explanation is that a slightly higher content of hydrophobic residues of type Vp123 collagen than those of type V112p collagen augmented the intermolecular interaction that disturbs the D-periodicity governed essentially by electrostatic interactions. Taken together with recent data in Col5a3 gene-targeted mice, the results suggest that type V123 collagen exists not only as a periodic banded fibril but also as nonfibrillar meshwork structures.
Collapse
|
3
|
Brown RJ, Mallory C, McDougal OM, Oxford JT. Proteomic analysis of Col11a1-associated protein complexes. Proteomics 2011; 11:4660-76. [PMID: 22038862 PMCID: PMC3463621 DOI: 10.1002/pmic.201100058] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Revised: 08/26/2011] [Accepted: 09/28/2011] [Indexed: 11/06/2022]
Abstract
Cartilage plays an essential role during skeletal development within the growth plate and in articular joint function. Interactions between the collagen fibrils and other extracellular matrix molecules maintain structural integrity of cartilage, orchestrate complex dynamic events during embryonic development, and help to regulate fibrillogenesis. To increase our understanding of these events, affinity chromatography and liquid chromatography/tandem mass spectrometry were used to identify proteins that interact with the collagen fibril surface via the amino terminal domain of collagen α1(XI) a protein domain that is displayed at the surface of heterotypic collagen fibrils of cartilage. Proteins extracted from fetal bovine cartilage using homogenization in high ionic strength buffer were selected based on affinity for the amino terminal noncollagenous domain of collagen α1(XI). MS was used to determine the amino acid sequence of tryptic fragments for protein identification. Extracellular matrix molecules and cellular proteins that were identified as interacting with the amino terminal domain of collagen α1(XI) directly or indirectly, included proteoglycans, collagens, and matricellular molecules, some of which also play a role in fibrillogenesis, while others are known to function in the maintenance of tissue integrity. Characterization of these molecular interactions will provide a more thorough understanding of how the extracellular matrix molecules of cartilage interact and what role collagen XI plays in the process of fibrillogenesis and maintenance of tissue integrity. Such information will aid tissue engineering and cartilage regeneration efforts to treat cartilage tissue damage and degeneration.
Collapse
Affiliation(s)
- Raquel J. Brown
- Department of Biological Sciences, Biomolecular Research Center and Musculoskeletal Research Institute, Boise State University, Boise, ID 83725-1515, USA
| | - Christopher Mallory
- Department of Chemistry and Biochemistry, Biomolecular Research Center and Musculoskeletal Research Institute, Boise State University, Boise, ID 83725-1515, USA
| | - Owen M. McDougal
- Department of Chemistry and Biochemistry, Biomolecular Research Center and Musculoskeletal Research Institute, Boise State University, Boise, ID 83725-1515, USA
| | - Julia Thom Oxford
- Department of Biological Sciences, Biomolecular Research Center and Musculoskeletal Research Institute, Boise State University, Boise, ID 83725-1515, USA
| |
Collapse
|
4
|
Ihara Y, Inai Y, Ikezaki M. Protein C-Mannosylation and Its Prospective Functions in the Cell. TRENDS GLYCOSCI GLYC 2011. [DOI: 10.4052/tigg.23.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
5
|
Proteins on the catwalk: modelling the structural domains of the CCN family of proteins. J Cell Commun Signal 2009; 3:25-41. [PMID: 19424823 PMCID: PMC2686754 DOI: 10.1007/s12079-009-0048-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2009] [Accepted: 03/24/2009] [Indexed: 12/02/2022] Open
Abstract
The CCN family of proteins (CCN1, CCN2, CCN3, CCN4, CCN5 and CCN6) are multifunctional mosaic proteins that play keys roles in crucial areas of physiology such as angiogenesis, skeletal development tumourigenesis, cell proliferation, adhesion and survival. This expansive repertoire of functions comes through a modular structure of 4 discrete domains that act both independently and in concert. How these interactions with ligands and with neighbouring domains lead to the biological effects is still to be explored but the molecular structure of the domains is likely to play an important role in this. In this review we have highlighted some of the key features of the individual domains of CCN family of proteins based on their biological effects using a homology modelling approach.
