1
|
Jiménez-Berríos GA, Vázquez-Folch SJ, Izquierdo N. Uncovering an Unusual FBN1 Gene Mutation Responsible for Marfan Syndrome: A Case Study. Cureus 2024; 16:e59452. [PMID: 38826987 PMCID: PMC11141320 DOI: 10.7759/cureus.59452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2024] [Indexed: 06/04/2024] Open
Abstract
Patients with Marfan syndrome have a constellation of clinical features and a heterogeneous phenotype. The purpose of this study is to report a 47-year-old male patient with an unusual variant in the FBN1 gene causing Marfan syndrome. The patient with musculoskeletal, cardiovascular, and ocular findings compatible with Marfan syndrome had an unusual pathogenic mutation on the FBN1 gene. The patient was examined by at least one of the authors (NJI). The patient's clinical findings were compatible with Marfan syndrome. Our patient had a unique mutation in the FBN1 gene (c.8054A>G p.His2685Arg) located on exon 65. Next-generation sequencing was done using the Invitae panel. This variant was categorized as one of uncertain significance. This patient's variant on the FBN1 gene leading to the syndrome has scant data associated with it and this is the first time it is reported from Puerto Rico.
Collapse
Affiliation(s)
| | | | - Natalio Izquierdo
- Department of Surgery, School of Medicine, Medical Sciences Campus, University of Puerto Rico, San Juan, PRI
| |
Collapse
|
2
|
Loureiro B, Ereno RL, Pupulim AGR, Tramontana MCVB, Tabosa HP, Barros CM, Favoreto MG. Genome-wide association study of Nelore and Angus heifers with low and high ovarian follicle counts. Anim Reprod 2024; 21:e20230110. [PMID: 38384724 PMCID: PMC10878542 DOI: 10.1590/1984-3143-ar2023-0110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 12/06/2023] [Indexed: 02/23/2024] Open
Abstract
The number of antral follicles is considered an important fertility trait because animals with a high follicle count (HFC) produce more oocytes and embryos per cycle. Identification of these animals by genetic markers such as single nucleotide polymorphisms (SNPs) can accelerate selection of future generations. The aim of this study was to perform a genome wide association study (GWAS) on Nelore and Angus heifers with HFC and low (LFC) antral follicle counts. The groups HFC and LFC for genotyping were formed based on the average of total follicles (≥ 3 mm) counted in each breed consistently ± standard deviation. A total of 72 Nelore heifers (32 HFC and 40 LFC) and 48 Angus heifers (21 HFC and 27 LFC) were selected and the DNA was extracted from blood and hair bulb. Genotyping was done using the Illumina Bovine HD 770K BeadChip. The GWAS analysis showed 181 and 201 SNPs with genotype/phenotype association (P ≤ 0.01) in Nelore and Angus heifers, respectively. Functional enrichment analysis was performed on candidate genes that were associated with SNPs. A total of 97 genes were associated to the 181 SNPs in the Nelore heifers and the functional analysis identified genes (ROBO1 and SLIT3) in the ROBO-SLIT pathway that can be involved in the control of germ cell migration in the ovary as it is involved in lutheal cell migration and fetal ovary development. In the Angus heifers, 57 genes were associated with the 201 SNPs, highlighting Fribilin 1 (FBN1) gene, involved in regulation of growth factors directly involved in follicle activation and development. In summary, GWAS for Nelore and Angus heifers showed SNPs associated with higher follicle count phenotype. Furthermore, these findings offer valuable insights for the further investigation of potential mechanism involved in follicle formation and development, important for breeding programs for both breeds.
Collapse
Affiliation(s)
- Bárbara Loureiro
- Laboratório de Fisiologia da Reprodução Animal, Universidade Vila Velha - UVV, Vila Velha, ES, Brasil
| | - Ronaldo Luiz Ereno
- Departamento de Farmacologia, Instituto de Biociências, Universidade Estadual Paulista - UNESP, Botucatu, SP, Brasil
| | | | | | - Henrique Passos Tabosa
- Laboratório de Fisiologia da Reprodução Animal, Universidade Vila Velha - UVV, Vila Velha, ES, Brasil
| | - Ciro Moraes Barros
- Departamento de Farmacologia, Instituto de Biociências, Universidade Estadual Paulista - UNESP, Botucatu, SP, Brasil
| | - Maurício Gomes Favoreto
- Laboratório de Fisiologia da Reprodução Animal, Universidade Vila Velha - UVV, Vila Velha, ES, Brasil
- Departamento de Farmacologia, Instituto de Biociências, Universidade Estadual Paulista - UNESP, Botucatu, SP, Brasil
| |
Collapse
|
3
|
Piscopo A, Warner T, Nagy J, Nagrale V, Stence A, Guseva N, Bernat JA, Calhoun A. A novel de novo intragenic duplication in FBN1 associated with early-onset Marfan syndrome in a 16-month-old: A case report and review of the literature. Am J Med Genet A 2024; 194:368-373. [PMID: 37840436 DOI: 10.1002/ajmg.a.63440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 09/20/2023] [Accepted: 09/27/2023] [Indexed: 10/17/2023]
Abstract
Marfan syndrome (MFS) is an autosomal dominant connective tissue disorder due to pathogenic variants in Fibrillin-1 (FBN1) affecting nearly one in every 10,000 individuals. We report a 16-month-old female with early-onset MFS heterozygous for an 11.2 kb de novo duplication within the FBN1 gene. Tandem location of the duplication was further confirmed by optical genome mapping in addition to genetic sequencing and chromosomal microarray. This is the third reported case of a large multi-exon duplication in FBN1, and the only one confirmed to be in tandem. As the vast majority of pathogenic variants associated with MFS are point mutations, this expands the landscape of known FBN1 pathogenic variants and supports consistent use of genetic testing strategies that can detect large, indel-type variants.
Collapse
Affiliation(s)
- Anthony Piscopo
- University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Taylor Warner
- Stead Family Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Jaime Nagy
- Stead Family Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Vidya Nagrale
- Department of Pathology, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - Aaron Stence
- Department of Pathology, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - Natalya Guseva
- Department of Pathology, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - John A Bernat
- Stead Family Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Amy Calhoun
- Stead Family Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| |
Collapse
|
4
|
Zhao LM, Da LC, Wang R, Wang L, Jiang YL, Zhang XZ, Li YX, Lei XX, Song YT, Zou CY, Huang LP, Zhang WQ, Zhang QY, Li QJ, Nie R, Zhang Y, Liang Y, Li-Ling J, Xie HQ. Promotion of uterine reconstruction by a tissue-engineered uterus with biomimetic structure and extracellular matrix microenvironment. SCIENCE ADVANCES 2023; 9:eadi6488. [PMID: 37967178 PMCID: PMC10651121 DOI: 10.1126/sciadv.adi6488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 10/13/2023] [Indexed: 11/17/2023]
Abstract
The recurrence rate for severe intrauterine adhesions is as high as 60%, and there is still lack of effective prevention and treatment. Inspired by the nature of uterus, we have developed a bilayer scaffold (ECM-SPS) with biomimetic heterogeneous features and extracellular matrix (ECM) microenvironment of the uterus. As proved by subtotal uterine reconstruction experiments, the mechanical and antiadhesion properties of the bilayer scaffold could meet the requirement for uterine repair. With the modification with tissue-specific cell-derived ECM, the ECM-SPS had the ECM microenvironment signatures of both the endometrium and myometrium and exhibited the property of inducing stem cell-directed differentiation. Furthermore, the ECM-SPS has recruited more endogenous stem cells to promote endometrial regeneration at the initial stage of repair, which was accompanied by more smooth muscle regeneration and a higher pregnancy rate. The reconstructed uterus could also sustain normal pregnancy and live birth. The ECM-SPS may thereby provide a potential treatment for women with severe intrauterine adhesions.
Collapse
Affiliation(s)
- Long-mei Zhao
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Frontier Medical Center, Tianfu Jincheng Laboratory, Chengdu, Sichuan 610212, China
| | - Lin-cui Da
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Reproductive Center of Fujian Maternity and Child Health Care Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian 350001, China
| | - Rui Wang
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Long Wang
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yan-lin Jiang
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xiu-zhen Zhang
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Ya-xing Li
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xiong-xin Lei
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yu-ting Song
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Chen-yu Zou
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Li-ping Huang
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Wen-qian Zhang
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Qing-yi Zhang
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Qian-jin Li
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Rong Nie
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yi Zhang
- Research Core Facility of West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yan Liang
- Research Core Facility of West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jesse Li-Ling
- Center of Medical Genetics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Hui-qi Xie
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Frontier Medical Center, Tianfu Jincheng Laboratory, Chengdu, Sichuan 610212, China
| |
Collapse
|
5
|
Martins AD, Ribeiro JC, Ferreira R, Alves MG, Oliveira PF. Understanding the age-related alterations in the testis-specific proteome. Expert Rev Proteomics 2023; 20:331-343. [PMID: 37878493 DOI: 10.1080/14789450.2023.2274857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 10/12/2023] [Indexed: 10/27/2023]
Abstract
INTRODUCTION Fertility rates in developing countries have declined over the past decades, and the trend of delayed fatherhood is rising as societies develop. The reasons behind the decline in male fertility with advancing age remain mysterious, making it a compelling and crucial area for further research. However, the limited number of studies dedicated to unraveling this enigma poses a challenge. Thus, our objective is to illuminate some of the upregulated and downregulated mechanisms in the male testis during the aging process. AREAS COVERED Herein, we present a critical overview of the studies addressing the alterations of testicular proteome through the aging process, starting from sexually matured young males to end-of-life-expectancy aged males. The comparative studies of the proteomic testicular profile of men with and without spermatogenic impairment are also discussed and key proteins and pathways involved are highlighted. EXPERT OPINION The difficulty of making age-comparative studies, especially of advanced-age study subjects, makes this topic of study quite challenging. Another topic worth mentioning is the heterogeneous nature and vast cellular composition of testicular tissue, which makes proteome data interpretation tricky. The cell type sorting and comorbidities testing in the testicular tissue of the studied subjects would help mitigate these problems.
