1
|
Wishart TFL, Lovicu FJ. Spatiotemporal Localisation of Heparan Sulphate Proteoglycans throughout Mouse Lens Morphogenesis. Cells 2023; 12:1364. [PMID: 37408198 DOI: 10.3390/cells12101364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 07/07/2023] Open
Abstract
Heparan sulphate proteoglycans (HSPGs) consist of a core protein decorated with sulphated HS-glycosaminoglycan (GAG) chains. These negatively charged HS-GAG chains rely on the activity of PAPSS synthesising enzymes for their sulfation, which allows them to bind to and regulate the activity of many positively charged HS-binding proteins. HSPGs are found on the surfaces of cells and in the pericellular matrix, where they interact with various components of the cell microenvironment, including growth factors. By binding to and regulating ocular morphogens and growth factors, HSPGs are positioned to orchestrate growth factor-mediated signalling events that are essential for lens epithelial cell proliferation, migration, and lens fibre differentiation. Previous studies have shown that HS sulfation is essential for lens development. Moreover, each of the full-time HSPGs, differentiated by thirteen different core proteins, are differentially localised in a cell-type specific manner with regional differences in the postnatal rat lens. Here, the same thirteen HSPG-associated GAGs and core proteins as well as PAPSS2, are shown to be differentially regulated throughout murine lens development in a spatiotemporal manner. These findings suggest that HS-GAG sulfation is essential for growth factor-induced cellular processes during embryogenesis, and the unique and divergent localisation of different lens HSPG core proteins indicates that different HSPGs likely play specialized roles during lens induction and morphogenesis.
Collapse
Affiliation(s)
- Tayler F L Wishart
- Molecular and Cellular Biomedicine, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Frank J Lovicu
- Molecular and Cellular Biomedicine, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
- Save Sight Institute, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
2
|
Wishart TFL, Lovicu FJ. Heparan sulfate proteoglycans (HSPGs) of the ocular lens. Prog Retin Eye Res 2023; 93:101118. [PMID: 36068128 DOI: 10.1016/j.preteyeres.2022.101118] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 08/22/2022] [Accepted: 08/24/2022] [Indexed: 11/17/2022]
Abstract
Heparan sulfate proteoglycans (HSPGs) reside in most cells; on their surface, in the pericellular milieu and/or extracellular matrix. In the eye, HSPGs can orchestrate the activity of key signalling molecules found in the ocular environment that promote its development and homeostasis. To date, our understanding of the specific roles played by individual HSPG family members, and the heterogeneity of their associated sulfated HS chains, is in its infancy. The crystalline lens is a relatively simple and well characterised ocular tissue that provides an ideal stage to showcase and model the expression and unique roles of individual HSPGs. Individual HSPG core proteins are differentially localised to eye tissues in a temporal and spatial developmental- and cell-type specific manner, and their loss or functional disruption results in unique phenotypic outcomes for the lens, and other ocular tissues. More recent work has found that different HS sulfation enzymes are also presented in a cell- and tissue-specific manner, and that disruption of these different sulfation patterns affects specific HS-protein interactions. Not surprisingly, these sulfated HS chains have also been reported to be required for lens and eye development, with dysregulation of HS chain structure and function leading to pathogenesis and eye-related phenotypes. In the lens, HSPGs undergo significant and specific changes in expression and function that can drive pathology, or in some cases, promote tissue repair. As master signalling regulators, HSPGs may one day serve as valuable biomarkers, and even as putative targets for the development of novel therapeutics, not only for the eye but for many other systemic pathologies.
Collapse
Affiliation(s)
- Tayler F L Wishart
- Molecular and Cellular Biomedicine, School of Medical Sciences, The University of Sydney, NSW, Australia.
| | - Frank J Lovicu
- Molecular and Cellular Biomedicine, School of Medical Sciences, The University of Sydney, NSW, Australia; Save Sight Institute, The University of Sydney, NSW, Australia.
