1
|
Shioiri T, Tsuchimoto J, Fukushige K, Takeuchi T, Naito M, Watanabe H, Sugiura N. Chondroitin sulfate liposome: clustering toward high functional efficiency. J Biochem 2024; 176:229-236. [PMID: 38861406 DOI: 10.1093/jb/mvae041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/20/2024] [Accepted: 05/23/2024] [Indexed: 06/13/2024] Open
Abstract
Chondroitin sulfate (CS) is a linear polysaccharide chain of alternating residues of glucuronic acid (GlcA) and N-acetylgalactosamine (GalNAc), modified with sulfate groups. Based on the structure, CS chains bind to bioactive molecules specifically and regulate their functions. For example, CS whose GalNAc is sulfated at the C4 position, termed CSA, and CS whose GalNAc is sulfated at both C4 and C6 positions, termed CSE, bind to a malaria protein VAR2CSA and receptor type of protein tyrosine phosphatase sigma (RPTPσ), respectively, in a specific manner. Here, we modified CSA and CSE chains with phosphatidylethanolamine (PE) at a reducing end, attached them to liposomes containing phospholipids and generated CSA and CSE liposomes. The CS-PE was incorporated into the liposome particles efficiently. Inhibition ELISA revealed specific interaction of CSA and CSE with recombinant VAR2CSA and RPTPσ, respectively, more efficiently than CS chains alone. Furthermore, CSE liposome was specifically incorporated into RPTPσ-expressing HEK293T cells. These results indicate CS liposome as a novel and efficient drug delivery system, especially for CS-binding molecules.
Collapse
Affiliation(s)
- Tatsumasa Shioiri
- Institute for Molecular Science of Medicine, Aichi Medical University, Nagakute, Aichi, Japan
| | - Jun Tsuchimoto
- Institute for Molecular Science of Medicine, Aichi Medical University, Nagakute, Aichi, Japan
| | - Kaori Fukushige
- Department of Anatomy, School of Medicine, Aichi Medical University, 1-1 Yazakokarimata, Nagakute-shi 480-1195, Japan
| | - Takao Takeuchi
- Department of Anatomy, School of Medicine, Aichi Medical University, 1-1 Yazakokarimata, Nagakute-shi 480-1195, Japan
| | - Munekazu Naito
- Department of Anatomy, School of Medicine, Aichi Medical University, 1-1 Yazakokarimata, Nagakute-shi 480-1195, Japan
| | - Hideto Watanabe
- Institute for Molecular Science of Medicine, Aichi Medical University, Nagakute, Aichi, Japan
| | - Nobuo Sugiura
- Institute for Molecular Science of Medicine, Aichi Medical University, Nagakute, Aichi, Japan
| |
Collapse
|
2
|
Kim JC, Min K, Tae G. The effect of the surface coating of human adipose-derived stem cells by various GAGs on the biodistribution of them upon intravenous administration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2022; 135:112671. [DOI: 10.1016/j.msec.2022.112671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/22/2021] [Accepted: 01/16/2022] [Indexed: 12/17/2022]
|
3
|
Tadai K, Shioiri T, Tsuchimoto J, Nagai N, Watanabe H, Sugiura N. Interaction of receptor type of protein tyrosine phosphatase sigma (RPTPσ) with a glycosaminoglycan library. J Biochem 2018; 164:41-51. [PMID: 29420785 DOI: 10.1093/jb/mvy027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 01/31/2018] [Indexed: 12/14/2022] Open
Abstract
Receptor type of protein tyrosine phosphatase sigma (RPTPσ) functions as a glycosaminoglycan (GAG) receptor of neuronal cells in both the central and peripheral nervous systems. Both chondroitin sulphate (CS) and heparan sulphate (HS) are important constituents of GAG ligands for RPTPσ, although they have opposite effects on neuronal cells. CS inhibits neurite outgrowth and neural regeneration through RPTPσ, whereas HS enhances them. We prepared recombinant RPTPσ N-terminal fragment containing the GAG binding site and various types of biotin-conjugated GAG (CS and HS) with chemical modification and chemo-enzymatic synthesis. Then interaction of the RPTPσ N-terminal fragment was analysed using GAG-biotin immobilized on streptavidin sensor chips by surface plasmon resonance. Interaction of RPTPσ with the CS library was highly correlated to the degree of disulphated disaccharide E unit, which had two sulphate groups at C-4 and C-6 positions of the N-acetylgalactosamine residue (CSE). The optimum molecular mass of CSE was suggested to be approximately 10 kDa. Heparin showed higher affinity to RPTPσ than the CS library. Our GAG library will not only contribute to the fields of carbohydrate science and cell biology, but also provide medical application to regulate neural regeneration.
Collapse
Affiliation(s)
- Kouki Tadai
- Institute for Molecular Science of Medicine, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi 480-1195, Japan.,Faculty of Health and Nutrition, Shubun University, 6 Nikko-cho, Ichinomiya, Aichi 491-0938, Japan
| | - Tatsumasa Shioiri
- Institute for Molecular Science of Medicine, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi 480-1195, Japan
| | - Jun Tsuchimoto
- Institute for Molecular Science of Medicine, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi 480-1195, Japan
| | - Naoko Nagai
- Institute for Molecular Science of Medicine, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi 480-1195, Japan
| | - Hideto Watanabe
- Institute for Molecular Science of Medicine, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi 480-1195, Japan
| | - Nobuo Sugiura
- Institute for Molecular Science of Medicine, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi 480-1195, Japan
| |
Collapse
|
4
|
Park J, Andrade B, Seo Y, Kim MJ, Zimmerman SC, Kong H. Engineering the Surface of Therapeutic "Living" Cells. Chem Rev 2018; 118:1664-1690. [PMID: 29336552 DOI: 10.1021/acs.chemrev.7b00157] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Biological cells are complex living machines that have garnered significant attention for their potential to serve as a new generation of therapeutic and delivery agents. Because of their secretion, differentiation, and homing activities, therapeutic cells have tremendous potential to treat or even cure various diseases and injuries that have defied conventional therapeutic strategies. Therapeutic cells can be systemically or locally transplanted. In addition, with their ability to express receptors that bind specific tissue markers, cells are being studied as nano- or microsized drug carriers capable of targeted transport. Depending on the therapeutic targets, these cells may be clustered to promote intercellular adhesion. Despite some impressive results with preclinical studies, there remain several obstacles to their broader development, such as a limited ability to control their transport, engraftment, secretion and to track them in vivo. Additionally, creating a particular spatial organization of therapeutic cells remains difficult. Efforts have recently emerged to resolve these challenges by engineering cell surfaces with a myriad of bioactive molecules, nanoparticles, and microparticles that, in turn, improve the therapeutic efficacy of cells. This review article assesses the various technologies developed to engineer the cell surfaces. The review ends with future considerations that should be taken into account to further advance the quality of cell surface engineering.
Collapse
Affiliation(s)
| | | | | | - Myung-Joo Kim
- Department of Prosthodontics and Dental Research Institute, School of Dentistry, Seoul National University , Seoul 110-749, Korea
| | | | | |
Collapse
|
5
|
The modulation of biodistribution of stem cells by anchoring lipid-conjugated heparin on the cell surface. J Control Release 2015; 217:128-37. [DOI: 10.1016/j.jconrel.2015.08.053] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 07/15/2015] [Accepted: 08/02/2015] [Indexed: 12/13/2022]
|
6
|
Watanabe I, Hikita T, Mizuno H, Sekita R, Minami A, Ishii A, Minamisawa Y, Suzuki K, Maeda H, Hidari KIPJ, Suzuki T. Isolation and characterization of monoclonal antibodies specific for chondroitin sulfate E. Glycobiology 2015; 25:953-62. [PMID: 26036195 DOI: 10.1093/glycob/cwv039] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 05/28/2015] [Indexed: 12/26/2022] Open
Abstract
Chondroitin sulfate E (CSE) is a polysaccharide containing mainly disaccharide units of D-glucuronic acid (GlcA) and 4,6-O-disulfated N-acetyl-D-galactosamine (GalNAc) residues (E-unit) in the amount of ∼ 60%. CSE is involved in many biological and pathological processes. In this study, we established new monoclonal antibodies, termed E-12C and E-18H, by using CSE that contained more than 70% of E-units as an immunogen. These antibodies recognized CSE but not other CSs isomers or dermatan sulfate (DS). We evaluated the reactivities of the antibodies to 6-O-sulfated CSA (6S-CSA) and DS (6S-DS) that possessed ∼ 60% of GalNAc (4S, 6S) moieties in their structures. Neither of the antibodies reacted with 6S-DS. The antibodies strictly distinguished the structural difference of GlcA and L-iduronic acid in the polysaccharide. Binding affinities of the antibodies were determined by a surface plasmon resonance assay using CSE and 6S-CSA. The binding affinities were strongly associated with the molecular weight of CSE and the E-unit content of 6S-CSA. Moreover, we demonstrated that the antibodies are applicable to histochemical analysis. In conclusion, the new anti-CSE monoclonal antibodies specifically recognize the E-unit of CSE. The antibodies will become useful tools for the investigation of the biological and pathological significance of CSE.
