1
|
Onigbinde S, Gutierrez Reyes CD, Sandilya V, Chukwubueze F, Oluokun O, Sahioun S, Oluokun A, Mechref Y. Optimization of glycopeptide enrichment techniques for the identification of clinical biomarkers. Expert Rev Proteomics 2024:1-32. [PMID: 39439029 DOI: 10.1080/14789450.2024.2418491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/28/2024] [Accepted: 10/11/2024] [Indexed: 10/25/2024]
Abstract
INTRODUCTION The identification and characterization of glycopeptides through LC-MS/MS and advanced enrichment techniques are crucial for advancing clinical glycoproteomics, significantly impacting the discovery of disease biomarkers and therapeutic targets. Despite progress in enrichment methods like Lectin Affinity Chromatography (LAC), Hydrophilic Interaction Liquid Chromatography (HILIC), and Electrostatic Repulsion Hydrophilic Interaction Chromatography (ERLIC), issues with specificity, efficiency, and scalability remain, impeding thorough analysis of complex glycosylation patterns crucial for disease understanding. AREAS COVERED This review explores the current challenges and innovative solutions in glycopeptide enrichment and mass spectrometry analysis, highlighting the importance of novel materials and computational advances for improving sensitivity and specificity. It outlines the potential future directions of these technologies in clinical glycoproteomics, emphasizing their transformative impact on medical diagnostics and therapeutic strategies. EXPERT OPINION The application of innovative materials such as Metal-Organic Frameworks (MOFs), Covalent Organic Frameworks (COFs), functional nanomaterials, and online enrichment shows promise in addressing challenges associated with glycoproteomics analysis by providing more selective and robust enrichment platforms. Moreover, the integration of artificial intelligence and machine learning is revolutionizing glycoproteomics by enhancing the processing and interpretation of extensive data from LC-MS/MS, boosting biomarker discovery, and improving predictive accuracy, thus supporting personalized medicine.
Collapse
Affiliation(s)
- Sherifdeen Onigbinde
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | | | - Vishal Sandilya
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Favour Chukwubueze
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Odunayo Oluokun
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Sarah Sahioun
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Ayobami Oluokun
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| |
Collapse
|
2
|
Dobrochaeva K, Khasbiullina N, Shilova N, Antipova N, Obukhova P, Ovchinnikova T, Galanina O, Blixt O, Kunz H, Filatov A, Knirel Y, LePendu J, Khaidukov S, Bovin N. Specificity of human natural antibodies referred to as anti-Tn. Mol Immunol 2020; 120:74-82. [PMID: 32087569 DOI: 10.1016/j.molimm.2020.02.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/06/2020] [Accepted: 02/10/2020] [Indexed: 01/31/2023]
Abstract
To understand the role of human natural IgM known as antibodies against the carbohydrate epitope Tn, the antibodies were isolated using GalNAcα-Sepharose affinity chromatography, and their specificity was profiled using microarrays (a glycan array printed with oligosaccharides and bacterial polysaccharides, as well as a glycopeptide array), flow cytometry, and inhibition ELISA. The antibodies bound a restricted number of GalNAcα-terminated oligosaccharides better than the parent monosaccharide, e.g., 6-O-Su-GalNAcα and GalNAcα1-3Galβ1-3(4)GlcNAcβ. The binding with several bacterial polysaccharides that have no structural resemblance to the affinity ligand GalNAcα was quite unexpected. Given that GalNAcα is considered the key fragment of the Tn antigen, it is surprising that these antibodies bind weakly GalNAcα-OSer and do not bind a wide variety of GalNAcα-OSer/Thr-containing mucin glycopeptides. At the same time, we have observed specific binding to cells having Tn-positive glycoproteins containing similar glycopeptide motifs in a conformationally rigid macromolecule. Thus, specific recognition of the Tn antigen apparently requires that the naturally occurring "anti-Tn" IgM recognize a complex epitope comprising the GalNAcα as an essential component and a fairly long amino acid sequence where the amino acids adjacent to GalNAcα do not contact the antibody paratope; i.e., the antibodies recognize a spatial epitope or a molecular pattern rather than a classical continuous sequence. In addition, we have not found any increase in the binding of natural antibodies when GalNAcα residues were clustered. These results may help in further development of anticancer vaccines based on synthetic Tn constructs.
Collapse
Affiliation(s)
- Kira Dobrochaeva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya, Moscow, 117997, Russian Federation
| | - Nailya Khasbiullina
- Semiotik LLC, 16/10 Miklukho-Maklaya, Moscow, 117997, Russian Federation; National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of the Ministry of Healthcare of Russian Federation, Moscow 117997, Russian Federation; Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119991, Russian Federation
| | - Nadezhda Shilova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya, Moscow, 117997, Russian Federation; Semiotik LLC, 16/10 Miklukho-Maklaya, Moscow, 117997, Russian Federation; National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of the Ministry of Healthcare of Russian Federation, Moscow 117997, Russian Federation
| | - Nadezhda Antipova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya, Moscow, 117997, Russian Federation; Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya, Moscow 117198, Russian Federation; National Research University Higher School of Economics, Moscow 101000, Russian Federation
| | - Polina Obukhova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya, Moscow, 117997, Russian Federation; National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of the Ministry of Healthcare of Russian Federation, Moscow 117997, Russian Federation
| | - Tatiana Ovchinnikova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya, Moscow, 117997, Russian Federation
| | - Oxana Galanina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya, Moscow, 117997, Russian Federation
| | - Ola Blixt
- Department of Chemistry, Chemical Biology, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Horst Kunz
- Institut Für Organische Chemie, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, D-55128, Mainz, Germany
| | - Alexander Filatov
- Institute of Immunology, Federal Medical-Biological Agency of Russia, Moscow, 115478, Russian Federation
| | - Yuriy Knirel
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119991, Russian Federation
| | - Jacques LePendu
- University of Nantes, Inserm, U892 IRT UN, 8 Quai MonCousu, BP70721 Nantes, FR 44007, France
| | - Sergey Khaidukov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya, Moscow, 117997, Russian Federation
| | - Nicolai Bovin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya, Moscow, 117997, Russian Federation.
| |
Collapse
|
3
|
Shuck SC, Hong T, Kalkum M, Igarashi R, Kajiya K, Termini J, Yamamoto K, Fujita-Yamaguchi Y. MLS128 antibody-induced suppression of colon cancer cell growth is mediated by a desmocollin and a 110 kDa glycoprotein. Biosci Trends 2019; 13:216-224. [PMID: 31168022 DOI: 10.5582/bst.2019.01074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Protein glycosylation is a diverse form of post-translational modification. Two to three consecutive O-linked N-acetylgalactosamines (Tn-antigens) are recognized by antibodies such as MLS128. MLS128 mAb inhibited cell growth and bound to a 110 kDa glycoprotein (GP) in LS180 and HT29 colon cancer cells. However, purification and identification of the 110 kDa GP was unsuccessful due to its low abundance. The present study used a highly sophisticated and sensitive mass spectrometry method to identify proteins immunoprecipitated with MLS128 and separated by two-dimensional gel electrophoresis. Three desmosome components were identified. Of these, desmocollin and desmoglein shared many similar characteristics, including molecular mass, pI, and potential Tn-antigen sites. Western blotting analyses of LS180 cell lysates revealed a common 110 kDa band recognized by MLS128 and anti-desmocollin, but not by anti-desmoglein. Immunofluorescence microscopy of LS180 cells revealed that desmocollin is membrane-bound, while desmoglein is primarily localized in the cytosol. Confocal microscopy demonstrated colocalization of the desmocollin-specific antibody with the MLS128 antibody on the cell membrane, suggesting that desmocollin may contain Tn-antigens recognized by MLS128. Treatment of LS180 cells with siRNA to knock down desmocollin expression or a desmocollin-specific antibody decreased cell viability, suggesting a critical role for this protein in cell growth and survival. N-glycosidase F digestion of the 110 kDa GP and desmocollin suggested that although both proteins contain N-glycosylation sites, they are not identical. These findings suggest that desmocollin colocalizes with the 110 kDa GP and that growth inhibition induced by the MLS128 antibody may be mediated through a mechanism that involves desmocollin.
Collapse
Affiliation(s)
- Sarah C Shuck
- Department of Molecular Medicine, Beckman Research Institute
| | - Teresa Hong
- Department of Molecular Imaging and Therapy, Beckman Research Institute
| | - Markus Kalkum
- Department of Molecular Imaging and Therapy, Beckman Research Institute
| | - Ryo Igarashi
- Department of Molecular Medicine, Beckman Research Institute
| | - Kota Kajiya
- Department of Molecular Medicine, Beckman Research Institute
| | - John Termini
- Department of Molecular Medicine, Beckman Research Institute
| | - Kazuo Yamamoto
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo
| | | |
Collapse
|
4
|
Noda M, Okayama H, Tachibana K, Sakamoto W, Saito K, Thar Min AK, Ashizawa M, Nakajima T, Aoto K, Momma T, Katakura K, Ohki S, Kono K. Glycosyltransferase Gene Expression Identifies a Poor Prognostic Colorectal Cancer Subtype Associated with Mismatch Repair Deficiency and Incomplete Glycan Synthesis. Clin Cancer Res 2018; 24:4468-4481. [PMID: 29844132 DOI: 10.1158/1078-0432.ccr-17-3533] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 03/18/2018] [Accepted: 05/22/2018] [Indexed: 11/16/2022]
Abstract
Purpose: We aimed to discover glycosyltransferase gene (glycogene)-derived molecular subtypes of colorectal cancer associated with patient outcomes.Experimental Design: Transcriptomic and epigenomic datasets of nontumor, precancerous, cancerous tissues, and cell lines with somatic mutations, mismatch repair status, clinicopathologic and survival information were assembled (n = 4,223) and glycogene profiles were analyzed. IHC for a glycogene, GALNT6, was conducted in adenoma and carcinoma specimens (n = 403). The functional role and cell surface glycan profiles were further investigated by in vitro loss-of-function assays and lectin microarray analysis.Results: We initially developed and validated a 15-glycogene signature that can identify a poor-prognostic subtype, which closely related to deficient mismatch repair (dMMR) and GALNT6 downregulation. The association of decreased GALNT6 with dMMR was confirmed in multiple datasets of tumors and cell lines, and was further recapitulated by IHC, where approximately 15% tumors exhibited loss of GALNT6 protein. GALNT6 mRNA and protein was expressed in premalignant/preinvasive lesions but was subsequently downregulated in a subset of carcinomas, possibly through epigenetic silencing. Decreased GALNT6 was independently associated with poor prognosis in the IHC cohort and an additional microarray meta-cohort, by multivariate analyses, and its discriminative power of survival was particularly remarkable in stage III patients. GALNT6 silencing in SW480 cells promoted invasion, migration, chemoresistance, and increased cell surface expression of a cancer-associated truncated O-glycan, Tn-antigen.Conclusions: The 15-glycogene signature and the expression levels of GALNT6 mRNA and protein each serve as a novel prognostic biomarker, highlighting the role of dysregulated glycogenes in cancer-associated glycan synthesis and poor prognosis. Clin Cancer Res; 24(18); 4468-81. ©2018 AACR.