| |
Collapse
|
3
|
Wishart TFL, Lovicu FJ. An Atlas of Heparan Sulfate Proteoglycans in the Postnatal Rat Lens. Invest Ophthalmol Vis Sci 2021; 62:5. [PMID: 34730792 PMCID: PMC8572486 DOI: 10.1167/iovs.62.14.5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Purpose The arrangement of lens cells is regulated by ocular growth factors. Although the effects of these inductive molecules on lens cell behavior (proliferation, survival, and fiber differentiation) are well-characterized, the precise mechanisms underlying the regulation of growth factor-mediated signaling in lens remains elusive. Increasing evidence highlights the importance of heparan sulfate proteoglycans (HSPGs) for the signaling regulation of growth factors; however, the identity of the different lens HSPGs and the specific roles they play in lens biology are still unknown. Methods Semiquantitative real-time (RT)‐PCR and immunolabeling were used to characterize the spatial distribution of all known HSPG core proteins and their associated glycosaminoglycans (heparan and chondroitin sulfate) in the postnatal rat lens. Fibroblast growth factor (FGF)-2-treated lens epithelial explants, cultured in the presence of Surfen (an inhibitor of heparan sulfate [HS]-growth factor binding interactions) were used to investigate the requirement for HS in FGF-2-induced proliferation, fiber differentiation, and ERK1/2-signaling. Results The lens expresses all HSPGs. These HSPGs are differentially localized to distinct functional regions of the lens. In vitro, inhibition of HS-sulfation with Surfen blocked FGF-2-mediated ERK1/2-signaling associated with lens epithelial cell proliferation and fiber differentiation, highlighting that these cellular processes are dependent on HS. Conclusions These findings support a requirement for HSPGs in FGF-2 driven lens cell proliferation and fiber differentiation. The identification of specific HSPG core proteins in key functional lens regions, and the divergent expression patterns of closely related HSPGs, suggests that different HSPGs may differentially regulate growth factor signaling networks leading to specific biological events involved in lens growth and maintenance.
Collapse
Affiliation(s)
- Tayler F L Wishart
- School of Medical Sciences, The University of Sydney, New South Wales, Australia
| | - Frank J Lovicu
- School of Medical Sciences, The University of Sydney, New South Wales, Australia.,Save Sight Institute, The University of Sydney, New South Wales, Australia
| |
Collapse
|
4
|
iTRAQ-based proteomic analysis identifies proteins involved in limb regeneration of swimming crab Portunus trituberculatus. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2018; 26:10-19. [PMID: 29482113 DOI: 10.1016/j.cbd.2018.02.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 02/06/2018] [Accepted: 02/11/2018] [Indexed: 11/22/2022]
Abstract
The swimming crab (Portunus trituberculatus) has a striking capacity for limb regeneration, which has drawn the interest of many researchers. In this study, isobaric tag for relative and absolute quantitation (iTRAQ) approach was utilised to investigate protein abundance changes during limb regeneration in this species. A total of 1830 proteins were identified, of which 181 were significantly differentially expressed, with 94 upregulated and 87 downregulated. Our results highlight the complexity of limb regeneration and its regulation through cooperation of various biological processes including cytoskeletal changes, extracellular matrix (ECM) remodelling and ECM-receptor interactions, protein synthesis, signal recognition and transduction, energy production and conversion, and substance transport and metabolism. Additionally, real-time PCR confirmed that mRNA levels of differentially expressed genes were correlated with protein levels. Our results provide a basis for studying the regulatory mechanisms associated with crab limb regeneration.
Collapse
|
5
|
Jiang X, Multhaupt H, Chan E, Schaefer L, Schaefer RM, Couchman JR. Essential Contribution of Tumor-derived Perlecan to Epidermal Tumor Growth and Angiogenesis. J Histochem Cytochem 2016; 52:1575-90. [PMID: 15557212 DOI: 10.1369/jhc.4a6353.2004] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
As a major heparan sulfate proteoglycan (PG) in basement membranes, perlecan has been linked to tumor invasion, metastasis, and angiogenesis. Here we produced epidermal tumors in immunocompromised rats by injection of mouse RT101 tumor cells. Tumor sections stained with species-specific perlecan antibodies, together with immuno-electron microscopy, showed that perlecan distributed around blood vessels was of both host and tumor cell origin. Tumor-derived perlecan was also distributed throughout the tumor matrix. Blood vessels stained with rat-specific PECAM-1 antibody showed their host origin. RT101 cells also expressed two other basement membrane heparan sulfate PGs, agrin and type XVIII collagen. Antisense targeting of perlecan inhibited tumor cell growth in vitro, while exogenous recombinant perlecan, but not heparin, restored the growth of antisense perlecan-expressing cells, suggesting that perlecan core protein, rather than heparan sulfate chains from perlecan, agrin, or type XVIII collagen, regulates tumor cell growth. However, perlecan core protein requirement was not related to fibroblast growth factor-7 binding because RT101 cells were unresponsive to and lacked receptors for this growth factor. In vivo, antisense perlecan-transfected cells generated no tumors, whereas untransfected and vector-transfected cells formed tumors with obvious neovascularization, suggesting that tumor perlecan rather than host perlecan controls tumor growth and angiogenesis.