Collapse
Affiliation(s)
- Ippei Watanabe
- Department of Biochemistry, School of Pharmaceutical Science, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka-shi, Shizuoka 422-8526, Japan Central Research Laboratories, Seikagaku Corporation, 3-1253 Tateno, Higashiyamato-shi, Tokyo 207-0021, Japan
| | - Tomoya Hikita
- Department of Biochemistry, School of Pharmaceutical Science, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka-shi, Shizuoka 422-8526, Japan
| | - Haruka Mizuno
- Department of Biochemistry, School of Pharmaceutical Science, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka-shi, Shizuoka 422-8526, Japan
| | - Risa Sekita
- Department of Biochemistry, School of Pharmaceutical Science, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka-shi, Shizuoka 422-8526, Japan
| | - Akira Minami
- Department of Biochemistry, School of Pharmaceutical Science, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka-shi, Shizuoka 422-8526, Japan
| | - Ami Ishii
- Department of Biochemistry, School of Pharmaceutical Science, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka-shi, Shizuoka 422-8526, Japan
| | - Yuka Minamisawa
- Central Research Laboratories, Seikagaku Corporation, 3-1253 Tateno, Higashiyamato-shi, Tokyo 207-0021, Japan
| | - Kiyoshi Suzuki
- Central Research Laboratories, Seikagaku Corporation, 3-1253 Tateno, Higashiyamato-shi, Tokyo 207-0021, Japan
| | - Hiroshi Maeda
- Central Research Laboratories, Seikagaku Corporation, 3-1253 Tateno, Higashiyamato-shi, Tokyo 207-0021, Japan
| | - Kazuya I P J Hidari
- Department of Food and Nutrition, Junior College Division, University of Aizu, 1-1 Aza-Kadota Yahata, Ikki-machi, Aizuwakamatsu-shi, Fukushima 965-8570, Japan
| | - Takashi Suzuki
- Department of Biochemistry, School of Pharmaceutical Science, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka-shi, Shizuoka 422-8526, Japan
| |
Collapse
|
7
|
Iida J, Dorchak J, Clancy R, Slavik J, Ellsworth R, Katagiri Y, Pugacheva EN, van Kuppevelt TH, Mural RJ, Cutler ML, Shriver CD. Role for chondroitin sulfate glycosaminoglycan in NEDD9-mediated breast cancer cell growth. Exp Cell Res 2014; 330:358-370. [PMID: 25445787 DOI: 10.1016/j.yexcr.2014.11.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 10/24/2014] [Accepted: 11/04/2014] [Indexed: 12/15/2022]
Abstract
There are lines of evidence demonstrating that NEDD9 (Cas-L, HEF-1) plays a key role in the development, progression, and metastasis of breast cancer cells. We previously reported that NEDD9 plays a critical role for promoting migration and growth of MDA-MB-231. In order to further characterize the mechanisms of NEDD9-mediated cancer migration and growth, stable cells overexpressing NEDD9 were generated using HCC38 as a parental cell line which expresses low level of endogenous NEDD9. Microarray studies demonstrated that core proteins of CD44 and Serglycin were markedly upregulated in HCC38(NEDD9) cells compared to HCC38(Vector) cells, while those of Syndecan-1, Syndecan-2, and Versican were downregulated in HCC38(NEDD9). Importantly, enzymes generating chondroitin sulfate glycosaminoglycans (CS) such as CHST11, CHST15, and CSGALNACT1 were upregulated in HCC38(NEDD9) compared to HCC38(Vector). Immunofluorescence studies using specific antibody, GD3G7, confirmed the enhanced expression of CS-E subunit in HCC38(NEDD9). Immunoprecipitation and western blotting analysis demonstrated that CS-E was attached to CD44 core protein. We demonstrated that removing CS by chondroitinase ABC significantly inhibited anchorage-independent colony formation of HCC38(NEDD9) in methylcellulose. Importantly, the fact that GD3G7 significantly inhibited colony formation of HCC38(NEDD9) cells suggests that CS-E subunit plays a key role in this process. Furthermore, treatment of HCC38(NEDD9) cells with chondroitinase ABC or GD3G7 significantly inhibited mammosphere formation. Exogenous addition of CS-E enhanced colony formation and mammosphere formation of HCC38 parental and HCC38(Vector) cells. These results suggest that NEDD9 regulates the synthesis and expression of tumor associated glycocalyx structures including CS-E, which plays a key role in promoting and regulating breast cancer progression and metastasis and possibly stem cell phenotypes.
Collapse
Affiliation(s)
- Joji Iida
- Department of Cell Biology, Windber Research Institute, Windber, PA 15963, USA.
| | - Jesse Dorchak
- Department of Cell Biology, Windber Research Institute, Windber, PA 15963, USA
| | - Rebecca Clancy
- Department of Cell Biology, Windber Research Institute, Windber, PA 15963, USA
| | - Juliana Slavik
- Department of Cell Biology, Windber Research Institute, Windber, PA 15963, USA
| | - Rachel Ellsworth
- Clinical Breast Care Project, Henry M, Jackson Foundation for the Advancement of Military Medicine, Windber, PA 15963, USA
| | - Yasuhiro Katagiri
- Developmental Neurobiology Section, Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Elena N Pugacheva
- Department of Biochemistry, School of Medicine, West Virginia University, Morgantown, WV 26506, USA
| | - Toin H van Kuppevelt
- Department of Biochemistry, Nijmegen Centre for Molecular Life Science, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Richard J Mural
- Department of Cell Biology, Windber Research Institute, Windber, PA 15963, USA
| | - Mary Lou Cutler
- Department of Pathology, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Rd, Bethesda, MD 20814, USA
| | - Craig D Shriver
- Department of Surgery, Walter-Reed National Military Medical Center, Bethesda, MD 20814, USA
| |
Collapse
|
8
|
Ishimaru D, Sugiura N, Akiyama H, Watanabe H, Matsumoto K. Alterations in the chondroitin sulfate chain in human osteoarthritic cartilage of the knee. Osteoarthritis Cartilage 2014; 22:250-8. [PMID: 24280246 DOI: 10.1016/j.joca.2013.11.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 11/05/2013] [Accepted: 11/15/2013] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To determine whether the structure of chondroitin sulfate (CS) in cartilage is reflected by the degree of cartilage degeneration in patients with osteoarthritis (OA) of the knee and to determine how CS biosynthesis affects cartilage degeneration. DESIGN Two osteoarthritic cartilage samples were obtained from medial femoral condyle (MFC) and lateral femoral condyle (LFC) of 24 knees with end-stage OA. The samples were assigned to two groups as follows: lesion and remote cartilage were adjacent to and remote from the osteoarthritic cartilage, respectively. Histological grade was determined according to the Mankin score. The CS concentration and chain length were determined using high-performance liquid chromatography (HPLC) and gel filtration chromatography, respectively. Expression of the gene encoding CS glycosyltransferase was evaluated using a real-time quantitative polymerase chain reaction (qPCR) assay. These results were compared between lesion and remote cartilage. RESULTS The Mankin score indicated that lesion cartilage was more degraded compared with remote cartilage. Although the CS levels varied among individuals, the mean CS concentration and chain length were significantly lower and shorter in lesion cartilage than in remote cartilage, respectively (concentration: 12.04 vs 14.84 μg/mg wet weight, P = 0.021; chain length: 5.36 vs 6.19 kDa, P = 0.026). Three genes encoding CS glycosyltransferases (CHPF, CSGALNACT1, CSGALNACT2) were expressed at lower levels in lesion cartilage. CONCLUSIONS In the osteoarthritic knee, the CS concentration and chain length were reduced closer to the more degraded cartilage with decreasing CS glycosyltransferase gene expression. Inhibition of CS glycosyltransferase gene expression may reduce CS chain length, which may contribute to OA progression.
Collapse
Affiliation(s)
- D Ishimaru
- Department of Orthopaedic Surgery, Gifu University, Graduate School of Medicine, Gifu, Japan.
| | - N Sugiura
- Institute for Molecular Science of Medicine, Aichi Medical University, Nagakute, Aichi, Japan.
| | - H Akiyama
- Department of Orthopaedic Surgery, Gifu University, Graduate School of Medicine, Gifu, Japan.
| | - H Watanabe
- Institute for Molecular Science of Medicine, Aichi Medical University, Nagakute, Aichi, Japan.
| | - K Matsumoto
- Department of Orthopaedic Surgery, Gifu University, Graduate School of Medicine, Gifu, Japan.
| |
Collapse
|
9
|
Kaptan E, Sengezer Inceli M, Sancar Bas S. Lectin binding properties of liver, small intestine and tail of metamorphosing marsh frog (Pelophylax ridibundus Pallas 1771). Acta Histochem 2013; 115:595-602. [PMID: 23394843 DOI: 10.1016/j.acthis.2013.01.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Revised: 01/02/2013] [Accepted: 01/03/2013] [Indexed: 10/27/2022]
Abstract
In this present study, localization and variations of specific sugar moieties in the terminal carbohydrate chains of glycoconjugates in the small intestine, liver and tail have been investigated during the metamorphosis of Pelophylax ridibundus larvae. For this purpose, four lectins were used: wheat germ agglutinin (WGA), Ulex europaeus agglutinin (UEA-I), Dolichos biflorus agglutinin (DBA) and peanut agglutinin (PNA), in different larval stages of the frog. Some cells stained specifically in the intestinal mucosa and in tail epidermal cells with the lectins and their affinity changed during metamorphic transformation. For the most part, they decreased in the climax and postmetamorphic periods. It was also found that WGA, DBA and UEA-I lectins exhibited strong affinity to white blood cells in the liver and their binding affinities were the highest in prometamorphosis and they gradually decreased until the end of metamorphosis. These results suggest that the changes of lectin binding in metamorphosis may be an indication of some cellular events occurring in larval metamorphosis such as cell differentiation and damage of cell adhesion between death and differentiating cells. They also can be useful markers for detection of white blood cells in amphibian hematopoietic organs.
Collapse
|
10
|
Jinno-Oue A, Tanaka A, Shimizu N, Mori T, Sugiura N, Kimata K, Isomura H, Hoshino H. Inhibitory effect of chondroitin sulfate type E on the binding step of human T-cell leukemia virus type 1. AIDS Res Hum Retroviruses 2013; 29:621-9. [PMID: 23033806 DOI: 10.1089/aid.2012.0156] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Cell surface heparan sulfate proteoglycans (HSPGs) are involved in the binding and entry of human T-cell leukemia virus type 1 (HTLV-1) into host cells, while sulfated polysaccharides such as heparin inhibit HTLV-1 infection. Chondroitin sulfate proteoglycans (CSPGs) are classified as another major type of proteoglycans. Here, we examined the effect of four types of chondroitin sulfate (CS) on HTLV-1 infection. Accordingly, a human T cell line, MOLT-4, was inoculated with cell-free HTLV-1 in the presence or absence of soluble CS, and the synthesis of reverse-transcribed HTLV-1 DNA within cells 20 h after inoculation was detected using polymerase chain reaction (PCR). Among the four types of CS (A, C, D, and E), the E type (CSE), which was derived from the squid cartilage, exhibited anti-HTLV-1 activity. Furthermore, we observed that CSE directly interacted with recombinant HTLV-1 envelope (Env) proteins and inhibited the binding of HTLV-1 virions to MOLT-4 cells, indicating that the interaction between Env and CSE plays a significant role in its anti-HTLV-1 activity. In addition, CSE inhibited syncytium formation that was induced by HTLV-1-producing cells. When CSE was mixed with the synthetic fusion inhibitor peptide corresponding to the ectodomain of the Env transmembrane subunit (TM) gp21, the HTLV-1 infection was further inhibited when compared with the inhibitory effect of each compound alone. Thus, further elucidation of the in vitro antiviral mechanism of CSE shown in this study will lead to the development of CSE-like molecules for the entry inhibition of HTLV-1.
