1
|
Reed JR, Backes WL. Physical Studies of P450-P450 Interactions: Predicting Quaternary Structures of P450 Complexes in Membranes from Their X-ray Crystal Structures. Front Pharmacol 2017; 8:28. [PMID: 28194112 PMCID: PMC5276844 DOI: 10.3389/fphar.2017.00028] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 01/16/2017] [Indexed: 01/15/2023] Open
Abstract
Cytochrome P450 enzymes, which catalyze oxygenation reactions of both exogenous and endogenous chemicals, are membrane bound proteins that require interaction with their redox partners in order to function. Those responsible for drug and foreign compound metabolism are localized primarily in the endoplasmic reticulum of liver, lung, intestine, and other tissues. More recently, the potential for P450 enzymes to exist as supramolecular complexes has been shown by the demonstration of both homomeric and heteromeric complexes. The P450 units in these complexes are heterogeneous with respect to their distribution and function, and the interaction of different P450s can influence P450-specific metabolism. The goal of this review is to examine the evidence supporting the existence of physical complexes among P450 enzymes. Additionally, the review examines the crystal lattices of different P450 enzymes derived from X-ray diffraction data to make assumptions regarding possible quaternary structures in membranes and in turn, to predict how the quaternary structures could influence metabolism and explain the functional effects of specific P450-P450 interactions.
Collapse
Affiliation(s)
- James R Reed
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center New Orleans LA, USA
| | - Wayne L Backes
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center New Orleans LA, USA
| |
Collapse
|
2
|
Meling DD, McDougle DR, Das A. CYP2J2 epoxygenase membrane anchor plays an important role in facilitating electron transfer from CPR. J Inorg Biochem 2014; 142:47-53. [PMID: 25450017 DOI: 10.1016/j.jinorgbio.2014.09.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 09/25/2014] [Accepted: 09/25/2014] [Indexed: 01/07/2023]
Abstract
CYP2J2 epoxygenase is a membrane-bound cytochrome P450 primarily expressed in the heart and plays a significant role in cardiovascular diseases. The interactions of CYP2J2 with its redox partner, cytochrome P450 reductase (CPR), and with its substrates are quite complex and can have a significant effect on the kinetics of substrate metabolism. Here we show that the N-terminus of CYP2J2 plays an important role in the formation of CYP-CPR complex for subsequent electron transfer. We demonstrate that when CYP2J2-CPR are pre-incubated before the onset of reduction, the kinetics of reduction is triphasic and is of a similar order of magnitude to previously reported rates in other cytochrome P450 systems. However, when CYP2J2 and CPR form a complex during the time course of the experiment the kinetics of the fastest phase for N-terminus containing full-length CYP2J2 is 200 times faster than the kinetics of reduction of N-terminally truncated CYP2J2. Hence, we show that the N-terminus of CYP2J2 is very important to form a productive CYP-CPR complex to facilitate electron transfer.
Collapse
Affiliation(s)
- Daryl D Meling
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States
| | - Daniel R McDougle
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States; Medical Scholars Program, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States
| | - Aditi Das
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States; Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States; Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States; Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States.
| |
Collapse
|
3
|
Stiborová M, Moserová M, Černá V, Indra R, Dračínský M, Šulc M, Henderson CJ, Wolf CR, Schmeiser HH, Phillips DH, Frei E, Arlt VM. Cytochrome b5 and epoxide hydrolase contribute to benzo[a]pyrene-DNA adduct formation catalyzed by cytochrome P450 1A1 under low NADPH:P450 oxidoreductase conditions. Toxicology 2014; 318:1-12. [PMID: 24530354 DOI: 10.1016/j.tox.2014.02.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 01/31/2014] [Accepted: 02/04/2014] [Indexed: 10/25/2022]
Abstract
In previous studies we had administered benzo[a]pyrene (BaP) to genetically engineered mice (HRN) which do not express NADPH:cytochrome P450 oxidoreductase (POR) in hepatocytes and observed higher DNA adduct levels in livers of these mice than in wild-type mice. To elucidate the reason for this unexpected finding we have used two different settings for in vitro incubations; hepatic microsomes from control and BaP-pretreated HRN mice and reconstituted systems with cytochrome P450 1A1 (CYP1A1), POR, cytochrome b5, and epoxide hydrolase (mEH) in different ratios. In microsomes from BaP-pretreated mice, in which Cyp1a1 was induced, higher levels of BaP metabolites were formed, mainly of BaP-7,8-dihydrodiol. At a low POR:CYP1A1 ratio of 0.05:1 in the reconstituted system, the amounts of BaP diones and BaP-9-ol formed were essentially the same as at an equimolar ratio, but formation of BaP-3-ol was ∼ 1.6-fold higher. Only after addition of mEH were BaP dihydrodiols found. Two BaP-DNA adducts were formed in the presence of mEH, but only one when CYP1A1 and POR were present alone. At a ratio of POR:CYP1A1 of 0.05:1, addition of cytochrome b5 increased CYP1A1-mediated BaP oxidation to most of its metabolites indicating that cytochrome b5 participates in the electron transfer from NADPH to CYP1A1 required for enzyme activity of this CYP. BaP-9-ol was formed even by CYP1A1 reconstituted with cytochrome b5 without POR. Our results suggest that in livers of HRN mice Cyp1a1, cytochrome b5 and mEH can effectively activate BaP to DNA binding species, even in the presence of very low amounts of POR.
Collapse
Affiliation(s)
- Marie Stiborová
- Department of Biochemistry, Faculty of Science, Charles University, Albertov 2030, 128 40 Prague 2, Czech Republic.
| | - Michaela Moserová
- Department of Biochemistry, Faculty of Science, Charles University, Albertov 2030, 128 40 Prague 2, Czech Republic
| | - Věra Černá
- Department of Biochemistry, Faculty of Science, Charles University, Albertov 2030, 128 40 Prague 2, Czech Republic
| | - Radek Indra
- Department of Biochemistry, Faculty of Science, Charles University, Albertov 2030, 128 40 Prague 2, Czech Republic
| | - Martin Dračínský
- Institute of Organic Chemistry and Biochemistry, v.v.i. Academy of Sciences, Flemingovo n. 2, 166 10 Prague 6, Czech Republic
| | - Miroslav Šulc
- Department of Biochemistry, Faculty of Science, Charles University, Albertov 2030, 128 40 Prague 2, Czech Republic
| | - Colin J Henderson
- Division of Cancer Research, Medical Research Institute, Jacqui Wood Cancer Centre, University of Dundee, Dundee DD1 9SY, United Kingdom
| | - C Roland Wolf
- Division of Cancer Research, Medical Research Institute, Jacqui Wood Cancer Centre, University of Dundee, Dundee DD1 9SY, United Kingdom
| | - Heinz H Schmeiser
- Research Group Genetic Alterations in Carcinogenesis, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - David H Phillips
- Analytical and Environmental Sciences Division, MRC-PHE Centre for Environment and Health, King's College London, 150 Stamford Street, London SE1 9NH, United Kingdom
| | - Eva Frei
- Division of Preventive Oncology, National Center for Tumour Diseases, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Volker M Arlt
- Analytical and Environmental Sciences Division, MRC-PHE Centre for Environment and Health, King's College London, 150 Stamford Street, London SE1 9NH, United Kingdom
| |
Collapse
|
4
|
Abstract
Previous studies have shown that the presence of one P450 enzyme can affect the function of another. The goal of the present study was to determine if P450 enzymes are capable of forming homomeric complexes that affect P450 function. To address this problem, the catalytic activities of several P450s were examined in reconstituted systems containing NADPH-POR (cytochrome P450 reductase) and a single P450. CYP2B4 (cytochrome P450 2B4)-, CYP2E1 (cytochrome P450 2E1)- and CYP1A2 (cytochrome P450 1A2)-mediated activities were measured as a function of POR concentration using reconstituted systems containing different concentrations of P450. Although CYP2B4-dependent activities could be explained by a simple Michaelis-Menten interaction between POR and CYP2B4, both CYP2E1 and CYP1A2 activities generally produced a sigmoidal response as a function of [POR]. Interestingly, the non-Michaelis behaviour of CYP1A2 could be converted into a simple mass-action response by increasing the ionic strength of the buffer. Next, physical interactions between CYP1A2 enzymes were demonstrated in reconstituted systems by chemical cross-linking and in cellular systems by BRET (bioluminescence resonance energy transfer). Cross-linking data were consistent with the kinetic responses in that both were similarly modulated by increasing the ionic strength of the surrounding solution. Taken together, these results show that CYP1A2 forms CYP1A2-CYP1A2 complexes that exhibit altered catalytic activity.
Collapse
|
5
|
Reed JR, Backes WL. Formation of P450 · P450 complexes and their effect on P450 function. Pharmacol Ther 2011; 133:299-310. [PMID: 22155419 DOI: 10.1016/j.pharmthera.2011.11.009] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Accepted: 11/11/2011] [Indexed: 11/24/2022]
Abstract
Cytochromes P450 (P450) are membrane-bound enzymes that catalyze the monooxygenation of a diverse array of xenobiotic and endogenous compounds. The P450s responsible for foreign compound metabolism generally are localized in the endoplasmic reticulum of the liver, lung and small intestine. P450 enzymes do not act alone but require an interaction with other electron transfer proteins such as NADPH-cytochrome P450 reductase (CPR) and cytochrome b(5). Because P450s are localized in the endoplasmic reticulum with these and other ER-resident proteins, there is a potential for protein-protein interactions to influence P450 function. There has been increasing evidence that P450 enzymes form complexes in the ER, with compelling support that formation of P450 · P450 complexes can significantly influence their function. Our goal is to review the research supporting the formation of P450 · P450 complexes, their specificity, and how drug metabolism may be affected. This review describes the potential mechanisms by which P450s may interact, and provides evidence to support each of the possible mechanisms. Additionally, evidence for the formation of both heteromeric and homomeric P450 complexes are reviewed. Finally, direct physical evidence for P450 complex formation in solution and in membranes is summarized, and questions directing the future research of functional P450 interactions are discussed with respect to their potential impact on drug metabolism.