Collapse
Affiliation(s)
- Masaru Noda
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima City, Japan
- Department of Breast Surgery, Fukushima Medical University School of Medicine, Fukushima City, Japan
| | - Hirokazu Okayama
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima City, Japan.
| | - Kazunoshin Tachibana
- Department of Breast Surgery, Fukushima Medical University School of Medicine, Fukushima City, Japan
| | - Wataru Sakamoto
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima City, Japan
| | - Katsuharu Saito
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima City, Japan
| | - Aung Kyi Thar Min
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima City, Japan
| | - Mai Ashizawa
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima City, Japan
| | - Takahiro Nakajima
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima City, Japan
| | - Keita Aoto
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima City, Japan
| | - Tomoyuki Momma
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima City, Japan
| | - Kyoko Katakura
- Department of Gastroenterology, Fukushima Medical University School of Medicine, Fukushima City, Japan
| | - Shinji Ohki
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima City, Japan
| | - Koji Kono
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima City, Japan
| |
Collapse
|
5
|
Frost DC, Li L. Recent advances in mass spectrometry-based glycoproteomics. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2018; 95:71-123. [PMID: 24985770 DOI: 10.1016/b978-0-12-800453-1.00003-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Protein glycosylation plays fundamental roles in many biological processes as one of the most common, and the most complex, posttranslational modification. Alterations in glycosylation profile are now known to be associated with many diseases. As a result, the discovery and detailed characterization of glycoprotein disease biomarkers is a primary interest of biomedical research. Advances in mass spectrometry (MS)-based glycoproteomics and glycomics are increasingly enabling qualitative and quantitative approaches for site-specific structural analysis of protein glycosylation. While the complexity presented by glycan heterogeneity and the wide dynamic range of clinically relevant samples like plasma, serum, cerebrospinal fluid, and tissue make comprehensive analyses of the glycoproteome a challenging task, the ongoing efforts into the development of glycoprotein enrichment, enzymatic digestion, and separation strategies combined with novel quantitative MS methodologies have greatly improved analytical sensitivity, specificity, and throughput. This review summarizes current MS-based glycoproteomics approaches and highlights recent advances in its application to cancer biomarker and neurodegenerative disease research.
Collapse
Affiliation(s)
- Dustin C Frost
- School of Pharmacy, University of Wisconsin, Madison, Wisconsin, USA
| | - Lingjun Li
- School of Pharmacy, University of Wisconsin, Madison, Wisconsin, USA; Department of Chemistry, University of Wisconsin, Madison, Wisconsin, USA.
| |
Collapse
|
6
|
Naito S, Takahashi T, Onoda J, Uemura S, Ohyabu N, Takemoto H, Yamane S, Fujii I, Nishimura SI, Numata Y. Generation of Novel Anti-MUC1 Monoclonal Antibodies with Designed Carbohydrate Specificities Using MUC1 Glycopeptide Library. ACS OMEGA 2017; 2:7493-7505. [PMID: 30023556 PMCID: PMC6044872 DOI: 10.1021/acsomega.7b00708] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 10/09/2017] [Indexed: 06/08/2023]
Abstract
Numerous anti-mucin 1 (anti-MUC1) antibodies that recognize O-glycan core structures have already been developed. However, most of them show low specificities toward O-glycan structures and/or low affinity toward a monovalent epitope. In this study, using an MUC1 glycopeptide library, we established two novel anti-MUC1 monoclonal antibodies (1B2 and 12D10) with designed carbohydrate specificities. Compared with previously reported anti-MUC1 antibodies, 1B2 and 12D10 showed quite different features regarding their specificities, affinities, and reactivity profiles to various cell lines. Both antibodies recognized specific O-glycan structures at the PDT*R motif (the asterisk represents an O-glycosylation site). 1B2 recognized O-glycans with an unsubstituted O-6 position of the GalNAc residue (Tn, T, and 23ST), whereas 12D10 recognized Neu5Ac at the same position (STn, 26ST, and dST). Neither of them bound to glycopeptides with core 2 O-glycans that have GlcNAc at the O-6 position of the GalNAc residue. Furthermore, 1B2 and 12D10 showed a strong binding to not only native MUC1 but also 20-mer glycopeptide with a monovalent epitope. These anti-MUC1 antibodies should thus become powerful tools for biological studies on MUC1 O-glycan structures. Furthermore, the strategy of using glycopeptide libraries should enable the development of novel antibodies with predesigned O-glycan specificities.
Collapse
Affiliation(s)
- Shoichi Naito
- Shionogi
Pharmaceutical Research Center, Shionogi
& Co., Ltd., 3-1-1
Futaba-cho, Toyonaka, Osaka 561-0825, Japan
| | - Tatsuya Takahashi
- Shionogi
Pharmaceutical Research Center, Shionogi
& Co., Ltd., 3-1-1
Futaba-cho, Toyonaka, Osaka 561-0825, Japan
| | - Junji Onoda
- Shionogi
Pharmaceutical Research Center, Shionogi
& Co., Ltd., 3-1-1
Futaba-cho, Toyonaka, Osaka 561-0825, Japan
| | - Shoko Uemura
- Shionogi
Pharmaceutical Research Center, Shionogi
& Co., Ltd., 3-1-1
Futaba-cho, Toyonaka, Osaka 561-0825, Japan
| | - Naoki Ohyabu
- Shionogi
Pharmaceutical Research Center, Shionogi
& Co., Ltd., 3-1-1
Futaba-cho, Toyonaka, Osaka 561-0825, Japan
| | - Hiroshi Takemoto
- Shionogi
Pharmaceutical Research Center, Shionogi
& Co., Ltd., 3-1-1
Futaba-cho, Toyonaka, Osaka 561-0825, Japan
| | - Shoji Yamane
- Shionogi
Pharmaceutical Research Center, Shionogi
& Co., Ltd., 3-1-1
Futaba-cho, Toyonaka, Osaka 561-0825, Japan
| | - Ikuo Fujii
- School
of Science, Osaka Prefecture University, 1-1 Gakuen-cho,
Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Shin-Ichiro Nishimura
- Faculty
of Advanced Life Science, Hokkaido University, N21, W11, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
| | - Yoshito Numata
- Shionogi
Pharmaceutical Research Center, Shionogi
& Co., Ltd., 3-1-1
Futaba-cho, Toyonaka, Osaka 561-0825, Japan
| |
Collapse
|
7
|
Oura F, Yajima Y, Nakata M, Taniue K, Akiyama T, Nakada *H, Yamamoto K, Fujita-Yamaguchi Y. Susceptibility to proteases of anti-Tn-antigen MLS128 binding glycoproteins expressed in human colon cancer cells. Biosci Trends 2015; 9:49-55. [PMID: 25787909 DOI: 10.5582/bst.2014.01127] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Fumie Oura
- Department of Applied Biochemistry, Tokai University School of Engineering
| | - Yukiko Yajima
- Department of Applied Biochemistry, Tokai University School of Engineering
| | - Munehiro Nakata
- Department of Applied Biochemistry, Tokai University School of Engineering
| | - Kenzui Taniue
- Department of Applied Biochemistry, Tokai University School of Engineering
| | | | - *Hiroshi Nakada
- Department of Applied Biochemistry, Tokai University School of Engineering
| | - Kazuo Yamamoto
- Department of Applied Biochemistry, Tokai University School of Engineering
| | | |
Collapse
|
8
|
Rachel H, Chang-Chun L. Recent advances toward the development of inhibitors to attenuate tumor metastasis via the interruption of lectin-ligand interactions. Adv Carbohydr Chem Biochem 2014; 69:125-207. [PMID: 24274369 DOI: 10.1016/b978-0-12-408093-5.00005-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Aberrant glycosylation is a well-recognized phenomenon that occurs on the surface of tumor cells, and the overexpression of a number of ligands (such as TF, sialyl Tn, and sialyl Lewis X) has been correlated to a worse prognosis for the patient. These unique carbohydrate structures play an integral role in cell-cell communication and have also been associated with more metastatic cancer phenotypes, which can result from binding to lectins present on cell surfaces. The most well studied metastasis-associated lectins are the galectins and selectins, which have been correlated to adhesion, neoangiogenesis, and immune-cell evasion processes. In order to slow the rate of metastatic lesion formation, a number of approaches have been successfully developed which involve interfering with the tumor lectin-substrate binding event. Through the generation of inhibitors, or by attenuating lectin and/or carbohydrate expression, promising results have been observed both in vitro and in vivo. This article briefly summarizes the involvement of lectins in the metastatic process and also describes different approaches used to prevent these undesirable carbohydrate-lectin binding events, which should ultimately lead to improvement in current cancer therapies.