Collapse
Affiliation(s)
- Xinnong Jiang
- Department of Cell Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | | | | | | | | |
Collapse
|
6
|
Wahba O, Raghib A, Megahed E, Hussein M. Expression of perlecan, syndecan-1 and Ki-67 in keratocystic odontogenic tumor. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.tdj.2013.12.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
7
|
Mailankot M, Howell S, Nagaraj RH. Kynurenine inhibits fibroblast growth factor 2-mediated expression of crystallins and MIP26 in lens epithelial cells. Biochim Biophys Acta Mol Basis Dis 2010; 1802:609-20. [PMID: 20478381 DOI: 10.1016/j.bbadis.2010.05.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2010] [Revised: 04/16/2010] [Accepted: 05/10/2010] [Indexed: 10/19/2022]
Abstract
Fibroblast growth factor-2 (FGF2)-mediated signaling plays an important role in fiber cell differentiation in eye lens. We had previously shown that kynurenine (KYN) produced from the overexpression of indoleamine 2,3-dioxygenase (IDO) causes defects in the differentiation of fiber cells, induces fiber cell apoptosis and cataract formation in the mouse lens, and leads to cell cycle arrest in cultured mouse lens epithelial cells (mLEC). In this study, we demonstrate that exogenous KYN reduces FGF2-mediated expression of alpha-, beta-, and gamma-crystallin and MIP26 in mLEC. We show that endogenously produced KYN in mLEC of IDO transgenic animals causes similar defects in FGF2-induced protein expression and that a competitive inhibitor of IDO prevents such defects. Our data also show that KYN inhibits FGF2-induced Akt and ERK1/2 phosphorylation in mLEC, which are required for crystallin and MIP26 expression in the lens. KYN does not inhibit FGF2 binding to cells but inhibit phosphorylation of FGFR1in mLEC. Together our data suggest that KYN might inhibit FGF2-mediated fiber cell differentiation by preventing expression of crystallins and MIP26. Our studies provide a novel mechanism by which KYN can exert deleterious effects in cells.
Collapse
Affiliation(s)
- Maneesh Mailankot
- Department of Ophthalmology & Visual Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | | |
Collapse
|
8
|
Melrose J, Hayes AJ, Whitelock JM, Little CB. Perlecan, the “jack of all trades” proteoglycan of cartilaginous weight-bearing connective tissues. Bioessays 2008; 30:457-69. [DOI: 10.1002/bies.20748] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
9
|
Vihtelic TS. Teleost lens development and degeneration. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2008; 269:341-73. [PMID: 18779061 DOI: 10.1016/s1937-6448(08)01006-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The transparent properties of the lens and its ability to focus light onto the retina are critical for normal vision. Optical clarity of the lens is achieved and maintained by a unique, highly regulated integration of lens cell proliferation and differentiation that persists throughout life. Zebrafish is a powerful genetic model for studying vertebrate lens differentiation and growth because the structural organization of the lens and gene functions are largely conserved with mammals, including humans. However, some features of zebrafish lens developmental morphology and gene expression are different from those of mammals and other terrestrial vertebrates. For example, the presumptive zebrafish lens delaminates from the surface ectoderm to form a solid mass of cells, in which the primary fibers differentiate by elongating in circular fashion. Both mutational and candidate gene analyses have identified and characterized developmental gene functions of the lens in zebrafish. This chapter presents the recent morphological analysis of zebrafish lens formation. In addition, the roles of Pitx3, Foxe3, and the lens-specific protein Lengsin (LENS Glutamine SYNthetase-like) in lens development are analyzed. Selected zebrafish lens mutants defective in early developmental processes and the maintenance of lens transparency are also discussed.