Collapse
Affiliation(s)
- James R Reed
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | | |
Collapse
|
6
|
Kenaan C, Zhang H, Shea EV, Hollenberg PF. Uncovering the role of hydrophobic residues in cytochrome P450-cytochrome P450 reductase interactions. Biochemistry 2011; 50:3957-67. [PMID: 21462923 DOI: 10.1021/bi1020748] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cytochrome P450 (CYP or P450)-mediated drug metabolism requires the interaction of P450s with their redox partner, cytochrome P450 reductase (CPR). In this work, we have investigated the role of P450 hydrophobic residues in complex formation with CPR and uncovered novel roles for the surface-exposed residues V267 and L270 of CYP2B4 in mediating CYP2B4--CPR interactions. Using a combination of fluorescence labeling and stopped-flow spectroscopy, we have investigated the basis for these interactions. Specifically, in order to study P450--CPR interactions, a single reactive cysteine was introduced in to a genetically engineered variant of CYP2B4 (C79SC152S) at each of seven strategically selected surface-exposed positions. Each of these cysteine residues was modified by reaction with fluorescein-5-maleimide (FM), and the CYP2B4-FM variants were then used to determine the K(d) of the complex by monitoring fluorescence enhancement in the presence of CPR. Furthermore, the intrinsic K(m) values of the CYP2B4 variants for CPR were measured, and stopped-flow spectroscopy was used to determine the intrinsic kinetics and the extent of reduction of the ferric P450 mutants to the ferrous P450--CO adduct by CPR. A comparison of the results from these three approaches reveals that the sites on P450 exhibiting the greatest changes in fluorescence intensity upon binding CPR are associated with the greatest increases in the K(m) values of the P450 variants for CPR and with the greatest decreases in the rates and extents of reduced P450--CO formation.
Collapse
Affiliation(s)
- Cesar Kenaan
- Chemical Biology Doctoral Program, The University of Michigan, Ann Arbor, Michigan 48109, United States
| | | | | | | |
Collapse
|
7
|
Davydov DR. Microsomal monooxygenase as a multienzyme system: the role of P450-P450 interactions. Expert Opin Drug Metab Toxicol 2011; 7:543-58. [PMID: 21395496 DOI: 10.1517/17425255.2011.562194] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION There is increasing evidence of physical interactions (association) among cytochromes P450 in the membranes of the endoplasmic reticulum. Functional consequences of these interactions are often underestimated. AREAS COVERED This article provides a comprehensive overview of available experimental material regarding P450-P450 interactions. Special emphasis is given to the interactions between different P450 species and to the functional consequences of homo- and heterooligomerization. EXPERT OPINION Recent advances provide conclusive evidence for a substantial degree of P450 oligomerization in membranes. Interactions between different P450 species resulting in the formation of mixed oligomers with altered activity and substrate specificity have been demonstrated clearly. There are important indications that oligomerization impedes electron flow to a fraction of the P450 population, which renders some P450 species nonfunctional. Functional consequences of P450-P450 interactions make the integrated properties of the microsomal monooxygenase remarkably different from a simple summation of the properties of the individual P450 species. This complexity compromises the predictive power of the current in vitro models of drug metabolism and warrants an urgent need for development of new model systems that consider the interactions of multiple P450 species.
Collapse
Affiliation(s)
- Dmitri R Davydov
- University of California - San Diego, Skaggs School of Pharmacy and Pharmaceutical Sciences, La Jolla, CA 92093, USA.
| |
Collapse
|
8
|
Kinetics of electron transfer between NADPH-cytochrome P450 reductase and cytochrome P450 3A4. Biochem J 2011; 432:485-93. [PMID: 20879989 DOI: 10.1042/bj20100744] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We have incorporated CYP3A4 (cytochrome P450 3A4) and CPR (NADPH-cytochrome P450 reductase) into liposomes with a high lipid/protein ratio by an improved method. In the purified proteoliposomes, CYP3A4 binds testosterone with Kd (app)=36±6 μM and Hill coefficient=1.5±0.3, and 75±4% of the CYP3A4 can be reduced by NADPH in the presence of testosterone. Transfer of the first electron from CPR to CYP3A4 was measured by stopped-flow, trapping the reduced CYP3A4 as its Fe(II)-CO complex and measuring the characteristic absorbance change. Rapid electron transfer is observed in the presence of testosterone, with the fast phase, representing 90% of the total absorbance change, having a rate of 14±2 s(-1). Measurements of the first electron transfer were performed at various molar ratios of CPR/CYP3A4 in proteoliposomes; the rate was unaffected, consistent with a model in which first electron transfer takes place within a relatively stable CPR-CYP3A4 complex. Steady-state rates of NADPH oxidation and of 6β-hydroxytestosterone formation were also measured as a function of the molar ratio of CPR/CYP3A4 in the proteoliposomes. These rates increased with increasing CPR/CYP3A4 ratio, showing a hyperbolic dependency indicating a Kd (app) of ~0.4 μM. This suggests that the CPR-CYP3A4 complex can dissociate and reform between the first and second electron transfers.
Collapse
|
9
|
Fernando H, Rumfeldt JAO, Davydova NY, Halpert JR, Davydov DR. Multiple substrate-binding sites are retained in cytochrome P450 3A4 mutants with decreased cooperativity. Xenobiotica 2010; 41:281-9. [PMID: 21143007 DOI: 10.3109/00498254.2010.538748] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The basis of decreased cooperativity in substrate binding in the cytochrome P450 3A4 mutants F213W, F304W, and L211F/D214E was studied with fluorescence resonance energy transfer and absorbance spectroscopy. Although in the wild type enzyme, the absorbance changes reflecting the interactions with 1-pyrenebutanol exhibit a Hill coefficient (n(H)) around 1.7 (S(50) = 11.7 µM), the mutants showed no cooperativity (n(H) ≤ 1.1) with unchanged S(50) values. Contrary to the premise that the mutants lack one of the two binding sites, the mutants exhibited at least two substrate binding events. The high-affinity interaction is characterized by a dissociation constant (K(D)) ≤ 1.0 µM, whereas the K(D) of the second binding has the same magnitude as the S(50). Theoretical analysis of a two-step binding model suggests that n(H) values may vary from 1.1 to 2.2 depending on the amplitude of the spin shift caused by the first binding event. Alteration of cooperativity in the mutants is caused by a partial displacement of the "spin-shifting" step. Although in the wild type the spin shift occurs in the ternary complex only, the mutants exhibit some spin shift on binding of the first substrate molecule.
Collapse
Affiliation(s)
- Harshica Fernando
- Department of Pathology, The University of Texas Medical Branch, Galveston, TX, USA
| | | | | | | | | |
Collapse
|
10
|
Davydov DR, Sineva EV, Sistla S, Davydova NY, Frank DJ, Sligar SG, Halpert JR. Electron transfer in the complex of membrane-bound human cytochrome P450 3A4 with the flavin domain of P450BM-3: the effect of oligomerization of the heme protein and intermittent modulation of the spin equilibrium. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2009; 1797:378-90. [PMID: 20026040 DOI: 10.1016/j.bbabio.2009.12.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2009] [Revised: 09/05/2009] [Accepted: 12/14/2009] [Indexed: 10/20/2022]
Abstract
We studied the kinetics of NADPH-dependent reduction of human CYP3A4 incorporated into Nanodiscs (CYP3A4-ND) and proteoliposomes in order to probe the effect of P450 oligomerization on its reduction. The flavin domain of cytochrome P450-BM3 (BMR) was used as a model electron donor partner. Unlike CYP3A4 oligomers, where only 50% of the enzyme was shown to be reducible by BMR, CYP3A4-ND could be reduced almost completely. High reducibility was also observed in proteoliposomes with a high lipid-to-protein ratio (L/P=910), where the oligomerization equilibrium is displaced towards monomers. In contrast, the reducibililty in proteoliposomes with L/P=76 did not exceed 55+/-6%. The effect of the surface density of CYP3A4 in proteoliposomes on the oligomerization equilibrium was confirmed with a FRET-based assay employing a cysteine-depleted mutant labeled on Cys-468 with BODIPY iodoacetamide. These results confirm a pivotal role of CYP3A4 oligomerization in its functional heterogeneity. Furthermore, the investigation of the initial phase of the kinetics of CYP3A4 reduction showed that the addition of NADPH causes a rapid low-to-high-spin transition in the CYP3A4-BMR complex, which is followed by a partial slower reversal. This observation reveals a mechanism whereby the CYP3A4 spin equilibrium is modulated by the redox state of the bound flavoprotein.
Collapse
Affiliation(s)
- Dmitri R Davydov
- Skaggs School of Pharmacy and Pharmaceutical Sciences, UCSD, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| | | | | | | | | | | | | |
Collapse
|
11
|
Davydov DR, Halpert JR. Allosteric P450 mechanisms: multiple binding sites, multiple conformers or both? Expert Opin Drug Metab Toxicol 2009; 4:1523-35. [PMID: 19040328 DOI: 10.1517/17425250802500028] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
According to the initial hypothesis on the mechanisms of cooperativity in drug-metabolizing cytochromes P450, a loose fit of a single substrate molecule in the P450 active site results in a requirement for the binding of multiple ligand molecules for efficient catalysis. Although simultaneous occupancy of the active site by multiple ligands is now well established, there is increasing evidence that the mechanistic basis of cooperativity also involves an important ligand-induced conformational transition. Moreover, recent studies demonstrate that the conformational heterogeneity of the enzyme is stabilized by ligand-dependent interactions of several P450 molecules. Application of the concept of an oligomeric allosteric enzyme to microsomal cytochromes P450 in combination with a general paradigm of multiple ligand occupancy of the active site provides an excellent explanation for complex manifestations of the atypical kinetic behavior of the enzyme.