Collapse
Affiliation(s)
- Ana D Martins
- LAQV-REQUIMTE and Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - João C Ribeiro
- LAQV-REQUIMTE and Department of Chemistry, University of Aveiro, Aveiro, Portugal
- Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), University of Porto, Porto, Portugal
| | - Rita Ferreira
- LAQV-REQUIMTE and Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Marco G Alves
- iBiMED-Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Pedro F Oliveira
- LAQV-REQUIMTE and Department of Chemistry, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
6
|
Summers KM, Bush SJ, Davis MR, Hume DA, Keshvari S, West JA. Fibrillin-1 and asprosin, novel players in metabolic syndrome. Mol Genet Metab 2023; 138:106979. [PMID: 36630758 DOI: 10.1016/j.ymgme.2022.106979] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Fibrillin-1 is a major component of the extracellular microfibrils, where it interacts with other extracellular matrix proteins to provide elasticity to connective tissues, and regulates the bioavailability of TGFβ family members. A peptide consisting of the C-terminal 140 amino acids of fibrillin-1 has recently been identified as a glucogenic hormone, secreted from adipose tissue during fasting and targeting the liver to release glucose. This fragment, called asprosin, also signals in the hypothalamus to stimulate appetite. Asprosin levels are correlated with many of the pathologies indicative of metabolic syndrome, including insulin resistance and obesity. Previous studies and reviews have addressed the therapeutic potential of asprosin as a target in obesity, diabetes and related conditions without considering mechanisms underlying the relationship between generation of asprosin and expression of the much larger fibrillin-1 protein. Profibrillin-1 undergoes obligatory cleavage at the cell surface as part of its assembly into microfibrils, producing the asprosin peptide as well as mature fibrillin-1. Patterns of FBN1 mRNA expression are inconsistent with the necessity for regulated release of asprosin. The asprosin peptide may be protected from degradation in adipose tissue. We present evidence for an alternative possibility, that asprosin mRNA is generated independently from an internal promoter within the 3' end of the FBN1 gene, which would allow for regulation independent of fibrillin-synthesis and is more economical of cellular resources. The discovery of asprosin opened exciting possibilities for treatment of metabolic syndrome related conditions, but there is much to be understood before such therapies could be introduced into the clinic.
Collapse
Affiliation(s)
- Kim M Summers
- Mater Research Institute-University of Queensland, Translational Research Institute, 37 Kent St, Woolloongabba, Queensland 4102, Australia.
| | - Stephen J Bush
- Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headley Way, Oxford OX3 9DS, United Kingdom.
| | - Margaret R Davis
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, United Kingdom
| | - David A Hume
- Mater Research Institute-University of Queensland, Translational Research Institute, 37 Kent St, Woolloongabba, Queensland 4102, Australia.
| | - Sahar Keshvari
- Mater Research Institute-University of Queensland, Translational Research Institute, 37 Kent St, Woolloongabba, Queensland 4102, Australia.
| | - Jennifer A West
- Faculty of Medicine, The University of Queensland, Mayne Medical Building, 288 Herston Road, Herston, Queensland 4006, Australia.
| |
Collapse
|
7
|
Boraldi F, Lofaro FD, Cossarizza A, Quaglino D. The "Elastic Perspective" of SARS-CoV-2 Infection and the Role of Intrinsic and Extrinsic Factors. Int J Mol Sci 2022; 23:ijms23031559. [PMID: 35163482 PMCID: PMC8835950 DOI: 10.3390/ijms23031559] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/20/2022] [Accepted: 01/28/2022] [Indexed: 02/07/2023] Open
Abstract
Elastin represents the structural component of the extracellular matrix providing elastic recoil to tissues such as skin, blood vessels and lungs. Elastogenic cells secrete soluble tropoelastin monomers into the extracellular space where these monomers associate with other matrix proteins (e.g., microfibrils and glycoproteins) and are crosslinked by lysyl oxidase to form insoluble fibres. Once elastic fibres are formed, they are very stable, highly resistant to degradation and have an almost negligible turnover. However, there are circumstances, mainly related to inflammatory conditions, where increased proteolytic degradation of elastic fibres may lead to consequences of major clinical relevance. In severely affected COVID-19 patients, for instance, the massive recruitment and activation of neutrophils is responsible for the profuse release of elastases and other proteolytic enzymes which cause the irreversible degradation of elastic fibres. Within the lungs, destruction of the elastic network may lead to the permanent impairment of pulmonary function, thus suggesting that elastases can be a promising target to preserve the elastic component in COVID-19 patients. Moreover, intrinsic and extrinsic factors additionally contributing to damaging the elastic component and to increasing the spread and severity of SARS-CoV-2 infection are reviewed.
Collapse
Affiliation(s)
- Federica Boraldi
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (F.B.); (F.D.L.)
| | - Francesco Demetrio Lofaro
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (F.B.); (F.D.L.)
| | - Andrea Cossarizza
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, 41125 Modena, Italy;
| | - Daniela Quaglino
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (F.B.); (F.D.L.)
- Correspondence:
| |
Collapse
|
8
|
Singh M, Becker M, Godwin AR, Baldock C. Structural studies of elastic fibre and microfibrillar proteins. Matrix Biol Plus 2021; 12:100078. [PMID: 34355160 PMCID: PMC8322146 DOI: 10.1016/j.mbplus.2021.100078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/26/2021] [Accepted: 06/28/2021] [Indexed: 11/27/2022] Open
Abstract
Elastic tissues owe their functional properties to the composition of their extracellular matrices, particularly the range of extracellular, multidomain extensible elastic fibre and microfibrillar proteins. These proteins include elastin, fibrillin, latent TGFβ binding proteins (LTBPs) and collagens, where their biophysical and biochemical properties not only give the matrix structural integrity, but also play a vital role in the mechanisms that underlie tissue homeostasis. Thus far structural information regarding the structure and hierarchical assembly of these molecules has been challenging and the resolution has been limited due to post-translational modification and their multidomain nature leading to flexibility, which together result in conformational and structural heterogeneity. In this review, we describe some of the matrix proteins found in elastic fibres and the new emerging techniques that can shed light on their structure and dynamic properties.
Collapse
Affiliation(s)
- Mukti Singh
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK
| | - Mark Becker
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK
| | - Alan R.F. Godwin
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK
| | - Clair Baldock
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK
| |
Collapse
|
9
|
Abstract
Marfan syndrome (MFS) is an autosomal dominant, age-related but highly penetrant condition with substantial intrafamilial and interfamilial variability. MFS is caused by pathogenetic variants in FBN1, which encodes fibrillin-1, a major structural component of the extracellular matrix that provides support to connective tissues, particularly in arteries, the pericondrium and structures in the eye. Up to 25% of individuals with MFS have de novo variants. The most prominent manifestations of MFS are asymptomatic aortic root aneurysms, aortic dissections, dislocation of the ocular lens (ectopia lentis) and skeletal abnormalities that are characterized by overgrowth of the long bones. MFS is diagnosed based on the Ghent II nosology; genetic testing confirming the presence of a FBN1 pathogenetic variant is not always required for diagnosis but can help distinguish MFS from other heritable thoracic aortic disease syndromes that can present with skeletal features similar to those in MFS. Untreated aortic root aneurysms can progress to life-threatening acute aortic dissections. Management of MFS requires medical therapy to slow the rate of growth of aneurysms and decrease the risk of dissection. Routine surveillance with imaging techniques such as transthoracic echocardiography, CT or MRI is necessary to monitor aneurysm growth and determine when to perform prophylactic repair surgery to prevent an acute aortic dissection.
Collapse
|
10
|
Ziegler SG, MacCarrick G, Dietz HC. Toward precision medicine in vascular connective tissue disorders. Am J Med Genet A 2021; 185:3340-3349. [PMID: 34428348 DOI: 10.1002/ajmg.a.62461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/20/2021] [Accepted: 07/23/2021] [Indexed: 11/11/2022]
Abstract
Tremendous progress has been made in understanding the etiology, pathogenesis, and treatment of inherited vascular connective tissue disorders. While new insights regarding disease etiology and pathogenesis have informed patient counseling and care, there are numerous obstacles that need to be overcome in order to achieve the full promise of precision medicine. In this review, these issues will be discussed in the context of Marfan syndrome and Loeys-Dietz syndrome, with additional emphasis on the pioneering contributions made by Victor McKusick.
Collapse
Affiliation(s)
- Shira G Ziegler
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Gretchen MacCarrick
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Harry C Dietz
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| |
Collapse
|
11
|
Zhang RM, Zeyer KA, Odenthal N, Zhang Y, Reinhardt DP. The fibrillin-1 RGD motif posttranscriptionally regulates ERK1/2 signaling and fibroblast proliferation via miR-1208. FASEB J 2021; 35:e21598. [PMID: 33871068 DOI: 10.1096/fj.202100282r] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/28/2021] [Accepted: 03/31/2021] [Indexed: 12/17/2022]
Abstract
Fibrillin-1 is an extracellular matrix protein which contains one conserved RGD integrin-binding motif. It constitutes the backbone of microfibrils in many tissues, and mutations in fibrillin-1 cause various connective tissue disorders. Although it is well established that fibrillin-1 interacts with several RGD-dependent integrins, very little is known about the associated intracellular signaling pathways. Recent published evidence identified a subset of miRNAs regulated by fibrillin-1 RGD-cell adhesion, with miR-1208 among the most downregulated. The present study shows that the downregulated miR-1208 controls fibroblast proliferation. Inhibitor experiments revealed that fibrillin-1 RGD suppressed miR-1208 expression via c-Src kinase and the downstream JNK signaling. Bioinformatic prediction and experimental target sequence validation demonstrated four miR-1208 binding sites on the ERK2 mRNA and one on the MEK1 mRNA. ERK2 and MEK1 are critical proliferation-promoting kinases. Decreased miR-1208 levels elevated the total and phosphorylated ERK1/2 and MEK1/2 protein levels and the phosphorylated to total ERK1/2 ratio. Together, the data demonstrate a novel outside-in signaling mechanism explaining how fibrillin-1 RGD-cell binding regulates fibroblast proliferation.
Collapse
Affiliation(s)
- Rong-Mo Zhang
- Faculty of Medicine and Health Sciences, Department of Anatomy and Cell Biology, McGill University, Montreal, Canada
| | - Karina A Zeyer
- Faculty of Medicine and Health Sciences, Department of Anatomy and Cell Biology, McGill University, Montreal, Canada
| | - Nadine Odenthal
- Department of Natural Science, University of Lübeck, Lübeck, Germany
| | - Yiyun Zhang
- Faculty of Medicine and Health Sciences, Department of Anatomy and Cell Biology, McGill University, Montreal, Canada
| | - Dieter P Reinhardt
- Faculty of Medicine and Health Sciences, Department of Anatomy and Cell Biology, McGill University, Montreal, Canada.,Faculty of Dentistry, McGill University, Montreal, Canada
| |
Collapse
|
12
|
Karakioulaki M, Papakonstantinou E, Stolz D. Extracellular matrix remodelling in COPD. Eur Respir Rev 2020; 29:29/158/190124. [PMID: 33208482 DOI: 10.1183/16000617.0124-2019] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 05/16/2020] [Indexed: 12/30/2022] Open
Abstract
The extracellular matrix (ECM) of the lung plays several important roles in lung function, as it offers a low resistant pathway that allows the exchange of gases, provides compressive strength and elasticity that supports the fragile alveolar-capillary intersection, controls the binding of cells with growth factors and cell surface receptors and acts as a buffer against retention of water.COPD is a chronic inflammatory respiratory condition, characterised by various conditions that result in progressive airflow limitation. At any stage in the course of the disease, acute exacerbations of COPD may occur and lead to accelerated deterioration of pulmonary function. A key factor of COPD is airway remodelling, which refers to the serious alterations of the ECM affecting airway wall thickness, resistance and elasticity. Various studies have shown that serum biomarkers of ECM turnover are significantly associated with disease severity in patients with COPD and may serve as potential targets to control airway inflammation and remodelling in COPD. Unravelling the complete molecular composition of the ECM in the diseased lungs will help to identify novel biomarkers for disease progression and therapy.