Collapse
Affiliation(s)
- Thomas S Vihtelic
- Department of Biological Sciences and Center for Zebrafish Research, Galvin Life Sciences Center, University of Notre Dame, Notre Dame, Indiana 46556, USA
| |
Collapse
|
10
|
Nicholas A. K, Jacques P. B. Immune‐Mediated Diseases Involving Basement Membranes. CURRENT TOPICS IN MEMBRANES 2005. [DOI: 10.1016/s1063-5823(05)56011-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
11
|
Abstract
Perlecan is a major heparan sulfate proteoglycan (HSPG) of basement membranes (BMs) and connective tissues. The core protein of perlecan is divided into five domains based on sequence homology to other known proteins. Commonly, the N-terminal domain I of mammalian perlecan is substituted with three HS chains that can bind a number of matrix molecules, cytokines, and growth factors. Perlecan is essential for metazoan life, as shown by genetic manipulations of nematodes, insects, and mice. There are also known human mutations that can be lethal. In vertebrates, new functions of perlecan emerged with the acquisition of a closed vascular system and skeletal connective tissues. Many of perlecan's functions may be related to the binding and presentation of growth factors to high-affinity tyrosine kinase (TK) receptors. Data are accumulating, as discussed here, that similar growth factor-mediated processes may have unwanted promoting effects on tumor cell proliferation and tumor angiogenesis. Understanding of these attributes at the molecular level may offer opportunities for therapeutic intervention.
Collapse
Affiliation(s)
- Xinnong Jiang
- Department of Cell Biology, University of Alabama at Birmingham, Birmingham, Alabama, and Division of Biomedical Sciences, Faculty of Medicine, Imperial College of Science, Technology and Medicine, London, United Kingdom
| | - John R. Couchman
- Department of Cell Biology, University of Alabama at Birmingham, Birmingham, Alabama, and Division of Biomedical Sciences, Faculty of Medicine, Imperial College of Science, Technology and Medicine, London, United Kingdom
- Correspondence to: Dr. John R. Couchman, Div. of Biomedical Sciences, Sir Alexander Fleming Building, Imperial College of Science, Technology and Medicine, Exhibition Road, South Kensington, London SW7 2AZ, UK. E-mail:
| |
Collapse
|
12
|
Conde-Knape K. Heparan sulfate proteoglycans in experimental models of diabetes: a role for perlecan in diabetes complications. Diabetes Metab Res Rev 2001; 17:412-21. [PMID: 11757076 DOI: 10.1002/dmrr.236] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Proteoglycans are ubiquitous extracellular proteins that serve a variety of functions throughout the organism. Unlike other glycoproteins, proteoglycans are classified based on the structure of the glycosaminoglycan carbohydrate chains, not the core proteins. Perlecan, a member of the heparan sulfate proteoglycan (HSPG) family, has been implicated in many complications of diabetes. Decreased levels of perlecan have been observed in the kidney and in other organs, both in patients with diabetes and in animal models. Perlecan has an important role in the maintenance of the glomerular filtration barrier. Decreased perlecan in the glomerular basement membrane has a central role in the development of diabetic albuminuria. The involvement of this proteoglycan in diabetic complications and the possible mechanisms underlying such a role have been addressed using a variety of models. Due to the importance of nephropathy among diabetic patients most of the studies conducted so far relate to diabetes effects on perlecan in different types of kidney cells. The various diabetic models used have provided information on some of the mechanisms underlying perlecan's role in diabetes as well as on possible factors affecting its regulation. However, many other aspects of perlecan metabolism still await full elucidation. The present review provides a description of the models that have been used to study HSPG and in particular perlecan metabolism in diabetes and some of the factors that have been found to be important in the regulation of perlecan.
Collapse
Affiliation(s)
- K Conde-Knape
- Department of Medicine, Division of Preventive Medicine, Columbia University, 630 W 168th St, New York, NY 10032, USA.