Collapse
Affiliation(s)
- Dmitri R Davydov
- Skaggs School of Pharmacy and Pharmaceutical Sciences, UCSD, 9500 Gilman Drive, La Jolla, CA 9209, USA.
| | | |
Collapse
|
12
|
Shebley M, Kent UM, Ballou DP, Hollenberg PF. Mechanistic analysis of the inactivation of cytochrome P450 2B6 by phencyclidine: effects on substrate binding, electron transfer, and uncoupling. Drug Metab Dispos 2009; 37:745-52. [PMID: 19144770 DOI: 10.1124/dmd.108.024661] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Phencyclidine (PCP) is a mechanism-based inactivator of cytochrome P450 (P450) 2B6. We have analyzed several steps in the P450 catalytic cycle to determine the mechanism of inactivation of P450 2B6 by PCP. Spectral binding studies show that binding of benzphetamine, a type I ligand, to P450 2B6 was significantly affected as a result of the inactivation, whereas binding of the inhibitor n-octylamine, a type II ligand, was not compromised. Binding of these ligands to P450 2B6 occurs in two phases. Stopped-flow spectral analysis of the binding kinetics of benzphetamine to PCP-inactivated 2B6 revealed a 15-fold decrease in the rate of binding during the second phase of the kinetics (k(1) = 5.0 s(-1), A(1) = 30%; k(2) = 0.02 s(-1), A(2) = 70%, where A(2) indicates the fractional magnitude of the second phase) compared with the native enzyme (k(1) = 8.0 s(-1), A(1) = 58%; k(2) = 0.3 s(-1), A(2) = 42%). Analysis of benzphetamine metabolism by the inactivated protein using liquid chromatography/electrospray ionization/mass spectrometry showed that the rates of formation of nor-benzphetamine and hydroxylated nor-benzphetamine were decreased by 75 and 69%, respectively, whereas the rates of formation for amphetamine, hydroxybenzphetamine, and methamphetamine showed slight but statistically insignificant decreases after the inactivation. The rate of reduction of P450 2B6 by NADPH and reductase was decreased by 6-fold as a result of the modification by PCP. In addition, the extent of uncoupling of NADPH oxidation from product formation, a process leading to futile production of H(2)O(2), increased significantly during the metabolism of ethylbenzene as a result of the inactivation.
Collapse
Affiliation(s)
- Mohamad Shebley
- Department of Pharmacology, The University of Michigan, Medical Science Research Building III, 1150 W. Medical Center Drive, Ann Arbor, MI 48109-5632, USA
| | | | | | | |
Collapse
|
13
|
Isin EM, Guengerich FP. Substrate binding to cytochromes P450. Anal Bioanal Chem 2008; 392:1019-30. [PMID: 18622598 DOI: 10.1007/s00216-008-2244-0] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2008] [Revised: 06/10/2008] [Accepted: 06/11/2008] [Indexed: 01/08/2023]
Abstract
P450s have attracted tremendous attention owing to not only their involvement in the metabolism of drug molecules and endogenous substrates but also the unusual nature of the reaction they catalyze, namely, the oxidation of unactivated C-H bonds. The binding of substrates to P450s, which is usually viewed as the first step in the catalytic cycle, has been studied extensively via a variety of biochemical and biophysical approaches. These studies were directed towards answering different questions related to P450s, including mechanism of oxidation, substrate properties, unusual substrate oxidation kinetics, function, and active-site features. Some of the substrate binding studies extending over a period of more than 40 years of dedicated work have been summarized in this review and categorized by the techniques employed in the binding studies.
Collapse
Affiliation(s)
- Emre M Isin
- Biotransformation Section, Department of Discovery DMPK & Bioanalytical Chemistry, AstraZeneca R & D Mölndal, 431 83, Mölndal, Sweden.
| | | |
Collapse
|
14
|
Fernando H, Halpert JR, Davydov DR. Kinetics of electron transfer in the complex of cytochrome P450 3A4 with the flavin domain of cytochrome P450BM-3 as evidence of functional heterogeneity of the heme protein. Arch Biochem Biophys 2008; 471:20-31. [PMID: 18086551 PMCID: PMC2346489 DOI: 10.1016/j.abb.2007.11.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2007] [Revised: 11/10/2007] [Accepted: 11/30/2007] [Indexed: 11/18/2022]
Abstract
We used a rapid scanning stop-flow technique to study the kinetics of reduction of cytochrome P450 3A4 (CYP3A4) by the flavin domain of cytochrome P450-BM3 (BMR), which was shown to form a stoichiometric complex (K(D)=0.48 microM) with CYP3A4. In the absence of substrates only about 50% of CYP3A4 was able to accept electrons from BMR. Whereas the high-spin fraction was completely reducible, the reducibility of the low-spin fraction did not exceed 42%. Among four substrates tested (testosterone, 1-pyrenebutanol, bromocriptine, or alpha-naphthoflavone (ANF)) only ANF is capable of increasing the reducibility of the low-spin fraction to 75%. Our results demonstrate that the pool of CYP3A4 is heterogeneous, and not all P450 is competent for electron transfer in the complex with reductase. The increase in the reducibility of the enzyme in the presence of ANF may represent an important element of the mechanism of action of this activator.
Collapse
Affiliation(s)
- Harshica Fernando
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch, 301 University Blvd., Galveston, Texas 77555-1031
| | - James R. Halpert
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch, 301 University Blvd., Galveston, Texas 77555-1031
| | - Dmitri R. Davydov
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch, 301 University Blvd., Galveston, Texas 77555-1031
| |
Collapse
|
15
|
Zhang H, Hamdane D, Im SC, Waskell L. Cytochrome b5 Inhibits Electron Transfer from NADPH-Cytochrome P450 Reductase to Ferric Cytochrome P450 2B4. J Biol Chem 2008; 283:5217-25. [DOI: 10.1074/jbc.m709094200] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
16
|
Ouellet H, Podust LM, de Montellano PRO. Mycobacterium tuberculosis CYP130: crystal structure, biophysical characterization, and interactions with antifungal azole drugs. J Biol Chem 2007; 283:5069-80. [PMID: 18089574 DOI: 10.1074/jbc.m708734200] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
CYP130 is one of the 20 Mycobacterium tuberculosis cytochrome P450 enzymes, only two of which, CYP51 and CYP121, have so far been studied as individually expressed proteins. Here we characterize a third heterologously expressed M. tuberculosis cytochrome P450, CYP130, by UV-visible spectroscopy, isothermal titration calorimetry, and x-ray crystallography, including determination of the crystal structures of ligand-free and econazole-bound CYP130 at a resolution of 1.46 and 3.0A(,) respectively. Ligand-free CYP130 crystallizes in an "open" conformation as a monomer, whereas the econazole-bound form crystallizes in a "closed" conformation as a dimer. Conformational changes enabling the "open-closed" transition involve repositioning of the BC-loop and the F and G helices that envelop the inhibitor in the binding site and reshape the protein surface. Crystal structure analysis shows that the portion of the BC-loop relocates as much as 18A between the open and closed conformations. Binding of econazole to CYP130 involves a conformational change and is mediated by both a set of hydrophobic interactions with amino acid residues in the active site and coordination of the heme iron. CYP130 also binds miconazole with virtually the same binding affinity as econazole and clotrimazole and ketoconazole with somewhat lower affinities, which makes it a plausible target for this class of therapeutic drugs. Overall, binding of the azole inhibitors is a sequential two-step, entropy-driven endothermic process. Binding of econazole and clotrimazole exhibits positive cooperativity that may reflect a propensity of CYP130 to associate into a dimeric structure.
Collapse
Affiliation(s)
- Hugues Ouellet
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158, USA
| | | | | |
Collapse
|
17
|
Reed JR, Brignac-Huber LM, Backes WL. Physical incorporation of NADPH-cytochrome P450 reductase and cytochrome P450 into phospholipid vesicles using glycocholate and Bio-Beads. Drug Metab Dispos 2007; 36:582-8. [PMID: 18048487 DOI: 10.1124/dmd.107.018473] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In a previous study from our laboratory (Drug Metab Dispos 34: 660-666, 2006), we found several limitations with published methods (cholate gel filtration and cholate dialysis) for the incorporation of cytochromes P450 and P450 reductase into phospholipid vesicles. We found that a significant proportion of reductase was not incorporated in the vesicles when the amount of reductase was equal to or greater than that of CYP2B4 in the systems reconstituted with phosphatidylcholine. Furthermore, implementation of these methods compromised the ability of the CYP2B4 to form a ferrous carbon monoxy complex. In the current study, a comparison of results using the detergent-dialysis method with five similar detergents having the "bile salt" ring structure showed that glycocholate results in the greatest incorporation of reductase and the least loss in the ferrous carbon monoxy CYP2B4 complex. The method is further improved by using Bio-Beads SM-2 to remove detergent instead of the lengthy dialysis procedure or size exclusion chromatography that significantly dilutes the protein and lipid concentrations of the preparation. The method is shown to be applicable over a range of lipid/CYP2B4 ratios, and by using assay methods for total lipid, reductase, and CYP2B4, this improved reconstitution method resulted in increased incorporation efficiencies while minimizing the protein degradation inherent with these procedures.