Collapse
Affiliation(s)
- Atsushi Jinno-Oue
- Department of Virology and Preventive Medicine, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Atsushi Tanaka
- Department of Virology and Preventive Medicine, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Nobuaki Shimizu
- Department of Virology and Preventive Medicine, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Takahisa Mori
- Department of Virology and Preventive Medicine, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Nobuo Sugiura
- Institute for Molecular Science of Medicine, Aichi Medical University, Aichi, Japan
| | - Koji Kimata
- Institute for Molecular Science of Medicine, Aichi Medical University, Aichi, Japan
| | - Hiroki Isomura
- Department of Virology and Preventive Medicine, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Hiroo Hoshino
- Department of Virology and Preventive Medicine, Gunma University Graduate School of Medicine, Gunma, Japan
| |
Collapse
|
11
|
Application of Chondroitin Sulfate Derivatives for Understanding Axonal Guidance in the Nervous System during Development. Polymers (Basel) 2013. [DOI: 10.3390/polym5010254] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
12
|
Sato Y, Shimono C, Li S, Nakano I, Norioka N, Sugiura N, Kimata K, Yamada M, Sekiguchi K. Nephronectin binds to heparan sulfate proteoglycans via its MAM domain. Matrix Biol 2013; 32:188-95. [PMID: 23357641 DOI: 10.1016/j.matbio.2013.01.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Revised: 12/25/2012] [Accepted: 01/02/2013] [Indexed: 01/28/2023]
Abstract
Nephronectin is a basement membrane protein comprising five N-terminal epidermal growth factor (EGF)-like repeats, a central linker segment containing an Arg-Gly-Asp (RGD) motif and a C-terminal meprin-A5 protein-receptor protein tyrosine phosphatase μ (MAM) domain. Nephronectin has been shown to interact with α8β1 integrin through the central linker segment, but its interactions with other molecules remain to be elucidated. Here, we examined the binding of nephronectin to a panel of glycosaminoglycan (GAG) chains. Nephronectin bound strongly to heparin and chondroitin sulfate (CS)-E and moderately to heparan sulfate (HS), but failed to bind to CS-A, CS-C, CS-D, dermatan sulfate and hyaluronic acid. Deletion of the MAM domain severely impaired the binding of nephronectin to heparin but not CS-E, whereas deletion of the EGF-like repeats reduced its binding to CS-E but not heparin, suggesting that nephronectin interacts with CS-E and heparin through the EGF-like repeats and MAM domain, respectively. Consistent with these results, nephronectin bound to agrin and perlecan, which are heparan sulfate proteoglycans (HSPGs) in basement membranes, in HS-dependent manners. Site-directed mutagenesis of the MAM domain revealed that multiple basic amino acid residues in the putative loop regions were involved in the binding of the MAM domain to agrin. The binding of nephronectin to basement membrane HSPGs was further confirmed by in situ nephronectin overlay assays using mouse frozen tissue sections. Taken together, these findings indicate that nephronectin is capable of binding to HSPGs in basement membranes via the MAM domain, and thereby raise the possibility that interactions with basement membrane HSPGs may be involved in the deposition of nephronectin onto basement membranes.
Collapse
Affiliation(s)
- Yuya Sato
- Laboratory of Extracellular Matrix Biochemistry, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Shimbo M, Ando S, Sugiura N, Kimata K, Ichijo H. Moderate repulsive effects of E-unit-containing chondroitin sulfate (CSE) on behavior of retinal growth cones. Brain Res 2013. [DOI: 10.1016/j.brainres.2012.11.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
14
|
Sugiura N, Shioiri T, Chiba M, Sato T, Narimatsu H, Kimata K, Watanabe H. Construction of a chondroitin sulfate library with defined structures and analysis of molecular interactions. J Biol Chem 2012; 287:43390-400. [PMID: 23129769 DOI: 10.1074/jbc.m112.412676] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Chondroitin sulfate (CS) is a linear acidic polysaccharide, composed of repeating disaccharide units of glucuronic acid and N-acetyl-D-galactosamine and modified with sulfate residues at different positions, which plays various roles in development and disease. Here, we chemo-enzymatically synthesized various CS species with defined lengths and defined sulfate compositions, from chondroitin hexasaccharide conjugated with hexamethylenediamine at the reducing ends, using bacterial chondroitin polymerase and recombinant CS sulfotransferases, including chondroitin-4-sulfotransferase 1 (C4ST-1), chondroitin-6-sulfotransferase 1 (C6ST-1), N-acetylgalactosamine 4-sulfate 6-sulfotransferase (GalNAc4S-6ST), and uronosyl 2-sulfotransferase (UA2ST). Sequential modifications of CS with a series of CS sulfotransferases revealed their distinct features, including their substrate specificities. Reactions with chondroitin polymerase generated non-sulfated chondroitin, and those with C4ST-1 and C6ST-1 generated uniformly sulfated CS containing >95% 4S and 6S units, respectively. GalNAc4S-6ST and UA2ST generated highly sulfated CS possessing ∼90% corresponding disulfated disaccharide units. Sequential reactions with UA2ST and GalNAc4S-6ST generated further highly sulfated CS containing a mixed structure of disulfated units. Surprisingly, sequential reactions with GalNAc4S-6ST and UA2ST generated a novel CS molecule containing ∼29% trisulfated disaccharide units. Enzyme-linked immunosorbent assay and surface plasmon resonance analysis using the CS library and natural CS products modified with biotin at the reducing ends, revealed details of the interactions of CS species with anti-CS antibodies, and with CS-binding molecules such as midkine and pleiotrophin. Chemo-enzymatic synthesis enables the generation of CS chains of the desired lengths, compositions, and distinct structures, and the resulting library will be a useful tool for studies of CS functions.
Collapse
Affiliation(s)
- Nobuo Sugiura
- Institute for Molecular Science of Medicine, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi 480-1195, Japan.
| | | | | | | | | | | | | |
Collapse
|
15
|
Dondoni A, Marra A. Calixarene and calixresorcarene glycosides: their synthesis and biological applications. Chem Rev 2010; 110:4949-77. [PMID: 20496911 DOI: 10.1021/cr100027b] [Citation(s) in RCA: 197] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Alessandro Dondoni
- Dipartimento di Chimica, Laboratorio di Chimica Organica, Universita di Ferrara, Via L. Borsari 46, 44100 Ferrara, Italy.
| | | |
Collapse
|
16
|
Kato D, Era S, Watanabe I, Arihara M, Sugiura N, Kimata K, Suzuki Y, Morita K, Hidari KIPJ, Suzuki T. Antiviral activity of chondroitin sulphate E targeting dengue virus envelope protein. Antiviral Res 2010; 88:236-43. [PMID: 20851716 DOI: 10.1016/j.antiviral.2010.09.002] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2010] [Revised: 08/23/2010] [Accepted: 09/02/2010] [Indexed: 11/29/2022]
Abstract
Sulphated glycosaminoglycans such as heparin inhibit the early step of dengue virus infection through interaction with envelope (E) protein. Here, we found that chondroitin sulphate E (CSE), but not CSD, which contains the same degree of sulphation, inhibited dengue virus (DENV) infection of cells with adsorption. CSE significantly reduced infectivity of all dengue virus serotypes to BHK-21 and Vero cells. DENV preferentially bound to CSE immobilised on plastic plates. Also, virus binding to CSE or heparin was cross-inhibited by soluble CSE or heparin. These findings suggested that common carbohydrate determinants on CSE and heparin could be essential epitopes for interaction of DENV, and may be responsible for inhibition of the early steps of DENV infection. A recombinant E protein directly bound heparin and CSE, but not CSD, meaning that interaction of CSE with E protein contributes to the inhibitory action of this glycosaminoglycan. These observations indicate that a specific carbohydrate structure rather than polysulphation or addition of negative charges of the glycosaminoglycan molecule would be necessary for direct binding to DENV E protein. In conclusion, CSE showed antiviral activity as an entry inhibitor targeting E protein of dengue virus.
Collapse
Affiliation(s)
- Daisuke Kato
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, and Global COE Program for Innovation in Human Health Sciences, 52-1 Yada, Suruga-ku, Shizuoka-shi, Shizuoka 422-8526, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Li S, Shimono C, Norioka N, Nakano I, Okubo T, Yagi Y, Hayashi M, Sato Y, Fujisaki H, Hattori S, Sugiura N, Kimata K, Sekiguchi K. Activin A binds to perlecan through its pro-region that has heparin/heparan sulfate binding activity. J Biol Chem 2010; 285:36645-55. [PMID: 20843788 DOI: 10.1074/jbc.m110.177865] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Activin A, a member of the transforming growth factor-β family, plays important roles in hormonal homeostasis and embryogenesis. In this study, we produced recombinant human activin A and examined its abilities to bind to extracellular matrix proteins. Recombinant activin A expressed in 293-F cells was purified as complexes of mature dimeric activin A with its pro-region. Among a panel of extracellular matrix proteins tested, recombinant activin A bound to perlecan and agrin, but not to laminins, nidogens, collagens I and IV, fibronectin, and nephronectin. The binding of recombinant activin A to perlecan was inhibited by heparin and high concentrations of NaCl and abolished by heparitinase treatment of perlecan, suggesting that activin A binds to the heparan sulfate chains of perlecan. In support of this possibility, recombinant activin A was capable of directly binding to heparin and heparan sulfate chains. Site-directed mutagenesis of recombinant activin A revealed that clusters of basic amino acid residues, Lys(259)-Lys(263) and Lys(270)-Lys(272), in the pro-region were required for binding to perlecan. Interestingly, deletion of the peptide segment Lys(259)-Gly(277) containing both basic amino acid clusters from the pro-region did not impair the activity of activin A to stimulate Smad-dependent gene expressions, although it completely ablated the perlecan-binding activity. The binding of activin A to basement membrane heparan sulfate proteoglycans through the basic residues in the pro-region was further confirmed by in situ activin A overlay assays using frozen tissue sections. Taken together, the present results indicate that activin A binds to heparan sulfate proteoglycans through its pro-region and thereby regulates its localization within tissues.