| |
Collapse
|
13
|
Winkler J, Wirbelauer C, Frank V, Laqua H. Quantitative distribution of glycosaminoglycans in young and senile (cataractous) anterior lens capsules. Exp Eye Res 2001; 72:311-8. [PMID: 11180980 DOI: 10.1006/exer.2000.0952] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The ocular lens is surrounded by the lens capsule, which is an elastic and unusually thick basal membrane. Anionic sites are thought to be responsible for charge-selective permeability barriers in basal membranes. We have used cationic colloidal gold as a tracer for anionic binding sites to investigate the distribution of glycosaminoglycans in young and senile (cataractous) lens capsules. Using electron microscopy, combined with the cationic colloidal gold post-embedding technique, glycosaminoglycans were localized distinctively in a continuous layer immediately apposed to the lens epithelium, which has been referred to as the lamina lucida. The amount of gold particles decreased from the internal (lenticular) side of the capsule, toward the center, followed by an increase of label intensity toward the external (humoral) side. The humoral surface is characterized by a highly anionic layer measuring 1.5--4 micro m. Immunofluorescence microscopy localized three main types of glycosaminoglycans (heparan-, chondroitin- and dermatan sulfate) within this distinctive layer. Quantitative electron microscopy demonstrated reduced amounts of glycosaminoglycans at the lenticular and humoral side of senile (cataractous) lens capsules. The distinctive spatial distribution of glycosaminoglycans in human lens capsules is discussed in terms of age-related structural and functional changes.
Collapse
Affiliation(s)
- J Winkler
- Department of Experimental Ophthalmology, Medical University of Lübeck, Lübeck, Germany.
| | | | | | | |
Collapse
|
14
|
Kawashima Y, Saika S, Miyamoto T, Yamanaka O, Okada Y, Tanaka S, Ohnishi Y. Matrix metalloproteinases and tissue inhibitors of metalloproteinases of fibrous humans lens capsules with intraocular lenses. Curr Eye Res 2000; 21:962-7. [PMID: 11262620 DOI: 10.1076/ceyr.21.6.962.6989] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
PURPOSE We located immunohistochemically the matrix metalloproteinases (MMP) -1, -2, -3 and -9 and the tissue inhibitors of matrix metalloproteinases (TIMP) -1 and -2 in the fibrous capsule of patients with intraocular lenses (IOLs). METHODS During vitreoretinal surgery in 10 patients we obtained post-cataract surgery lens capsules with or without an IOL. The mean interval between the previous cataract operation and the extraction of the specimens was 35.2 months (range: 2-120 months). Circular sections of the anterior capsule with lens epithelial cells (LECs) were also obtained during cataract surgery. Specimens were processed for immunohistochemical identification of MMPs and TIMPs by light microscopy. RESULTS While all the members of MMPs and TIMPs were not detected in the normal anterior capsules, they were detected in the ECM and/or LECs on the lens capsules extracted within 18 months after IOL implantations in all of the 4 patients, but were not observed in specimens obtained 18 months or longer postoperatively. In LECs of 1 capsule specimen 10 years postoperatively, MMP-1, but not other MMPs and TIMPs, was detected. CONCLUSIONS MMPs and TIMPs were detected in the ECM and/or LECs on post-cataract surgery capsules. These proteins may be remodeling the newly deposited ECM and regulating LEC behavior on residual lens capsules in the early phase of healing after cataract surgery.
Collapse
Affiliation(s)
- Y Kawashima
- Department of Ophthalmology, Wakayama Medical College, Wakayama, Japan
| | | | | | | | | | | | | |
Collapse
|
15
|
Bretton RH, Swearingen A, Kash RL, Cooley R. Use of a polylysine-saporin conjugate to prevent posterior capsule opacification. J Cataract Refract Surg 1999; 25:921-9. [PMID: 10404366 DOI: 10.1016/s0886-3350(99)00076-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
PURPOSE To determine the feasibility of applying a polylysine-saporin (PLS) conjugate to the lens capsule at surgery to prevent lens epithelial cell (LEC) proliferation and posterior capsule opacification (PCO). SETTING Department of Research & Development, Bausch & Lomb Surgical, and Department of Ophthalmology, Saint Louis University, St. Louis, Missouri, USA. METHODS Fluorescein-labeled polylysine was applied to the lens capsule of rabbits after phacoemulsification and analyzed histologically to determine the extent of binding to the lens capsule and surrounding tissues. The cytotoxin saporin was conjugated to polylysine using bifunctional cross-linkers. This PLS conjugate was applied to LECs in culture and to the lens capsules of rabbits. These eyes were monitored for PCO. RESULTS Polylysine primarily bound to the lens capsule membranes, with little or no binding to surrounding tissues. When PLS was added to LECs in culture, it was internalized and destroyed the cells. Of 9 rabbit eyes treated with PLS during surgery, 1 remained free of PCO for the life of the animal (40 weeks), while 6 showed a delay of cortical regrowth approximately 2 to 3 times that of control eyes. CONCLUSIONS Polylysine bound selectively to the lens capsule membrane. The PLS conjugation resulted in a toxic agent that targeted the lens capsule and destroyed proliferating LECs. The application of a PLS conjugate during surgery may prevent PCO.