Collapse
Affiliation(s)
- James R Reed
- Louisiana State University Health Science Center, Department of Pharmacology and the Stanley S. Scott Cancer Center, 533 Bolivar St., New Orleans, LA 70112, USA.
| | | | | |
Collapse
|
18
|
Locuson CW, Gannett PM, Tracy TS. Heteroactivator effects on the coupling and spin state equilibrium of CYP2C9. Arch Biochem Biophys 2006; 449:115-29. [PMID: 16545770 DOI: 10.1016/j.abb.2006.02.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2005] [Revised: 01/31/2006] [Accepted: 02/02/2006] [Indexed: 12/21/2022]
Abstract
The cytochromes P450 are capable of oxidizing a variety of xenobiotics. Binding of a small molecule heteroactivator to a P450 can alter the coupling of substrate oxidation during P450 catalysis, but the degree to which coupling or shunting via one of the three catalytic cycle branch points is linked to the heteroactivator-modified position of bound substrate is unknown. Using reconstituted CYP2C9, stoichiometric measurements were gathered with three substrates and two classes of heteroactivators to further understand the mechanisms involved in heteroactivation. Heteroactivation of P450 metabolism appeared to involve, but not require, changes in coupling and that increased uncoupling to a specific byproduct like H(2)O(2) does not necessarily correlate to the degree of coupling. In addition, spectroscopy demonstrated that every heteroactivator tested influenced the spin equilibrium of the heme iron even in the presence of saturating substrate suggesting that both substrate proximity and the ability to desolvate the heme can be involved in heteroactivation.
Collapse
Affiliation(s)
- Charles W Locuson
- University of Minnesota, Department of Experimental and Clinical Pharmacology, USA
| | | | | |
Collapse
|
19
|
Zhang H, Myshkin E, Waskell L. Role of cytochrome b5 in catalysis by cytochrome P450 2B4. Biochem Biophys Res Commun 2005; 338:499-506. [PMID: 16182240 DOI: 10.1016/j.bbrc.2005.09.022] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2005] [Accepted: 09/08/2005] [Indexed: 11/25/2022]
Abstract
Cytochrome b5 has been shown to stimulate, inhibit or have no effect on catalysis by P450 cytochromes. Its action is known to depend on the isozyme of cytochrome P450, the substrate, and experimental conditions. Cytochrome P450 2B4 (CYP 2B4) has been used in our laboratory as a model isozyme to study the role of cytochrome b5 in cytochrome P450 catalysis using two substrates, methoxyflurane and benzphetamine. One substrate is the volatile anesthetic, methoxyflurane, whose metabolism is consistently markedly stimulated by cytochrome b5. The other is benzphetamine, whose metabolism is minimally modified by cytochrome b5. Determination of the stoichiometry of the metabolism of both substrates showed that the amount of product formed is the net result of the simultaneous stimulatory and inhibitory actions of cytochrome b5 on catalysis. Site-directed mutagenesis studies revealed that both cytochrome b5 and cytochrome P450 reductase interact with cytochrome P450 on its proximal surface on overlapping but non-identical binding sites. Comparison of the rate of reduction of oxyferrous CYP 2B4 and the rate of substrate oxidation by cyt b5 and reductase with stopped-flow spectrophotometric and rapid chemical quench experiments has demonstrated that although cytochrome b5 and reductase reduce oxyferrous CYP 2B4 at the same rate, substrate oxidation proceeds more slowly in the presence of the reductase.
Collapse
Affiliation(s)
- Haoming Zhang
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | |
Collapse
|
20
|
Hazai E, Bikádi Z, Simonyi M, Kupfer D. Association of Cytochrome P450 Enzymes is a Determining Factor in their Catalytic Activity. J Comput Aided Mol Des 2005; 19:271-85. [PMID: 16163453 DOI: 10.1007/s10822-005-4995-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2005] [Accepted: 04/04/2005] [Indexed: 10/25/2022]
Abstract
Previously, our laboratory demonstrated that one cytochrome P450 isoenzyme can influence the catalytic properties of another P450 isoenzyme when combined in a reconstituted system. Moreover, our data and that of other investigators indicate that P450 interaction is required for catalytic activity even when one isoenzyme is present. The goal of the current study was to examine the possible mechanism of these interactions in more detail. Analyzing recently published X-ray data of microsomal P450 enzymes and protein docking studies, four types of dimer formations of P450 enzymes were examined in more detail. In case of two dimer types, the aggregating partner was shown to contribute to NADPH cytochrome P450 reductase (CPR) binding-a flavoprotein whose interaction with P450 is required for expressing P450 functional activity of the neighboring P450 moiety. Thus, it was shown that dimerization of P450 enzymes might result in an altered affinity towards the CPR. Two dimer types were shown to exist only in the presence of a substrate, while the other two types exist also without a substrate present. The molecular basis was established for the fact that the presence of a substrate and other P450 enzymes simultaneously determine the catalytic activity. Furthermore, a kinetic model was improved describing the catalytic activity of P450 enzymes as a function of CPR concentration based on equilibrium between different supramolecular organizations of P450 enzymes. This model was successfully applied in order to explain our experimental data and that of other investigators.
Collapse
Affiliation(s)
- Eszter Hazai
- School of Medicine, Department of Molecular Pharmacology and Biochemistry, University of Massachusetts, Room 815, 364 Plantation St, Worcester, MA 01605, USA.
| | | | | | | |
Collapse
|
21
|
Abstract
The cytochrome P450 (P450) field came out of interest in the metabolism of drugs, carcinogens, and steroids, which remain major focal points. Over the years we have come to understand the P450 system components, the multiplicity of P450s, and many aspects of the regulation of the genes and also the catalytic mechanism. Many crystal structures are now becoming available. The significance of P450 in in vivo metabolism is appreciated, particularly in the context of pharmacogenetics. Current scientific issues involve posttranslational modification, gene regulation, component interactions, structures of P450 complexed with ligands, details of high-valent oxygen chemistry, the nature and influence of rate-limiting steps, greater details about some reaction steps, cooperativity, and the relevance of P450 variations to cancer risk. Some emerging research areas involve new methods of analysis of ligand interactions, roles of conformational changes linked to individual reaction steps, functions of orphan P450s, "molecular breeding" of new P450 functions and enhanced activity, and the utilization of P450s in chemical synthesis.
Collapse
Affiliation(s)
- F Peter Guengerich
- Department of Biochemistry, Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, USA.
| |
Collapse
|
22
|
Reed JR, Hollenberg PF. Examining the mechanism of stimulation of cytochrome P450 by cytochrome b5: the effect of cytochrome b5 on the interaction between cytochrome P450 2B4 and P450 reductase. J Inorg Biochem 2004; 97:265-75. [PMID: 14511889 DOI: 10.1016/s0162-0134(03)00275-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Dissociation constants K(d) for cytochrome P450 reductase (reductase) and cytochrome P450 2B4 are measured in the presence of various substrates. Aminopyrine increases the dissociation constant for binding of the two proteins. Furthermore, cytochrome b(5) (b(5)) stimulates metabolism of this substrate and dramatically decreases the substrate-related K(d) values. Experiments are performed to test if the b(5)-mediated stimulation is effected through a conformational change of P450. The effects of a redox-inactive analogue of b(5) (Mn b(5)) on product formation and reaction stoichiometry are determined. Variations in the concentration of Mn b(5) stock solution that have been shown to effect the aggregation state of the protein alter the rate of P450-mediated NADPH oxidation but have no effect on the rate of product formation. Thus, the electron transfer capability of b(5) is necessary for stimulation of metabolism. Furthermore, stopped flow spectrometry measurements of the rate of first electron reduction of the P450 by reductase indicate that the coupling of P450 2B4-mediated metabolism improves, in the presence of Mn b(5), with slower delivery of the first electron of the catalytic cycle by the reductase. These results are consistent with a model involving the regulation of the P450 catalytic cycle by conformational changes of the P450 enzyme. We propose that the conformational change(s) necessary for progression of the catalytic cycle is inhibited when reduced, but not oxidized, reductase is bound to the P450.
Collapse
Affiliation(s)
- James R Reed
- Department of Drug Metabolism, Merck and Co., PO Box 2000, Rahway, NJ 07065, USA.
| | | |
Collapse
|
23
|
Reed JR, Hollenberg PF. New perspectives on the conformational equilibrium regulating multi-phasic reduction of cytochrome P450 2B4 by cytochrome P450 reductase. J Inorg Biochem 2003; 97:276-86. [PMID: 14511890 DOI: 10.1016/s0162-0134(03)00310-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The pre-steady-state reduction of cytochrome P450 (P450) 2B4 by P450 reductase (reductase) was modeled by assuming that an equilibrium between three catalytic conformers of P450 regulates the multi-phasic reduction of the enzyme. This model was compared to a model of reduction involving a minimum number of phases. Based on several criteria, the former model seems to provide an improved fit to the reduction data. Substrates were divided into two groups based on their effects at different concentrations of reductase. Surprisingly, in the presence of some substrates (group 1) but not others (group 2), the rate of reduction was actually slower with an excess of reductase than with equimolar reductase and P450. Presumably, oxidized reductase binds differently to P450 than reduced reductase. A schematic model based on two sites of interaction between reductase and P450 2B4 is offered to explain the unusual reduction kinetics with the two different groups of substrates.
Collapse
Affiliation(s)
- James R Reed
- Merck Research Laboratories, 126 E. Lincoln Avenue, Mail Stop RY80L-109, Rahway, NJ 07065, USA.
| | | |
Collapse
|
24
|
Backes WL, Kelley RW. Organization of multiple cytochrome P450s with NADPH-cytochrome P450 reductase in membranes. Pharmacol Ther 2003; 98:221-33. [PMID: 12725870 DOI: 10.1016/s0163-7258(03)00031-7] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Microsomal P450-mediated monooxygenase activity supported by NADPH requires an interaction between flavoprotein NADPH-cytochrome P450 reductase and cytochrome P450. These proteins have been identified as the simplest system (with the inclusion of a phospholipid (PL) component) that possesses monooxygenase function; however, little is known about the organization of these proteins in the microsomal membrane. Although reductase and P450 are known to form a 1:1 functional complex, there exists a 10- to 20-fold excess of P450 over the reductase. This raises several questions including "How are the enzymes of the P450 system organized in the microsomal membrane?" and "Can one P450 enzyme affect the functional characteristics of another P450?" This review summarizes evidence supporting the potential for enzymes involved in the P450 system to interact, focusing on the interactions between reductase and P450 and interactions between multiple P450 enzymes. Studies on the aggregation characteristics of P450 as well as on rotational diffusion are detailed, with a special emphasis on the potential for P450 enzymes to produce oligomeric complexes and to suggest the environment in which P450 exists in the endoplasmic reticulum. Finally, more recent studies describing the potential for multiple P450s to exist as complexes and their effect on P450 function are presented, including studies using reconstituted systems as well as systems where two P450s are coexpressed in the presence of reductase. An understanding of the interactions among reductase and multiple P450s is important for predicting conditions where the drug disposition may be altered by the direct effects of P450-P450 complex formation. Furthermore, the potential for one P450 enzyme to affect the behavior of another P450 may be extremely important for drug screening and development, requiring metabolic screening of a drug with reconstituted systems containing multiple P450s rather than simpler systems containing only a single form.