Collapse
Affiliation(s)
- Hevey Rachel
- Alberta Glycomics Centre, Department of Chemistry, University of Calgary, Calgary, Alberta, Canada
| | | |
Collapse
|
9
|
Chen CC, Su WC, Huang BY, Chen YJ, Tai HC, Obena RP. Interaction modes and approaches to glycopeptide and glycoprotein enrichment. Analyst 2014; 139:688-704. [DOI: 10.1039/c3an01813j] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
10
|
Cohen M, Varki A. Modulation of glycan recognition by clustered saccharide patches. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2014; 308:75-125. [PMID: 24411170 DOI: 10.1016/b978-0-12-800097-7.00003-8] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
All cells in nature are covered with a dense and complex array of glycan chains. Specific recognition and binding of glycans is a critical aspect of cellular interactions, both within and between species. Glycan-protein interactions tend to be of low affinity but high specificity, typically utilizing multivalency to generate the affinity required for biologically relevant binding. This review focuses on a higher level of glycan organization, the formation of clustered saccharide patches (CSPs), which can constitute unique ligands for highly specific interactions. Due to technical challenges, this aspect of glycan recognition remains poorly understood. We present a wealth of evidence for CSPs-mediated interactions, and discuss recent advances in experimental tools that are beginning to provide new insights into the composition and organization of CSPs. The examples presented here are likely the tip of the iceberg, and much further work is needed to elucidate fully this higher level of glycan organization.
Collapse
Affiliation(s)
- Miriam Cohen
- Department Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, California, USA.
| | - Ajit Varki
- Department of Medicine, University of California, San Diego, California, USA; Department Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, California, USA.
| |
Collapse
|
11
|
Fujita-Yamaguchi Y. Renewed interest in basic and applied research involving monoclonal antibodies against an oncofetal Tn-antigen. J Biochem 2013; 154:103-5. [PMID: 23740330 DOI: 10.1093/jb/mvt052] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Tn-antigen (GalNAcα-Ser/Thr) is one of the most common aberrations associated with cancer progression and metastasis, and thus is an excellent target for development of cancer diagnostics and therapeutics. MLS128 monoclonal antibody (mAb), derived from a mouse immunized with human colon carcinoma cells, was reported to bind to two or three consecutive Tn-antigens (Tn2 or Tn3) with one-order higher affinity for Tn3 than for Tn2. Our recent studies demonstrated that MLS128 significantly inhibits breast and colon cancer cell growth. Molecular cloning of the variable regions of heavy (VH) and light (VL) chains revealed that the VH sequence of MLS128 shared 97% nucleotide sequence identity with the VH of 83D4 mAb, derived from breast cancer-immunized mice, which has a similar affinity for Tn2/Tn3. MLS128 single-chain antibodies (scFv) and scFv-Fc were constructed to confirm the affinity for synthetic Tn2/Tn3 peptides. Thermodynamic studies on MLS128 binding to Tn2/Tn3 revealed its unique nature of temperature-dependent binding.
Collapse
Affiliation(s)
- Yoko Fujita-Yamaguchi
- Department of Applied Biochemistry, Tokai University School of Engineering, Hiratsuka, Kanagawa, Japan.
| |
Collapse
|
12
|
Nakada H. Ikuo Yamashina: a pioneer who established the basis of current glycobiology. J Biochem 2012; 151:461-8. [PMID: 22539503 DOI: 10.1093/jb/mvs032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Ikuo Yamashina determined the two notable structures of N-glycans, N-acetylglucosaminylasparagine and β-mannosidic linkages, which are generally present in sugar-amino acid and innermost mannose residue of the N-glycans, respectively. He detected mucins with unusual O-glycans and proteoheparan sulphate in the plasma membranes of AH66 ascites hepatoma cells. Unusual O-glycans were identified as tumour-associated carbohydrate antigens after the development of monoclonal antibodies against these O-glycans. Epitopic structures of some antigens were determined to comprise clusters of short O-glycans aligned on the core peptide, which may be not only antigenic but also functional in relation to tumour behaviour. With respect to proteoheparan sulphate, this finding led to study on membrane-bound proteoglycans.
Collapse
Affiliation(s)
- Hiroshi Nakada
- Department of Molecular Biosciences, Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo-Motoyama, Kita-ku, Kyoto, 603-8555, Japan.
| |
Collapse
|
13
|
Recent advances in developing synthetic carbohydrate-based vaccines for cancer immunotherapies. Future Med Chem 2012; 4:545-84. [DOI: 10.4155/fmc.11.193] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Cancer cells can often be distinguished from healthy cells by the expression of unique carbohydrate sequences decorating the cell surface as a result of aberrant glycosyltransferase activity occurring within the cell; these unusual carbohydrates can be used as valuable immunological targets in modern vaccine designs to raise carbohydrate-specific antibodies. Many tumor antigens (e.g., GM2, Ley, globo H, sialyl Tn and TF) have been identified to date in a variety of cancers. Unfortunately, carbohydrates alone evoke poor immunogenicity, owing to their lack of ability in inducing T-cell-dependent immune responses. In order to enhance their immunogenicity and promote long-lasting immune responses, carbohydrates are often chemically modified to link to an immunogenic protein or peptide fragment for eliciting T-cell-dependent responses. This review will present a summary of efforts and advancements made to date on creating carbohydrate-based anticancer vaccines, and will include novel approaches to overcoming the poor immunogenicity of carbohydrate-based vaccines.
Collapse
|
14
|
Subedi GP, Satoh T, Hanashima S, Ikeda A, Nakada H, Sato R, Mizuno M, Yuasa N, Fujita-Yamaguchi Y, Yamaguchi Y. Overproduction of anti-Tn antibody MLS128 single-chain Fv fragment in Escherichia coli cytoplasm using a novel pCold-PDI vector. Protein Expr Purif 2012; 82:197-204. [PMID: 22245752 DOI: 10.1016/j.pep.2011.12.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Revised: 12/22/2011] [Accepted: 12/23/2011] [Indexed: 11/24/2022]
Abstract
Overproduction of recombinant proteins in Escherichia coli is often hampered by their failure to fold correctly, leading to their accumulation within inclusion bodies. To overcome the problem, a variety of techniques aimed at soluble expression have been developed including low temperature expression and/or fusion of soluble tags and chaperones. However, a general protocol for bacterial expression of disulfide bond-containing proteins has hitherto not been established. Single chain Fv fragments (scFvs) are disulfide bond-containing proteins often difficult to express in soluble forms in E. coli. We here examine in detail the E. coli expression of a scFv originating from an anti-carbohydrate MLS128 antibody as a model system. We combine three techniques: (1) tagging scFv with thioredoxin, DsbC and protein disulfide isomerase (PDI), (2) expressing the proteins at low temperature using the pCold vector system, and (3) using Origami E. coli strains with mutations in the thioredoxin reductase and glutathione reductase genes. We observed a high expression level of soluble MLS128-scFv in the Origami strain only when PDI is used as a tag. The recombinant protein retains full binding activity towards synthetic carbohydrate antigens. The developed "pCold-PDI" vector has potential for overproduction of other scFvs and disulfide-containing proteins in the Origami strains.
Collapse
Affiliation(s)
- Ganesh P Subedi
- Structural Glycobiology Team, Systems Glycobiology Research Group, Chemical Biology Department, RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako, Saitama 3510198, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Blixt O, Lavrova OI, Mazurov DV, Cló E, Kracun SK, Bovin NV, Filatov AV. Analysis of Tn antigenicity with a panel of new IgM and IgG1 monoclonal antibodies raised against leukemic cells. Glycobiology 2011; 22:529-42. [PMID: 22143985 DOI: 10.1093/glycob/cwr178] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
CD175 or Tn antigen is a carbohydrate moiety of N-acetylgalactosamine (GalNAc)α1-O- linked to the residue of amino acid serine or threonine in a polypeptide chain. Despite the chemical simplicity of the Tn antigen, its antigenic structure is considered to be complex and the clear determinants of Tn antigenicity remain poorly understood. As a consequence, a broad variety of anti-Tn monoclonal antibodies (mAbs) have been generated. To further investigate the nature and complexity of the Tn antigen, we generated seven different anti-Tn mAbs of IgM and IgG classes raised against human Jurkat T cells, which are Tn-positive due to the low activity of T-synthase and mutation in specific chaperone Cosmc. The binding analysis of anti-Tn mAbs with the array of synthetic saccharides, glycopeptides and O-glycoproteins revealed unexpected differences in specificities of anti-Tn mAbs. IgM mAbs bound the terminal GalNAc residue of the Tn antigen irrespective of the peptide context or with low selectivity to the glycoproteins. In contrast, IgG mAbs recognized the Tn antigen in the context of a specific peptide motif. Particularly, JA3 mAb reacted to the GSPP or GSPAPP, and JA5 mAb recognized specifically the GSP motif (glycosylation sites are underlined). The major O-glycan carrier proteins CD43 and CD162 and isoforms of CD45 expressed on Jurkat cells were precipitated by anti-Tn mAbs with different affinities. In summary, our data suggest that Tn antigen-Ab binding capacity is determined by the peptide context of the Tn antigen, antigenic specificity of the Ab and class of the immunoglobulin. The newly generated anti-Tn IgG mAbs with the strong specificity to glycoprotein CD43 can be particularly interesting for the application in leukemia diagnostics and therapy.