Collapse
|
6
|
Holbourn KP, Acharya KR, Perbal B. The CCN family of proteins: structure-function relationships. Trends Biochem Sci 2008; 33:461-73. [PMID: 18789696 PMCID: PMC2683937 DOI: 10.1016/j.tibs.2008.07.006] [Citation(s) in RCA: 329] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2008] [Revised: 07/03/2008] [Accepted: 07/07/2008] [Indexed: 02/07/2023]
Abstract
The CCN proteins are key signalling and regulatory molecules involved in many vital biological functions, including cell proliferation, angiogenesis, tumourigenesis and wound healing. How these proteins influence such a range of functions remains incompletely understood but is probably related to their discrete modular nature and a complex array of intra- and inter-molecular interactions with a variety of regulatory proteins and ligands. Although certain aspects of their biology can be attributed to the four individual modules that constitute the CCN proteins, recent results suggest that some of their biological functions require cooperation between modules. Indeed, the modular structure of CCN proteins provides important insight into their structure-function relationships.
Collapse
Affiliation(s)
- Kenneth P Holbourn
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | | | | |
Collapse
|
7
|
Pääkkönen K, Tossavainen H, Permi P, Rakkolainen H, Rauvala H, Raulo E, Kilpeläinen I, Güntert P. Solution structures of the first and fourth TSR domains of F-spondin. Proteins 2006; 64:665-72. [PMID: 16736493 DOI: 10.1002/prot.21030] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
F-spondin is a protein mainly associated with neuronal development. It attaches to the extracellular matrix and acts in the axon guidance of the developing nervous system. F-spondin consists of eight domains, six of which are TSR domains. The TSR domain family binds a wide range of targets. Here we present the NMR solution structures of TSR1 and TSR4. TSR domains have an unusual fold that is characterized by a long, nonglobular shape, consisting of two beta-strands and one irregular extended strand. Three disulfide bridges and stack of alternating tryptophan and arginine side-chains stabilize the structure. TSR1 and TSR4 structures are similar to each other and to the previously determined TSR domain X-ray structures from another protein, TSP, although TSR4 exhibits a mobile loop not seen in other structures.
Collapse
Affiliation(s)
- Kimmo Pääkkönen
- Tatsuo Miyazawa Memorial Program, RIKEN Genomic Sciences Center, Yokohama, Japan
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Kevrekidis PG, Whitaker N, Good DJ, Herring GJ. Minimal model for tumor angiogenesis. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2006; 73:061926. [PMID: 16906883 DOI: 10.1103/physreve.73.061926] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2005] [Revised: 04/05/2006] [Indexed: 05/11/2023]
Abstract
In this work, we show a mathematical model for the angiogenesis by endothelial cells. We present the model at the level of partial differential equations, describing the spatiotemporal evolution of the cell population, the extracellular matrix macromolecules, the proteases, the tumor angiogenic factors, and the possible presence of inhibitors. We mainly focus, however, on a complementary, more physiologically realistic, hybrid approach in which the cells are treated as individual particles. We examine the model numerically in two-dimensional settings, discussing its comparison with experimental results.
Collapse
Affiliation(s)
- P G Kevrekidis
- Department of Mathematics and Statistics, University of Massachusetts, Amherst, Massachusetts 01003-4515, USA
| | | | | | | |
Collapse
|
9
|
Sato K, Tanahashi-Shiina T, Jun F, Watanabe-Kawamura A, Ichinomiya M, Minegishi Y, Tsukamasa Y, Nakamura Y, Kawabata M, Ohtsuki K. Simple and rapid chromatographic purification of type V collagen from a pepsin digest of porcine intestinal connective tissue, an unmanageable starting material for conventional column chromatography. J Chromatogr B Analyt Technol Biomed Life Sci 2003; 790:277-83. [PMID: 12767338 DOI: 10.1016/s1570-0232(03)00083-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A chromatographic method is described for purification of type V collagen, a minor constituent in extracellular matrix, from a pepsin digest of porcine intestinal connective tissue. The starting material was a viscous and turbid solution even after centrifugation. Direct application of the sample to a commercially available DEAE-cellulose column resulted in clogging. On the other hand, type V collagen, [alpha1(V)](2)alpha2(V) form, was successfully captured by a filter paper-based DEAE-cellulose column chromatography and purified by a subsequent commercially available cation-exchange medium without clogging. This is a vast improvement over previously described salt fractionation methods.