Collapse
Affiliation(s)
- Wayne L Backes
- Department of Pharmacology and Experimental Therapeutics and Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, 533 Bolivar Street, New Orleans, LA 70112, USA.
| | | |
Collapse
|
25
|
Reed JR, Hollenberg PF. Comparison of substrate metabolism by cytochromes P450 2B1, 2B4, and 2B6: relationship of heme spin state, catalysis, and the effects of cytochrome b5. J Inorg Biochem 2003; 93:152-60. [PMID: 12576277 DOI: 10.1016/s0162-0134(02)00597-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The metabolism of selected substrates by cytochromes P450 (P450) 2B1, 2B4, and 2B6 was compared, and the effects of cytochrome b(5) (b(5)) on these reactions were assessed. There did not appear to be any trends regarding the effects of b(5) when the metabolism of a given substrate by the different P450 enzymes was compared. The changes in spin states of the P450 enzymes as a result of interactions with substrates and cytochrome b(5) were also determined. Only P450 2B4 demonstrated a relationship between spin state, reaction coupling and b(5) effects. The rates of benzphetamine and 7-ethoxy-4-trifluoromethylcoumarin metabolism by the three enzymes could be correlated with the proportions of high spin heme. Similarly, the proportion of reaction coupling during the metabolism of selected substrates was approximately equal to the proportion of high spin P450. The data are interpreted to indicate that a P450 conformational equilibrium coordinately regulates catalysis and spin state changes.
Collapse
Affiliation(s)
- James R Reed
- Merck Research Laboratories, P.O. Box 2000, Mail Stop RY80L-109, Rahway, NJ 07065, USA.
| | | |
Collapse
|
26
|
Hlavica P, Lewis DF. Allosteric phenomena in cytochrome P450-catalyzed monooxygenations. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:4817-32. [PMID: 11559350 DOI: 10.1046/j.1432-1327.2001.02412.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Allosteric regulation of monooxygenase activity is shown to occur with diverse cytochrome P450 isoforms and is characterized by kinetic patterns deviating from the Michaelis-Menten model. Homotropic and heterotropic phenomena are encountered in both substrate activation and productive coupling of the electron donors NADPH-cytochrome P450 reductase and cytochrome b5, and the lipid environment of the system also appears to play a role as an effector. Circumstantial analysis reveals the components of the electron transfer chain to be mutually beneficial in interactions with each other depending on the substrate used and type of cytochrome P450 operative. It is noteworthy that association of diatomic gaseous ligands may be amenable to allosteric regulation as well. Thus, dioxygen binding to cytochrome P450 displays nonhyperbolic kinetic profiles in the presence of certain substrates; the latter, together with redox proteins such as cytochrome b5, can exert efficient control of the abortive breakdown of the oxyferrous intermediates formed. Similarly, substrates may modulate the structural features of the access channel for solutes such as carbon monoxide in specific cytochrome P450 isozymes to either facilitate or impair ligand diffusion to the heme iron. The in vivo importance of allosteric regulation of enzyme activity is discussed in detail.
Collapse
Affiliation(s)
- P Hlavica
- Walther-Straub-Institut für Pharmakologie und Toxikologie der LMU, München, Germany.
| | | |
Collapse
|
27
|
Cvrk T, Strobel HW. Role of LYS271 and LYS279 residues in the interaction of cytochrome P4501A1 with NADPH-cytochrome P450 reductase. Arch Biochem Biophys 2001; 385:290-300. [PMID: 11368010 DOI: 10.1006/abbi.2000.2174] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
It has been proposed that negatively charged amino acids on the surface of reductase and positively charged amino acids on the surface of P450 mediate the binding of both proteins through electrostatic interactions. In this study, we used a site-directed mutagenesis approach to determine a role for two lysine residues (Lys271 and Lys279) of cytochrome P4501A1 in the interaction of P4501A1 with reductase. We prepared two mutants P4501A1Ile271 and P4501A1Ile279 with a mutation of the lysine at positions 271 and 279, respectively. We observed a strong inhibition (>80%) of the 7-ethoxycoumarin and ethoxyresorufin deethylation activity in the reductase-supported system for both mutants. In the cumene hydroperoxide-supported system, P4501A1Ile279 exhibited wild-type activity, but the P4501A1Ile271 mutant activity remained low. The CD spectrum and substrate-binding assay indicated that the secondary structure of P4501A1Ile271 is perturbed. To evaluate further the involvement of these P4501A1 lysine residues in reductase binding, we measured the KM of reductase for wild type and mutants. Both wild type and P4501A1Ile271 reached saturation in the range of reductase concentrations tested with KM values 5.1 and 11.2 pM, respectively. The calculated KM value for P4501A1Ile279 increased 9-fold, 44.4 pM, suggesting that the mutation affected binding of reductase to P4501A1. Stopped-flow spectroscopy was employed to evaluate the effect of mutations on electron transfer from reductase to heme iron. Both wild type and P450Ile279 showed biphasic kinetics with a approximately 40% participation of the fast step in the total activity. On the other hand, only single-phase kinetics for iron reduction was observed for P450Ile271, suggesting that the low activity of this mutant can be attributed not only to major structural changes but also to a disturbance in the electron transport.
Collapse
Affiliation(s)
- T Cvrk
- Department of Biochemistry and Molecular Biology, University of Texas Medical School at Houston, 77225, USA
| | | |
Collapse
|
28
|
Kominami S, Owaki A, Iwanaga T, Tagashira-Ikushiro H, Yamazaki T. The rate-determining step in P450 C21-catalyzing reactions in a membrane-reconstituted system. J Biol Chem 2001; 276:10753-8. [PMID: 11154687 DOI: 10.1074/jbc.m006043200] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Adrenal cytochrome P450 C21 in a membrane-reconstituted system catalyzed 21-hydroxylation of 17alpha-hydroxyprogesterone at a rate higher than that for progesterone in the steady state at 37 degrees C. The rate of product formation in the steady state increased with the concentration of the complex between P450 C21 and the reductase in the membranes. The complex formation was independent of the volume of the reaction, showing that the effective concentrations of the membrane proteins should be defined with the volume of the lipid phase. The rates of conversion of progesterone and 17alpha-hydroxyprogesterone to the product in a single cycle of the P450 C21 reaction were measured with a reaction rapid quenching device. The first-order rate constant for the conversion of progesterone by P450 C21 was 4.3 +/- 0.7 s(-)1, and that for 17alpha-hydroxyprogesterone was 1.8 +/- 0.5 s(-)1 at 37 degrees C. It was found from the analysis of kinetic data that the rate-determining step in 21-hydroxylation of progesterone in the steady state was the dissociation of product from P450 C21, whereas the conversion to deoxycortisol was the rate-determining step in the reaction of 17alpha-hydroxyprogesterone. The difference in the rate-determining steps in the reactions for the two substrates was clearly demonstrated in the pre-steady-state kinetics.
Collapse
Affiliation(s)
- S Kominami
- Faculty of Integrated Arts and Sciences, Hiroshima University, 1-7-1 Kagamiyama, Higashihiroshima 739-8521, Japan.
| | | | | | | | | |
Collapse
|
29
|
Kanamura S, Watanabe J. Cell biology of cytochrome P-450 in the liver. INTERNATIONAL REVIEW OF CYTOLOGY 2000; 198:109-52. [PMID: 10804462 DOI: 10.1016/s0074-7696(00)98004-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cytochromes P-450 (P-450) are members of a multigene superfamily of hemoproteins consisting the microsomal monooxygenase system with NADPH P-450 reductase (reductase) and/or reducing equivalents. Expression of many P-450 isoforms in hepatocytes is shown to be regulated at the level of transcription through interaction between cis-acting elements in the genes and DNA-binding (transacting) factors. Some isoforms of the CYP1A, 2B, 2E, and 3A subfamilies are regulated at the posttranscriptional level. For the topology of P-450 and reductase molecules in ER membrane of hepatocytes, models from stopped flow analysis and electron spin resonance are proposed. The densities of total P-450 and reductase molecules are revealed to be high enough to support the cluster model, suggesting that about ten P-450 molecules form an aggregate and surround one reductase molecule, and therefore the two enzymes form large micelles. ER proliferation after PB administration, which had been correlated with increase in P-450 level, is shown to be probably independent of the increase in P-450 level. There are considerable discrepancies among results reported on sublobular expression of various P-450 isoforms. Causes of the discrepancies are likely to be differences in experimental conditions of histochemical detection carried out and/or in species, strain, and/or sex.