Collapse
Affiliation(s)
- Ola Blixt
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3, dept. 24.6.48, DK-2200 N Copenhagen, Denmark
| | | | | | | | | | | | | |
Collapse
|
16
|
Li Q, Rodriguez LG, Farnsworth DF, Gildersleeve JC. Effects of hapten density on the induced antibody repertoire. Chembiochem 2010; 11:1686-91. [PMID: 20602400 DOI: 10.1002/cbic.201000235] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Small peptides and oligosaccharides are important antigens for the development of vaccines and the production of monoclonal antibodies. Because of their small size, peptides and oligosaccharides are non-immunogenic on their own and typically must be conjugated to a larger carrier protein to elicit an immune response. Selection of a suitable carrier protein, conjugation method, and hapten density are critical for generating an optimal immune response. We used a glycan array to compare the repertoire of antibodies induced after immunizing with either low or high-density conjugates of the tumor-associated Tn antigen. At high hapten density, a broader range of antibodies was induced, and reactivity to the clustered Tn antigen was observed. In contrast, antibodies induced by the low-density conjugate had narrower reactivity and did not bind the clustered Tn antigen.
Collapse
Affiliation(s)
- Qian Li
- Chemical Biology Laboratory, National Cancer Institute, NIH, Frederick, MD 21702, USA
| | | | | | | |
Collapse
|
17
|
Yamashina I. The trail of my studies on glycoproteins from enterokinase to tumor markers. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2010; 86:578-587. [PMID: 20551595 PMCID: PMC3081172 DOI: 10.2183/pjab.86.578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Accepted: 03/03/2010] [Indexed: 05/29/2023]
Abstract
This review describes the results of the author's studies on glycoproteins which have been carried out for more than 50 years. Starting from the elucidation of basic structures of glycoproteins, i.e. the structure of the linkage between an amino acid and a sugar and the occurrence of the beta-mannosidic linkage as the common structure of glycoproteins, the author became interested in the cell membrane glycoproteins focused on the comparison of cancer cells versus normal cells. These studies were then extended to the establishment of sugar-directed and cancer-associated monoclonal antibodies. Some of the monoclonal antibodies are useful for cancer diagnosis.
Collapse
|
18
|
Mestecky J, Novak J, Julian BA, Tomana M. Pathogenic potential of galactose-deficient IgA1 in IgA nephropathy. Nephrology (Carlton) 2008. [DOI: 10.1046/j.1440-1797.7.s3.3.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
19
|
Singha B, Adhya M, Chatterjee BP. Catfish (Clarias batrachus) serum lectin recognizes polyvalent Tn [α-d-GalpNAc1-Ser/Thr], Tα [β-d-Galp-(1→3)-α-d-GalpNAc1-Ser/Thr], and II [β-d-Galp(1→4)-β-d-GlcpNAc1-] mammalian glycotopes. Carbohydr Res 2008; 343:2384-92. [DOI: 10.1016/j.carres.2008.06.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2007] [Revised: 06/26/2008] [Accepted: 06/28/2008] [Indexed: 11/17/2022]
|
20
|
Geraci C, Consoli GML, Galante E, Bousquet E, Pappalardo M, Spadaro A. Calix[4]arene Decorated with Four Tn Antigen Glycomimetic Units and P3CS Immunoadjuvant: Synthesis, Characterization, and Anticancer Immunological Evaluation. Bioconjug Chem 2008; 19:751-8. [DOI: 10.1021/bc700411w] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Corrada Geraci
- Istituto di Chimica Biomolecolare, C.N.R., Via del Santuario 110, I-95028 Valverde (CT), Italy, and Dipartimento di Scienze Farmaceutiche - Università di Catania, Viale A. Doria 6, I-95125 Catania, Italy
| | - Grazia M. L. Consoli
- Istituto di Chimica Biomolecolare, C.N.R., Via del Santuario 110, I-95028 Valverde (CT), Italy, and Dipartimento di Scienze Farmaceutiche - Università di Catania, Viale A. Doria 6, I-95125 Catania, Italy
| | - Eva Galante
- Istituto di Chimica Biomolecolare, C.N.R., Via del Santuario 110, I-95028 Valverde (CT), Italy, and Dipartimento di Scienze Farmaceutiche - Università di Catania, Viale A. Doria 6, I-95125 Catania, Italy
| | - Ennio Bousquet
- Istituto di Chimica Biomolecolare, C.N.R., Via del Santuario 110, I-95028 Valverde (CT), Italy, and Dipartimento di Scienze Farmaceutiche - Università di Catania, Viale A. Doria 6, I-95125 Catania, Italy
| | - Maria Pappalardo
- Istituto di Chimica Biomolecolare, C.N.R., Via del Santuario 110, I-95028 Valverde (CT), Italy, and Dipartimento di Scienze Farmaceutiche - Università di Catania, Viale A. Doria 6, I-95125 Catania, Italy
| | - Angelo Spadaro
- Istituto di Chimica Biomolecolare, C.N.R., Via del Santuario 110, I-95028 Valverde (CT), Italy, and Dipartimento di Scienze Farmaceutiche - Università di Catania, Viale A. Doria 6, I-95125 Catania, Italy
| |
Collapse
|
21
|
Veprek P, Hajdúch M, Dzubak P, Kuklík R, Polakova J, Bezouska K. Comblike dendrimers containing Tn antigen modulate natural killing and induce the production of Tn specific antibodies. J Med Chem 2006; 49:6400-7. [PMID: 17034145 DOI: 10.1021/jm050741g] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Comblike glycodendrimers were prepared by the chemoselective ligation of cysteine-modified glycopeptides (1-7) with a 3-maleimidopropionate-modified linear synthetic carrier (8). Glycodendrimers bearing mono-, di-, or tri-Tn clusters (9-11) were tested as inhibitors using plant and mammalian lectins. In the former group, the Codium fragile lectin showed moderate discrimination among 9, 10, and 11. In the latter group, A and B isoforms of rat NKR-P1 lectin strongly discriminated between 9 and 10. 10 caused a 4-fold increase in killing of the NK resistant tumor cell lines at concentrations as low as 10(-8) M. Surprisingly, 11 interacted exclusively with the rat NKR-P1B isoform and inhibited efficiently natural killing in both rats and humans, even in the presence of the activating compounds 9 and 10. Dinitrophenol haptenization or influenza virus hemagglutinin T-cell epitope conjugation increased the immunogenicity of the parent compounds and resulted in the production of Tn specific antibodies.
Collapse
MESH Headings
- 2,4-Dinitrophenol/chemistry
- Animals
- Antibody Formation
- Antigens, Tumor-Associated, Carbohydrate/chemistry
- Antigens, Tumor-Associated, Carbohydrate/immunology
- Cysteine/chemistry
- Cytotoxicity, Immunologic
- Dendrimers/chemical synthesis
- Dendrimers/chemistry
- Dendrimers/pharmacology
- Epitopes
- Female
- Glycopeptides/chemistry
- Haptens
- Hemagglutinin Glycoproteins, Influenza Virus/chemistry
- Humans
- Immunoglobulin G/biosynthesis
- Immunoglobulin M/biosynthesis
- Jurkat Cells
- Killer Cells, Natural/drug effects
- Killer Cells, Natural/immunology
- Lectins/chemistry
- Mice
- Mice, Inbred BALB C
- Plant Lectins/chemistry
- Protein Binding
- Protein Isoforms/chemistry
- Rats
- Receptors, Immunologic/chemistry
- T-Lymphocytes/immunology
Collapse
Affiliation(s)
- Pavel Veprek
- Group of Glycoconjugates, Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nam. 2, 16610 Prague 6, Czech Republic.
| | | | | | | | | | | |
Collapse
|
22
|
Buskas T, Ingale S, Boons GJ. Towards a fully synthetic carbohydrate-based anticancer vaccine: synthesis and immunological evaluation of a lipidated glycopeptide containing the tumor-associated tn antigen. Angew Chem Int Ed Engl 2006; 44:5985-8. [PMID: 16108081 DOI: 10.1002/anie.200501818] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Therese Buskas
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA.
| | | | | |
Collapse
|
23
|
Kawaguchi T, Takazawa H, Imai S, Morimoto J, Watanabe T, Kanno M, Igarashi S. Expression of Vicia villosa agglutinin (VVA)-binding glycoprotein in primary breast cancer cells in relation to lymphatic metastasis: is atypical MUC1 bearing Tn antigen a receptor of VVA? Breast Cancer Res Treat 2006; 98:31-43. [PMID: 16752227 DOI: 10.1007/s10549-005-9115-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2005] [Accepted: 11/01/2005] [Indexed: 10/24/2022]
Abstract
Aberrant carbohydrate expression frequently occurs in breast cancer and may endow cells with metastatic potential. Here we first studied the relationship between expression of Vicia villosa agglutinin (lectin) (VVA)-binding carbohydrates and aggressive breast cancer. We then investigated the molecular characteristics of these glycoproteins and compared them with those of glycoproteins recognized by the mouse anti-Tn monoclonal antibody (MAb) HB-Tn1. Histochemical studies of samples from 322 cases of invasive ductal carcinoma demonstrated that VVA-binding carbohydrate expression correlated with tumor stage, lymphatic invasion, and lymph node metastasis (p=0.0385, p=0.0019, and p=0.0430. respectively). Western blotting analysis of frozen materials from 39 cases, under denaturing and reducing conditions, revealed that the major cancer cell-specific VVA-binding proteins were molecules of about 30, 33, and >200 kDa. Cases expressing the approximately 33 kDa molecule had significant lymphatic invasion more frequently than did cases not expressing this molecule (p=0.0076). Binding of VVA to the approximately 30 and approximately 33 kDa molecules was completely lost by preincubation of VVA with 1 mM Tn antigen (N-acetylgalactosamine alpha1-O-serine). The VVA-binding molecules appeared to react with VU-3C6 anti-MUC1 MAb. Expression of HB-Tn1 in breast cancer cells showed significant correlation with expression of VVA-binding carbohydrate(s) (p<0.0001) but HB-Tn1 reactivity was not clearly related to breast cancer aggressiveness. Because anti-Tn MAbs bound to Tn antigen clusters, we concluded that atypical MUC1 bearing the noncluster form of Tn antigen is implicated in aggressive growth of primary breast cancer cells, particularly in lymphatic metastasis.