Collapse
Affiliation(s)
- R H Bretton
- Bausch & Lomb Surgical, St. Louis, MO 63122, USA
| | | | | | | |
Collapse
|
16
|
Chamberlain CG, McAvoy JW. Fibre differentiation and polarity in the mammalian lens: a key role for FGF. Prog Retin Eye Res 1997. [DOI: 10.1016/s1350-9462(96)00034-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
17
|
Denk PO, Breipohl W, Naib-Majani W, Knorr M. Regional glycoprotein expression in the chicken lens. Curr Eye Res 1997; 16:527-33. [PMID: 9192160 DOI: 10.1076/ceyr.16.6.527.5083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
PURPOSE Several previous studies have shown that glycoconjugates of extracellular matrix, cell membrane and nucleus play an important role in the mediation of cell proliferation, migration and differentiation. Lens epithelial cells and lens fiber cells show regional differences with regard to these parameters. If glycoconjugates participate in the regulation of these patterns in the lens, there should be regional differences in the expression of glycoconjugates. The investigation was focused on the anterior pole, equator and nuclear bow regions, which differ extensively in lens cell proliferation and differentiation. METHODS To check this hypothesis, the regional binding pattern of twelve different FITC-conjugated lectins was studied glycohistochemically, using paraffin embedded material. The investigation was focused on the anterior pole, equator and nuclear bow regions. RESULTS Regional differences in lectin binding patterns were identified in the lens capsule, epithelium and the nuclear bow regions. The lens capsule was fluorescently labeled with GS-I, UEA-I, LPA, MAA, SNA only at the anterior pole and with CON-A, WGA, DBA, SBA only at the equator. Staining of the entire anterior surface of the lens capsule was observed with LFA. Cell membranes of the lens epithelium showed binding of MAA and LFA only at the equator. LFA, LPA, MAA and SNA only stained the nuclei of fiber cells at the nuclear bow region but not of lens epithelial cells. WGA strongly labeled the nuclei of equatorial epithelial cells and fiber cells at the bow region. CONCLUSIONS It is assumed that the observed regional variations in glycoprotein expression in the extracellular matrix and lens cells contribute to the regulation of cell behavior in different areas of the lens.
Collapse
Affiliation(s)
- P O Denk
- Department of Ophthalmology, University of Tübingen, Germany
| | | | | | | |
Collapse
|
18
|
Schulz MW, Chamberlain CG, McAvoy JW. Binding of FGF-1 and FGF-2 to heparan sulphate proteoglycans of the mammalian lens capsule. Growth Factors 1997; 14:1-13. [PMID: 9086324 DOI: 10.3109/08977199709021506] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In the mammalian eye, FGF plays a key role in the induction of lens fibre differentiation and, in other systems, heparan sulphate proteoglycans (HSPGs) have been shown to modulate FGF activity. HSPGs were isolated from the anterior and posterior rat and bovine lens capsule and assessed in terms of their ability to bind FGF-1 and FGF-2. In the rat, at least four HSPGs were identified with molecular weights of 142, 166, 200 and approximately 250 kD, the latter species predominating. The capsule HSPGs bound both FGF-1 and FGF-2. There appeared to be little, if any, competition for binding between FGF-1 and FGF-2. The capsule contained substantial amounts of core protein, which did not bind FGF, with a higher core protein/HSPG ratio in the anterior than in the posterior capsule. This was the only major HSPG-related difference noted between anterior and posterior capsule.