Collapse
Affiliation(s)
- S Kanamura
- Department of Anatomy, Kansai Medical University, Osaka, Japan
| | | |
Collapse
|
30
|
Schulze J, Tschöp K, Lehnerer M, Hlavica P. Residue 285 in cytochrome P450 2B4 lacking the NH(2)-terminal hydrophobic sequence has a role in the functional association of NADPH-cytochrome P450 reductase. Biochem Biophys Res Commun 2000; 270:777-81. [PMID: 10772901 DOI: 10.1006/bbrc.2000.2495] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cytochrome P450 2B4 (CYP2B4) lacking the NH(2)-terminal signal anchor sequence (2-27) was used to study the impact of replacement of histidine with alanine at position 285 on electron transfer from NADPH-cytochrome P450 reductase (P450R). Absorption and circular dichroism spectra of the recombinant hemoproteins indicated that amino acid substitution neither grossly perturbed the geometry of the immediate heme vicinity nor the global polypeptide backbone folding. Fitting of the initial-velocity patterns of P450R-directed reduction of the ferric CYP2B4 (2-27) forms to the Michaelis-Menten kinetics revealed an approximately 3.5-fold increase in the apparent K(m) value for the electron donor of the H285A mutant, while its reductive capacity (V(max)) remained unchanged; this caused a strong drop in reductive efficiency of the engineered enzyme. Circumstantial analysis suggested that impaired association of the redox partners accounted for this phenomenon. Thus, deletion of the positive charge at position 285 of CYP2B4 (2-27) might have disrupted contacts with oppositely charged entities on the P450R surface. Measurements of the stoichiometry of aerobic NADPH consumption and H(2)O(2) production disclosed the oxyferrous H285A species to autoxidize more readily compared with the shortened wild type. This was assumed to arise from less efficient coupling of the system due to defective donation of the second electron by P450R. These results are consistent with the view that His-285 in the truncated CYP2B4 is of importance in the functional interaction with the flavoprotein reductase.
Collapse
Affiliation(s)
- J Schulze
- Walther-Straub-Institut für Pharmakologie und Toxikologie der LMU, Nussbaumstrasse 26, Munich, D-80336, Germany
| | | | | | | |
Collapse
|
31
|
Affiliation(s)
- J B Schenkman
- Department of Pharmacology, University of Connecticut Health Center, Farmington 06030, USA
| | | |
Collapse
|
32
|
Backes WL, Batie CJ, Cawley GF. Interactions among P450 enzymes when combined in reconstituted systems: formation of a 2B4-1A2 complex with a high affinity for NADPH-cytochrome P450 reductase. Biochemistry 1998; 37:12852-9. [PMID: 9737863 DOI: 10.1021/bi980674a] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The purpose of this study is to characterize the interactions among P450 1A2, P450 2B4, and P450 reductase in mixed reconstituted systems. Previously, our laboratory demonstrated that in the presence of certain substrates, 1A2 can influence the catalytic characteristics of 2B4 [Cawley et al. (1995) Biochemistry 34, 1244-1247]. The goal of the current study is to distinguish between two models to explain these interactions: one model where substrate increases the affinity of one P450 enzyme for the reductase, and another model where substrate increases the affinity of one P450 for the reductase through the formation of a 1A2-2B4 complex. According to this model, the 1A2 moiety of 1A2-2B4 forms a high-affinity complex with reductase. Reductase, 1A2, and 2B4 were reconstituted with dilauroylphosphatidylcholine, and the effect of reductase concentration on 7-pentoxyresorufin-O-dealkylation was examined with 2B4-reductase and 1A2-reductase binary systems, and in ternary systems containing different 2B4:1A2 ratios. At subsaturating [reductase], there was a dramatic inhibition of the 2B4-dependent activity in the ternary system as compared with the binary systems. These results are consistent with the formation of a ternary (reductase-1A2-2B4) complex where the reductase is bound specifically to 1A2. At higher reductase concentrations where the reductase-binding sites on 1A2 become saturated, the results are consistent with the formation of a quaternary complex in which reductase binds to both P450 enzymes (reductase-1A2-2B4-reductase). Analogous experiments using the 1A2-preferred substrate 7-ethoxyresorufin showed a stimulation of 7-ethoxyresorufin-O-deethylation in the mixed reconstituted system, demonstrating that the high-affinity 2B4-1A2-reductase complex was functionally active and not merely an inhibitory complex.
Collapse
Affiliation(s)
- W L Backes
- Department of Pharmacology and Experimental Therapeutics, The Stanley S. Scott Cancer Center, Louisiana State University Medical Center, New Orleans 70112, USA
| | | | | |
Collapse
|
33
|
Stresser DM, Kupfer D. Prosubstrates of CYP3A4, the major human hepatic cytochrome P450: transformation into substrates by other P450 isoforms. Biochem Pharmacol 1998; 55:1861-71. [PMID: 9714305 DOI: 10.1016/s0006-2952(98)00060-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This study demonstrates interplay among human hepatic cytochrome P450 (CYP) isoforms in transforming aromatic compounds from being prosubstrates of CYP3A4 into phenolic substrates. Incubation of methoxychlor with CYP2C19 yields the phenolic monodemethylated derivative (mono-OH-M). Additionally, CYP2C19 catalyzes the ortho-hydroxylation of mono-OH-M and of residual methoxychlor. CYP3A4 does not catalyze the O-demethylation or hydroxylation of methoxychlor, but does hydroxylate mono-OH-M (ortho to the phenolic hydroxyl) (Stresser DM and Kupfer D, Biochemistry 36: 2203-2210, 1997). A combination of reconstituted CYP2C19 and 3A4 in the same vessel elicits stimulation of the ortho-hydroxylation of mono-OH-M compared with 2C19 alone. It is unlikely that stimulation of hydroxylation was due to protein-protein interactions, generating more active P450(s), because progression of the stimulation was time-dependent. When reconstituted CYP3A4 was added to an ongoing incubation containing reconstituted 2C19, stimulation of catechol formation occurred. In another experiment, stimulatory activity was similar when 2C19 and 3A4 were reconstituted together in the same vesicles or separately. Cumulative evidence demonstrates that the stimulation of catechol formation resulted from CYP3A4-mediated ortho-hydroxylation of the phenolic metabolite(s) generated by CYP2C19. Similarly, estradiol 3-methyl ether is demethylated by CYP2C19 into estradiol, a CYP3A4 substrate for ortho-hydroxylation; there was significant stimulation of hydroxylation by combined 2C19 and 3A4. These findings demonstrate that pro-phenolic compounds (methoxychlor and estradiol 3-methyl ether) are prosubstrates of CYP3A4. Because catalysis may become evident only after prosubstrate conversion (by a different P450) into a substrate, caution is warranted when concluding a lack of catalytic involvement by a particular P450 isoform, based solely on data from the use of individual cDNA-expressed P450s.
Collapse
Affiliation(s)
- D M Stresser
- Department of Pharmacology and Molecular Toxicology, University of Massachusetts Medical Center, Shrewsbury 01545, USA
| | | |
Collapse
|
34
|
Metosh-Dickey CA, Mason RP, Winston GW. Single electron reduction of xenobiotic compounds by glucose oxidase from Aspergillus niger. Free Radic Biol Med 1998; 24:155-60. [PMID: 9436625 DOI: 10.1016/s0891-5849(97)00207-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Various species of fungi express glucose oxidase that catalyzes formation of gluconolactone from glucose with concomitant, direct divalent reduction of molecular oxygen to hydrogen peroxide. A physiological function ascribed to this extracellular enzyme is production of hydrogen peroxide for use in lignin degradation catalyzed by lignin peroxidases. Herein, we show that glucose oxidase can catalyze one-electron reduction of several different classes of xenobiotic compounds resulting in generation of free radical products. Electron spin resonance (ESR) spectroscopy was used to visualize the one-electron reduction products of 4-nitropyridine-N-oxide (4NPO), 1,4-naphthoquinone (1,4NQ), and dichlorophenolindolphenol (DCPIP). Hyperfine splitting constants were used to generate computer simulations of the spectra confirming the presence of free radical products.
Collapse
Affiliation(s)
- C A Metosh-Dickey
- Department of Biochemistry, Louisiana State University, Baton Rouge 70803, USA
| | | | | |
Collapse
|
35
|
Guengerich FP, Johnson WW. Kinetics of ferric cytochrome P450 reduction by NADPH-cytochrome P450 reductase: rapid reduction in the absence of substrate and variations among cytochrome P450 systems. Biochemistry 1997; 36:14741-50. [PMID: 9398194 DOI: 10.1021/bi9719399] [Citation(s) in RCA: 123] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The reduction of ferric cytochrome P450 (P450) to ferrous is the first chemical step in almost all P450 reactions, and many characteristics of this step have been reported. Reduction kinetics of rabbit and human P450s were measured in a variety of systems. As reported earlier, P450 reduction is biphasic in microsomes and some purified P450 systems. However, this is not an inherent property of P450s, and some low- and high-spin iron P450s were reduced with single-exponential kinetics. Contrary to a generalized view, the presence of substrate is not necessary for rapid reduction of all P450s. Also, low-spin heme can be reduced as rapidly as high-spin in several P450s. P450s varied considerably in their reduction behavior, and even a single P450 showed remarkably different reduction kinetics when placed in various environments. P450 3A4 reduction was examined in liver microsomes, a reconstituted system, a fusion protein in which it was linked to NADPH-P450 reductase, and baculovirus and bacterial membranes in which P450 3A4 and NADPH-P450 reductase were coexpressed; the systems differed considerably in terms of the need for the substrate testosterone and cytochrome b5 (b5) for reduction and as to whether reduction was rate-limiting in the overall catalytic cycle. When b5 was included in reconstituted systems, it reduction kinetics were linked with those of some P450s. This behavior could be simulated in kinetic models in which electrons flowed from the ferrous P450.CO complex to oxidized b5. Overall, the kinetics of ferric P450 reduction cannot be generalized among different P450s in various systems, and concepts regarding influence of substrate, reaction sequence, and a rate-limiting step are not very universal.