Collapse
Affiliation(s)
- Meropi Karakioulaki
- Clinic of Pulmonary Medicine and Respiratory Cell Research, University Hospital, Basel, Switzerland
| | - Eleni Papakonstantinou
- Clinic of Pulmonary Medicine and Respiratory Cell Research, University Hospital, Basel, Switzerland.,Dept of Pharmacology, Faculty of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Daiana Stolz
- Clinic of Pulmonary Medicine and Respiratory Cell Research, University Hospital, Basel, Switzerland
| |
Collapse
|
13
|
Lockhart-Cairns MP, Newandee H, Thomson J, Weiss AS, Baldock C, Tarakanova A. Transglutaminase-Mediated Cross-Linking of Tropoelastin to Fibrillin Stabilises the Elastin Precursor Prior to Elastic Fibre Assembly. J Mol Biol 2020; 432:5736-5751. [PMID: 32898582 PMCID: PMC7610145 DOI: 10.1016/j.jmb.2020.08.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 08/07/2020] [Accepted: 08/26/2020] [Indexed: 02/05/2023]
Abstract
Elastic fibres are essential components of all mammalian elastic tissues such as blood vessels, lung and skin, and are critically important for the mechanical properties they endow. The main components of elastic fibres are elastin and fibrillin, where correct formation of elastic fibres requires a fibrillin microfibril scaffold for the deposition of elastin. It has been demonstrated previously that the interaction between fibrillin and tropoelastin, the elastin precursor, increases the rate of assembly of tropoelastin. Furthermore, tropoelastin and fibrillin can be cross-linked by transglutaminase-2, but the function of cross-linking on their elastic properties is yet to be elucidated. Here we show that transglutaminase cross-linking supports formation of a 1:1 stoichiometric fibrillin-tropoelastin complex. SAXS data show that the complex retains features of the individual proteins but is elongated supporting end-to-end assembly. Elastic network models were constructed to compare the dynamics of tropoelastin and fibrillin individually as well as in the cross-linked complex. Normal mode analysis was performed to determine the structures' most energetically favourable, biologically accessible motions which show that within the complex, tropoelastin is less mobile and this molecular stabilisation extends along the length of the tropoelastin molecule to regions remote from the cross-linking site. Together, these data suggest a long-range stabilising effect of cross-linking that occurs due to the covalent linkage of fibrillin to tropoelastin. This work provides insight into the interactions of tropoelastin and fibrillin and how cross-link formation stabilises the elastin precursor so it is primed for elastic fibre assembly.
Collapse
Affiliation(s)
- Michael P Lockhart-Cairns
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK
| | - Helena Newandee
- Department of Biomedical Engineering, School of Engineering, University of Connecticut, Storrs-Mansfield, CT 06269-3139, USA
| | - Jennifer Thomson
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK
| | - Anthony S Weiss
- School of Molecular Bioscience, Bosch Institute, Charles Perkins Centre, The University of Sydney, NSW 2006, Australia
| | - Clair Baldock
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK.
| | - Anna Tarakanova
- Department of Biomedical Engineering, School of Engineering, University of Connecticut, Storrs-Mansfield, CT 06269-3139, USA; Department of Mechanical Engineering, School of Engineering, University of Connecticut, Storrs-Mansfield, CT 06269-3139, USA.
| |
Collapse
|
14
|
Adamo CS, Zuk AV, Sengle G. The fibrillin microfibril/elastic fibre network: A critical extracellular supramolecular scaffold to balance skin homoeostasis. Exp Dermatol 2020; 30:25-37. [PMID: 32920888 DOI: 10.1111/exd.14191] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 09/01/2020] [Accepted: 09/03/2020] [Indexed: 01/08/2023]
Abstract
Supramolecular networks composed of fibrillins (fibrillin-1 and fibrillin-2) and associated ligands form intricate cellular microenvironments which balance skin homoeostasis and direct remodelling. Fibrillins assemble into microfibrils which are not only indispensable for conferring elasticity to the skin, but also control the bioavailability of growth factors targeted to the extracellular matrix architecture. Fibrillin microfibrils (FMF) represent the core scaffolds for elastic fibre formation, and they also decorate the surface of elastic fibres and form independent networks. In normal dermis, elastic fibres are suspended in a three-dimensional basket-like lattice of FMF intersecting basement membranes at the dermal-epidermal junction and thus conferring pliability to the skin. The importance of FMF for skin homoeostasis is illustrated by the clinical features caused by mutations in the human fibrillin genes (FBN1, FBN2), summarized as "fibrillinopathies." In skin, fibrillin mutations result in phenotypes ranging from thick, stiff and fibrotic skin to thin, lax and hyperextensible skin. The most plausible explanation for this spectrum of phenotypic outcomes is that FMF regulate growth factor signalling essential for proper growth and homoeostasis of the skin. Here, we will give an overview about the current understanding of the underlying pathomechanisms leading to fibrillin-dependent fibrosis as well as forms of cutis laxa caused by mutational inactivation of FMF-associated ligands.
Collapse
Affiliation(s)
- Christin S Adamo
- Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany.,Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Alexandra V Zuk
- Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany
| | - Gerhard Sengle
- Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany.,Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.,Cologne Center for Musculoskeletal Biomechanics (CCMB), Cologne, Germany
| |
Collapse
|
15
|
Multimodality Imaging of Aortic Disease. CURRENT TREATMENT OPTIONS IN CARDIOVASCULAR MEDICINE 2020. [DOI: 10.1007/s11936-020-00831-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
ER-to-Golgi Transport: A Sizeable Problem. Trends Cell Biol 2019; 29:940-953. [DOI: 10.1016/j.tcb.2019.08.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/22/2019] [Accepted: 08/23/2019] [Indexed: 11/16/2022]
|
17
|
de Souza RB, Farinha-Arcieri LE, Catroxo MHB, Martins AMCRPDF, Tedesco RC, Alonso LG, Koh IHJ, Pereira LV. Association of thoracic spine deformity and cardiovascular disease in a mouse model for Marfan syndrome. PLoS One 2019; 14:e0224581. [PMID: 31725753 PMCID: PMC6855660 DOI: 10.1371/journal.pone.0224581] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 10/16/2019] [Indexed: 12/18/2022] Open
Abstract
Aims Cardiovascular manifestations are a major cause of mortality in Marfan syndrome (MFS). Animal models that mimic the syndrome and its clinical variability are instrumental for understanding the genesis and risk factors for cardiovascular disease in MFS. This study used morphological and ultrastructural analysis to the understanding of the development of cardiovascular phenotypes of the the mgΔloxPneo model for MFS. Methods and results We studied 6-month-old female mice of the 129/Sv background, 6 wild type (WT) and 24 heterozygous animals from the mgΔloxPneo model. Descending thoracic aortic aneurysm and/or dissection (dTAAD) were identified in 75% of the MFS animals, defining two subgroups: MFS with (MFS+) and without (MFS-) dTAAD. Both subgroups showed increased fragmentation of elastic fibers, predominance of type I collagen surrounding the elastic fiber and fragmentation of interlaminar fibers when compared to WT. However, only MFS animals with spine tortuosity developed aortic aneurysm/dissection. The aorta of MFS+ animals were more tortuous compared to those of MFS- and WT mice, possibly causing perturbations of the luminal blood flow. This was evidenced by the detection of diminished aorta-blood flow in MFS+. Accordingly, only MFS+ animals presented a process of concentric cardiac hypertrophy and a significantly decreased ratio of left and right ventricle lumen area. Conclusions We show that mgΔloxPneo model mimics the vascular disease observed in MFS patients. Furthermore, the study indicates role of thoracic spine deformity in the development of aorta diseases. We suggest that degradation of support structures of the aortic wall; deficiency in the sustenance of the thoracic vertebrae; and their compression over the adjacent aorta resulting in disturbed blood flow is a triad of factors involved in the genesis of dissection/aneurysm of thoracic aorta.
Collapse
Affiliation(s)
| | | | | | | | - Roberto Carlos Tedesco
- Federal University of São Paulo, Department of Morphological and Genetics, São Paulo, SP, Brazil
| | - Luis Garcia Alonso
- Federal University of São Paulo, Department of Morphological and Genetics, São Paulo, SP, Brazil
| | - Ivan Hong Jun Koh
- Federal University of São Paulo, Department of Surgery, São Paulo, SP, Brazil
| | - Lygia V. Pereira
- University of São Paulo, Department of Genetics and Evolutionary Biology, São Paulo, SP, Brazil
- * E-mail:
| |
Collapse
|
18
|
Godwin ARF, Singh M, Lockhart-Cairns MP, Alanazi YF, Cain SA, Baldock C. The role of fibrillin and microfibril binding proteins in elastin and elastic fibre assembly. Matrix Biol 2019; 84:17-30. [PMID: 31226403 PMCID: PMC6943813 DOI: 10.1016/j.matbio.2019.06.006] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 06/16/2019] [Accepted: 06/17/2019] [Indexed: 12/17/2022]
Abstract
Fibrillin is a large evolutionarily ancient extracellular glycoprotein that assembles to form beaded microfibrils which are essential components of most extracellular matrices. Fibrillin microfibrils have specific biomechanical properties to endow animal tissues with limited elasticity, a fundamental feature of the durable function of large blood vessels, skin and lungs. They also form a template for elastin deposition and provide a platform for microfibril-elastin binding proteins to interact in elastic fibre assembly. In addition to their structural role, fibrillin microfibrils mediate cell signalling via integrin and syndecan receptors, and microfibrils sequester transforming growth factor (TGF)β family growth factors within the matrix to provide a tissue store which is critical for homeostasis and remodelling.