Collapse
Affiliation(s)
- Takanori Kawaguchi
- Second Department of Pathology, School of Medicine, Fukushima Medical University, Fukushima, and Department of Pathology, Chiba National Hospital, Japan.
| | | | | | | | | | | | | |
Collapse
|
24
|
Singh T, Wu J, Peumans W, Rougé P, Van Damme E, Alvarez R, Blixt O, Wu A. Carbohydrate specificity of an insecticidal lectin isolated from the leaves of Glechoma hederacea (ground ivy) towards mammalian glycoconjugates. Biochem J 2006; 393:331-41. [PMID: 16156719 PMCID: PMC1383692 DOI: 10.1042/bj20051162] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Preliminary studies indicated that the potent insecticidal lectin, Gleheda, from the leaves of Glechoma hederacea (ground ivy) preferentially agglutinates human erythrocytes carrying the Tn (GalNAcalpha1-Ser/Thr) antigen. However, no details have been reported yet with respect to the fine specificity of the lectin. To corroborate the molecular basis of the insecticidal activity and physiological function of Gleheda, it is necessary to identify the recognition factors that are involved in the Gleheda-glycotope interaction. In the present study, the requirement of high-density multivalent carbohydrate structural units for Gleheda binding and a fine-affinity profile were evaluated using ELLSA (enzyme-linked lectinosorbent assay) with our extended glycan/ligand collections, a glycan array and molecular modelling. From the results, we concluded that a high-density of exposed multivalent Tn-containing glycoproteins (natural armadillo and asialo ovine salivary glycoproteins) were the most potent factors for Gleheda binding. They were, on a nanogram basis, 6.5x10(5), 1.5x10(4) and 3.1x10(3) times more active than univalent Gal (galactose), GalNAc (N-acetylgalactosamine) and Tn respectively. Among mono- and oligo-saccharides examined, simple clustered Tn (molecular mass <3000 Da) from ovine salivary glycoprotein was the best, being 37.5 and 1.7x10(3) times better than GalNAc and Gal respectively. GalNAc glycosides were significantly more active than Gal glycosides, indicating that the N-acetamido group at C-2 plays an important role in Gleheda binding. The results of glycan array support the conclusions drawn with respect to the specificity of Gleheda based on the ELLSA assays. These findings combined with the results of the molecular modelling and docking indicate the occurrence of a primary GalNAcalpha1-binding site in the Gleheda monomer. However, the extraordinary binding feature of Gleheda for glycoproteins demonstrates the importance of affinity enhancement by high-density multivalent glycotopes in the ligand-lectin interactions in biological processes.
Collapse
Affiliation(s)
- Tanuja Singh
- *Glyco-immunochemistry Research Laboratory, Institute of Molecular and Cellular Biology, College of Medicine, Chang-Gung University, Kwei-San, Tao-Yuan, 333, Taiwan
| | - June H. Wu
- †Department of Microbiology and Immunology, College of Medicine, Chang-Gung University, Kwei-San, Tao-Yuan, 333, Taiwan
| | - Willy J. Peumans
- ‡Department of Molecular Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Gent, Belgium
| | - Pierre Rougé
- §Surfaces Cellulaires et Signalisation chez les Végétaux, UMR-CNRS 5546, Pôle de Biotechnologie végétale, Chemin de Borde-Rouge, 31326 Castanet Tolosan, France
| | - Els J. M. Van Damme
- ‡Department of Molecular Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Gent, Belgium
| | - Richard A. Alvarez
- ∥Department of Biochemistry and Molecular Biology, University of Oklahoma, Health Sciences Center, Oklahoma City, OK 73104, U.S.A
| | - Ola Blixt
- ¶Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, U.S.A
| | - Albert M. Wu
- *Glyco-immunochemistry Research Laboratory, Institute of Molecular and Cellular Biology, College of Medicine, Chang-Gung University, Kwei-San, Tao-Yuan, 333, Taiwan
- To whom correspondence should be addressed (email )
| |
Collapse
|
25
|
Kircheis R, Vondru P, Nechansky A, Ohler R, Loibner H, Himmler G, Mudde GC. SialylTn-mAb17-1A Carbohydrate−Protein Conjugate Vaccine: Effect of Coupling Density and Presentation of SialylTn. Bioconjug Chem 2005; 16:1519-28. [PMID: 16287250 DOI: 10.1021/bc050157m] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Carbohydrate antigens resulting from aberrant glycosylation of tumor cells, such as SialylTn, represent attractive targets for cancer vaccination. However, T-cell-independent carbohydrate antigens are poorly immunogenic and fail to induce memory and IgG class switch. Clustered expression patterns of some carbohydrates on the cell surface add further complexity to the design of carbohydrate-based vaccines. We describe here a vaccine consisting of SialylTn carbohydrate epitopes coupled to a highly immunogenic carrier molecule, mAb17-1A, adsorbed on alhydrogel and coformulated with a strong adjuvant, QS-21. The SialylTn-mAb17-1A conjugate vaccine was administered in Rhesus monkeys, and the immune responses against mAb17-1A, SialylTn, ovine submaxillary mucin, and tumor cells were analyzed. The data demonstrate that the density of carbohydrate epitopes on the carrier is an essential parameter for induction of anti-carbohydrate specific memory IgG immune responses. Furthermore, the influence of different types of presentation of SialylTn (monomeric vs trimers vs clustered via a branched polyethylenimine linker) on antibody titers and specificity was studied. High-density coupling of SialylTn epitopes to mAb17-1A induced the strongest immune response against synthetic SialylTn and showed also the highest reactivity against natural targets, such as OSM and tumor cells.
Collapse
Affiliation(s)
- Ralf Kircheis
- igeneon AG, Immunotherapy of Cancer, Vienna, Austria.
| | | | | | | | | | | | | |
Collapse
|
26
|
Buskas T, Ingale S, Boons GJ. Towards a Fully Synthetic Carbohydrate-Based Anticancer Vaccine: Synthesis and Immunological Evaluation of a Lipidated Glycopeptide Containing the Tumor-Associated Tn Antigen. Angew Chem Int Ed Engl 2005. [DOI: 10.1002/ange.200501818] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
27
|
Freire T, Bay S, von Mensdorff-Pouilly S, Osinaga E. Molecular Basis of Incomplete O-Glycan Synthesis in MCF-7 Breast Cancer Cells: Putative Role of MUC6 in Tn Antigen Expression. Cancer Res 2005; 65:7880-7. [PMID: 16140958 DOI: 10.1158/0008-5472.can-04-3746] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
An incomplete elongation of O-glycan saccharide chains in mucins have been found in epithelial cancers, leading to the expression of shorter carbohydrate structures, such as the Tn antigen (GalNAc-O-Ser/Thr). This antigen is one of the most specific human cancer-associated structures and is capable of inducing effective immune responses against cancer cells. We aimed to investigate the causes of the expression of Tn antigen in the Tn-rich MCF-7 breast cancer cell line focusing on the first step of the O-glycosylation process. Interestingly, amino acid sequences derived from "non-mammary" apomucins (MUC5B and MUC6) were very good acceptor substrates for ppGalNAc-Ts, which are the enzymes catalyzing the Tn antigen synthesis. MUC6 peptide glycosylation with MCF-7 microsome extracts as source of ppGalNAc-T activity yielded 95% conversion of the peptide into MUC6-Tn. In addition, the MUC6-Tn glycopeptide was a poor acceptor substrate for core 1 beta3Gal-T, the next enzyme involved in the saccharide chain biosynthesis, yielding only 5% conversion of MUC6-Tn into MUC6-TF. These results indicate that non-mammary apomucin expression could be responsible, at least in part, for Tn antigen expression in MCF-7 breast cancer cells due to a combined action on glycosyltransferases: an increase of ppGalNAc-T activity and a decrease of core 1 beta3Gal-T activity. Our hypothesis is supported by experiments in vivo showing that (a) native MUC6 glycoproteins express the Tn antigen in MCF-7 cells and (b) Tn antigen expression is increased after transfection with a construct encoding for a MUC6 recombinant protein into the low Tn-expressing breast cancer cell T47D. These results open new horizons in breast cancer glycoimmunology, stressing the potential role of non-mammary apomucins.