Collapse
Affiliation(s)
- Shaoliang Li
- Laboratory of Extracellular Matrix Biochemistry, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Ijima H, Kubo T, Hou YT. Primary rat hepatocytes form spheroids on hepatocyte growth factor/heparin-immobilized collagen film and maintain high albumin production. Biochem Eng J 2009. [DOI: 10.1016/j.bej.2009.05.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
19
|
Transcriptome-based systematic identification of extracellular matrix proteins. Proc Natl Acad Sci U S A 2008; 105:12849-54. [PMID: 18757743 DOI: 10.1073/pnas.0803640105] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Extracellular matrix (ECM), which provides critical scaffolds for all adhesive cells, regulates proliferation, differentiation, and apoptosis. Different cell types employ customized ECMs, which are thought to play important roles in the generation of so-called niches that contribute to cell-specific functions. The molecular entities of these customized ECMs, however, have not been elucidated. Here, we describe a strategy for transcriptome-wide identification of ECM proteins based on computational screening of >60,000 full-length mouse cDNAs for secreted proteins, followed by in vitro functional assays. These assays screened the candidate proteins for ECM-assembling activities, interactions with other ECM molecules, modifications with glycosaminoglycans, and cell-adhesive activities, and were then complemented with immunohistochemical analysis. We identified 16 ECM proteins, of which seven were localized in basement membrane (BM) zones. The identification of these previously unknown BM proteins allowed us to construct a body map of BM proteins, which represents the comprehensive immunohistochemistry-based expression profiles of the tissue-specific customization of BMs.
Collapse
|
20
|
Ruhela D, Riviere K, Szoka FC. Efficient synthesis of an aldehyde functionalized hyaluronic acid and its application in the preparation of hyaluronan-lipid conjugates. Bioconjug Chem 2007; 17:1360-3. [PMID: 16984148 DOI: 10.1021/bc0600721] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An efficient method to synthesize hyaluronan oligosaccharide lipid conjugates is described. This strategy is based on the introduction of a double bond in the glucuronic acid of the hyaluronic acid (HA), by the biodegradation of HA with hyaluronate lyase, followed by the generation of a free aldehyde group at the nonreducing end of hyaluronic acid via ozonolysis and the subsequent reduction of the generated ozonide. The resulting aldehyde-functionalized HA is then coupled to dipalmitoyl phosphatidylethanolamine (DPPE) using reductive amination chemistry. This methodology can be extended to link molecules such as biotin, polymers, or proteins to HA for numerous applications in drug delivery and in the creation of biocompatible materials for tissue repair and engineering.
Collapse
Affiliation(s)
- Dipali Ruhela
- Department of Pharmaceutical Chemistry and Biopharmaceutical Sciences, School of Pharmacy, University of California at San Francisco, 94143-0446, USA
| | | | | |
Collapse
|
21
|
Sugiura N, Shimokata S, Watanabe H, Kimata K. MS analysis of chondroitin polymerization: effects of Mn2+ ions on the stability of UDP-sugars and chondroitin synthesis. Anal Biochem 2007; 365:62-73. [PMID: 17395146 DOI: 10.1016/j.ab.2007.02.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2007] [Revised: 02/12/2007] [Accepted: 02/19/2007] [Indexed: 12/01/2022]
Abstract
Chondroitin polymerase from Escherichia coli strain K4 (K4CP) synthesizes chondroitin (CH) polysaccharides by the alternate addition of N-acetyl-D-galactosamine (GalNAc) and D-glucuronic acid (GlcA) to acceptor CH oligosaccharides in the presence of Mn(2+) ions. In this study, we applied matrix-assisted laser desorption ionization and time-of-flight mass spectrometry (MALDI-TOF MS) for the further characterization of the products synthesized by K4CP from CH hexasaccharide as an initial acceptor and UDP-GalNAc and UDP-GlcA as donors. The analysis identified individual CH chains of various lengths and enabled the calculation of their average molecular weights. The ion peaks of the CH chains synthesized in the short-time reactions demonstrated not only the alternate addition of GlcA and GalNAc but also the more frequent transfer of GlcA and GalNAc, consistent with our previous kinetic data. In contrast, the MS spectra of the chains synthesized in the long-time reaction showed that CH chains containing GalNAc at the nonreducing ends were more abundant than those containing GlcA. We found that this inconsistency was due to the preferential decomposition of UDP-GlcA by Mn(2+) ions. We defined the optimal conditions to yield further elongation of the CH chains that have nearly equal numbers of GlcA and GalNAc residues at the nonreducing ends.
Collapse
Affiliation(s)
- Nobuo Sugiura
- Institute for Molecular Science of Medicine, Aichi Medical University, Yazako, Nagakute, Aichi 480-1195, Japan
| | | | | | | |
Collapse
|
22
|
Fernández C, Hattan CM, Kerns RJ. Semi-synthetic heparin derivatives: chemical modifications of heparin beyond chain length, sulfate substitution pattern and N-sulfo/N-acetyl groups. Carbohydr Res 2006; 341:1253-65. [PMID: 16712822 DOI: 10.1016/j.carres.2006.04.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2006] [Revised: 04/04/2006] [Accepted: 04/09/2006] [Indexed: 11/24/2022]
Abstract
The glycosaminoglycan heparin is a polyanionic polysaccharide most recognized for its anticoagulant activity. Heparin binds to cationic regions in hundreds of prokaryotic and eukaryotic proteins, termed heparin-binding proteins. The endogenous ligand for many of these heparin-binding proteins is a structurally similar glycosaminoglycan, heparan sulfate (HS). Chemical and biosynthetic modifications of heparin and HS have been employed to discern specific sequences and charge-substitution patterns required for these polysaccharides to bind specific proteins, with the goal of understanding structural requirements for protein binding well enough to elucidate the function of the saccharide-protein interactions and/or to develop new or improved heparin-based pharmaceuticals. The most common modifications to heparin structure have been alteration of sulfate substitution patterns, carboxyl reduction, replacement N-sulfo groups with N-acetyl groups, and chain fragmentation. However, an accumulation of reports over the past 50 years describe semi-synthetic heparin derivatives obtained by incorporating aliphatic, aryl, and heteroaryl moieties into the heparin structure. A primary goal in many of these reports has been to identify heparin-derived structures as new or improved heparin-based therapeutics. Presented here is a perspective on the introduction of non-anionic structural motifs into heparin structure, with a focus on such modifications as a strategy to generate novel reduced-charge heparin-based bind-and-block antagonists of HS-protein interactions. The chemical methods employed to synthesize such derivatives, as well as other unique heparin conjugates, are reviewed.
Collapse
Affiliation(s)
- Cristina Fernández
- Division of Medicinal and Natural Products Chemistry, University of Iowa, Iowa City, IA 52242, USA
| | | | | |
Collapse
|
23
|
Furutani Y, Manabe RI, Tsutsui K, Yamada T, Sugimoto N, Fukuda S, Kawai J, Sugiura N, Kimata K, Hayashizaki Y, Sekiguchi K. Identification and characterization of photomedins: novel olfactomedin-domain-containing proteins with chondroitin sulphate-E-binding activity. Biochem J 2005; 389:675-84. [PMID: 15836428 PMCID: PMC1180717 DOI: 10.1042/bj20050120] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We screened more than 60000 RIKEN mouse cDNAs for novel ECM (extracellular matrix) proteins by extensive computational screening followed by recombinant expression and immunohistochemical characterization. We identified two novel olfactomedin-family proteins characterized by the presence of tandem CXCXCX9C motifs in the N-terminal region, a coiled-coil domain and an olfactomedin domain in the C-terminal region. These proteins, named photomedin-1 and photomedin-2, were secreted as disulphide-bonded dimers (photomedin-1) or oligomers/multimers (photomedin-2) with O-linked carbohydrate chains, although photomedin-1 was proteolytically processed in the middle of the molecule after secretion. In the retina, photomedin-1 was selectively expressed in the outer segment of photoreceptor cells and photomedin-2 was expressed in all retinal neurons. Among a panel of ECM components, including glycosaminoglycans, photomedins preferentially bound to chondroitin sulphate-E and heparin. These results, together, indicate that photomedins are novel olfactomedin-domain-containing extracellular proteins capable of binding to proteoglycans containing these glycosaminoglycan chains.