Collapse
Affiliation(s)
- Alan R F Godwin
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK
| | - Mukti Singh
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK
| | - Michael P Lockhart-Cairns
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK
| | - Yasmene F Alanazi
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK
| | - Stuart A Cain
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK.
| | - Clair Baldock
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK.
| |
Collapse
|
19
|
Mori H, Yamada H, Toyama K, Takahashi K, Akama T, Inoue T, Nakamura T. Developmental and age-related changes to the elastic lamina of Bruch’s membrane in mice. Graefes Arch Clin Exp Ophthalmol 2018; 257:289-301. [DOI: 10.1007/s00417-018-4184-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 10/10/2018] [Accepted: 11/09/2018] [Indexed: 01/28/2023] Open
|
20
|
Wu L. The pathogenesis of thoracic aortic aneurysm from hereditary perspective. Gene 2018; 677:77-82. [DOI: 10.1016/j.gene.2018.07.047] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 07/09/2018] [Accepted: 07/16/2018] [Indexed: 01/19/2023]
|
21
|
Slaats GG, Braun F, Hoehne M, Frech LE, Blomberg L, Benzing T, Schermer B, Rinschen MM, Kurschat CE. Urine-derived cells: a promising diagnostic tool in Fabry disease patients. Sci Rep 2018; 8:11042. [PMID: 30038331 PMCID: PMC6056427 DOI: 10.1038/s41598-018-29240-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 07/04/2018] [Indexed: 12/19/2022] Open
Abstract
Fabry disease is a lysosomal storage disorder resulting from impaired alpha-galactosidase A (α-Gal A) enzyme activity due to mutations in the GLA gene. Currently, powerful diagnostic tools and in vivo research models to study Fabry disease are missing, which is a major obstacle for further improvements in diagnosis and therapy. Here, we explore the utility of urine-derived primary cells of Fabry disease patients. Viable cells were isolated and cultured from fresh urine void. The obtained cell culture, modeling the renal epithelium, is characterized by patient-specific information. We demonstrate that this non-invasive source of patient cells provides an adequate cellular in vivo model as cells exhibit decreased α-Gal A enzyme activity and concomitant globotriaosylceramide accumulation. Subsequent quantitative proteomic analyses revealed dysregulation of endosomal and lysosomal proteins indicating an involvement of the Coordinated Lysosomal Expression and Regulation (CLEAR) network in the disease pathology. This proteomic pattern resembled data from our previously described human podocyte model of Fabry disease. Taken together, the employment of urine-derived primary cells of Fabry disease patients might have diagnostic and prognostic implications in the future. Our findings pave the way towards a more detailed understanding of pathophysiological mechanisms and may allow the development of future tailored therapeutic strategies.
Collapse
Affiliation(s)
- Gisela G Slaats
- Department II of Internal Medicine Medicine and Center for Rare Diseases Cologne, University Hospital of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Fabian Braun
- Department II of Internal Medicine Medicine and Center for Rare Diseases Cologne, University Hospital of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.,III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Martin Hoehne
- Department II of Internal Medicine Medicine and Center for Rare Diseases Cologne, University Hospital of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.,Systems Biology of Aging, University of Cologne, Cologne, Germany
| | - Laura E Frech
- Department II of Internal Medicine Medicine and Center for Rare Diseases Cologne, University Hospital of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Linda Blomberg
- Department II of Internal Medicine Medicine and Center for Rare Diseases Cologne, University Hospital of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Thomas Benzing
- Department II of Internal Medicine Medicine and Center for Rare Diseases Cologne, University Hospital of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.,Systems Biology of Aging, University of Cologne, Cologne, Germany
| | - Bernhard Schermer
- Department II of Internal Medicine Medicine and Center for Rare Diseases Cologne, University Hospital of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.,Systems Biology of Aging, University of Cologne, Cologne, Germany
| | - Markus M Rinschen
- Department II of Internal Medicine Medicine and Center for Rare Diseases Cologne, University Hospital of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Christine E Kurschat
- Department II of Internal Medicine Medicine and Center for Rare Diseases Cologne, University Hospital of Cologne, Cologne, Germany. .,Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, Cologne, Germany. .,Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.
| |
Collapse
|
22
|
Abstract
Fibrillins are one of the major components of supramolecular fibrous structures in the extracellular matrix of elastic and nonelastic tissues, termed microfibrils. Microfibrils provide tensile strength in nonelastic tissues and scaffolds for the assembly of tropoelastin in elastic tissues, and act a regulator of growth factor bioavailability and activity in connective tissues. Mutations in fibrillins lead to a variety of connective tissue disorders including Marfan syndrome, stiff skin syndrome, dominant Weill-Marchesani syndrome, and others. Therefore, fibrillins are frequently studied to understand the pathophysiology of these diseases and to identify effective treatment strategies. Extraction of endogenous microfibrils from cells and tissues can aid in obtaining structural insights of microfibrils. Recombinant production of fibrillins is an important tool which can be utilized to study the properties of normal fibrillins and the consequences of disease causing mutations. Other means of studying the role of fibrillins in the context of various physiological settings is by knocking down the mRNA expression and analyzing its downstream consequences. It is also important to study the interactome of fibrillins by protein-protein interactions, which can be derailed in pathological situations. Interacting proteins can affect the assembly of fibrillins in cells and tissues or can affect the levels of growth factors in the matrix. This chapter describes important techniques in the field that facilitate answering relevant questions of fibrillin biology and pathophysiology.
Collapse
|
23
|
Kielty CM. Fell-Muir Lecture: Fibrillin microfibrils: structural tensometers of elastic tissues? Int J Exp Pathol 2017; 98:172-190. [PMID: 28905442 PMCID: PMC5639267 DOI: 10.1111/iep.12239] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 07/13/2017] [Indexed: 12/21/2022] Open
Abstract
Fibrillin microfibrils are indispensable structural elements of connective tissues in multicellular organisms from early metazoans to humans. They have an extensible periodic beaded organization, and support dynamic tissues such as ciliary zonules that suspend the lens. In tissues that express elastin, including blood vessels, skin and lungs, microfibrils support elastin deposition and shape the functional architecture of elastic fibres. The vital contribution of microfibrils to tissue form and function is underscored by the heritable fibrillinopathies, especially Marfan syndrome with severe elastic, ocular and skeletal tissue defects. Research since the early 1990s has advanced our knowledge of biology of microfibrils, yet understanding of their mechanical and homeostatic contributions to tissues remains far from complete. This review is a personal reflection on key insights, and puts forward the conceptual hypothesis that microfibrils are structural 'tensometers' that direct cells to monitor and respond to altered tissue mechanics.
Collapse
Affiliation(s)
- Cay M Kielty
- Wellcome Trust Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| |
Collapse
|
24
|
Burgstaller G, Oehrle B, Gerckens M, White ES, Schiller HB, Eickelberg O. The instructive extracellular matrix of the lung: basic composition and alterations in chronic lung disease. Eur Respir J 2017; 50:50/1/1601805. [PMID: 28679607 DOI: 10.1183/13993003.01805-2016] [Citation(s) in RCA: 295] [Impact Index Per Article: 42.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 03/29/2017] [Indexed: 12/13/2022]
Abstract
The pulmonary extracellular matrix (ECM) determines the tissue architecture of the lung, and provides mechanical stability and elastic recoil, which are essential for physiological lung function. Biochemical and biomechanical signals initiated by the ECM direct cellular function and differentiation, and thus play a decisive role in lung development, tissue remodelling processes and maintenance of adult homeostasis. Recent proteomic studies have demonstrated that at least 150 different ECM proteins, glycosaminoglycans and modifying enzymes are expressed in the lung, and these assemble into intricate composite biomaterials. These highly insoluble assemblies of interacting ECM proteins and their glycan modifications can act as a solid phase-binding interface for hundreds of secreted proteins, which creates an information-rich signalling template for cell function and differentiation. Dynamic changes within the ECM that occur upon injury or with ageing are associated with several chronic lung diseases. In this review, we summarise the available data about the structure and function of the pulmonary ECM, and highlight changes that occur in idiopathic pulmonary fibrosis (IPF), pulmonary arterial hypertension (PAH), chronic obstructive pulmonary disease (COPD), asthma and lung cancer. We discuss potential mechanisms of ECM remodelling and modification, which we believe are relevant for future diagnosis and treatment of chronic lung disease.
Collapse
Affiliation(s)
- Gerald Burgstaller
- Comprehensive Pneumology Center, University Hospital of the Ludwig-Maximilians-University Munich and Helmholtz Zentrum München, Member of the German Center for Lung Research, Munich, Germany
| | - Bettina Oehrle
- Comprehensive Pneumology Center, University Hospital of the Ludwig-Maximilians-University Munich and Helmholtz Zentrum München, Member of the German Center for Lung Research, Munich, Germany
| | - Michael Gerckens
- Comprehensive Pneumology Center, University Hospital of the Ludwig-Maximilians-University Munich and Helmholtz Zentrum München, Member of the German Center for Lung Research, Munich, Germany
| | - Eric S White
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Herbert B Schiller
- Comprehensive Pneumology Center, University Hospital of the Ludwig-Maximilians-University Munich and Helmholtz Zentrum München, Member of the German Center for Lung Research, Munich, Germany
| | - Oliver Eickelberg
- Division of Respiratory Sciences and Critical Care Medicine, University of Colorado, Denver, CO, USA
| |
Collapse
|
25
|
Tojais NF, Cao A, Lai YJ, Wang L, Chen PI, Alcazar MAA, de Jesus Perez VA, Hopper RK, Rhodes CJ, Bill MA, Sakai LY, Rabinovitch M. Codependence of Bone Morphogenetic Protein Receptor 2 and Transforming Growth Factor-β in Elastic Fiber Assembly and Its Perturbation in Pulmonary Arterial Hypertension. Arterioscler Thromb Vasc Biol 2017; 37:1559-1569. [PMID: 28619995 DOI: 10.1161/atvbaha.117.309696] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 05/26/2017] [Indexed: 02/07/2023]
Abstract
OBJECTIVE We determined in patients with pulmonary arterial (PA) hypertension (PAH) whether in addition to increased production of elastase by PA smooth muscle cells previously reported, PA elastic fibers are susceptible to degradation because of their abnormal assembly. APPROACH AND RESULTS Fibrillin-1 and elastin are the major components of elastic fibers, and fibrillin-1 binds bone morphogenetic proteins (BMPs) and the large latent complex of transforming growth factor-β1 (TGFβ1). Thus, we considered whether BMPs like TGFβ1 contribute to elastic fiber assembly and whether this process is perturbed in PAH particularly when the BMP receptor, BMPR2, is mutant. We also assessed whether in mice with Bmpr2/1a compound heterozygosity, elastic fibers are susceptible to degradation. In PA smooth muscle cells and adventitial fibroblasts, TGFβ1 increased elastin mRNA, but the elevation in elastin protein was dependent on BMPR2; TGFβ1 and BMP4, via BMPR2, increased extracellular accumulation of fibrillin-1. Both BMP4- and TGFβ1-stimulated elastic fiber assembly was impaired in idiopathic (I) PAH-PA adventitial fibroblast versus control cells, particularly those with hereditary (H) PAH and a BMPR2 mutation. This was related to profound reductions in elastin and fibrillin-1 mRNA. Elastin protein was increased in IPAH PA adventitial fibroblast by TGFβ1 but only minimally so in BMPR2 mutant cells. Fibrillin-1 protein increased only modestly in IPAH or HPAH PA adventitial fibroblasts stimulated with BMP4 or TGFβ1. In Bmpr2/1a heterozygote mice, reduced PA fibrillin-1 was associated with elastic fiber susceptibility to degradation and more severe pulmonary hypertension. CONCLUSIONS Disrupting BMPR2 impairs TGFβ1- and BMP4-mediated elastic fiber assembly and is of pathophysiologic significance in PAH.