Collapse
Affiliation(s)
- Teresa Freire
- Laboratorio de Oncología Básica y Biología Molecular, Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | | | | | | |
Collapse
|
28
|
Wu AM. Lectinochemical studies on the glyco-recognition factors of a Tn (GalNAcα1→Ser/Thr) specific lectin isolated from the seeds of Salvia sclarea. J Biomed Sci 2005; 12:167-84. [PMID: 15864748 DOI: 10.1007/s11373-004-8180-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
The lectin extracted from the seeds of Salvia sclarea (SSL) recognizes the Tn antigen (GalNAc alpha1-->Ser/Thr) expressed in certain human carcinomas. In previous studies, knowledge of the binding properties of SSL was restricted to GalNAcalpha1--> related oligosaccharides and glycopeptides. Thus, the requirements of functional groups in monosaccharide and high-density polyvalent carbohydrate structural units for SSL binding and an updated affinity profile were further evaluated by enzyme-linked lectinosorbent (ELLSA) and inhibition assays. Among the glycoproteins (gps) tested for interaction, a high density of exposed Tn-containing glycoproteins such as in the armadillo salivary Tn glycoprotein and asialo ovine salivary glycoprotein reacted best with SSL. When the gps were tested for inhibition of SSL binding, which was expressed as 50% nanogram inhibition, the high density polyvalent Tn present in macromolecules was the most potent inhibitor. Among the monosaccharide and carbohydrate structural units studied, which were expressed as nanomole inhibition, GalNAc alpha1-->3GalNAc beta1-->3Gal alpha1-->4Gal beta1-->4Glc (Fp), GalNAc alpha1-->3Gal beta1-->4Glc (A(L)), GalNAc alpha1-->3GalNAc beta1-->Me (F beta), GalNAc alpha1-->3GalNAc alpha1-->Me (F alpha) and GalNAc alpha1--> Ser/Thr (Tn) were the most active ligands, being 2.5-5.0 x 10(3) and 1.25-2.5 times more active than Gal and GalNAc, respectively. From the results, it is suggested that the combining site of SSL is a shallow groove type, recognizing the monosaccharide of GalNAc as the major binding site or Tn up to the Forssman pentasaccharide (Fp). It can be concluded that the three critical factors for SSL binding are the -NH CH(3)CO at carbon-2 in Gal, the configuration of carbon-3 in GalNAc, and the polyvalent Tn (GalNAc alpha1-->Ser/Thr) present in macromolecules. These results should assist in understanding the glyco-recognition factors involved in carbohydrate-lectin interactions in biological processes. The effect of the polyvalent F alpha, F beta and GalNAc beta1-->3Gal alpha1--> (P alpha) glycotopes on binding should be examined. However, this is hampered by the lack of availability of suitable reagents.
Collapse
Affiliation(s)
- Albert M Wu
- Glyco-Immunochemistry Research Laboratory, Institute of Molecular and Cellular Biology, College of Medicine, Chang-Gung University, Kweishan, Taoyuan 333, Taiwan.
| |
Collapse
|
29
|
Lo-Man R, Vichier-Guerre S, Perraut R, Dériaud E, Huteau V, BenMohamed L, Diop OM, Livingston PO, Bay S, Leclerc C. A Fully Synthetic Therapeutic Vaccine Candidate Targeting Carcinoma-Associated Tn Carbohydrate Antigen Induces Tumor-Specific Antibodies in Nonhuman Primates. Cancer Res 2004; 64:4987-94. [PMID: 15256473 DOI: 10.1158/0008-5472.can-04-0252] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We recently developed an efficient strategy based on a fully synthetic dendrimeric carbohydrate display (multiple antigenic glycopeptide; MAG) to induce anticarbohydrate antibody responses for therapeutic vaccination against cancer. Here, we show the superior efficacy of the MAG strategy over the traditional keyhole limpet hemocyanin glycoconjugate to elicit an anticarbohydrate IgG response against the tumor-associated Tn antigen. We highlight the influence of the aglyconic carrier elements of such a tumor antigen for their recognition by the immune system. Finally, we additionally developed the MAG system by introducing promiscuous HLA-restricted T-helper epitopes and performed its immunological evaluation in nonhuman primates. MAG:Tn vaccines induced in all of the animals strong tumor-specific anti-Tn antibodies that can mediate antibody-dependent cell cytotoxicity against human tumor. Therefore, the preclinical evaluation of the MAG:Tn vaccine demonstrates that it represents a safe and highly promising immunotherapeutic molecularly defined tool for targeting breast, colon, and prostate cancers that express the carbohydrate Tn antigen.
Collapse
Affiliation(s)
- Richard Lo-Man
- Unité de Biologie des Régulations Immunitaires (Institut National de la Santé et de la Recherche Médicale E352) Institut Pasteur, 25-28 rue du Dr. Roux, 75724 Paris, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Wu AM. Polyvalency of Tn (GalNAcα1→Ser/Thr) glycotope as a critical factor forVicia villosaB4and glycoprotein interactions. FEBS Lett 2004; 562:51-8. [PMID: 15044001 DOI: 10.1016/s0014-5793(04)00180-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2003] [Revised: 01/28/2004] [Accepted: 01/29/2004] [Indexed: 11/28/2022]
Abstract
Vicia villosa B(4) (VVL-B(4)) is an important lectin for detecting exposed Tn (GalNAcalpha1-Ser/Thr) determinants on cancer cells. In order to elucidate the binding factors involved in VVL-B(4) and glycotope interaction, the binding properties of this lectin were analyzed by enzyme-linked lectinosorbent and inhibition assays. From the results, it is concluded that the most critical factor affecting VVL-B(4) binding is polyvalency at the alpha anomer of Gal with -NH CH(3)CO at carbon-2 (Tn epitope), which enhances the reactivity by 3.3x10(5) times over monovalent Gal. The reactivities of glycotopes can be ranked as follows: high density Tn cluster >>Tn glycopeptides (MW<3.0x10(3) >> monomeric Tn to tri- Tn glycopeptides >>> other GalNAcalpha/beta-related structural units>Gal and Galalpha- or beta-linked ligands, demonstrating the essential role of the polyvalency of Tn glycotopes in the enhancement of the binding.
Collapse
Affiliation(s)
- Albert M Wu
- Glyco-Immunochemistry Research Laboratory, Institute of Molecular and Cellular Biology, College of Medicine, Chang-Gung University, Kwei-San, Tao-Yuan 333, Taiwan.
| |
Collapse
|
31
|
Zhang Y, Iwasaki H, Wang H, Kudo T, Kalka TB, Hennet T, Kubota T, Cheng L, Inaba N, Gotoh M, Togayachi A, Guo J, Hisatomi H, Nakajima K, Nishihara S, Nakamura M, Marth JD, Narimatsu H. Cloning and characterization of a new human UDP-N-acetyl-alpha-D-galactosamine:polypeptide N-acetylgalactosaminyltransferase, designated pp-GalNAc-T13, that is specifically expressed in neurons and synthesizes GalNAc alpha-serine/threonine antigen. J Biol Chem 2003; 278:573-84. [PMID: 12407114 DOI: 10.1074/jbc.m203094200] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To date, 10 members of the UDP-N-acetyl-alpha-d-galactosamine:polypeptide N-acetylgalactosaminyltransferase (pp-GalNAc-T) family have been cloned and analyzed in human. In this study, we cloned and analyzed a novel human pp-GalNAc-T from an NT2 cell cDNA library, and we named it pp-GalNAc-T13. In amino acid sequences, pp-GalNAc-T13 was highly homologous, showing 84.3% identity, to pp-GalNAc-T1. Real time PCR analysis revealed pp-GalNAc-T13 to be highly and restrictively expressed in the brain and present at very low or undetectable levels in other tissues, in contrast to the ubiquitous expression of pp-GalNAc-T1. pp-GalNAc-T13 was abundantly expressed in all neuroblastoma cells examined and primary cultured neurons but not in glioblastoma cells and primary cultured astrocytes. pp-GalNAc-T13 exhibited much stronger activity to transfer GalNAc to mucin peptides, such as Muc5Ac and MUC7, than did pp-GalNAc-T1. In addition, pp-GalNAc-T13 differed in substrate specificity to pp-GalNAc-T1. pp-GalNAc-T13 was able to form a triplet Tn epitope, three consecutive GalNAc-Ser/Thr structures, on peptides encoded in syndecan-3, a proteoglycan expressed in neurons. pp-GalNAc-T13-deficient mice have been established in a previous work. Immunohistochemical study showed a remarkable decrease in Tn antigen expression in the cerebellum of the pp-GalNAc-T13 knockout mouse. pp-GalNAc-T13 would be a major enzyme responsible for the synthesis of O-glycan and specifically the Tn antigen epitope in neurons.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antigens, Tumor-Associated, Carbohydrate/immunology
- Antigens, Tumor-Associated, Carbohydrate/metabolism
- Astrocytes/cytology
- Astrocytes/metabolism
- Base Sequence
- Cells, Cultured
- Cerebellar Cortex/cytology
- Cerebellar Cortex/metabolism
- Chromatography, High Pressure Liquid
- Cloning, Molecular
- Glycopeptides/metabolism
- Glycosylation
- Humans
- Membrane Glycoproteins/metabolism
- Mice
- Mice, Knockout
- Molecular Sequence Data
- Mucin 5AC
- Mucins/metabolism
- N-Acetylgalactosaminyltransferases/genetics
- N-Acetylgalactosaminyltransferases/metabolism
- Neurons/cytology
- Neurons/physiology
- Proteoglycans/metabolism
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- Sequence Alignment
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
- Substrate Specificity
- Syndecan-3
- Tissue Distribution
- Polypeptide N-acetylgalactosaminyltransferase
Collapse
Affiliation(s)
- Yan Zhang
- Glycogene Function Team, Research Center for Glycoscience, National Institute of Advanced Industrial Science and Technology, Central-2, Open Space Laboratory, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Akita K, Fushiki S, Fujimoto T, Munesue S, Inoue M, Oguri K, Okayama M, Yamashina I, Nakada H. Identification of the core protein carrying the Tn antigen in mouse brain: specific expression on syndecan-3. Cell Struct Funct 2001; 26:271-8. [PMID: 11831359 DOI: 10.1247/csf.26.271] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
We isolated glycoproteins carrying the Tn antigen, which was expressed spatiotemporally in the developing mouse brain. The Tn antigen was expressed on two molecular species with a molecular weight from 200 to 350 kDa and 110 to 160 kDa, as judged on SDS-PAGE. Although the two glycoproteins showed different susceptibilities to heparitinase I and solubilities in a salt solution, after treatment with V8 protease they showed the same mobility corresponding to a molecular weight of 90 kDa on SDS-PAGE, suggesting that these two molecules shared a common core protein. Partial N-terminal sequences of the glycoproteins were determined, i.e. AQRXRNENFERPV and ALAAPXAPAMLP, which were identified as the sequences of the N-terminal and central portions of syndecan-3, respectively. Both glycoproteins were reactive to anti-mouse syndecan-3 antibody. These results suggest that one is a soluble syndecan-3 cleaved between mucin-like domain and transmembrane domain, and the other is a membrane-bound syndecan-3 lacking N-terminal glycosaminoglycan attachment sites, and that both glycoproteins have a mucin-like domain characteristic of syndecan-3, in which the Tn antigen may be expressed.