Collapse
Affiliation(s)
- Yutaka Furutani
- *Sekiguchi Biomatrix Signaling Project, Exploratory Research for Advanced Technology (ERATO), Japan Science and Technology Agency, Aichi Medical University, Nagakute, Aichi, 480-1195, Japan
| | - Ri-ichiroh Manabe
- *Sekiguchi Biomatrix Signaling Project, Exploratory Research for Advanced Technology (ERATO), Japan Science and Technology Agency, Aichi Medical University, Nagakute, Aichi, 480-1195, Japan
| | - Ko Tsutsui
- *Sekiguchi Biomatrix Signaling Project, Exploratory Research for Advanced Technology (ERATO), Japan Science and Technology Agency, Aichi Medical University, Nagakute, Aichi, 480-1195, Japan
| | - Tomiko Yamada
- *Sekiguchi Biomatrix Signaling Project, Exploratory Research for Advanced Technology (ERATO), Japan Science and Technology Agency, Aichi Medical University, Nagakute, Aichi, 480-1195, Japan
| | - Nagisa Sugimoto
- *Sekiguchi Biomatrix Signaling Project, Exploratory Research for Advanced Technology (ERATO), Japan Science and Technology Agency, Aichi Medical University, Nagakute, Aichi, 480-1195, Japan
| | - Shiro Fukuda
- †Genome Exploration Research Group, RIKEN Genomic Sciences Center, RIKEN Yokohama Institute, Yokohama 230-0045, Japan
| | - Jun Kawai
- †Genome Exploration Research Group, RIKEN Genomic Sciences Center, RIKEN Yokohama Institute, Yokohama 230-0045, Japan
| | - Nobuo Sugiura
- ‡Institute for Molecular Science of Medicine, Aichi Medical University, Nagakute, Aichi 480-1195, Japan
- ∥Central Research Laboratories, Seikagaku Corporation, Higashiyamato, Tokyo 207-0021, Japan
| | - Koji Kimata
- ‡Institute for Molecular Science of Medicine, Aichi Medical University, Nagakute, Aichi 480-1195, Japan
| | - Yoshihide Hayashizaki
- †Genome Exploration Research Group, RIKEN Genomic Sciences Center, RIKEN Yokohama Institute, Yokohama 230-0045, Japan
| | - Kiyotoshi Sekiguchi
- *Sekiguchi Biomatrix Signaling Project, Exploratory Research for Advanced Technology (ERATO), Japan Science and Technology Agency, Aichi Medical University, Nagakute, Aichi, 480-1195, Japan
- ¶Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
- To whom correspondence should be addressed (email )
| |
Collapse
|
24
|
Kett WC, Osmond RIW, Stevenson SM, Moe L, Coombe DR. Direct detection of the binding of avidin and lactoferrin fluorescent probes to heparinized surfaces. Anal Biochem 2005; 339:206-15. [PMID: 15797560 DOI: 10.1016/j.ab.2005.01.054] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2004] [Indexed: 11/18/2022]
Abstract
We describe the use of two heparin-binding proteins, avidin and lactoferrin, as probes for monitoring the amount of heparin immobilized to plastic surfaces. The proteins were derivatized with either fluorescent labels or europium chelates, enabling sensitive, fast, reproducible, and robust assays, and were used to measure the amount of protein bound to heparinized microplates, with particular attention to plates that have been coated with bovine serum albumin (BSA)-heparin conjugate. This direct method unequivocally shows that BSA-heparin affords an economical, convenient, and reliable method for coating both polystyrene microtiter plates and magnetic beads with heparin. We demonstrate that assays using directly labeled proteins overcome the problems of dissociation of the heparin-protein complex, which can occur during incubation and washing steps associated with antibody-based detection methods, and the loss in binding capacity caused by certain blocking regimes. We suggest that labeled avidin and lactoferrin are convenient probes for heparinized surfaces with the potential for much wider applicability than that presented here.
Collapse
Affiliation(s)
- Warren C Kett
- Molecular Immunology, School of Biomedical Sciences, Curtin University of Technology, Perth, WA 6000, Australia
| | | | | | | | | |
Collapse
|
25
|
Waarts BL, Aneke OJC, Smit JM, Kimata K, Bittman R, Meijer DKF, Wilschut J. Antiviral activity of human lactoferrin: inhibition of alphavirus interaction with heparan sulfate. Virology 2005; 333:284-92. [PMID: 15721362 DOI: 10.1016/j.virol.2005.01.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2004] [Revised: 06/24/2004] [Accepted: 01/06/2005] [Indexed: 11/19/2022]
Abstract
Human lactoferrin is a component of the non-specific immune system with distinct antiviral properties. We used alphaviruses, adapted to interaction with heparan sulfate (HS), as a tool to investigate the mechanism of lactoferrin's antiviral activity. Lactoferrin inhibited infection of BHK-21 cells by HS-adapted, but not by non-adapted, Sindbis virus (SIN) or Semliki Forest virus (SFV). Lactoferrin also inhibited binding of radiolabeled HS-adapted viruses to BHK-21 cells or liposomes containing lipid-conjugated heparin as a receptor analog. On the other hand, low-pH-induced fusion of the viruses with liposomes, which occurs independently of virus-receptor interaction, was unaffected. Studies involving preincubation of virus or cells with lactoferrin suggested that the protein does not bind to the virus, but rather blocks HS-moieties on the cell surface. Charge-modified human serum albumin, with a net positive charge, had a similar antiviral effect against HS-adapted SIN and SFV, suggesting that the antiviral activity of lactoferrin is related to its positive charge. It is concluded that human lactoferrin inhibits viral infection by interfering with virus-receptor interaction rather than by affecting subsequent steps in the viral cell entry or replication processes.
Collapse
Affiliation(s)
- Barry-Lee Waarts
- Department of Medical Microbiology, Molecular Virology Section, University of Groningen, Ant. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
26
|
Tomita N, Sando S, Sera T, Aoyama Y. Macrocyclic proteoglycan mimics. Potent inhibition of cell adhesion by a bundle of chondroitin sulfate chains assembled on the calix[4]resorcarene platform. Bioorg Med Chem Lett 2004; 14:2087-90. [PMID: 15080984 DOI: 10.1016/j.bmcl.2004.02.041] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2004] [Revised: 02/10/2004] [Accepted: 02/10/2004] [Indexed: 11/20/2022]
Abstract
Tailed calix[4]resorcarene macrocycle (tail=undecyl) can be used as a platform to assemble four glycosaminoglycan polysaccharide chains to give a new type of proteoglycan mimics. A tetra(chondroitin sulfate) derivative thus obtained from the reaction of macrocyclic octaamine and chondroitin sulfate lactone is readily immobilized on a tissue culture plastic (polystyrene) plate and inhibits fibronectin-mediated adhesion of BHK (baby hamster kidney) cells thereon remarkably strongly with 50% inhibition occurring at a 10 ng/mL or 40 pM concentration range.
Collapse
Affiliation(s)
- Naotoshi Tomita
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | | | | | | |
Collapse
|
27
|
Fujita M, Ishihara M, Ono K, Matsumura K, Saito Y, Yura H, Morimoto Y, Shimizu M, Takase B, Ozaki S, Kikuchi M, Maehara T. Inhibition of Neointimal Proliferation in Balloon-Injured Arteries Using Non-Anticoagulant Heparin-Carrying Polystyrene. J Cardiovasc Pharmacol 2004; 43:31-8. [PMID: 14668565 DOI: 10.1097/00005344-200401000-00006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Non-anticoagulant heparin-carrying polystyrene (NAC-HCPS) has a higher activity to inhibit proliferation and migration of smooth muscle cells (SMCs) than heparin (Hep), periodate-oxidized (IO4-) Hep, and periodate-oxidized alkaline-degraded low molecular weight (IO4-LMW-) Hep. Less than 10 microg/ml of NAC-HCPS significantly inhibited the proliferation and migration of SMCs in vitro, while over 10-fold higher concentrations of Hep, IO4-Hep, and IO4-LMW-Hep were required to obtain the same inhibition. On the other hand, neointimal growth (intimal cross-section area and intimal cross-section area/medial cross-section area ratio) in vivo following vascular injury 28 days after balloon denudation in a rat carotid artery was substantially inhibited with high dose of intravenous administration (total 30 mg) of respectively IO4-Hep, IO4-LMW-Hep, and NAC-HCPS. A low-dose (total 10 mg) administration of IO4-Hep and IO4-LMW-Hep did not prevent the neointimal growth when compared with the control; only NAC-HCPS (total 10 mg) was able to significantly inhibit the neointimal. Thus, NAC-HCPS has a more-than 10-fold larger activity to inhibit SMC activities such as proliferation and migration in vitro, when comparing with Hep, IO4-Hep, and IO4-LMW-Hep; NAC-HCPS also prevents neointimal growth in vivo at lower doses.
Collapse
Affiliation(s)
- Masanori Fujita
- Department of Medical Engineering, Morimoto, National Defense Medical College, Tokorozawa, Saitazma, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Kozaki T, Matsui Y, Gu J, Nishiuchi R, Sugiura N, Kimata K, Ozono K, Yoshikawa H, Sekiguchi K. Recombinant Expression and Characterization of a Novel Fibronectin Isoform Expressed in Cartilaginous Tissues. J Biol Chem 2003; 278:50546-53. [PMID: 14525997 DOI: 10.1074/jbc.m307432200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A novel fibronectin (FN) isoform lacking the segment from IIICS (type III connecting segment) through the I-10 module is expressed predominantly in normal cartilaginous tissues. We expressed and purified recombinant cartilage-type FN using a mammalian expression system and characterized its molecular and biological properties. Although FNs have been shown to be secreted as disulfide-bonded dimers, cartilage-type FN was secreted mainly as a monomer. It was less potent than plasma-type FN in promoting cell adhesion and binding to integrin alpha5beta1, although it was more active than plasma-type FN in binding to chondroitin sulfate E. When added exogenously, cartilage-type FN was poorly assembled into the fibrillar FN matrix, mostly because of its monomeric structure. Given that cartilage is characterized by its non-fibrillar matrix with abundant chondroitin sulfate-containing proteoglycans, it is likely that cartilage-type FN has evolved to adapt itself to the non-fibrillar structure of the cartilage matrix through acquisition of a novel mechanism of alternative pre-mRNA splicing.
Collapse
Affiliation(s)
- Tomohiro Kozaki
- Division of Protein Chemistry, Institute for Protein Research, Graduate School of Medicine, Osaka University, Suita, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Nagakubo D, Murai T, Tanaka T, Usui T, Matsumoto M, Sekiguchi K, Miyasaka M. A high endothelial venule secretory protein, mac25/angiomodulin, interacts with multiple high endothelial venule-associated molecules including chemokines. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 171:553-61. [PMID: 12847218 DOI: 10.4049/jimmunol.171.2.553] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We previously reported that mac25/angiomodulin (AGM), a 30-kDa secretory protein, is abundantly expressed in high endothelial venules (HEVs), which play a crucial role in lymphocyte trafficking to the lymph nodes and Peyer's patches. We report that mac25/AGM interacts preferentially with certain molecules that are expressed in or around HEVs. In particular, mac25/AGM interacted with not only the extracellular matrix proteins and glycosaminoglycans that are expressed in most blood vessels including HEVs, but also with some chemokines that are implicated in the regulation of lymphocyte trafficking, such as the secondary lymphoid-tissue chemokine (SLC; CCL21), IFN-gamma-inducible protein 10 (IP-10; CXCL10), and RANTES (CCL5). The binding of mac25/AGM to SLC and IP-10 was dose-dependent and saturable. The binding to IP-10 could be inhibited by SLC but not by a non-mac25/AGM-binding chemokine, EBI1-ligand chemokine (ELC; CCL19). Interestingly, mac25/AGM failed to interact with 18 other chemokines, suggesting that it binds to certain chemokines preferentially. Immunohistochemical analysis indicated that mac25/AGM colocalizes at least partially with SLC and IP-10 at the basal lamina of HEVs. Upon binding with mac25/AGM, SLC and IP-10 retained all their Ca(2+)-signaling activity in vitro, suggesting that mac25/AGM can hold and present chemokines in the basal lamina of HEVs. These results imply that mac25/AGM plays a multifunctional role, serving not only as an adhesion protein to interact with glycosaminoglycans and extracellular matrix proteins but also as a molecule to present chemokines so that lymphocytes extravasating through HEVs receive further directional cues subsequent to the luminal encounter with lymphoid chemokines.