Collapse
Affiliation(s)
- F P Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, USA.
| | | |
Collapse
|
36
|
Tan Y, Patten CJ, Smith T, Yang CS. Competitive interactions between cytochromes P450 2A6 and 2E1 for NADPH-cytochrome P450 oxidoreductase in the microsomal membranes produced by a baculovirus expression system. Arch Biochem Biophys 1997; 342:82-91. [PMID: 9185616 DOI: 10.1006/abbi.1997.9995] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The present study investigated the interactions between cytochrome P450 (P450) enzymes and the NADPH:cytochrome oxidoreductase (OR) in the microsomal membrane. Microsomes containing human cytochrome P450 2A6 (h2A6) coexpressed with human OR (hOR) via a baculovirus expression system displayed coumarin hydroxylase activity with apparent Km and Vmax values of 0.41 microM and 4.05 nmol/min/nmol P450, respectively. Incorporation of purified rat liver cytochrome b5 (b5) into the microsomes increased the Vmax 2.5-fold, but did not affect the Km. The N-nitrosodimethylamine (NDMA) demethylase activity of human cytochrome P450 2E1 (h2E1) coexpressed similarly was characterized previously. Coumarin was shown not to be a substrate nor an inhibitor of h2E1, and NDMA was not a substrate nor an inhibitor of h2A6. In microsomes containing h2A6, h2E1, and hOR (M-h2A6-h2E1-hOR) obtained from a triple expression system, the two P450 enzymes were shown to compete with each other for interaction with hOR. In incubations with M-h2A6-h2E1-hOR, the presence of a h2A6 substrate (coumarin) decreased NDMA demethylase activity by a maximum of 47%, and the presence of a h2E1 substrate (NDMA) decreased coumarin hydroxylase activity by a maximum of 19%. This substrate-induced competition between h2A6 and h2E1 was decreased by the addition of purified b5. In the absence of a substrate, the NADPH-dependent H2O2 formation was high in both M-h2A6-h2E1-hOR and M-h2E1-hOR, but low in M-h2A6-hOR. The addition of NDMA had little effect on the H2O2 formation in M-h2A6-h2E1-hOR and M-h2E1-hOR. The addition of coumarin, however, slightly decreased H2O2 formation in M-h2A6-h2E1-hOR, but drastically increased H2O2 formation in M-h2A6-hOR. These results suggest that the presence of a h2A6 substrate decreased the electron flow to h2E1 in M-h2A6-h2E1-hOR. The activities of coumarin hydroxylase and NDMA demethylase of M-h2A6-h2E1-hOR were decreased and increased, respectively, by an increase in ionic strength. The ionic strength, however, did not drastically change the substrate-induced competition between h2A6 and h2E1 for hOR. The results demonstrate the usefulness of the coexpression system for mechanistic studies and illustrate that the interaction of monooxygenase enzymes in the microsomal membrane is regulated by the presence of substrates and b5.
Collapse
Affiliation(s)
- Y Tan
- Laboratory for Cancer Research, College of Pharmacy, Rutgers University, Piscataway, New Jersey 08854, USA
| | | | | | | |
Collapse
|
37
|
Yamazaki H, Johnson WW, Ueng YF, Shimada T, Guengerich FP. Lack of electron transfer from cytochrome b5 in stimulation of catalytic activities of cytochrome P450 3A4. Characterization of a reconstituted cytochrome P450 3A4/NADPH-cytochrome P450 reductase system and studies with apo-cytochrome b5. J Biol Chem 1996; 271:27438-44. [PMID: 8910324 DOI: 10.1074/jbc.271.44.27438] [Citation(s) in RCA: 130] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Many catalytic activities of cytochrome P450 (P450) 3A4, the major human liver P450 enzyme, require cytochrome b5 (b5) for optimal rates. The stimulatory effect of b5 on P450 reactions has generally been thought to be due to transfer of electrons from ferrous b5 to the ferrous P450-O2-substrate complex. We found that apo-b5, devoid of heme, could substitute for b5 in stimulating two prototypic activities, testosterone 6beta hydroxylation and nifedipine oxidation. The stimulatory effect was not seen with albumin, hemoglobin, catalase, or cytochrome c. Apo-b5 could not substitute for b5 in a testosterone 6beta hydroxylation system composed of NADH-b5 reductase and P450 3A4. Rates of electron transfer from NADPH-P450 reductase to ferric P450 3A4 were too slow (<2 min-1) to support testosterone 6beta hydroxylation ( approximately 14 min-1) unless b5 or apo-b5 was present, when rates of approximately 700 min-1 were measured. The oxidation-reduction potential (Em,7) of the ferric/ferrous couple of P450 3A4 was unchanged ( approximately -310 mV) under different conditions in which the kinetics of reduction were altered by the addition of substrate and/or apo-b5. Rapid reduction of P450 3A4 required substrate and a preformed complex of P450 3A4, NADPH-P450 reductase, and b5; the rates of binding of the proteins to each other were 2-3 orders of magnitude less than reduction rates. We conclude that b5 can facilitate some P450 3A4-catalyzed oxidations by complexing with P450 3A4 and enhancing its reduction by NADPH-P450 reductase, without directly transferring electrons to P450.
Collapse
Affiliation(s)
- H Yamazaki
- Osaka Prefectural Institute of Public Health, Osaka 537, Japan.
| | | | | | | | | |
Collapse
|
38
|
Bernhardt R. Cytochrome P450: structure, function, and generation of reactive oxygen species. Rev Physiol Biochem Pharmacol 1995; 127:137-221. [PMID: 8533008 DOI: 10.1007/bfb0048267] [Citation(s) in RCA: 113] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- R Bernhardt
- Max-Delbrück-Centrum für Molekulare Medizin, Berlin, Germany
| |
Collapse
|
39
|
Goeptar AR, Scheerens H, Vermeulen NP. Oxygen and xenobiotic reductase activities of cytochrome P450. Crit Rev Toxicol 1995; 25:25-65. [PMID: 7734059 DOI: 10.3109/10408449509089886] [Citation(s) in RCA: 171] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The oxygen reductase and xenobiotic reductase activities of cytochrome P450 (P450) are reviewed. During the oxygen reductase activity of P450, molecular oxygen is reduced to superoxide anion radicals (O2-.) most likely by autooxidation of a P450 ferric-dioxyanion complex. The formation of reactive oxygen species (O2-., hydrogen peroxide, and, notably, hydroxyl free radicals) presents a potential toxication pathway, particularly when effective means of detoxication are lacking. Under anaerobic conditions, P450 may also be involved in the reduction of xenobiotics. During the xenobiotic reductase activity of P450, xenobiotics are reduced by the ferrous xenobiotic complex. After xenobiotic reduction by P450, xenobiotic free radicals are formed that are often capable of reacting directly with tissue macromolecules. Unfortunately, the compounds that are reductively activated by P450 have little structural similarity. The precise molecular mechanism underlying the xenobiotic reductase activity of P450 is, therefore, not yet fully understood. Moreover, description of the molecular mechanisms of xenobiotic and oxygen reduction reactions by P450 is limited by the lack of knowledge of the three-dimensional (3D) structure of the mammalian P450 proteins.
Collapse
Affiliation(s)
- A R Goeptar
- Leiden/Amsterdam Center for Drug Research, Vrije Universiteit, The Netherlands
| | | | | |
Collapse
|
40
|
Voznesensky A, Schenkman J. Quantitative analyses of electrostatic interactions between NADPH-cytochrome P450 reductase and cytochrome P450 enzymes. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)40741-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
41
|
Hlavica P. Regulatory mechanisms in the activation of nitrogenous compounds by mammalian cytochrome P-450 isozymes. Drug Metab Rev 1994; 26:325-48. [PMID: 8082573 DOI: 10.3109/03602539409029801] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Metabolic activation of nitrogenous compounds by the cytochrome P-450 system is a highly complex process. Inherent substrate factors, such as basicity, electronic state, lipophilicity, and conformation control binding of the diverse classes of amines to cytochrome P-450. Accommodation of these compounds in the enzyme cavity and proper orientation of the molecules are governed by intrinsic properties of the peptide structure of cytochrome P-450, which may be subject to modification by the action of effectors. On the membrane level, phospholipid might have some impact on substrate binding. On the other hand, bound amine substrate is beneficial to the productive interaction of the electron transport chains with the terminal acceptor, improving economy of the system. Certain amines appear to regulate O2 association with cytochrome P-450 and stabilize the various oxy species formed. Considering the selective prerequisites for oxidative attack by cytochrome P-450 at vulnerable nitrogen centers, many cytotoxic amines belonging to the category of relatively rigid, planar molecules undergo N-oxidative activation by the cytochrome P-450IA subfamily, while more bulky amines with flexible conformation are N-oxygenated preferentially by phenobarbital-inducible cytochromes P-450. Small differences in protein structure between the various cytochrome P-450 subforms might serve to stabilize aminium radicals to permit oxygen rebound. Collectively, the selective regulatory mechanisms operative in the bioactivation of nitrogen-containing compounds appear to be determined largely by the type of substrate used and the isozyme involved in catalysis. With respect to the latter, the interplay of the multiple cytochromes P-450 in the various organs of animal species thus serves to rationalize the differences in the particular selectivities for amine substrates. These are responsible for the mode and/or extent to which activation of nitrogenous compounds, including promutagens and procarcinogens, occurs, and this may explain the tissue-specific response to the tumorigenic action of these agents.
Collapse
Affiliation(s)
- P Hlavica
- Walther Straub-Institut für Pharmakologie und Toxikologie der Universität, München, Germany
| |
Collapse
|
42
|
Narasimhulu S. On the model controversy for substrate-induced spin-state transition in cytochrome P450: (a new perspective). Endocr Res 1993; 19:223-58. [PMID: 8306941 DOI: 10.1080/07435809309026680] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Three models have been proposed for substrate-induced spin-state transition in cytochrome P450. These are referred to as two-, three- and four-state models. In this communication the three models are reviewed with respect to their experimental basis and their ability to accommodate the results reported on the effects of substrates on spin-state and reduction of various P450's. In addition, a new perspective is presented.