Collapse
MESH Headings
- Animals
- Bone Morphogenetic Protein 4/pharmacology
- Bone Morphogenetic Protein Receptors, Type I/deficiency
- Bone Morphogenetic Protein Receptors, Type I/genetics
- Bone Morphogenetic Protein Receptors, Type II/deficiency
- Bone Morphogenetic Protein Receptors, Type II/genetics
- Bone Morphogenetic Protein Receptors, Type II/metabolism
- Case-Control Studies
- Cells, Cultured
- Disease Models, Animal
- Elastic Tissue/metabolism
- Elastic Tissue/pathology
- Elastic Tissue/physiopathology
- Elastin/genetics
- Elastin/metabolism
- Familial Primary Pulmonary Hypertension/genetics
- Familial Primary Pulmonary Hypertension/metabolism
- Familial Primary Pulmonary Hypertension/pathology
- Familial Primary Pulmonary Hypertension/physiopathology
- Fibrillin-1/genetics
- Fibrillin-1/metabolism
- Fibroblasts/drug effects
- Fibroblasts/metabolism
- Fibroblasts/pathology
- Genetic Predisposition to Disease
- Humans
- Hypertension, Pulmonary/genetics
- Hypertension, Pulmonary/metabolism
- Hypertension, Pulmonary/pathology
- Hypertension, Pulmonary/physiopathology
- Mice, 129 Strain
- Mice, Inbred C57BL
- Mice, Knockout
- Mutation
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Phenotype
- Pulmonary Artery/drug effects
- Pulmonary Artery/metabolism
- Pulmonary Artery/pathology
- Pulmonary Artery/physiopathology
- RNA Interference
- Transfection
- Transforming Growth Factor beta/pharmacology
- Vascular Remodeling
Collapse
Affiliation(s)
- Nancy F Tojais
- From the Department of Pediatrics (N.F.T., A.C., Y.-J.L., L.W., P.I.C., M.A.A.A., R.K.H., C.J.R., M.R.) and Department of Medicine (V.A.d.J.P., M.A.B.), the Vera Moulton Wall Center for Pulmonary Vascular Disease and the Cardiovascular Institute, Stanford University School of Medicine, CA; and Shriners Hospital for Children, Oregon Health & Science University, Portland (L.Y.S.)
| | - Aiqin Cao
- From the Department of Pediatrics (N.F.T., A.C., Y.-J.L., L.W., P.I.C., M.A.A.A., R.K.H., C.J.R., M.R.) and Department of Medicine (V.A.d.J.P., M.A.B.), the Vera Moulton Wall Center for Pulmonary Vascular Disease and the Cardiovascular Institute, Stanford University School of Medicine, CA; and Shriners Hospital for Children, Oregon Health & Science University, Portland (L.Y.S.)
| | - Ying-Ju Lai
- From the Department of Pediatrics (N.F.T., A.C., Y.-J.L., L.W., P.I.C., M.A.A.A., R.K.H., C.J.R., M.R.) and Department of Medicine (V.A.d.J.P., M.A.B.), the Vera Moulton Wall Center for Pulmonary Vascular Disease and the Cardiovascular Institute, Stanford University School of Medicine, CA; and Shriners Hospital for Children, Oregon Health & Science University, Portland (L.Y.S.)
| | - Lingli Wang
- From the Department of Pediatrics (N.F.T., A.C., Y.-J.L., L.W., P.I.C., M.A.A.A., R.K.H., C.J.R., M.R.) and Department of Medicine (V.A.d.J.P., M.A.B.), the Vera Moulton Wall Center for Pulmonary Vascular Disease and the Cardiovascular Institute, Stanford University School of Medicine, CA; and Shriners Hospital for Children, Oregon Health & Science University, Portland (L.Y.S.)
| | - Pin-I Chen
- From the Department of Pediatrics (N.F.T., A.C., Y.-J.L., L.W., P.I.C., M.A.A.A., R.K.H., C.J.R., M.R.) and Department of Medicine (V.A.d.J.P., M.A.B.), the Vera Moulton Wall Center for Pulmonary Vascular Disease and the Cardiovascular Institute, Stanford University School of Medicine, CA; and Shriners Hospital for Children, Oregon Health & Science University, Portland (L.Y.S.)
| | - Miguel A Alejandre Alcazar
- From the Department of Pediatrics (N.F.T., A.C., Y.-J.L., L.W., P.I.C., M.A.A.A., R.K.H., C.J.R., M.R.) and Department of Medicine (V.A.d.J.P., M.A.B.), the Vera Moulton Wall Center for Pulmonary Vascular Disease and the Cardiovascular Institute, Stanford University School of Medicine, CA; and Shriners Hospital for Children, Oregon Health & Science University, Portland (L.Y.S.)
| | - Vinicio A de Jesus Perez
- From the Department of Pediatrics (N.F.T., A.C., Y.-J.L., L.W., P.I.C., M.A.A.A., R.K.H., C.J.R., M.R.) and Department of Medicine (V.A.d.J.P., M.A.B.), the Vera Moulton Wall Center for Pulmonary Vascular Disease and the Cardiovascular Institute, Stanford University School of Medicine, CA; and Shriners Hospital for Children, Oregon Health & Science University, Portland (L.Y.S.)
| | - Rachel K Hopper
- From the Department of Pediatrics (N.F.T., A.C., Y.-J.L., L.W., P.I.C., M.A.A.A., R.K.H., C.J.R., M.R.) and Department of Medicine (V.A.d.J.P., M.A.B.), the Vera Moulton Wall Center for Pulmonary Vascular Disease and the Cardiovascular Institute, Stanford University School of Medicine, CA; and Shriners Hospital for Children, Oregon Health & Science University, Portland (L.Y.S.)
| | - Christopher J Rhodes
- From the Department of Pediatrics (N.F.T., A.C., Y.-J.L., L.W., P.I.C., M.A.A.A., R.K.H., C.J.R., M.R.) and Department of Medicine (V.A.d.J.P., M.A.B.), the Vera Moulton Wall Center for Pulmonary Vascular Disease and the Cardiovascular Institute, Stanford University School of Medicine, CA; and Shriners Hospital for Children, Oregon Health & Science University, Portland (L.Y.S.)
| | - Matthew A Bill
- From the Department of Pediatrics (N.F.T., A.C., Y.-J.L., L.W., P.I.C., M.A.A.A., R.K.H., C.J.R., M.R.) and Department of Medicine (V.A.d.J.P., M.A.B.), the Vera Moulton Wall Center for Pulmonary Vascular Disease and the Cardiovascular Institute, Stanford University School of Medicine, CA; and Shriners Hospital for Children, Oregon Health & Science University, Portland (L.Y.S.)
| | - Lynn Y Sakai
- From the Department of Pediatrics (N.F.T., A.C., Y.-J.L., L.W., P.I.C., M.A.A.A., R.K.H., C.J.R., M.R.) and Department of Medicine (V.A.d.J.P., M.A.B.), the Vera Moulton Wall Center for Pulmonary Vascular Disease and the Cardiovascular Institute, Stanford University School of Medicine, CA; and Shriners Hospital for Children, Oregon Health & Science University, Portland (L.Y.S.)
| | - Marlene Rabinovitch
- From the Department of Pediatrics (N.F.T., A.C., Y.-J.L., L.W., P.I.C., M.A.A.A., R.K.H., C.J.R., M.R.) and Department of Medicine (V.A.d.J.P., M.A.B.), the Vera Moulton Wall Center for Pulmonary Vascular Disease and the Cardiovascular Institute, Stanford University School of Medicine, CA; and Shriners Hospital for Children, Oregon Health & Science University, Portland (L.Y.S.).
| |
Collapse
|
26
|
Intracellular mechanisms of molecular recognition and sorting for transport of large extracellular matrix molecules. Proc Natl Acad Sci U S A 2016; 113:E6036-E6044. [PMID: 27679847 DOI: 10.1073/pnas.1609571113] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Extracellular matrix (ECM) proteins are biosynthesized in the rough endoplasmic reticulum (rER) and transported via the Golgi apparatus to the extracellular space. The coat protein complex II (COPII) transport vesicles are approximately 60-90 nm in diameter. However, several ECM molecules are much larger, up to several hundreds of nanometers. Therefore, special COPII vesicles are required to coat and transport these molecules. Transmembrane Protein Transport and Golgi Organization 1 (TANGO1) facilitates loading of collagens into special vesicles. The Src homology 3 (SH3) domain of TANGO1 was proposed to recognize collagen molecules, but how the SH3 domain recognizes various types of collagen is not understood. Moreover, how are large noncollagenous ECM molecules transported from the rER to the Golgi? Here we identify heat shock protein (Hsp) 47 as a guide molecule directing collagens to special vesicles by interacting with the SH3 domain of TANGO1. We also consider whether the collagen secretory model applies to other large ECM molecules.
Collapse
|
27
|
FBN1: The disease-causing gene for Marfan syndrome and other genetic disorders. Gene 2016; 591:279-291. [PMID: 27437668 DOI: 10.1016/j.gene.2016.07.033] [Citation(s) in RCA: 221] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 07/11/2016] [Accepted: 07/14/2016] [Indexed: 01/07/2023]
Abstract
FBN1 encodes the gene for fibrillin-1, a structural macromolecule that polymerizes into microfibrils. Fibrillin microfibrils are morphologically distinctive fibrils, present in all connective tissues and assembled into tissue-specific architectural frameworks. FBN1 is the causative gene for Marfan syndrome, an inherited disorder of connective tissue whose major features include tall stature and arachnodactyly, ectopia lentis, and thoracic aortic aneurysm and dissection. More than one thousand individual mutations in FBN1 are associated with Marfan syndrome, making genotype-phenotype correlations difficult. Moreover, mutations in specific regions of FBN1 can result in the opposite features of short stature and brachydactyly characteristic of Weill-Marchesani syndrome and other acromelic dysplasias. How can mutations in one molecule result in disparate clinical syndromes? Current concepts of the fibrillinopathies require an appreciation of tissue-specific fibrillin microfibril microenvironments and the collaborative relationship between the structures of fibrillin microfibril networks and biological functions such as regulation of growth factor signaling.
Collapse
|
28
|
New insights into the structure, assembly and biological roles of 10–12 nm connective tissue microfibrils from fibrillin-1 studies. Biochem J 2016; 473:827-38. [DOI: 10.1042/bj20151108] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 01/26/2016] [Indexed: 12/21/2022]
Abstract
The 10–12 nm diameter microfibrils of the extracellular matrix (ECM) impart both structural and regulatory properties to load-bearing connective tissues. The main protein component is the calcium-dependent glycoprotein fibrillin, which assembles into microfibrils at the cell surface in a highly regulated process involving specific proteolysis, multimerization and glycosaminoglycan interactions. In higher metazoans, microfibrils act as a framework for elastin deposition and modification, resulting in the formation of elastic fibres, but they can also occur in elastin-free tissues where they perform structural roles. Fibrillin microfibrils are further engaged in a number of cell matrix interactions such as with integrins, bone morphogenetic proteins (BMPs) and the large latent complex of transforming growth factor-β (TGFβ). Fibrillin-1 (FBN1) mutations are associated with a range of heritable connective disorders, including Marfan syndrome (MFS) and the acromelic dysplasias, suggesting that the roles of 10–12 nm diameter microfibrils are pleiotropic. In recent years the use of molecular, cellular and whole-organism studies has revealed that the microfibril is not just a structural component of the ECM, but through its network of cell and matrix interactions it can exert profound regulatory effects on cell function. In this review we assess what is known about the molecular properties of fibrillin that enable it to assemble into the 10–12 nm diameter microfibril and perform such diverse roles.