Collapse
Affiliation(s)
- Daisuke Nagakubo
- Laboratory of Molecular and Cellular Recognition, Osaka University Graduate School of Medicine, Suita, Japan
| | | | | | | | | | | | | |
Collapse
|
30
|
Matsuda T, Magoshi T. Terminally alkylated heparin. 1. Antithrombogenic surface modifier. Biomacromolecules 2003; 2:1169-77. [PMID: 11777389 DOI: 10.1021/bm0100965] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Terminally alkylated heparin was prepared by reducing the terminal end of heparin and subsequent lactone formation, followed by ring-opening reaction with alkylamine. The alkyl groups used include butyl, octyl, lauryl, and stearyl. These alkylated heparins adsorbed on the poly(ethylene terephthalate) film from their respective aqueous solutions. The adsorptivity and its stability in buffer solution, complexation compatibility with antithrombin III (ATIII), were enhanced with larger alkyl-group-derivatized heparins. These were assessed using a confocal laser scanning microscope. The "heparin surfactant" developed here may be used for ensured short-term "system antithrombogenicity" of assembled extracorporeal circulatory devices or circuits.
Collapse
Affiliation(s)
- T Matsuda
- Department of Biomedical Engineering, Graduate School of Medicine, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| | | |
Collapse
|
31
|
Abstract
Structural diversity of the sugar chains attached to proteins and lipids that arises from the variety of combinations of different monosaccharides, different types of linkages, branch formation and secondary modifications, such as sulfation, possesses a large amount of biological information. A number of proteoglycans, glycoproteins, and glycolipids contain sulfated carbohydrates. Their sulfate groups provide a negative charge and play a role in a specific molecular recognition process. The sulfation of oligosaccharides is catalyzed by the Golgi-associated sulfotransferases. Recent success in molecular cloning of these sulfotransferases has brought a breakthrough in the understanding of biological function of sulfated oligosaccharides in a variety of contexts. Investigations on the relationship of sulfated oligosaccharides to human diseases including hereditary deficiency, cancer, inflammation, and infection may provide hints for curing disastrous diseases.
Collapse
Affiliation(s)
- Koichi Honke
- Department of Biochemistry, Osaka University Medical School, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | | |
Collapse
|
32
|
Takagi H, Asano Y, Yamakawa N, Matsumoto I, Kimata K. Annexin 6 is a putative cell surface receptor for chondroitin sulfate chains. J Cell Sci 2002; 115:3309-18. [PMID: 12140262 DOI: 10.1242/jcs.115.16.3309] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chondroitin sulfate proteoglycans, including PG-M/versican, inhibit cell-substratum adhesion. They achieve this through their chondroitin sulfate chains. In order to define the molecular mechanism for this inhibition, we investigated the influence of these chains on cell attachment to substratum,the first step in cell adhesion. Chondroitin sulfate chains did not prevent cell attachment. In fact, a variety of cells attached to chondroitin sulfate,implying the existence of putative receptors and/or binding proteins for this extracellular matrix glycosaminoglycan. Detergent-extracted human fibroblast membrane protein extracts were examined by affinity chromatography in the presence of Ca2+ on chondroitin sulfate immobilized on agarose CL-6B. A 68 kDa and a 35 kDa protein were isolated, sequenced and demonstrated to be annexin 6 and annexin 4, respectively. Next we used A431 cells devoid of annexin 6 expression to verify that annexin 6 is the receptor for this glycosaminoglycan. We confirmed that A431 cells were unable to attach to the chondroitin sulfate substratum and that the stable transfectants expressing annexin 6 conferred the ability to attach to chondroitin sulfate chains. Further, the presence of annexin 6 on the cell surface was confirmed by fluorescence-activated cell sorting analysis using the annexin 6 antibody;annexin 4 is not present on the cell surface. In summary, annexin 6 is a candidate receptor for chondroitin sulfate chains.
Collapse
Affiliation(s)
- Hidekazu Takagi
- Institute for Molecular Science of Medicine, Aichi Medical University, Nagakute, Aichi 480-1195, Japan
| | | | | | | | | |
Collapse
|
33
|
Taguchi T, Ikoma T, Tanaka J. An improved method to prepare hyaluronic acid and type II collagen composite matrices. JOURNAL OF BIOMEDICAL MATERIALS RESEARCH 2002; 61:330-6. [PMID: 12007214 DOI: 10.1002/jbm.10147] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
An improved method to prepare hyaluronic acid (HyA) and type II collagen composite matrices was developed. HyA and type II collagen formed polyion complex (PIC) in aqueous solution due to their opposite electrostatic charges. Therefore, optimal conditions at which PIC was not formed between HyA and type II collagen were determined in order to directly crosslink using a water-soluble carbodiimide [WSC; 1-ethyl-3-(3-dimethyl aminopropyl) carbodiimide hydrochloride]. HyA-collagen composite matrices were successfully obtained using WSC in the presence of 0.4M NaCl, which was found the optimal concentration to suppress PIC formation. Fourier transformed infrared spectra of the obtained matrices showed ester bond formation, indicating that the crosslinking reaction between HyA molecules, HyA and collagen molecules, and collagen molecules proceeded. The swelling ratio of a HyA-collagen composite matrix depended on the WSC concentration and HyA content. From scanning electron microscopy observations, the lyophilized matrices possess multi pore structures. The HyA-collagen composite matrices using this improved method will be useful in the preparation of cartilage regenerative scaffolds, and this methodology may be applied to other polyanion-polycation combinations as well.
Collapse
Affiliation(s)
- Tetsushi Taguchi
- Biomaterials Center, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.
| | | | | |
Collapse
|
34
|
Valiyaveettil M, Achur RN, Alkhalil A, Ockenhouse CF, Gowda DC. Plasmodium falciparum cytoadherence to human placenta: evaluation of hyaluronic acid and chondroitin 4-sulfate for binding of infected erythrocytes. Exp Parasitol 2001; 99:57-65. [PMID: 11748958 DOI: 10.1006/expr.2001.4642] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Chondroitin 4-sulfate (C4S) is known to mediate the adherence of Plasmodium falciparum infected red blood cells (IRBCs) to human placenta. Recently, hyaluronic acid (HA) has also been reported to bind IRBCs, and HA has been suggested as an additional receptor for the sequestration of IRBCs in the placenta. In this study, we assessed the adherence of 3D7 parasite strain, which has been reported to bind both C4S and HA, using highly purified clinical grade rooster comb HA, Streptococcus HA, several preparations of human umbilical cord HA (hucHA), and bovine vitreous humor HA (bvhHA). While all hucHA preparations and bvhHA bound with moderate to high density to IRBCs, the rooster comb and bacterial HAs did not bind IRBCs. IRBCs binding to the hucHA and bvhHA could be abolished by pretreatment with testicular hyaluronidase but not with Streptomyces hyalurolyticus hyaluronidase, suggesting that IRBC binding to hucHA and bvhHA was due to chondroitin sulfate (CS) contaminants in HAs. Compositional analysis confirmed the presence of CS in both hucHA and bvhHA. The CSs present in these commercial hucHA and bvhHA samples were isolated, characterized, and studied for their ability to bind IRBCs. The data suggested that IRBC adherence to hucHA and bvhHA was mediated by the CS present in these samples. However, our data did not exclude the possibility of a minor population of distinct parasite subtype adhering to HA and further studies using pure HA conjugated to proteins or lipids and placental parasite isolates should clarify whether HA is an in vivo receptor for IRBC adherence.
Collapse
Affiliation(s)
- M Valiyaveettil
- Department of Biochemistry and Molecular Biology, Georgetown University Medical Center, Washington, DC 20007, USA
| | | | | | | | | |
Collapse
|
35
|
Hosaka Y, Higuchi T, Tsumagari M, Ishii H. Inhibition of invasion and experimental metastasis of murine melanoma cells by human soluble thrombomodulin. Cancer Lett 2000; 161:231-40. [PMID: 11090974 DOI: 10.1016/s0304-3835(00)00617-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Thrombomodulin (TM) is an anticoagulant molecule expressed on the endothelial cell surface and soluble TM antigen, which is present in human plasma and urine, represents the products of limited proteolytic cleavage of cell-surface TM. Recently, it was demonstrated that TM is also expressed on the surface of several tumor cells and the expression level of TM negatively correlated with malignancy in cancer. We investigated the effect of soluble TM isolated from human urine (uTM) on the invasion and metastasis of murine melanoma cells (B16F10 cells) through a reconstituted basement membrane (Matrigel) and in a murine model of experimental lung metastasis. Matrigel reconstituted with uTM inhibited the invasion of B16F10 cells in a dose-dependent manner in a range from 10 to 1000 ng/ml uTM as compared with the control Matrigel without uTM. The inhibitory action of uTM was not altered in the presence of an excess amount of hirudin, an inhibitor of thrombin proteolytic activity, but abolished in the presence of anti-human TM IgG. Matrigel reconstituted with thrombin (1 NIH unit/ml) enhanced the invasion level of cells by 1.5-fold relative to the control Matrigel without thrombin. The thrombin-enhanced invasion of B16F10 cells was repressed by addition of hirudin (10 units/ml) or uTM (100 ng/ml) into the Matrigel. Matrigel reconstituted with hirudin (10 units/ml) and uTM (100 ng/ml) additionally accelerated the inhibitory activity of hirudin or uTM on the thrombin-enhanced invasion of B16F10 cells. Moreover, metastatic colonies formed in the lungs of mice injected intravenously with B16F10 cells were significantly reduced by injection of uTM once a day up to 2 days after co-injection of uTM with the cells. These results suggested that Matrigel reconstituted with uTM inhibited the invasion of B16F10 cells in vitro through a thrombin-independent mechanism and the injection of uTM suppressed experimental lung metastasis of the cells in mice.