Collapse
Affiliation(s)
- S Narasimhulu
- Harrison Department for Surgical Research, University of Pennsylvania, Philadelphia 19104
| |
Collapse
|
43
|
Engelke M, Bergmann U, Diehl HA. Fluidity of the microsomal membrane and cytochrome P450 reduction kinetics of pig liver microsomes as a consequence of organic solvent impact. Xenobiotica 1993; 23:71-8. [PMID: 8484265 DOI: 10.3109/00498259309059363] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
1. The effect of the aromatic solvents toluene, xylene and ethylbenzene on microsomal membrane fluidity and anaerobic NADPH-reduction kinetics were studied. 2. The relation of membrane fluidity to the kinetics of cytochrome P450 reduction by NADPH-cytochrome P450 reductase was examined with regard to a membrane-mediated molecular organization of the multienzyme components of the monooxygenase system. 3. Membrane fluidity changes were detected with the steady-state pyrene excimer formation method and with fluorescence lifetime measurements after incubation of the microsomes with organic solvents. 4. Increase in membrane fluidity in presence of organic solvents leads to a small but significant decrease of the rate constant of the cytochrome P450 reduction kinetics and a change in the relative amplitudes of the components of the biphasic response. 5. The results support the idea of a molecular organization of cytochrome P450 in clusters. Fluidization of the microsomal membrane by organic solvents increase the cytochrome P450 cluster formation.
Collapse
Affiliation(s)
- M Engelke
- Biophysical Department, University of Bremen, Germany
| | | | | |
Collapse
|
44
|
Kanaeva IP, Nikityuk OV, Davydov DR, Dedinskii IR, Koen YM, Kuznetsova GP, Skotselyas ED, Bachmanova GI, Archakov AI. Comparative study of monomeric reconstituted and membrane microsomal monooxygenase systems of the rabbit liver. II. Kinetic parameters of reductase and monooxygenase reactions. Arch Biochem Biophys 1992; 298:403-12. [PMID: 1416971 DOI: 10.1016/0003-9861(92)90428-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The kinetic parameters of NADPH-dependent cytochrome P450 LM2 (2B4) reduction and substrate oxidation in the monomeric reconstituted system, consisting of purified NADPH-cytochrome P450 reductase and cytochrome P450 LM2 monomers, and in phenobarbital-induced rabbit liver microsomes were compared. In the absence of benzphetamine, NADPH-dependent reduction of cytochrome P450 LM2 was monophasic in the monomeric reconstituted system and biphasic in the microsomes. The presence of the substrate in the monomeric reconstituted system caused the appearance of the fast phase. In this system substrate-free cytochrome P450 LM2 was entirely low-spin, and the addition of benzphetamine shifted the spin equilibrium to a high state very weakly. No correlation between high-spin content and the proportion of the fast phase of NADPH-dependent LM2 reduction was found in the system. Vmax values for the oxidation of type I substrates (benzphetamine, dimethylaniline, aminopyrine) in the monomeric reconstituted system were higher or the same as in the microsomes, whereas Km values for the substrates and NADPH were lower in the microsomes. Maximal activity of the monomeric reconstituted system was observed at a 1:1 NADPH-cytochrome P450 reductase/cytochrome P450 LM2 ratio. Measurements of benzphetamine oxidation as a function of NADPH-cytochrome P450 reductase/cytochrome P450 LM2 ratio at a constant total protein concentration allowed the Kd of the NADPH-cytochrome P450 reductase/cytochrome P450 LM2 complex to be estimated as 6.4 +/- 0.5 microM. Complex formation between the NADPH-cytochrome P450 reductase and cytochrome P450 LM2 monomers was not detected by recording the difference binding spectra of the reductase monomers with LM2 monomers or by treatment the mixture of the monomers of the proteins with the crosslinking reagent, water-soluble carbodiimide.
Collapse
Affiliation(s)
- I P Kanaeva
- Institute of Biological and Medical Chemistry, Russian Academy of Medical Science, Moscow
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Davydov DR, Knyushko TV, Hoa GH. High pressure induced inactivation of ferrous cytochrome P-450 LM2 (IIB4) CO complex: evidence for the presence of two conformers in the oligomer. Biochem Biophys Res Commun 1992; 188:216-21. [PMID: 1417844 DOI: 10.1016/0006-291x(92)92372-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The effect of high pressure on the spectral properties of cytochrome P-450 LM2(Fe2+)-CO complex was studied. The application of high pressure was shown to induce the conversion of cytochrome P-450 to P-420. In the solution when P-450 was oligomeric only about 65% of the total converted to P-420. The remaining portion of cytochrome P-450 was stable at pressures up to 6 kbar. When P-450 was incorporated into membranes or when it was succinylated, the proportion of the pressure sensitive fraction was slightly higher (about 75%). Dissociation of P-450 oligomers into monomers was made by addition of 0.2% Triton N-101. Monomers were the most sensitive to pressure; they could be completely converted to P-420. These results have been interpreted as evidence for the existence of two different conformers of P-450 LM2, which differ in pressure stability. Splitting between these two states appears to be a result of the oligomeric organization of cytochrome P-450 in solution and in the membrane.
Collapse
Affiliation(s)
- D R Davydov
- Institute de Biologie Phisico-Chimique, INSERM U310, Paris, France
| | | | | |
Collapse
|
46
|
Voznesensky A, Schenkman J. The cytochrome P450 2B4-NADPH cytochrome P450 reductase electron transfer complex is not formed by charge-pairing. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)42093-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
47
|
Kominami S, Ogawa N, Morimune R, De-Ying H, Takemori S. The role of cytochrome b5 in adrenal microsomal steroidogenesis. J Steroid Biochem Mol Biol 1992; 42:57-64. [PMID: 1558820 DOI: 10.1016/0960-0760(92)90011-7] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The role of cytochrome b5 in adrenal microsomal steroidogenesis was studied in guinea pig adrenal microsomes and also in the liposomal system containing purified cytochrome P-450s and NADPH-cytochrome P-450 reductase. Preincubation of the microsomes with anti-cytochrome b5 immunoglobulin decreased both 17 alpha- and 21-hydroxylase activity in the microsomes. In liposomes containing NADPH-cytochrome P-450 reductase and P-450C21 or P-450(17) alpha,lyase, addition of a small amount of cytochrome b5 stimulated the hydroxylase activity while a large amount of cytochrome b5 suppressed the hydroxylase activity. The effect of cytochrome b5 on the rates of the first electron transfer to P-450C21 in liposome membranes was determined from stopped flow measurements and that of the second electron transfer was estimated from the oxygenated difference spectra in the steady state. It was indicated that a small amount of cytochrome b5 activated the hydroxylase activity by supplying additional second electrons to oxygenated P-450C21 in the liposomes while a large amount of cytochrome b5 might suppress the activity through the interferences in the interaction between the reductase and P-450C21.
Collapse
Affiliation(s)
- S Kominami
- Faculty of Integrated Arts and Sciences, Hiroshima University, Japan
| | | | | | | | | |
Collapse
|
48
|
Eyer CS, Backes WL. Relationship between the rate of reductase-cytochrome P450 complex formation and the rate of first electron transfer. Arch Biochem Biophys 1992; 293:231-40. [PMID: 1536561 DOI: 10.1016/0003-9861(92)90390-i] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Substrate has recently been shown to affect (a) the high spin content of cytochrome P450 (b) the rate of first electron transfer when LM2 (P450 2B4) and reductase were in a preformed complex, and (c) the rate of functional complex formation between NADPH-cytochrome P450 reductase and cytochrome P450 LM2. When comparing the effect of substrate on each of these parameters, the strongest correlation was demonstrated between the rate of first electron transfer through the preformed complex and the rate of functional complex formation (W.L. Backes and C.S. Eyer, 1989, J. Biol. Chem. 264, 6252-6259). The relationship among high spin content, reduction rate, and the rate of functional complex formation was examined using a number of different cytochrome P450 isozymes. The goal of this study was to determine if the previously established relationship between reduction rate and the rate of reductase-P450 complex formation was a feature only of LM2, or a general characteristic of the cytochrome P450 system. Substrate addition caused an increase in first electron transfer for each of the isozymes examined, with high spin content being increased with cytochromes P450 2B1 (PBRLM5) and P450 2B2 (PBRLM6). Substrate addition to cytochrome P450 2C6 (PBRLM4) resulted in a small decrease in high spin content. P450 2B1 and P450 2B2 showed a positive correlation between substrate-mediated stimulation of reduction and high spin content, whereas P450 2C6 showed a negative correlation between these variables. Substrate also increased the rate of reductase-P450 association for each of the isozymes examined. When compared to the degree of stimulation of reduction through a preformed complex, a strong positive correlation was obtained with each isozyme examined. These results demonstrate that the increase in both the rate of functional reductase-P450 complex formation and the rate of first electron transfer is not simply a property of LM2, but appears to be a general characteristic of many cytochrome P450 isozymes.
Collapse
Affiliation(s)
- C S Eyer
- Department of Pharmacology, Louisiana State University Medical Center, New Orleans 70112
| | | |
Collapse
|
49
|
Omata Y, Friedman FK. A fluorescence study of the interactions of benzo[a]pyrene, cytochrome P450c and NADPH-cytochrome P450 reductase. Biochem Pharmacol 1991; 42:97-101. [PMID: 1906275 DOI: 10.1016/0006-2952(91)90686-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Fluorescence quenching of benzo[a]pyrene (BP) by cytochrome P450c was used to probe this substrate-enzyme binding interaction. Addition of NADPH-cytochrome P450 reductase, an essential electron carrier during P450 catalysis, resulted in increased quenching and thus strengthened binding of BP to P450c. This shows that the role of reductase extends beyond that of an electron transfer agent to influence substrate binding. Fluorescence titration measurements revealed that reductase and P450c formed a complex with an apparent KD of 13.7 +/- 0.9 nM. Reductase had no effect in the presence of an anti-P450c monoclonal antibody which inhibits BP hydroxylation, which suggests that this monoclonal antibody binds P450c near its reductase binding region.
Collapse
Affiliation(s)
- Y Omata
- Laboratory of Molecular Carcinogenesis, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | | |
Collapse
|
50
|
Probing the role of lysines and arginines in the catalytic function of cytochrome P450d by site-directed mutagenesis. Interaction with NADPH-cytochrome P450 reductase. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(19)67801-4] [Citation(s) in RCA: 111] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|