Collapse
Affiliation(s)
- K Akita
- Department of Biotechnology, Faculty of Engineering, Kyoto Sangyo University, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Akita K, Fushiki S, Fujimoto T, Inoue M, Oguri K, Okayama M, Yamashina I, Nakada H. Developmental expression of a unique carbohydrate antigen, Tn antigen, in mouse central nervous tissues. J Neurosci Res 2001; 65:595-603. [PMID: 11550228 DOI: 10.1002/jnr.1190] [Citation(s) in RCA: 200] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Using an anti-Tn monoclonal antibody, the Tn antigen was detected immunohistochemically in prenatal and early postnatal central nervous tissues. On embryonic day 9 (E9), the antigen was distributed throughout the single neuroepithelial layer in the neocortex and then became more prominent in the preplate than in the ventricular zone along with formation of the preplate. Following division of the preplate and concomitant formation of the cortical plate, distinct labeling of the neocortex occurred in the marginal, subplate and intermediate zones, whereas in the cortical plate and ventricular zone were virtually not immunostained. It is notable that thalamocortical afferent fibers were also immunostained specifically on E14. After birth, the localization of the antigen became less noticeable and by 3 weeks after birth, the antigen had substantially disappeared. In the developing cerebellum, prominent labeling was also observed in the molecular layer and outskirts of the cerebellar nuclei on early postnatal days. To characterize the glycoprotein bearing the Tn antigen biochemically, immunoblot analysis was performed. The glycoprotein, most of which was extracted with a salt solution, migrated as a broad smeared band corresponding to a molecular weight of about 250 kDa on SDS-PAGE. Among the various tissues examined, this glycoprotein was only detected in the brain and its amount increased until an early postnatal stage with a peak on postnatal day 3 (P3), and then decreased gradually with age. This spatially and developmentally regulated expression of the Tn antigen suggests that this antigen plays a significant role in brain development.
Collapse
Affiliation(s)
- K Akita
- Department of Biotechnology, Faculty of Engineering, Kyoto Sangyo University, Kyoto, Japan
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Lo-Man R, Vichier-Guerre S, Bay S, Dériaud E, Cantacuzène D, Leclerc C. Anti-tumor immunity provided by a synthetic multiple antigenic glycopeptide displaying a tri-Tn glycotope. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 166:2849-54. [PMID: 11160353 DOI: 10.4049/jimmunol.166.4.2849] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In many cancer cells the alteration of glycosylation processes leads to the expression of cryptic carbohydrate moieties, which make them good targets for immune intervention. Identification of cancer-associated glycotopes as well as progress in chemical synthesis have opened up the way for the development of fully synthetic immunogens that can induce anti-saccharide immune responses. Here, we synthesized a dendrimeric multiple antigenic glycopeptide (MAG) containing the Tn Ag O:-linked to a CD4(+) T cell epitope. This MAG is based on three consecutive Tn moieties (tri-Tn) corresponding to the glycotope recognized by an mAb (MLS 128) produced against the LS180 colon carcinoma cell line. The Abs induced by this MAG recognized murine and human tumor cell lines expressing the Tn Ag. Prophylactic vaccination using MAG provided protection of mice against tumor challenge. When used in active specific immunotherapy, the MAG carrying the tri-Tn glycotope was much more efficient than the mono-Tn analogue in promoting the survival of tumor-bearing mice. Furthermore, in active specific immunotherapy, a linear glycopeptide carrying two copies of the tri-Tn glycotope was shown to be poorly efficient compared with the dendrimeric MAG. Therefore, both the clustering of carbohydrate Ags and the way they are displayed seem to be important parameters for stimulating efficient anti-saccharide immune responses.
Collapse
MESH Headings
- Animals
- Antibodies, Neoplasm/biosynthesis
- Antibodies, Neoplasm/metabolism
- Antigens, Tumor-Associated, Carbohydrate/administration & dosage
- Antigens, Tumor-Associated, Carbohydrate/chemistry
- Antigens, Tumor-Associated, Carbohydrate/immunology
- Antigens, Tumor-Associated, Carbohydrate/metabolism
- Antineoplastic Agents/administration & dosage
- Antineoplastic Agents/chemical synthesis
- Antineoplastic Agents/immunology
- Antineoplastic Agents/metabolism
- Binding Sites, Antibody
- Breast Neoplasms/immunology
- Breast Neoplasms/prevention & control
- CD4-Positive T-Lymphocytes/immunology
- Cancer Vaccines/administration & dosage
- Cancer Vaccines/chemical synthesis
- Cancer Vaccines/immunology
- Carbohydrate Sequence
- Epitopes, T-Lymphocyte/administration & dosage
- Epitopes, T-Lymphocyte/chemistry
- Epitopes, T-Lymphocyte/immunology
- Epitopes, T-Lymphocyte/metabolism
- Female
- Glycopeptides/administration & dosage
- Glycopeptides/chemical synthesis
- Glycopeptides/immunology
- Glycopeptides/metabolism
- Humans
- Immunotherapy, Active
- Injections, Intraperitoneal
- Jurkat Cells
- Mice
- Mice, Inbred BALB C
- Molecular Sequence Data
- Neoplasm Transplantation
- Poliovirus/immunology
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- R Lo-Man
- Unité de Biologie des Régulations Immunitaires and Unité de Chimie Organique, Institut Pasteur, Paris, France.
| | | | | | | | | | | |
Collapse
|
35
|
Hakomori S. Tumor-associated carbohydrate antigens defining tumor malignancy: basis for development of anti-cancer vaccines. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2001; 491:369-402. [PMID: 14533809 DOI: 10.1007/978-1-4615-1267-7_24] [Citation(s) in RCA: 340] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Tumors expressing a high level of certain types of tumor-associated carbohydrate antigens (TACAs) exhibit greater metastasis and progression than those expressing low level of TACAs, as reflected in decreased patient survival rate. Well-documented examples of such TACAs are: (i) H/Le(y)/Le(a) in primary non-small cell lung carcinoma; (ii) sialyl-Le(x) (SLe(x)) and sialyl-Le(a) (SLe(a)) in various types of cancer; (iii) Tn and sialyl-Tn in colorectal, lung, breast, and many other cancers; (iv) GM2, GD2, and GD3 gangliosides in neuroectodermal tumors (melanoma and neuroblastoma); (v) globo-H in breast, ovarian, and prostate cancer; (vi) disialylgalactosylgloboside in renal cell carcinoma. Some glycosylations and TACAs suppress invasiveness and metastatic potential. Well-documented examples are: (i) blood group A antigen in primary lung carcinoma; (ii) bisecting beta1 --> 4GlcNAc of N-linked structure in melanoma and other cancers; (iii) galactosylgloboside (GalGb4) in seminoma. The biochemical mechanisms by which the above glycosylation changes promote or suppress tumor metastasis and invasion are mostly unknown. A few exceptional cases in which we have some knowledge are: (i) SLe(x) and SLe(a) function as E-selectin epitopes promoting tumor cell interaction with endothelial cells; (ii) some tumor cells interact through binding of TACA to specific proteins other than selectin, or to specific carbohydrate expressed on endothelial cells or other target cells (carbohydrate-carbohydrate interaction); (iii) functional modification of adhesive receptor (integrin, cadherin, CD44) by glycosylation. So far, a few successful cases of anti-cancer vaccine in clinical trials have been reported, employing TACAs whose expression enhances malignancy. Examples are STn for suppression of breast cancer, GM2 and GD3 for melanoma, and globo-H for prostate cancer. Vaccine development canbe extended using other TACAs, with the following criteria for success: (i) the antigen is expressed highly on tumor cells; (ii) high antibody production depending on two factors: (a) clustering of antigen used in vaccine; (b) choice of appropriate carrier protein or lipid; (iii) high T cell response depending on choice of appropriate carrier protein or lipid; (iv) expression of the same antigen in normal epithelial tissues (e.g., renal, intestinal, colorectal) may not pose a major obstacle, i.e., these tissues are not damaged during immune response. Idiotypic anti-carbohydrate antibodies that mimic the surface profile of carbohydrate antigens, when administered to patients, elicit anti-carbohydrate antibody response, thus providing an effect similar to that of TACAs for suppression of tumor progression. An extension of this idea is the use of peptide mimetics of TACAs, based on phage display random peptide library. Although examples are so far highly limited, use of such "mimotopes" as immunogens may overcome the weak immunogenicity of TACAs in general.