Collapse
Affiliation(s)
- Y Hosaka
- Department of Public Health, Showa Pharmaceutical University, Higashi Tamagawa Gakuen, Machida, 194-8543, Tokyo, Japan
| | | | | | | |
Collapse
|
36
|
Talts U, Kuhn U, Roos G, Rauch U. Modulation of extracellular matrix adhesiveness by neurocan and identification of its molecular basis. Exp Cell Res 2000; 259:378-88. [PMID: 10964505 DOI: 10.1006/excr.2000.4987] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Neurocan is one of the major chondroitin sulfate proteoglycans of perinatal rodent brain. HEK-293 cells producing neurocan recombinantly show changes in their behavior. The expression of full-length neurocan led to a detachment of the secreting cells and the formation of floating spheroids. This occurred in the continuous presence of 10% fetal bovine serum in the culture medium. Cells secreting fragments of neurocan-containing chondroitin sulfate chains and the C-terminal domain of the molecule showed a similar behavior, whereas cells expressing fragments of neurocan-containing chondroitin sulfate chains but lacking parts of the C-terminal domain did not show spheroid formation. Cells secreting the hyaluronan-binding N-terminal domain of neurocan showed an enhanced adhesiveness. When untransfected HEK-293 cells were plated on a surface conditioned by spheroid-forming cells, they also formed spheroids. This effect could be abolished by chondroitinase treatment of the conditioned surface. The observations indicate that the ability of the chondroitin sulfate proteoglycan neurocan to modulate the adhesive character of extracellular matrices is dependent on the structural integrity of the C-terminal domain of the core protein.
Collapse
Affiliation(s)
- U Talts
- Department of Protein Chemistry, Max Planck Institute for Biochemistry, Martinsried, 82152, Germany
| | | | | | | |
Collapse
|
37
|
Parzy D, Fusai T, Pouvelle B, Torrentino M, Eustacchio F, Lépolard C, Scherf A, Gysin J. Recombinant human thrombomodulin(csa+): a tool for analyzing Plasmodium falciparum adhesion to chondroitin-4-sulfate. Microbes Infect 2000; 2:779-88. [PMID: 10955958 DOI: 10.1016/s1286-4579(00)90357-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The proteoglycan thrombomodulin has been shown to be involved, via its chondroitin-sulfate moiety, in the cytoadhesion of chondroitin-4-sulfate-binding-Plasmodium falciparum-infected erythrocytes to endothelial cells and syncytiotrophoblasts. We cloned and expressed in CHO and COS-7 cells a gene encoding soluble human recombinant thrombomodulin, with a chondroitin-4-sulfate moiety. This system is complementary to the in vitro cell models currently used to study the chondroitin-4-sulfate-binding phenotype. It also provides a means of overcoming the lack of specificity observed in interactions of infected erythrocytes with modified chondroitin-4-sulfate. This thrombomodulin displayed normal activity in coagulation, indicating that it was in a functional conformation. The recombinant protein, whether produced in CHO or COS-7 cells, inhibited cytoadhesion to Saimiri brain microvascular endothelial cells 1D infected with Palo-Alto(FUP)1 parasites selected for chondroitin-4-sulfate receptor preference. Thus, the recombinant protein was produced with a chondroitin-sulfate moiety, identified as a chondroitin-4-sulfate, in both cell types. In both cases, the recombinant protein bound to the chondroitin-4-sulfate phenotype, but not to CD36- and ICAM-1-binding parasites. The chondroitin-4-sulfate was 36 kDa in size for CHO and 17.5 kDa for COS-7 cells. There was, however, no difference in the capacities of the recombinant proteins produced by the two cell types to inhibit the cytoadhesion of infected erythrocytes. Thrombomodulin immobilized on plastic or coupled to Dynabeads was used to purify specifically the infected erythrocytes that bind to chondroitin-4-sulfate. These infected erythrocytes were cultured to establish parasite lines of this phenotype. We then showed that the thrombomodulin, labeled with FITC, could be used to detect this phenotype in blood samples. Finally, the direct binding of infected erythrocytes to immobilized thrombomodulin was used to screen for anti-chondroitin-4-sulfate-binding antibodies.
Collapse
Affiliation(s)
- D Parzy
- Unité de parasitologie IMTSSA, Jardin du Pharo, Boulevard Charles Livon, Marseille, France
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Oohira A, Kushima Y, Tokita Y, Sugiura N, Sakurai K, Suzuki S, Kimata K. Effects of lipid-derivatized glycosaminoglycans (GAGs), a novel probe for functional analyses of GAGs, on cell-to-substratum adhesion and neurite elongation in primary cultures of fetal rat hippocampal neurons. Arch Biochem Biophys 2000; 378:78-83. [PMID: 10871047 DOI: 10.1006/abbi.2000.1775] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The effects of glycosaminoglycans (GAG) on cell-to-substratum adhesion and neurite elongation were examined in primary cultures of fetal rat hippocampal neurons using tissue culture dishes coated with GAGs coupled to dipalmitoylphosphatidylethanolamine (PE), a novel probe for biological functions of GAGs. Both chondroitin sulfate conjugate to PE (CS-PE) and hyaluronic acid conjugate to PE (HA-PE) promoted neurite elongation from neurons in a dose-dependent manner when immobilized onto polylysine-coated dishes at various concentrations up to 1.0 microg/ml. The coating of CS-PE or HA-PE at a concentration higher than 1.0 microg/ml resulted in failure of neurite extension and adhesion of neurons to the substrata. In contrast, heparin conjugate to PE (HP-PE) did not exert any effects on neurite elongation or on cell attachment at these concentrations. These findings suggest that GAGs serve as a modulator for neurite elongation during neuronal network formation in the developing central nervous system.
Collapse
Affiliation(s)
- A Oohira
- Department of Perinatology and Neuroglycoscience, Institute for Developmental Research, Kasugai, Aichi, Japan.
| | | | | | | | | | | | | |
Collapse
|
39
|
Yamauchi S, Hirahara Y, Usui H, Takeda Y, Hoshino M, Fukuta M, Kimura JH, Habuchi O. Purification and characterization of chondroitin 4-sulfotransferase from the culture medium of a rat chondrosarcoma cell line. J Biol Chem 1999; 274:2456-63. [PMID: 9891016 DOI: 10.1074/jbc.274.4.2456] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Chondroitin 4-sulfotransferase, which transfers sulfate from 3'-phosphoadenosine 5'-phosphosulfate to position 4 of N-acetylgalactosamine in chondroitin, was purified 1900-fold to apparent homogeneity with 6.1% yield from the serum-free culture medium of rat chondrosarcoma cells by affinity chromatography on heparin-Sepharose CL-6B, Matrex gel red A-agarose, 3',5'-ADP-agarose, and the second heparin-Sepharose CL-6B. SDS-polyacrylamide gel electrophoresis of the purified enzyme showed two protein bands. Molecular masses of these protein were 60 and 64 kDa under reducing conditions and 50 and 54 kDa under nonreducing conditions. Both the protein bands coeluted with chondroitin 4-sulfotransferase activity from Toyopearl HW-55 around the position of 50 kDa, indicating that the active form of chondroitin 4-sulfotransferase is a monomer. Dithiothreitol activated the purified chondroitin 4-sulfotransferase. The purified enzyme transferred sulfate to chondroitin and desulfated dermatan sulfate. Chondroitin sulfate A and chondroitin sulfate C were poor acceptors. Chondroitin sulfate E from squid cartilage, dermatan sulfate, heparan sulfate, and completely desulfated N-resulfated heparin hardly served as acceptors of the sulfotransferase. The transfer of sulfate to the desulfated dermatan sulfate occurred preferentially at position 4 of the N-acetylgalactosamine residues flanked with glucuronic acid residues on both reducing and nonreducing sides.
Collapse
Affiliation(s)
- S Yamauchi
- Department of Life Science, Aichi University of Education, Aichi 448-8542, Japan
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Beeson JG, Chai W, Rogerson SJ, Lawson AM, Brown GV. Inhibition of binding of malaria-infected erythrocytes by a tetradecasaccharide fraction from chondroitin sulfate A. Infect Immun 1998; 66:3397-402. [PMID: 9632611 PMCID: PMC108358 DOI: 10.1128/iai.66.7.3397-3402.1998] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/1998] [Accepted: 04/28/1998] [Indexed: 02/07/2023] Open
Abstract
Adherence of parasite-infected erythrocytes (IEs) to the microvascular endothelium of various organs, a process known as sequestration, is a feature of Plasmodium falciparum malaria. This event is mediated by specific adhesive interactions between parasite proteins, expressed on the surface of IEs, and host molecules. P. falciparum IEs can bind to purified chondroitin sulfate A (CS-A), to the proteoglycan thrombomodulin through CS-A side chains, and to CS-A present on the surface of brain and lung endothelial cells and placental syncytiotrophoblasts. In order to identify structural characteristics of CS-A important for binding, oligosaccharide fragments ranging in size from 2 to 20 monosaccharide units were isolated from CS-A and CS-C, following controlled chondroitin lyase digestion, and used as competitive inhibitors of IE binding to immobilized ligands. Inhibition of binding to CS-A was highly dependent on molecular size: a CS-A tetradecasaccharide fraction was the minimum length able to almost completely inhibit binding. The effect was dose dependent and similar to that of the parent polysaccharide, and the same degree of inhibition was not found with the CS-C oligosaccharides. There was no effect on binding of IEs to other ligands, e.g., CD36 and intercellular adhesion molecule 1. Hexadeca- and octadecasaccharide fractions of CS-A were required for maximum inhibition of binding to thrombomodulin. Analyses of oligosaccharide fractions and polysaccharides by electrospray mass spectrometry and high-performance liquid chromatography suggest that the differences between the activities of CS-A and CS-C oligosaccharides can be attributed to differences in sulfate content and sulfation pattern and that iduronic acid is not involved in IE binding.