Collapse
Affiliation(s)
- M W Schulz
- Department of Anatomy and Histology, University of Sydney, NSW, Australia
| | | | | |
Collapse
|
19
|
Abstract
Purification of a protein typically involves development of a quantitative assay to track protein integrity (e.g. enzyme activity) during subsequent isolation steps. The generalized procedure involves choosing the source of the protein, defining extraction conditions, developing bulk purification methods followed by refined, more selective methods. The purification of proteoglycans is often complicated by a) limited source quantities, b) necessity of chaotrophic solvents for efficient extraction, c) their large molecular size and d) lack of defined functions to enable purity (i.e. activity, conformation) to be assessed. Because the usual goal of proteoglycan purification is physical characterization (intact molecular weight, core protein and glycosaminoglycan class and size), the problems of a suitable assay and/or native conformation are avoided. The 'assay' for tracking proteoglycan isolation typically utilizes uronic acid content or radiolabel incorporation as a marker. Once extracted from their cellular/extracellular environment, proteoglycans can be isolated by density gradient centrifugation and/or column chromatography techniques. Recent advances in the composition of chromatographic supports have enabled the application of ion-exchange, gel permeation, hydrophobic interaction and affinity chromatography resins using efficient high-pressure liquid chromatography to proteoglycan purification.
Collapse
Affiliation(s)
- N S Fedarko
- Bone Research Branch, National Institute of Dental Reearch, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
20
|
Abstract
Proteoglycans carrying either heparan sulfate and/or chondroitin sulfate side chains are typical constituents of basement membranes. The most prominent proteoglycan (perlecan) consists of a 400-500 kDa core protein and three heparan sulfate chains. Electron microscopy and cDNA sequencing show a complex and elongated domain structure for the core protein which in part is homologous to that of the laminin A chain. This structure may be varied by alternative splicing and proteolysis. Integration into basement membranes probably occurs by heparan sulfate binding to laminin and collagen IV, core protein binding to nidogen and by limited self assembly. The proteoglycan is in addition a cell-adhesive protein which is recognized by beta 1 integrins. Several more proteoglycans with smaller core proteins (10-160 kDa) apparently exist in basement membranes but are less well characterized. Biological functions include control of filtration through basement membranes and binding of growth factors and protease inhibitors.
Collapse
Affiliation(s)
- R Timpl
- Max-Planck-Institut für Biochemie, Martinsried, Germany
| |
Collapse
|
21
|
Buée L, Ding W, Anderson JP, Narindrasorasak S, Kisilevsky R, Boyle NJ, Robakis NK, Delacourte A, Greenberg B, Fillit HM. Binding of vascular heparan sulfate proteoglycan to Alzheimer's amyloid precursor protein is mediated in part by the N-terminal region of A4 peptide. Brain Res 1993; 627:199-204. [PMID: 8298962 DOI: 10.1016/0006-8993(93)90321-d] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The exact mechanisms of deposition and accumulation of amyloid in senile plaques and in blood vessels in Alzheimer's disease remain unknown. Heparan sulfate proteoglycans may play an important role in amyloid deposition in Alzheimer's disease. Previous investigations have demonstrated high affinity binding between heparan sulfate proteoglycans and the amyloid precursor, as well as with the A4 peptide. In the current studies, a specific vascular heparan sulfate proteoglycan found in senile plaques bound with high affinity to two amyloid protein precursors (APP695 and APP770). Vascular heparan sulfate proteoglycan also bound the Alzheimer's amyloid A4 peptide, and not other amyloid protein precursor regions studied, with high affinity. Both heparan sulfate glycosaminoglycan chains and chemically deglycosylated vascular heparan sulfate proteoglycan protein core bound to A4. High affinity interactions between vascular heparan sulfate proteoglycan and the A4 peptide may play a role in the process of amyloidogenesis in Alzheimer's disease, by localizing the site of deposition of A4, protecting A4 from further proteolysis, or by promoting aggregation and fibril formation.
Collapse
Affiliation(s)
- L Buée
- Department of Geriatrics and Adult Development, Mount Sinai Medical Center, New York, NY 10029-6574
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
Purification of a protein typically involves development of a quantitative assay to track protein integrity (e.g. enzyme activity) during subsequent isolation steps. The generalized procedure involves choosing the source of the protein, defining extraction conditions, developing bulk purification methods followed by refined, more selective methods. The purification of proteoglycans is often complicated by a) limited source quantities, b) necessity of chaotropic solvents for efficient extraction, c) their large molecular size and d) lack of defined functions to enable purity (i.e. activity, conformation) to be assessed. Because the usual goal of proteoglycan purification is physical characterization (intact molecular weight, core protein and glycosaminoglycan class and size), the problems of a suitable assay and/or native conformation are avoided. The 'assay' for tracking proteoglycan isolation typically utilizes uronic acid content or radiolabel incorporation as a marker. Once extracted from their cellular/extracellular environment, proteoglycans can be isolated by density gradient centrifugation and/or column chromatography techniques. Recent advances in the composition of chromatographic supports have enabled the application of ion-exchange, gel permeation, hydrophobic interaction and affinity chromatography resins using efficient high-pressure liquid chromatography to proteoglycan purification.