Collapse
Affiliation(s)
- Kenji Sato
- Department of Food Sciences and Nutritional Health, Kyoto Prefectural University, Shimogamao, 606-8522, Kyoto, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
CD36 has been associated with diverse normal and pathologic processes. These include scavenger receptor functions (uptake of apoptotic cells and modified lipid), lipid metabolism and fatty acid transport, adhesion, angiogenesis, modulation of inflammation, transforming growth factor-beta activation, atherosclerosis, diabetes and cardiomyopathy. Although CD36 was identified more than 25 years ago, it is only with the advent of recent genetic technology that in-vivo evidence has emerged for its physiologic and pathologic relevance. As these in-vivo studies are expanded, we will gain further insight into the mechanism(s) by which CD36 transmits a cellular signal, and this will allow the design of specific therapeutics that impact on a particular function of CD36.
Collapse
Affiliation(s)
- R L Silverstein
- Weill Medical College of Cornell University, Department of Medicine, New York, New York 10021, USA
| | | |
Collapse
|
11
|
Adams JC, Tucker RP. The thrombospondin type 1 repeat (TSR) superfamily: Diverse proteins with related roles in neuronal development. Dev Dyn 2000. [DOI: 10.1002/(sici)1097-0177(200006)218:2%3c280::aid-dvdy4%3e3.0.co;2-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
12
|
Abstract
The thrombospondins are a family of proteins found widely in the embryonic extracellular matrix. Like most matrix proteins, thrombospondins are modular and contain a series of repeated domains arrayed between globular amino and carboxyl terminal domains. In recent years, other proteins that share thrombospondin type 1 repeats, or TSRs, have been identified. These include the F-spondin gene family, the members of the semaphorin 5 family, UNC-5, SCO-spondin, and others. Most of these are expressed in the developing nervous system, and many have expression patterns and in vitro properties that suggest potential roles in the guidance of cell and growth cone migration. Both cell- and matrix-binding motifs have been identified in the TSRs of thrombospondin-1, so it has been hypothesized that the properties of these diverse proteins may also depend on the presence of these repeats. Here, we review the cell biology of the TSR module, the extensive literature regarding the distribution and functions of thrombospondins and other TSR superfamily proteins, and evaluate their possible roles during the development of the nervous system.
Collapse
Affiliation(s)
- J C Adams
- MRC-Laboratory for Molecular Cell Biology and Department of Biochemistry and Molecular Biology, University College London, United Kingdom.
| | | |
Collapse
|
13
|
Kipnes JR, Xu L, Han F, Rallapalli R, Jimenez S, Hall DJ, Tuan RS, Li Y. Molecular cloning and expression patterns of mouse cartilage oligomeric matrix protein gene. Osteoarthritis Cartilage 2000; 8:236-9. [PMID: 10806052 DOI: 10.1053/joca.2000.0296] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To develop transgenic mice harboring mutations in the COMP gene as animal models for pseudoachondroplasia (PSACH) and multiple epiphyseal dysplasia (MED), autosomal dominant disorders characterized by early onset osteoarthritis and epiphyseal abnormalities. As a first step in generating a mouse model for COMP mutations, we have cloned the cDNA of mouse COMP and examined its tissue expression pattern. DESIGN Total mRNA was isolated from the skeletal tissues of newborn C57BL/6j mice and used as a template for oligo(dT) first-strand cDNA synthesis. The cDNA was used for PCR amplification of COMP using three oligonucleotide primer pairs designed from the published rat COMP cDNA sequence. Nested PCR was used to complete the sequence between the amplified fragments. The entire cDNA was sequenced and the expression pattern of the corresponding transcripts examined by Northern hybridizations. RESULTS A full-length COMP cDNA was isolated. Analysis showed that the entire translated region of the mouse COMP gene is 2268 bp and the derived amino acid sequence shows 90% homology to human COMP. Of eight adult mouse non-cartilage tissues tested, COMP expression was detected only in testis.