Collapse
Affiliation(s)
- J G Beeson
- Division of Infection and Immunity, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | | | | | | | | |
Collapse
|
41
|
Satoh A, Kojima K, Koyama T, Ogawa H, Matsumoto I. Immobilization of saccharides and peptides on 96-well microtiter plates coated with methyl vinyl ether-maleic anhydride copolymer. Anal Biochem 1998; 260:96-102. [PMID: 9648659 DOI: 10.1006/abio.1998.2668] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have previously reported a method to immobilize protein ligands on microtiter plates coated with methyl vinyl ether-maleic anhydride copolymer (MMAC) [Isosaki, K., et al. (1992) J. Chromatogr. 597, 123-128]. In this study, we improved the MMAC method to efficiently immobilize not only small ligands such as peptides and oligosaccharides, which could not be efficiently immobilized previously, but also heparin via its reducing end. Amino and hydrazino groups were introduced to MMAC-coated microtiter plate wells by coupling to acid anhydride groups of MMAC with 1,6-hexamethylenediamine and adipic acid dihydrazide, respectively. The amino groups introduced were allowed to react with peptides by use of divalent cross-linkers. Hydrazino groups were allowed to react with formyl groups of saccharides by reductive amination. Peptides and oligosaccharides were immobilized in a dose-dependent manner by these methods. In the case of the angiotensin peptide thus immobilized, the detection limit by monoclonal antibodies was as low as 0.1-1 fmol peptide per well. Application of 20-200 nmol oligosaccharides to the well was sufficient to immobilize and subsequently detect lectins. Furthermore, heparin immobilized on the hydrazinocoated wells was successfully used for the binding assay of annexin IV.
Collapse
Affiliation(s)
- A Satoh
- Department of Chemistry, Faculty of Science, Ochanomizu University, Tokyo, Japan
| | | | | | | | | |
Collapse
|
42
|
Watanabe H, Cheung SC, Itano N, Kimata K, Yamada Y. Identification of hyaluronan-binding domains of aggrecan. J Biol Chem 1997; 272:28057-65. [PMID: 9346959 DOI: 10.1074/jbc.272.44.28057] [Citation(s) in RCA: 106] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Aggrecan, a large cartilage proteoglycan, interacts with hyaluronan (HA), to form aggregates which function to resist compression in joints. The N-terminal region of aggrecan contains two structurally related globular domains, G1 and G2 separated by IGD domain. The G1 domain consists of three subdomains, A, B, and B', structural features characteristic to many other HA-binding proteoglycans. Here, we studied the interaction of aggrecan domains with HA using recombinant proteins expressed in 293 cells, an embryonal kidney cell line. Deglycosylation of the recombinant aggrecan fragment reduced the HA binding activity. We found that both the B and B' subdomains were required for HA binding and that a single module of A, B, or B' was unable to bind HA. The A subdomain increased the HA binding activity of the B-B' region. The G2 domain had no HA binding activity confirming previous reports. Studies of HA-binding properties using a BIAcoreTM biosensor system revealed that the KD of recombinant aggrecan fragment (AgW) consisting of G1, IGD, and G2 was 0.226 microM, whereas the KD of another HA-binding protein, native bovine link protein, is 0.089 microM. In contrast, AgMut11 which lacked subdomain A showed little HA binding activity. AgMut12 consisting of only B-B' had a 3.4-fold lower affinity and AgMut13 containing A-B-B' was 1.5-fold lower than AgW. These results suggest that carbohydrates are essential for high level aggrecan binding to HA and that the A subdomain of aggrecan functions in a cooperative manner with subdomains B and B'.
Collapse
Affiliation(s)
- H Watanabe
- Craniofacial Developmental Biology and Regeneration Branch, National Institute of Dental Research, National Institutes of Health, Bethesda, Maryland 20892-4370, USA
| | | | | | | | | |
Collapse
|
43
|
Stigson M, Löfberg J, Kjellén L. Reduced epidermal expression of a PG-M/versican-like proteoglycan in embryos of the white mutant axolotl. Exp Cell Res 1997; 236:57-65. [PMID: 9344585 DOI: 10.1006/excr.1997.3702] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Axolotl embryos have previously been used to study neural crest cell migration. In embryos of the normal wild type, neural crest cells migrate subepidermally to form pigment cells. In the trunk of the white mutant embryo, these cells are unable to migrate, possibly due to an inherited delay in the maturation of the local extracellular matrix. The present investigation reveals a reduced incorporation of [35S]sulfate into PG-M/versican-like proteoglycans synthesized in epidermal explants from the dorsal trunk of white mutant embryos during stages pertinent to migration. This is the major form of proteoglycans in the subepidermal matrix, where they are assembled in large disulfide-stabilized supramolecular complexes. The reduction in [35S]sulfate incorporation is not due to qualitative differences between wild-type and white mutant proteoglycans but is paralleled by a reduced expression of mRNA for the core protein of the PG-M/versican-like proteoglycan. We conclude that a reduced amount of these proteoglycans is produced by the white mutant embryo during the period critical for migration.
Collapse
Affiliation(s)
- M Stigson
- Department of Veterinary Medical Chemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| | | | | |
Collapse
|
44
|
Gysin J, Pouvelle B, Le Tonquèze M, Edelman L, Boffa MC. Chondroitin sulfate of thrombomodulin is an adhesion receptor for Plasmodium falciparum-infected erythrocytes. Mol Biochem Parasitol 1997; 88:267-71. [PMID: 9274889 DOI: 10.1016/s0166-6851(97)00082-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- J Gysin
- Unité de Parasitologie Expérimentale, Institut Pasteur de Lyon, Domaine du Poirier, Lentilly, France.
| | | | | | | | | |
Collapse
|
45
|
Chondroitin-4-Sulfate Impairs In Vitro and In Vivo Cytoadherence of Plasmodium falciparum Infected Erythrocytes. Mol Med 1997. [DOI: 10.1007/bf03401697] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
46
|
Parkkinen JJ, Lammi MJ, Ågren U, Tammi M, Keinänen TA, Hyvönen T, Eloranta TO. Polyamine-dependent alterations in the structure of microfilaments, golgi apparatus, endoplasmic reticulum, and proteoglycan synthesis in BHK cells. J Cell Biochem 1997. [DOI: 10.1002/(sici)1097-4644(19970801)66:2<165::aid-jcb4>3.0.co;2-o] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
47
|
Rogerson SJ, Novakovic S, Cooke BM, Brown GV. Plasmodium falciparum-infected erythrocytes adhere to the proteoglycan thrombomodulin in static and flow-based systems. Exp Parasitol 1997; 86:8-18. [PMID: 9149236 DOI: 10.1006/expr.1996.4142] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Plasmodium falciparum-infected erythrocytes can bind to the glycosaminoglycan chondroitin sulfate A. In this paper, we demonstrate that thrombomodulin, a proteoglycan present on endothelial cells and placental syncytiotrophoblasts, supports binding of selected lines of P. falciparum-infected erythrocytes in both static and flow-based assays, and that adhesion is dependent on the presence of the chondroitin sulfate A chain of thrombomodulin. Chondroitinase treatment of thrombomodulin abolished binding, and free chondroitin sulfate A prevented it, whereas other soluble glycosaminoglycans had little or no effect. Soluble thrombomodulin (with, but not without, its chondroitin sulfate chain) inhibited binding at 40 micrograms/ml, but not at physiological concentrations. Parasitized erythrocytes bound to cells expressing thrombomodulin, including human umbilical vein endothelial cells and A549 cells, and binding was inhibited by free chondroitin sulfate A. Established binding to A549 cells or to immobilized thrombomodulin was substantially reversed by chondroitin sulfate A at 10 micrograms/ml. The chondroitin sulfate chain of thrombomodulin is a receptor for malaria-infected erythrocytes in static assays and under physiological flow.
Collapse
Affiliation(s)
- S J Rogerson
- Walter and Eliza Hall Institute of Medical Research, Royal Melbourne Hospital, Victoria, Australia
| | | | | | | |
Collapse
|
48
|
Stigson M, Löfberg J, Kjellén L. PG-M/versican-like proteoglycans are components of large disulfide-stabilized complexes in the axolotl embryo. J Biol Chem 1997; 272:3246-53. [PMID: 9013561 DOI: 10.1074/jbc.272.6.3246] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Large disulfide-stabilized proteoglycan complexes were previously shown to be synthesized by the epidermis of axolotl embryos during stages crucial to subepidermal migration of neural crest cells. We now show that the complexes contain PG-M/versican-like monomers in addition to some other component with low buoyant density. Metabolically 35S-labeled proteoglycans were extracted from epidermal explants and separated by size exclusion chromatography and density equilibrium gradient centrifugation. The complexes, which elute in the void volume on Sepharose CL-2B, were recovered at buoyant density 1.42 g/ml in CsCl gradients, whereas the monomer proteoglycans, which could only be liberated from the complexes by reduction, had a higher buoyant density (1.48 g/ml). The native complexes did not aggregate with hyaluronan. The purified complexes reacted with antibodies against a portion of a cloned PG-M/versican-like axolotl proteoglycan. These antibodies were found to stain the subepidermal matrix of axolotl embryos, suggesting that the proteoglycan complexes are encountered by neural crest cells during subepidermal migration. From Western blot analysis, the core protein of the PG-M/versican-like monomers was found to be of similar size ( approximately 500 kDa) as those of PG-M/versican variants of other species. Another chondroitin sulfate proteoglycan that was present in small amounts in the epidermal extracts was found to be distinctly different from the similarly sized PG-M/versican-like monomers.
Collapse
Affiliation(s)
- M Stigson
- Department of Veterinary Medical Chemistry, Swedish University of Agricultural Sciences, The Biomedical Center, S-751 23 Uppsala, Sweden.
| | | | | |
Collapse
|
49
|
Ojala WH, Sudbeck EA, Lu LK, Richardson TI, Lovrien RE, Gleason WB. Complexes of Lysine, Histidine, and Arginine with Sulfonated Azo Dyes: Model Systems for Understanding the Biomolecular Recognition of Glycosaminoglycans by Proteins. J Am Chem Soc 1996. [DOI: 10.1021/ja951121f] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
50
|
Carbohydrates with relevance to the structure of glycosaminoglycans: The crystal structures of 2-deoxy-2-(sulfoamino)-α-d-glucopyranose sodium salt dihydrate, 2-amino-2-deoxy-α,β-d-glucopyranose 3-(hydrogen sulfate) monohydrate, and 2-amino-2-deoxy-α-d-glucopyranose 6-(hydrogen sulfate) monohydrate. Carbohydr Res 1995. [DOI: 10.1016/0008-6215(95)00157-o] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|