Collapse
Affiliation(s)
- N S Fedarko
- Bone Research Branch, National Institute of Dental Research, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
23
|
Abstract
Proteoglycans carrying either heparan sulfate and/or chondroitin sulfate side chains are typical constituents of basement membranes. The most prominent proteoglycan (perlecan) consists of a 400-500 kDa core protein and three heparan sulfate chains. Electron microscopy and cDNA sequencing show a complex and elongated domain structure for the core protein which in part is homologous to that of the laminin A chain. This structure may be varied by alternative splicing and proteolysis. Integration into basement membranes probably occurs by heparan sulfate binding to laminin and collagen IV, core protein binding to nidogen and by limited self assembly. The proteoglycan is in addition a cell-adhesive protein which is recognized by beta 1 integrins. Several more proteoglycans with smaller core proteins (10-160 kDa) apparently exist in basement membranes but are less well characterized. Biological functions include control of filtration through basement membranes and binding of growth factors and protease inhibitors.
Collapse
Affiliation(s)
- R Timpl
- Max-Planck-Institut für Biochemie, Martinsried, Germany
| |
Collapse
|
24
|
Schulz MW, Chamberlain CG, de Iongh RU, McAvoy JW. Acidic and basic FGF in ocular media and lens: implications for lens polarity and growth patterns. Development 1993; 118:117-26. [PMID: 7690700 DOI: 10.1242/dev.118.1.117] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have shown previously that FGF induces lens epithelial cells in explant culture to proliferate, migrate and differentiate into fibre cells in a progressive concentration-dependent manner. In situ, these processes occur in a distinct anterior-posterior pattern in clearly defined regions of the lens. Thus anterior-posterior differences in the bio-availability of FGF in the lens environment may play a role in determining lens polarity and growth patterns. In this study, using heparin chromatography and western blotting (or ELISA), we established that both acidic and basic FGF are present in the aqueous and vitreous (the ocular media that bathe the anterior and posterior compartments of the lens, respectively). In addition, substantially more FGF was recovered from vitreous than from aqueous. Both forms of FGF were also detected in lens fibre cells and capsule. A truncated form of basic FGF (less than 20 × 10(3) M(r)) predominated in every case with traces of higher M(r) forms in lens cells. For acidic FGF, the classical full-length form (about 20 × 10(3) M(r)) predominated in lens cells and a truncated form was found in vitreous. The capsule contained a higher M(r) form. Using our explant system, we also tested the biological activity of ocular media and FGF fractions obtained from vitreous and lens cells. Vitreous but not aqueous contained fibre-differentiating activity. Furthermore, virtually all the fibre-differentiating activity of vitreous was shown to be FGF-associated, as follows: (a) this activity remained associated with FGF during fractionation of vitreous by heparin and Mono-S chromatography and (b) the activity of the major FGF-containing fraction was blocked by antibodies to acidic and basic FGF. Posterior, but not anterior, capsule was shown to have mitogenic activity, which was neutralised by FGF antibodies and associated only with the cellular surface. These results support our hypothesis that FGF is involved in determining the behaviour of lens cells in situ. In particular, a key role for FGF in determining lens polarity and growth patterns is suggested by the anterior-posterior differences in the bio-availability of FGF in the ocular media and capsule.
Collapse
Affiliation(s)
- M W Schulz
- Department of Anatomy and Histology, University of Sydney, NSW Australia
| | | | | | | |
Collapse
|
25
|
Immunochemical and biochemical evidence for distinct basement membrane heparan sulfate proteoglycans. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)53171-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
26
|
Murdoch A, Dodge G, Cohen I, Tuan R, Iozzo R. Primary structure of the human heparan sulfate proteoglycan from basement membrane (HSPG2/perlecan). A chimeric molecule with multiple domains homologous to the low density lipoprotein receptor, laminin, neural cell adhesion molecules, and epidermal growth factor. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)42478-7] [Citation(s) in RCA: 129] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|