Collapse
Affiliation(s)
- J R Kipnes
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Yu H, Tyrrell D, Cashel J, Guo NH, Vogel T, Sipes JM, Lam L, Fillit HM, Hartman J, Mendelovitz S, Panel A, Roberts DD. Specificities of heparin-binding sites from the amino-terminus and type 1 repeats of thrombospondin-1. Arch Biochem Biophys 2000; 374:13-23. [PMID: 10640391 DOI: 10.1006/abbi.1999.1597] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Interactions of heparin with intact human thrombospondin-1 (TSP1) and with two heparin-binding fragments of TSP1 were characterized using chemically modified heparins, a vascular heparan sulfate proteoglycan, and a series of heparin oligosaccharides prepared by partial deaminative cleavage. The avidity of TSP1 binding increased with oligosaccharide size, with plateaus at 4 to 6 and at 8 to 10 monosaccharide units. The dependence on oligosaccharide size for binding to the recombinant amino-terminal heparin-binding domain of TSP1 was the same as that of the intact TSP1 molecule but differed from that of a synthetic heparin-binding peptide from the type 1 repeats, suggesting that the interaction between intact TSP1 and heparin is primarily mediated by the amino-terminal domain. Based on activities of chemically modified heparins, binding to TSP1 depended primarily on 2-N- and 6-O-sulfation of glucosamine and to a lesser degree on 2,3-O-sulfation and the carboxyl residues of the uronic acids. In contrast, all of these modifications were required for binding of heparin to the type 1 repeat peptides. Affinity purification of heparin octasaccharides on immobilized TSP1 type 1 repeat peptides revealed a preference for oligosaccharides containing the disaccharide sequence IdoA(2-OSO(3))alpha1-4-GlcNS(6-OSO(3)). Binding of these oligosaccharides to the peptide required the Trp residues. These data demonstrate that the heparin-binding specificities of intact TSP1 and peptides from the type 1 repeats overlap with that of basic fibroblast growth factor (FGF2) and are consistent with the ability of these TSP1-derived molecules to inhibit FGF2-stimulated angiogenesis.
Collapse
Affiliation(s)
- H Yu
- Laboratory of Pathology, National Cancer Institute, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Dardik R, Lahav J. Functional changes in the conformation of thrombospondin-1 during complexation with fibronectin or heparin. Exp Cell Res 1999; 248:407-14. [PMID: 10222132 DOI: 10.1006/excr.1999.4415] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Thrombospondin-1 (TSP-1) interacts specifically with heparin and fibronectin in vitro and colocalizes with fibronectin and heparan sulfate in the extracellular matrix (ECM). Its conformation is strongly dependent on Ca2+ concentration. We have previously shown that both heparin and fibronectin have two binding sites on the TSP-1 subunit which may require conformational change for their occupancy (R. Dardik and J. Lahav, 1987, Eur. J. Biochem. 168, 347; ibid 1989, 185, 581). To investigate the effect of TSP-1 binding to fibronectin and heparin on its functional conformation, TSP-1 was subjected to proteolysis in the presence and absence of ligands and of Ca2+. We found that while trypsin cleavage of free TSP-1 resulted in the inactivation of ligand binding, TSP-1 bound to either fibronectin or heparin remained stably associated with these ligands. Cleavage by thrombin or tissue plasminogen activator (tPA) showed that Ca2+-depleted TSP-1, when bound to fibronectin or to heparin, yielded proteolytic cleavage patterns typical of the Ca2+-containing form. Cleavage by chymotrypsin was not affected by binding to fibronectin or heparin; hence loss of proteolytic susceptibility was not due to steric hindrance by the ligands. Taken together, these results indicate that: (A) binding of TSP-1 to fibronectin or heparin is a two-step mechanism where binding to one site leads to conformational changes that enable binding to the second site; (B) TSP-1 in complex with fibronectin or heparin adopts the Ca2+-containing conformation in the absence of Ca2+; and (C) such complexes are highly resistant to cleavage by tPA and, if cleaved by other enzymes, the TSP-1 fragments remain bound to other ECM components. These characteristics have profound significance for platelet adhesion and cell migration into wounds where Ca2+ concentrations are reduced.