Collapse
|
29
|
Capuano A, Bucciotti F, Farwell KD, Tippin Davis B, Mroske C, Hulick PJ, Weissman SM, Gao Q, Spessotto P, Colombatti A, Doliana R. Diagnostic Exome Sequencing Identifies a Novel Gene, EMILIN1, Associated with Autosomal-Dominant Hereditary Connective Tissue Disease. Hum Mutat 2015; 37:84-97. [PMID: 26462740 PMCID: PMC4738430 DOI: 10.1002/humu.22920] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 10/05/2015] [Indexed: 12/31/2022]
Abstract
Heritable connective tissue diseases are a highly heterogeneous family of over 200 disorders that affect the extracellular matrix. While the genetic basis of several disorders is established, the etiology has not been discovered for a large portion of patients, likely due to rare yet undiscovered disease genes. By performing trio‐exome sequencing of a 55‐year‐old male proband presenting with multiple symptoms indicative of a connective disorder, we identified a heterozygous missense alteration in exon 1 of the Elastin Microfibril Interfacer 1 (EMILIN1) gene, c.64G>A (p.A22T). The proband presented with ascending and descending aortic aneurysms, bilateral lower leg and foot sensorimotor peripheral neuropathy, arthropathy, and increased skin elasticity. Sanger sequencing confirmed that the EMILIN1 alteration, which maps around the signal peptide cleavage site, segregated with disease in the affected proband, mother, and son. The impaired secretion of EMILIN‐1 in cells transfected with the mutant p.A22T coincided with abnormal protein accumulation within the endoplasmic reticulum. In skin biopsy of the proband, we detected less EMILIN‐1 with disorganized and abnormal coarse fibrils, aggregated deposits underneath the epidermis basal lamina, and dermal cells apoptosis. These findings collectively suggest that EMILIN1 may represent a new disease gene associated with an autosomal‐dominant connective tissue disorder.
Collapse
Affiliation(s)
- Alessandra Capuano
- Department of Translational Research, CRO-IRCCS National Cancer Institute, Aviano, 33081, Italy
| | - Francesco Bucciotti
- Department of Translational Research, CRO-IRCCS National Cancer Institute, Aviano, 33081, Italy
| | | | | | | | - Peter J Hulick
- Center for Medical Genetics, NorthShore University HealthSystem, Evanston, Illinois, 60201
| | - Scott M Weissman
- Center for Medical Genetics, NorthShore University HealthSystem, Evanston, Illinois, 60201
| | - Qingshen Gao
- NorthShore Research Institute, NorthShore University HealthSystem, Evanston, Illinois, 60201
| | - Paola Spessotto
- Department of Translational Research, CRO-IRCCS National Cancer Institute, Aviano, 33081, Italy
| | - Alfonso Colombatti
- Department of Translational Research, CRO-IRCCS National Cancer Institute, Aviano, 33081, Italy
| | - Roberto Doliana
- Department of Translational Research, CRO-IRCCS National Cancer Institute, Aviano, 33081, Italy
| |
Collapse
|
30
|
Du J, Hincke MT, Rose-Martel M, Hennequet-Antier C, Brionne A, Cogburn LA, Nys Y, Gautron J. Identifying specific proteins involved in eggshell membrane formation using gene expression analysis and bioinformatics. BMC Genomics 2015; 16:792. [PMID: 26470705 PMCID: PMC4608100 DOI: 10.1186/s12864-015-2013-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 10/04/2015] [Indexed: 12/16/2022] Open
Abstract
Background The avian eggshell membranes surround the egg white and provide a structural foundation for calcification of the eggshell which is essential for avian reproduction; moreover, it is also a natural biomaterial with many potential industrial and biomedical applications. Due to the insoluble and stable nature of the eggshell membrane fibres, their formation and protein constituents remain poorly characterized. The purpose of this study was to identify genes encoding eggshell membrane proteins, particularly those responsible for its structural features, by analyzing the transcriptome of the white isthmus segment of the oviduct, which is the specialized region responsible for the fabrication of the membrane fibres. Results The Del-Mar 14 K chicken microarray was used to investigate up-regulated expression of transcripts in the white isthmus (WI) compared with the adjacent magnum (Ma) and uterine (Ut) segments of the hen oviduct. Analysis revealed 135 clones hybridizing to over-expressed transcripts (WI/Ma + WI/Ut), and corresponding to 107 NCBI annotated non-redundant Gallus gallus gene IDs. This combined analysis revealed that the structural proteins highly over-expressed in the white isthmus include collagen X (COL10A1), fibrillin-1 (FBN1) and cysteine rich eggshell membrane protein (CREMP). These results validate previous proteomics studies which have identified collagen X (α-1) and CREMP in soluble eggshell extracts. Genes encoding collagen-processing enzymes such as lysyl oxidase homologs 1, 2 and 3 (LOXL1, LOXL2 and LOXL3), prolyl 4 hydroxylase subunit α-2 and beta polypeptide (P4HA2 and P4HB) as well as peptidyl-prolyl cis-trans isomerase C (PPIC) were also over-expressed. Additionally, genes encoding proteins known to regulate disulfide cross-linking, including sulfhydryl oxidase (QSOX1) and thioredoxin (TXN), were identified which suggests that coordinated up-regulation of genes in the white isthmus is associated with eggshell membrane fibre formation. Conclusions The present study has identified genes associated with the processing of collagen, other structural proteins, and disulfide-mediated cross-linking during eggshell membrane formation in the white isthmus. Identification of these genes will provide new insight into eggshell membrane structure and mechanisms of formation that will assist in the development of selection strategies to improve eggshell quality and food safety of the table egg. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2013-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jingwen Du
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, K1H 8 M5, Canada.
| | - Maxwell T Hincke
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, K1H 8 M5, Canada.
| | - Megan Rose-Martel
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, K1H 8 M5, Canada.
| | | | | | - Larry A Cogburn
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, 19717, USA.
| | - Yves Nys
- INRA, UR83 Recherches Avicoles, F-37380, Nouzilly, France.
| | - Joel Gautron
- INRA, UR83 Recherches Avicoles, F-37380, Nouzilly, France.
| |
Collapse
|
31
|
The fibrillin microfibril scaffold: A niche for growth factors and mechanosensation? Matrix Biol 2015; 47:3-12. [DOI: 10.1016/j.matbio.2015.05.002] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 03/28/2015] [Indexed: 12/22/2022]
|
32
|
Thakkar D, Grant TM, Hakimi O, Carr AJ. Distribution and expression of type VI collagen and elastic fibers in human rotator cuff tendon tears. Connect Tissue Res 2014; 55:397-402. [PMID: 25166893 DOI: 10.3109/03008207.2014.959119] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
There is increasing evidence for a progressive extracellular matrix change in rotator cuff disease progression. Directly surrounding the cell is the pericellular matrix, where assembly of matrix aggregates typically occurs making it critical in the response of tendon cells to pathological conditions. Studies in animal models have identified type VI collagen, fibrillin-1 and elastin to be located in the pericellular matrix of tendon and contribute in maintaining the structural and biomechanical integrity of tendon. However, there have been no reports on the localization of these proteins in human tendon biopsies. This study aimed to characterize the distribution of these ECM components in human rotator cuffs and gain greater insight into the relationship of pathology to tear size by analyzing the distribution and expression profiles of these ECM components. Confocal microscopy confirmed the localization of these structural molecules in the pericellular matrix of the human rotator cuff. Tendon degeneration led to an increased visibility of these components with a significant disorganization in the distribution of type VI collagen. At the genetic level, an increase in tear size was linked to an increased transcription of type VI collagen and fibrillin-1 with no significant alteration in the elastin levels. This is the first study to confirm the localization of type VI collagen, elastin and fibrillin-1 in the pericellular region of human supraspinatus tendon and assesses the effect of tendon degeneration on these structures, thus providing a useful insight into the composition of human rotator cuff tears which can be instrumental in predicting disease prognosis.
Collapse
Affiliation(s)
- Dipti Thakkar
- Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Sciences, University of Oxford , Oxford , UK and
| | | | | | | |
Collapse
|
33
|
Inoue T, Ohbayashi T, Fujikawa Y, Yoshida H, Akama TO, Noda K, Horiguchi M, Kameyama K, Hata Y, Takahashi K, Kusumoto K, Nakamura T. Latent TGF-β binding protein-2 is essential for the development of ciliary zonule microfibrils. Hum Mol Genet 2014; 23:5672-82. [PMID: 24908666 DOI: 10.1093/hmg/ddu283] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Latent TGF-β-binding protein-2 (LTBP-2) is an extracellular matrix protein associated with microfibrils. Homozygous mutations in LTBP2 have been found in humans with genetic eye diseases such as congenital glaucoma and microspherophakia, indicating a critical role of the protein in eye development, although the function of LTBP-2 in vivo has not been well understood. In this study, we explore the in vivo function of LTBP-2 by generating Ltbp2(-/-) mice. Ltbp2(-/-) mice survived to adulthood but developed lens luxation caused by compromised ciliary zonule formation without a typical phenotype related to glaucoma, suggesting that LTBP-2 deficiency primarily causes lens dislocation but not glaucoma. The suppression of LTBP2 expression in cultured human ciliary epithelial cells by siRNA disrupted the formation of the microfibril meshwork by the cells. Supplementation of recombinant LTBP-2 in culture medium not only rescued the microfibril meshwork formation in LTBP2-suppressed ciliary epithelial cells but also restored unfragmented and bundled ciliary zonules in Ltbp2(-/-) mouse eyes under organ culture. Although several reported human mutant LTBP-2 proteins retain normal domain structure and keep the fibrillin-1-binding site intact, none of these mutant proteins were secreted from their producing cells, suggesting secretion arrest occurred to the LTBP-2 mutants owing to conformational alteration. The findings of this study suggest that LTBP-2 is an essential component for the formation of microfibril bundles in ciliary zonules.