Collapse
Affiliation(s)
- R Dardik
- National Center for Hemophilia, Sheba Medical Center, Tel Hashomer
| | | |
Collapse
|
16
|
Panetti TS, Kudryk BJ, Mosher DF. Interaction of recombinant procollagen and properdin modules of thrombospondin-1 with heparin and fibrinogen/fibrin. J Biol Chem 1999; 274:430-7. [PMID: 9867861 DOI: 10.1074/jbc.274.1.430] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Many properties have been assigned to the procollagen and properdin (Type I) modules of thrombospondin-1 (TSP1) based on activities of large proteolytic fragments of TSP1 or peptides containing TSP1-derived sequences. To examine the activities of the modules more exactly, we expressed the first properdin module (P1); the third properdin module (P3); the first and second properdin modules (P12); the first, second, and third properdin modules (P123); and the procollagen module with the first, second, and third properdin modules (CP123) in the GELEX expression vector (GE1) using the baculovirus system. GE1 encodes the pre-pro sequence, the transglutaminase cross-linking site(s), the protease-sensitive site, and the gelatin binding domain from the amino terminus of rat fibronectin. All five recombinant proteins were expressed by insect cells, secreted into the culture medium, and purified by gelatin-agarose affinity chromatography. P123 shared with TSP1 a resistance to trypsin unless reduced and alkylated. P12/GE1, P123/GE1, and CP123/GE1 bound poorly to heparin-agarose except in the absence of sodium chloride, whereas peptides based on P2 are known to bind to heparin in up to 150 mM sodium chloride. In cross-linking experiments employing activated recombinant factor XIII and the transglutaminase cross-linking site in the fibronectin-derived sequence, P12/GE1, P123/GE1, CP123/GE1, and P3/GE1 but not P1/GE1 became incorporated into a fibrin clot more than GE1 alone. Analysis of the complex indicated that cross-linking was to the portion of the fibrin alpha-chain remaining in the D-dimer of plasmin digests. P123 also cross-linked to the Aalpha-chain of unclotted fibrinogen. P123 competed for 125I-TSP1 incorporation into the fibrin clot. P123 did not cross-link to plasminogen, histidine-rich glycoprotein, fibronectin, or plasma globulins other than fibrinogen/fibrin. These results indicate that the properdin modules of TSP1 specifically interact with fibrinogen/fibrin but not with heparin under physiologic conditions.
Collapse
Affiliation(s)
- T S Panetti
- Departments of Medicine and Biomolecular Chemistry, University of Wisconsin, Madison, Wisconsin 53706, USA.
| | | | | |
Collapse
|
17
|
Chen YZ, Incardona F, Legrand C, Momeux L, Caen J, Han ZC. Thrombospondin, a negative modulator of megakaryocytopoiesis. THE JOURNAL OF LABORATORY AND CLINICAL MEDICINE 1997; 129:231-8. [PMID: 9016860 DOI: 10.1016/s0022-2143(97)90144-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The effects of native thrombospondin (TSP), an 18 kd recombinant protein comprising residues 1-174 of TSP (TSP1-174) with heparin-binding domain and a fusion protein comprising residues 559-669 of TSP (TSP559-669) on murine hematopoiesis, were studied by using different in vitro culture systems. TSP by itself did not show an inhibitory effect on colony-forming unit-megakaryocyte (CFU-MK) growth in a serum-free agar system and on the growth of colony-forming unit-granulocyte and macrophage (CFU-GM) in a plasma clot system. It was, however, found that in the plasma clot culture system when using aplastic anemia serum as the source of thrombopoietin or C-Mpl ligand (TPO), TSP and TSP1-174, but not TSP559-669, were able to inhibit the growth of CFU-MK from unfractionated and lineage negative (Lin-) bone marrow cells in a dose-dependent manner. A statistically significant suppression was seen at 1 microg/ml of TSP and 5 microg/ml of TSP1-174. This inhibitory effect of TSP was further found in both the serum-free agar system and the plasma clot system without aplastic anemia serum, where megakaryocyte colony growth was stimulated by recombinant TPO, basic fibroblast growth factor (bFGF), or interleukin-3 (IL-3). In a methylcellulose system, where a combination of stem cell factor (SCF), IL-3, and granulocyte/macrophage colony-stimulating factor (GM-CSF) were used, TSP inhibited the growth of colony-forming unit-granulocyte-erythroblast, megakaryocyte, and macrophage (CFU-GEMM) but not CFU-GM and burst-forming unit-erythroblast (BFU-E). Interestingly, this inhibitory effect of TSP on megakaryocyte colony growth could be counteracted by Fraxiparin, a low-molecular-weight heparin. These results demonstrate that TSP is a negative modulator of megakaryocytopoiesis and suggest that its inhibitory effect is at least partially mediated by N-terminal heparin-binding domain.