Collapse
Affiliation(s)
- Tadashi Inoue
- Department of Pharmacology, Department of Plastic and Reconstructive Surgery
| | - Tetsuya Ohbayashi
- Division of Laboratory Animal Science, Research Center for Bioscience and Technology and
| | | | - Hideyuki Yoshida
- Department of Pharmacology, Department of Ophthalmology, Kansai Medical University, Hirakata, Osaka 573-1010, Japan
| | - Tomoya O Akama
- Department of Pharmacology, Tumor Microenvironment Program, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, USA
| | - Kazuo Noda
- Department of Pharmacology, Department of Plastic and Reconstructive Surgery, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan and
| | - Masahito Horiguchi
- Department of Cell Biology, New York University School of Medicine, New York, NY 10016, USA
| | - Katsuro Kameyama
- Division of Integrative Bioscience, Institute of Regenerative Medicine and Biofunction, Tottori University Graduate School of Medical Sciences, Yonago, Tottori 683-8503, Japan
| | - Yoshio Hata
- Division of Integrative Bioscience, Institute of Regenerative Medicine and Biofunction, Tottori University Graduate School of Medical Sciences, Yonago, Tottori 683-8503, Japan
| | - Kanji Takahashi
- Department of Ophthalmology, Kansai Medical University, Hirakata, Osaka 573-1010, Japan
| | | | | |
Collapse
|
34
|
Yadin DA, Robertson IB, Jensen SA, Handford PA, Redfield C. ¹H, ¹³C and ¹⁵N assignments of the four N-terminal domains of human fibrillin-1. BIOMOLECULAR NMR ASSIGNMENTS 2014; 8:75-80. [PMID: 23264024 PMCID: PMC3955489 DOI: 10.1007/s12104-012-9456-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Accepted: 12/13/2012] [Indexed: 06/01/2023]
Abstract
Fibrillins are extracellular, disulphide-rich glycoproteins that form 10-12 nm diameter microfibrils in connective tissues. They are found in the majority of higher animals, from jellyfish to humans. Fibrillin microfibrils confer properties of elasticity and strength on connective tissue and regulate growth factor availability in the extracellular matrix (ECM). Mutations in FBN1, the human gene encoding the fibrillin-1 isoform, are linked to several inherited connective tissue disorders. The fibrillin-1 N-terminus forms many functionally-important interactions, both with other fibrillin molecules and various ECM components. In particular, the first four domains, the fibrillin unique N-terminal (FUN) and three epidermal growth factor (EGF)-like domains (FUN-EGF3), are implicated in microfibril assembly and growth factor sequestration. The structure of these domains, which comprise 134 residues, is unknown. We have produced a recombinant fragment corresponding to this region of human fibrillin-1. Here, we report (1)H, (13)C and (15)N resonance assignments of the FUN-EGF3 fragment. Assignments will facilitate structure determination, analysis of interdomain dynamics and the mapping of interaction surfaces.
Collapse
Affiliation(s)
- David A. Yadin
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU UK
| | - Ian B. Robertson
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU UK
| | - Sacha A. Jensen
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU UK
| | - Penny A. Handford
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU UK
| | - Christina Redfield
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU UK
| |
Collapse
|
35
|
Alghamdi AA, Van Arsdell GS. Replacement of aortic root and ascending aorta in adult congenital heart disease. Expert Rev Cardiovasc Ther 2014; 5:1087-94. [DOI: 10.1586/14779072.5.6.1087] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
36
|
Yadin D, Robertson I, McNaught-Davis J, Evans P, Stoddart D, Handford P, Jensen S, Redfield C. Structure of the fibrillin-1 N-terminal domains suggests that heparan sulfate regulates the early stages of microfibril assembly. Structure 2013; 21:1743-56. [PMID: 24035709 PMCID: PMC3794157 DOI: 10.1016/j.str.2013.08.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 07/23/2013] [Accepted: 08/05/2013] [Indexed: 11/29/2022]
Abstract
The human extracellular matrix glycoprotein fibrillin-1 is the primary component of the 10- to 12-nm-diameter microfibrils, which perform key structural and regulatory roles in connective tissues. Relatively little is known about the molecular mechanisms of fibrillin assembly into microfibrils. Studies using recombinant fibrillin fragments indicate that an interaction between the N- and C-terminal regions drives head-to-tail assembly. Here, we present the structure of a fibrillin N-terminal fragment comprising the fibrillin unique N-terminal (FUN) and the first three epidermal growth factor (EGF)-like domains (FUN-EGF3). Two rod-like domain pairs are separated by a short, flexible linker between the EGF1 and EGF2 domains. We also show that the binding site for the C-terminal region spans multiple domains and overlaps with a heparin interaction site. These data suggest that heparan sulfate may sequester fibrillin at the cell surface via FUN-EGF3 prior to aggregation of the C terminus, thereby regulating microfibril assembly.
Collapse
Affiliation(s)
- David A. Yadin
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Ian B. Robertson
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Joanne McNaught-Davis
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Paul Evans
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - David Stoddart
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Penny A. Handford
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Sacha A. Jensen
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Christina Redfield
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| |
Collapse
|
37
|
Nishikawa T, Yamamoto T, Honjo KI, Ichioka H, Yamamoto K, Kanamura N, Kato H, Wato M, Kubo T, Mori M, Tanaka A. Marfan's syndrome: Clinical manifestations in the oral-craniofacial area, biophysiological roles of fibrillins and elastic extracellular microfibers, and disease control of the fibrillin gene. JOURNAL OF ORAL AND MAXILLOFACIAL SURGERY MEDICINE AND PATHOLOGY 2013. [DOI: 10.1016/j.ajoms.2013.02.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
38
|
Jensen SA, Robertson IB, Handford PA. Dissecting the fibrillin microfibril: structural insights into organization and function. Structure 2012; 20:215-25. [PMID: 22325771 DOI: 10.1016/j.str.2011.12.008] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Revised: 12/07/2011] [Accepted: 12/09/2011] [Indexed: 01/09/2023]
Abstract
Force-bearing tissues such as blood vessels, lungs, and ligaments depend on the properties of elasticity and flexibility. The 10 to 12 nm diameter fibrillin microfibrils play vital roles in maintaining the structural integrity of these highly dynamic tissues and in regulating extracellular growth factors. In humans, defective microfibril function results in several diseases affecting the skin, cardiovascular, skeletal, and ocular systems. Despite the discovery of fibrillin-1 having occurred more than two decades ago, the structure and organization of fibrillin monomers within the microfibrils are still controversial. Recent structural data have revealed strategies by which fibrillin is able to maintain its architecture in dynamic tissues without compromising its ability to interact with itself and other cell matrix components. This review summarizes our current knowledge of microfibril structure, from individual fibrillin domains and the calcium-dependent tuning of pairwise interdomain interactions to microfibril dynamics, and how this relates to microfibril function in health and disease.
Collapse
Affiliation(s)
- Sacha A Jensen
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | | | | |
Collapse
|
39
|
Chandramouli A, Simundza J, Pinderhughes A, Cowin P. Choreographing metastasis to the tune of LTBP. J Mammary Gland Biol Neoplasia 2011; 16:67-80. [PMID: 21494784 PMCID: PMC3747963 DOI: 10.1007/s10911-011-9215-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Accepted: 03/20/2011] [Indexed: 12/20/2022] Open
Abstract
Latent Transforming Growth Factor beta (TGFβ) Binding Proteins (LTBPs) are chaperones and determinants of TGFβ isoform-specific secretion. They belong to the LTBP/Fibrillin family and form integral components of the fibronectin and microfibrillar extracellular matrix (ECM). LTBPs serve as master regulators of TGFβ bioavailability, functioning to incorporate and spatially pattern latent TGFβ at regular intervals within the ECM, and actively participate in integrin-mediated stretch activation of TGFβ in vivo. In so doing they create a highly patterned sensory system where local changes in ECM tension can be detected and transduced into focal signals. The physiological role of LTBPs in the mammary gland remains largely unstudied, however both loss and gain of LTBP expression is found in breast cancers and breast cancer cell lines. Importantly, elevated LTBP1 levels appear in two gene signatures predictive of enhanced metastatic behavior. LTBP may promote metastasis by providing the bridge between structural and signaling components of the epithelial to mesenchymal transition (EMT).
Collapse
Affiliation(s)
- Anupama Chandramouli
- Department of Dermatology, New York University School of Medicine, New York, NY, USA
| | - Julia Simundza
- Department of Cell Biology, MSB 621, New York University School of Medicine, 550 First Ave, New York, NY 10016, USA
| | - Alicia Pinderhughes
- Department of Cell Biology, MSB 621, New York University School of Medicine, 550 First Ave, New York, NY 10016, USA
| | - Pamela Cowin
- Department of Dermatology, New York University School of Medicine, New York, NY, USA
- Department of Cell Biology, MSB 621, New York University School of Medicine, 550 First Ave, New York, NY 10016, USA
| |
Collapse
|
40
|
TB domain proteins: evolutionary insights into the multifaceted roles of fibrillins and LTBPs. Biochem J 2011; 433:263-76. [PMID: 21175431 DOI: 10.1042/bj20101320] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Fibrillins and LTBPs [latent TGFβ (transforming growth factor β)-binding proteins] perform vital and complex roles in the extracellular matrix and are relevant to a wide range of human diseases. These proteins share a signature 'eight cysteine' or 'TB (TGFβ-binding protein-like)' domain that is found nowhere else in the human proteome, and which has been shown to mediate a variety of protein-protein interactions. These include covalent binding of the TGFβ propeptide, and RGD-directed interactions with a repertoire of integrins. TB domains are found interspersed with long arrays of EGF (epidermal growth factor)-like domains, which occur more widely in extracellular proteins, and also mediate binding to a large number of proteins and proteoglycans. In the present paper, newly available protein sequence information from a variety of sources is reviewed and related to published findings on the structure and function of fibrillins and LTBPs. These sequences give valuable insight into the evolution of TB domain proteins and suggest that the fibrillin domain organization emerged first, over 600 million years ago, prior to the divergence of Cnidaria and Bilateria, after which it has remained remarkably unchanged. Comparison of sequence features and domain organization in such a diverse group of organisms also provides important insights into how fibrillins and LTBPs might perform their roles in the extracellular matrix.
Collapse
|
41
|
Jordan CD, Bohling SD, Charbonneau NL, Sakai LY. Fibrillins in adult human ovary and polycystic ovary syndrome: is fibrillin-3 affected in PCOS? J Histochem Cytochem 2010; 58:903-15. [PMID: 20855553 DOI: 10.1369/jhc.2010.956615] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is a common endocrinopathy in women of reproductive age. Although genetic linkage analyses have demonstrated a susceptibility locus for PCOS mapping to the fibrillin-3 gene, the presence of fibrillin proteins in normal and polycystic ovaries has not been characterized. This study compared and contrasted fibrillin-1, -2, and -3 localization in normal and polycystic ovaries. Immunohistochemical stainings of ovaries from 21 controls and 9 patients with PCOS were performed. Fibrillin-1 was ubiquitous in ovarian connective tissue. Fibrillin-2 localized around antral follicles and in areas of folliculolysis. Fibrillin-3 was present in a restricted distribution within the specialized perifollicular stroma of follicles in morphological transition from primordial to primary type [transitional follicles (TFs)]. Fibrillin-1 and -2 stainings of PCOS ovaries were similar to those of the controls. However, in eight of the nine PCOS ovaries, there was a decrease in the number of TFs associated with fibrillin-3, including no staining in five PCOS samples; decreased number of fibrillin-3-associated TFs/mm(2) was confirmed by quantitative analysis. Our findings support a role for fibrillin-3 in the pathogenesis of PCOS and suggest fibrillin-3 may function in primordial to primary follicle transition. We propose that loss of fibrillin-3 during folliculogenesis may be an important factor in PCOS pathogenesis.
Collapse
Affiliation(s)
- C Diana Jordan
- Department of Pathology, University of Washington Medical Center, Seattle, WA 98195, USA.
| | | | | | | |
Collapse
|
42
|
Descending thoracic aortic aneurysm in a female patient with Marfan syndrome. COR ET VASA 2010. [DOI: 10.33678/cor.2010.161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
43
|
Mariko B, Ghandour Z, Raveaud S, Quentin M, Usson Y, Verdetti J, Huber P, Kielty C, Faury G. Microfibrils and fibrillin-1 induce integrin-mediated signaling, proliferation and migration in human endothelial cells. Am J Physiol Cell Physiol 2010; 299:C977-87. [PMID: 20686071 DOI: 10.1152/ajpcell.00377.2009] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Microfibrils are macromolecular complexes associated with elastin to form elastic fibers that endow extensible tissues, such as arteries, lungs, and skin, with elasticity property. Fibrillin-1, the main component of microfibrils, is a 350-kDa glycoprotein for which genetic haploinsufficiency in humans can lead to Marfan syndrome, a severe polyfeatured pathology including aortic aneurysms and dissections. Microfibrils and fibrillin-1 fragments mediate adhesion of several cell types, including endothelial cells, while fibrillin-1 additionally triggers lung and mesangial cell migration. However, fibrillin-1-induced intracellular signaling is unknown. We have studied the signaling events induced in human umbilical venous endothelial cells (HUVECs) by aortic microfibrils as well as recombinant fibrillin-1 Arg-Gly-Asp (RGD)-containing fragments PF9 and PF14. Aortic microfibrils and PF14, not PF9, substantially and dose dependently increased HUVEC cytoplasmic and nuclear calcium levels measured using the fluorescent dye Fluo-3. This effect of PF14 was confirmed in bovine aortic endothelial cells. PF14 action in HUVECs was mediated by αvβ3 and α5β1 integrins, phospholipase-C, inosital 1,4,5-trisphosphate, and mobilization of intracellular calcium stores, whereas membrane calcium channels were not or only slightly implicated, as shown in patch-clamp experiments. Finally, PF14 enhanced endothelial cell proliferation and migration. Hence, fibrillin-1 sequences may physiologically activate endothelial cells. Genetic fibrillin-1 deficiency could alter normal endothelial signaling and, since endothelium dysfunction is an important contributor to Marfan syndrome, participate in the arterial anomalies associated with this developmental disease.
Collapse
Affiliation(s)
- Boubacar Mariko
- Laboratoire Physiopathologies Vasculaires, Interactions Cellulaires, Signalisation et Vieillissement, Université Joseph Fourier, CEA, Institut National de Santé et de Recherche Médicale, U882, Grenoble, France
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Charbonneau NL, Jordan CD, Keene DR, Lee-Arteaga S, Dietz HC, Rifkin DB, Ramirez F, Sakai LY. Microfibril structure masks fibrillin-2 in postnatal tissues. J Biol Chem 2010; 285:20242-51. [PMID: 20404337 DOI: 10.1074/jbc.m109.087031] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Fibrillin microfibrils are polymeric structures present in connective tissues. The importance of fibrillin microfibrils to connective tissue function has been demonstrated by the multiple genetic disorders caused by mutations in fibrillins and in microfibril-associated molecules. However, knowledge of microfibril structure is limited, largely due to their insolubility. Most previous studies have focused on how fibrillin-1 is organized within microfibril polymers. In this study, an immunochemical approach was used to circumvent the insolubility of microfibrils to determine the role of fibrillin-2 in postnatal microfibril structure. Results obtained from studies of wild type and fibrillin-1 null tissues, using monoclonal and polyclonal antibodies with defined epitopes, demonstrated that N-terminal fibrillin-2 epitopes are masked in postnatal microfibrils and can be revealed by enzymatic digestion or by genetic ablation of Fbn1. From these studies, we conclude that fetal fibrillin polymers form an inner core within postnatal microfibrils and that microfibril structure evolves as growth and development proceed into the postnatal period. Furthermore, documentation of a novel cryptic site present in EGF4 in fibrillin-1 underscores the molecular complexity and tissue-specific differences in microfibril structure.
Collapse
Affiliation(s)
- Noe L Charbonneau
- Shriners Hospital for Children, 3101 SW Sam Jackson Park Rd., Portland, OR 97239, USA
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Anke M, Seifert M, Arnhold W, Anke S, Schäfer U. The biological and toxicological importance of molybdenum in the environment and in the nutrition of plants, animals and man. ACTA ALIMENTARIA 2010. [DOI: 10.1556/aalim.39.2010.1.2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
46
|
Tsutsui K, Manabe RI, Yamada T, Nakano I, Oguri Y, Keene DR, Sengle G, Sakai LY, Sekiguchi K. ADAMTSL-6 is a novel extracellular matrix protein that binds to fibrillin-1 and promotes fibrillin-1 fibril formation. J Biol Chem 2010; 285:4870-82. [PMID: 19940141 PMCID: PMC2836092 DOI: 10.1074/jbc.m109.076919] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2009] [Indexed: 11/06/2022] Open
Abstract
ADAMTS (A disintegrin and metalloproteinase with thrombospondin motifs)-like (ADAMTSL) proteins, a subgroup of the ADAMTS superfamily, share several domains with ADAMTS proteinases, including thrombospondin type I repeats, a cysteine-rich domain, and an ADAMTS spacer, but lack a catalytic domain. We identified two new members of ADAMTSL proteins, ADAMTSL-6alpha and -6beta, that differ in their N-terminal amino acid sequences but have common C-terminal regions. When transfected into MG63 osteosarcoma cells, both isoforms were secreted and deposited into pericellular matrices, although ADAMTSL-6alpha, in contrast to -6beta, was barely detectable in the conditioned medium. Immunolabeling at the light and electron microscopic levels showed their close association with fibrillin-1-rich microfibrils in elastic connective tissues. Surface plasmon resonance analyses demonstrated that ADAMTSL-6beta binds to the N-terminal half of fibrillin-1 with a dissociation constant of approximately 80 nm. When MG63 cells were transfected or exogenously supplemented with ADAMTSL-6, fibrillin-1 matrix assembly was promoted in the early but not the late stage of the assembly process. Furthermore, ADAMTSL-6 transgenic mice exhibited excessive fibrillin-1 fibril formation in tissues where ADAMTSL-6 was overexpressed. All together, these results indicated that ADAMTSL-6 is a novel microfibril-associated protein that binds directly to fibrillin-1 and promotes fibrillin-1 matrix assembly.
Collapse
Affiliation(s)
- Ko Tsutsui
- From the Sekiguchi Biomatrix Signaling Project, Exploratory Research for Advanced Technology, Japan Science and Technology Agency, Aichi Medical University, Nagakute, Aichi 480-1195, Japan
- the Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan, and
| | - Ri-ichiroh Manabe
- From the Sekiguchi Biomatrix Signaling Project, Exploratory Research for Advanced Technology, Japan Science and Technology Agency, Aichi Medical University, Nagakute, Aichi 480-1195, Japan
- the Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan, and
| | - Tomiko Yamada
- From the Sekiguchi Biomatrix Signaling Project, Exploratory Research for Advanced Technology, Japan Science and Technology Agency, Aichi Medical University, Nagakute, Aichi 480-1195, Japan
| | - Itsuko Nakano
- From the Sekiguchi Biomatrix Signaling Project, Exploratory Research for Advanced Technology, Japan Science and Technology Agency, Aichi Medical University, Nagakute, Aichi 480-1195, Japan
- the Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan, and
| | - Yasuko Oguri
- From the Sekiguchi Biomatrix Signaling Project, Exploratory Research for Advanced Technology, Japan Science and Technology Agency, Aichi Medical University, Nagakute, Aichi 480-1195, Japan
| | | | - Gerhard Sengle
- the Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, Oregon 97239
| | - Lynn Y. Sakai
- the Shriners Hospital for Children and
- the Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, Oregon 97239
| | - Kiyotoshi Sekiguchi
- From the Sekiguchi Biomatrix Signaling Project, Exploratory Research for Advanced Technology, Japan Science and Technology Agency, Aichi Medical University, Nagakute, Aichi 480-1195, Japan
- the Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan, and
| |
Collapse
|
47
|
Clinical and genetic investigation of isolated microspherophakia in a consanguineous Tunisian family. J Hum Genet 2009; 54:550-3. [DOI: 10.1038/jhg.2009.75] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
48
|
|
49
|
Biogenesis and function of fibrillin assemblies. Cell Tissue Res 2009; 339:71-82. [PMID: 19513754 DOI: 10.1007/s00441-009-0822-x] [Citation(s) in RCA: 141] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2009] [Accepted: 05/08/2009] [Indexed: 12/14/2022]
Abstract
Fibrillin-1 and fibrillin-2 are large cysteine-rich glycoproteins that serve two key physiological functions: as supporting structures that impart tissue integrity and as regulators of signaling events that instruct cell performance. The structural role of fibrillins is exerted through the temporal and hierarchical assembly of microfibrils and elastic fibers, whereas the instructive role reflects the ability of fibrillins to sequester transforming growth factor beta (TGFbeta) and bone morphogenetic protein (BMP) complexes in the extracellular matrix. Characterization of fibrillin mutations in human patients and in genetically engineered mice has demonstrated that perturbation of either function manifests in disease. More generally, these studies have indicated that fibrillins are integral components of a broader biological network of extracellular, cell surface, and signaling molecules that orchestrate morphogenetic and homeostatic programs in multiple organ systems. They have also suggested that the relative composition of fibrillin-rich microfibrils imparts contextual specificity to TGFbeta and BMP signaling by concentrating the ligands locally so as to regulate cell differentiation within a spatial context during organ formation (positive regulation) and by restricting their bioavailability so as to modulate cell performance in a timely fashion during tissue remodeling/repair (negative regulation). Correlative evidence suggests functional coupling of the cell-directed assembly of microfibrils and targeting of TGFbeta and BMP complexes to fibrillins. Hence, the emerging view is that fibrillin-rich microfibrils are molecular integrators of structural and instructive signals, with TGFbeta and BMPs as the nodal points that convert extracellular inputs into discrete and context-dependent cellular responses.
Collapse
|
50
|
Ramirez F, Sakai LY. Biogenesis and function of fibrillin assemblies. Cell Tissue Res 2009. [DOI: 10.1007/s00441-009-0822-x doi:dx.doi.org] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2022]
|