Collapse
Affiliation(s)
- Y Z Chen
- Institut des Vaisseaux et du Sang, University VII of Paris, France
| | | | | | | | | | | |
Collapse
|
18
|
Xie RL, Long GL. Role of N-linked glycosylation in human osteonectin. Effect of carbohydrate removal by N-glycanase and site-directed mutagenesis on structure and binding of type V collagen. J Biol Chem 1995; 270:23212-7. [PMID: 7559469 DOI: 10.1074/jbc.270.39.23212] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
In this study we demonstrate that the binding region of recombinant truncated human bone osteonectin (tHON) for type V collagen resides between amino acids 1 and 146. After removal of oligosaccharide chain structures from tHON, bovine bone osteonectin (BBON) and human platelet osteonectin (HPON) by N-glycanase, their ability to bind to type V collagen is increased, and HPON affinity to collagen V is the same as that of BBON. These data suggest that glycosylation of osteonectin has a direct or regulatory effect on osteonectin binding to collagen V and that the increase in tHON binding upon removal of carbohydrate is the result of a loss of a down-regulation site or direct interference of the carbohydrate at the binding site. To determine the specific role of each N-glycosylation site in tHON, Asn71 and Asn99 were mutated to Gln (N71Q, N99Q) and Thr73 and Thr101 mutated to Ala (T73A, T101A) to selectively inhibit oligosaccharide attachment. The binding affinity of N99Q and T101Q to collagen V is markedly increased over wild-type tHON, whereas N71Q and T73A are the same as wild-type tHON. The doubled mutant (N71,99Q) binds identically to collagen V as N99Q and T101A. These data suggest that only the position 99 glycosylation site (Asn99-X-Thr101) in tHON is important in the reduction of binding of osteonectin to collagen V. Consistent with the binding data is the observation that both the N71Q and T73A mutant proteins migrate on SDS-polyacrylamide gel electrophoresis gels identically to wild-type tHON, suggesting that there is little or no N-glycosylation of residue 71 in wild-type osteonectin.
Collapse
Affiliation(s)
- R L Xie
- Department of Biochemistry, School of Medicine, University of Vermont, Burlington 05405, USA
| | | |
Collapse
|
19
|
Briggs MD, Hoffman SM, King LM, Olsen AS, Mohrenweiser H, Leroy JG, Mortier GR, Rimoin DL, Lachman RS, Gaines ES. Pseudoachondroplasia and multiple epiphyseal dysplasia due to mutations in the cartilage oligomeric matrix protein gene. Nat Genet 1995; 10:330-6. [PMID: 7670472 DOI: 10.1038/ng0795-330] [Citation(s) in RCA: 351] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Pseudoachondroplasia (PSACH) and multiple epiphyseal dysplasia (MED) are dominantly inherited chondrodysplasias characterized by short stature and early-onset osteoarthrosis. The disease genes in families with PSACH and MED have been localized to an 800 kilobase interval on the short arm of chromosome 19. Recently the gene for cartilage oligomeric matrix protein (COMP) was localized to chromosome 19p13.1. In three patients with these diseases, we identified COMP mutations in a region of the gene that encodes a Ca++ binding motif. Our data demonstrate that PSACH and some forms of MED are allelic and suggest an essential role for Ca++ binding in COMP structure and function.
Collapse
Affiliation(s)
- M D Briggs
- Ahmanson Department of Pediatrics, Steven Spielberg Pediatric Research Center, Cedars-Sinai Research Institute, Los Angeles, California 90048, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
The fibrillar collagens are the most abundant proteins of extracellular matrices. Among them, collagens V and XI are quantitatively minor components which participate in the formation of the fibrillar collagen network. Since these collagens were discovered, studies have demonstrated that they may play a fundamental role in the control of fibrillogenesis, probably by forming a core within the fibrils. Another characteristic of these collagens is the partial retention of their N-propeptide extensions in tissue forms, an unusual observation in comparison to the other known fibrillar collagens. The tissue locations of collagens V and XI are different, but their structural and biological properties seem to be closely related. It has been shown that their primary structures are highly conserved at both the gene and protein levels, and that these conserved features are the bases of their similar biological properties. In particular, they are both resistant to mammalian collagenases, and surprisingly sensitive to trypsin treatment. Collagens V and XI are usually buried within the major collagen fibrils, although they have both cell adhesion and heparin binding sites which could be of crucial importance in physiological processes such as development and wound healing. It has became evident that several molecules are in fact heterotypic associations of chains from both collagens V and XI, demonstrating that these two collagens are not distinct types but a single type which can be called collagen V/XI.
Collapse
Affiliation(s)
- A Fichard
- Institut de Biologie et Chimie des Protéines, Lyon, France
| | | | | |
Collapse
|