Collapse
Affiliation(s)
- S Hakomori
- Pacific Northwest Research Institute, University of Washington, 720 Broadway, Seattle, WA 98122, USA
| |
Collapse
|
36
|
Osinaga E, Bay S, Tello D, Babino A, Pritsch O, Assemat K, Cantacuzene D, Nakada H, Alzari P. Analysis of the fine specificity of Tn-binding proteins using synthetic glycopeptide epitopes and a biosensor based on surface plasmon resonance spectroscopy. FEBS Lett 2000; 469:24-8. [PMID: 10708749 DOI: 10.1016/s0014-5793(00)01248-5] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Using synthetic Tn (GalNAc-O-Ser/Thr) glycopeptide models and a biosensor based on surface plasmon resonance spectroscopy we have determined that isolectin B4 from Vicia villosa (VVLB4) binds to one Tn determinant whereas the anti-Tn monoclonal antibodies 83D4 and MLS128 require at least two Tn residues for recognition. When an unglycosylated amino acid is introduced between the Tn residues, both antibodies do not bind. MLS128 affinity was higher on a glycopeptide with three consecutive Tn residues. These results indicate that Tn residues organized in clusters are essential for the binding of these antibodies and indicate a different Tn recognition pattern for VVLB4.
Collapse
Affiliation(s)
- E Osinaga
- Departamento de Bioquímica, Facultad de Medicina, Av. Gral. Flores 2125, CP 11800, Montevideo, Uruguay.
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Vichier-Guerre S, Lo-Man R, Bay S, Deriaud E, Nakada H, Leclerc C, Cantacuzène D. Short synthetic glycopeptides successfully induce antibody responses to carcinoma-associated Tn antigen. THE JOURNAL OF PEPTIDE RESEARCH : OFFICIAL JOURNAL OF THE AMERICAN PEPTIDE SOCIETY 2000; 55:173-80. [PMID: 10784033 DOI: 10.1034/j.1399-3011.2000.00167.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Glycopeptides containing a tumor-associated carbohydrate antigen (mono-, tri- or hexa-Tn antigen) as a B-cell epitope and a CD4+ T-cell epitope (PV: poliovirus or TT: tetanus toxin) were prepared for immunological studies. Several Tn antigen residues [FmocSer/Thr (alpha-GalNAc)-OH] were successively incorporated into the peptide sequence with unprotected carbohydrate groups. The tri- and hexa-Tn glycopeptides were recognized by MLS128, a Tn-specific monoclonal antibody. The position of the tri-Tn motif in the peptide sequence and the peptide backbone itself do not alter its antigenicity. As demonstrated by both ELISA and FACS analysis, the glycopeptides induced high titers of anti-Tn antibodies in mice, in the absence of a carrier molecule. In addition, the generated antibodies recognized the native Tn antigen on cancer cells. The antibody response obtained with a D-(Tn3)-PV glycopeptide containing three alpha-GalNAc-D-serine residues is similar that obtained with the Tn6-PV glycopeptide. These results demonstrate that short synthetic glycopeptides are able to induce anticancer antibody responses.
Collapse
|
38
|
Tanaka N, Nakada H, Inoue M, Yamashina I. Binding characteristics of an anti-Siaalpha2-6GalNAcalpha-Ser/Thr (sialyl Tn) monoclonal antibody (MLS 132). EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 263:27-32. [PMID: 10429183 DOI: 10.1046/j.1432-1327.1999.00401.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
To determine the epitopic structure for an anti-Siaalpha2-6GalNAcalpha-Ser/Thr (anti-sialyl Tn) monoclonal antibody, MLS 132, ovine submaxillary mucin (OSM) was digested with the combination of trypsin and thermolysin and the digest fractionated by immunoaffinity column chromatography and HPLC. From tryptic digest, a major glycopeptide designated as T3 was obtained as an immunoaffinity column-bound fraction. On solid-phase radioimmunoassay, it was found that T3 exhibited strong immunoreactivity with MLS 132. On treatment with thermolysin, T3 was converted into about 50 fragments, as found on fractionation by HPLC. Several of them were strongly immunoreactive and had the same amino acid sequence, i.e. Phe-Ser*-Gly-Glu-Thr*-Ser*-Thr*-Thr*-Val-Ile-Ser*-Gly-Thr*-Asn-Val, where asterisks denote the sites of attachment of carbohydrate. Of these, one was fully sialylated, the others having one Ser or Thr with unsialylated GalNAc attached. Results of analyses of the carbohydrate attached in these glycopeptides led us to postulate that a cluster composed of four sialyl Tn antigens is the essential epitopic structure for MLS 132.
Collapse
Affiliation(s)
- N Tanaka
- Department of Biotechnology, Faculty of Engineering, Kyto Sangyo, University, Japan
| | | | | | | |
Collapse
|
39
|
Sakai S, Shigemasa Y, Sasaki T. Iron(II)-Assisted Assembly of Trivalent GalNAc Clusters and Their Interactions with GalNAc-Specific Lectins. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 1999. [DOI: 10.1246/bcsj.72.1313] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
40
|
Inoue M, Yamashina I, Nakada H. Glycosylation of the tandem repeat unit of the MUC2 polypeptide leading to the synthesis of the Tn antigen. Biochem Biophys Res Commun 1998; 245:23-7. [PMID: 9535776 DOI: 10.1006/bbrc.1998.8369] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A synthetic peptide corresponding to the human MUC2 tandem repeat domain containing 14 Thr residues was glycosylated in vitro using UDP-GalNAc and microsomal membranes of the colorectal cancer cell line, LS180. The products were fractionated by reverse phase HPLC, which gave seven glycopeptide fractions. Their molecular weights were estimated by matrix-assisted laser desorption/ionization mass spectrometry, the values obtained corresponding to glycopeptides containing from one to ten GalNAc residues. On solid phase radioimmunoassaying involving a monoclonal anti-Tn antibody (MLS128), it was found that the glycopeptides containing nine or ten GalNAc residues were strongly immunoreactive, whereas the glycopeptides containing less than six GalNAc residues were inactive, indicating that a cluster of GalNAc-Thr is essential for the Tn antigenicity.
Collapse
MESH Headings
- Acetylgalactosamine/analysis
- Amino Acid Sequence
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/metabolism
- Antigens, Tumor-Associated, Carbohydrate/biosynthesis
- Antigens, Tumor-Associated, Carbohydrate/immunology
- Colorectal Neoplasms/metabolism
- Glycopeptides/analysis
- Glycopeptides/immunology
- Glycosylation
- Humans
- Molecular Sequence Data
- Mucin-2
- Mucins/chemistry
- N-Acetylgalactosaminyltransferases
- Peptide Fragments/chemical synthesis
- Peptide Fragments/metabolism
- Peptides
- Radioimmunoassay/methods
- Repetitive Sequences, Nucleic Acid/genetics
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
- Tumor Cells, Cultured
- Uridine Diphosphate N-Acetylgalactosamine/metabolism
- Polypeptide N-acetylgalactosaminyltransferase
Collapse
Affiliation(s)
- M Inoue
- Department of Biochemistry, Faculty of Engineering, Kyoto Sangyo University, Kita-ku, Kyoto, 603, Japan
| | | | | |
Collapse
|
41
|
Nakamoto Y, Saga T, Sakahara H, Yao Z, Zhang M, Sato N, Zhao S, Nakada H, Yamashina I, Konishi J. Three-step tumor imaging with biotinylated monoclonal antibody, streptavidin and 111In-DTPA-biotin. Nucl Med Biol 1998; 25:95-9. [PMID: 9468022 DOI: 10.1016/s0969-8051(97)00155-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The purpose of this study was to test the three-step targeting of tumors in mice using biotinylated antibody, streptavidin and radiolabeled biotin. Nude mice bearing subcutaneous LS180 human colon cancer xenografts were intravenously administered with 200 microg of the biotinylated anti-Tn monoclonal antibody MLS128, and 2 days later they got intravenous injection of 50 microg of streptavidin. They were intravenously injected 1, 4 or 7 days later with 0.5 microg of 111In-diethylenetriamine pentaacetic acid (DTPA)-biotin. The tumor uptake, determined 2 h later, was 1.4, 0.5 and 0.6% injected dose/gram of tissue (ID/g), respectively, and the blood radioactivity was 1.0, 0.2 and 0.2% ID/g, respectively. When the interval between the streptavidin and radiolabeled biotin injections was prolonged from 1 day to 7 days, the tumor-to-blood ratio 2 h after injection of 111In-labeled biotin increased from 1.5 to 4.0. Clear tumor images were obtained as early as 2 h after injection of radiolabeled biotin. In conclusion, these preliminary data suggested that the three-step method using the streptavidin-biotin system would be applicable in an experimental mouse tumor model and provides images of tumors rapidly and clearly after injection of radiolabeled biotin.
Collapse
Affiliation(s)
- Y Nakamoto
- Department of Nuclear Medicine and Diagnostic Imaging, Graduate School of Medicine, Kyoto University, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Zhang M, Yao Z, Sakahara H, Saga T, Nakamoto Y, Sato N, Zhao S, Nakada H, Yamashina I, Konishi J. Effect of administration route and dose of streptavidin or biotin on the tumor uptake of radioactivity in intraperitoneal tumor with multistep targeting. Nucl Med Biol 1998; 25:101-5. [PMID: 9468023 DOI: 10.1016/s0969-8051(97)00157-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The effect of the administration route and dose of streptavidin or biotin on the biodistribution of radioactivity in multistep targeting was studied in nude mice bearing intraperitoneal (IP) colon cancer xenograft. The multistep targeting included a two-step method using biotinylated antibody and radiolabeled streptavidin and a three-step method with radiolabeled biotin based on the two-step method. A monoclonal antibody, MLS128, which recognizes Tn antigen on mucin, was biotinylated and injected intravenously (i.v.) or i.p. in nude mice bearing human colon cancer LS180 IP xenografts for pretargeting. In the two-step method, i.p.-injected streptavidin showed a higher tumor uptake and tumor-to-nontumor ratios than i.v.-injected streptavidin regardless of administration route of pretargeting. The tumor uptake of radiolabeled streptavidin was increased with a high dose of biotinylated antibody pretargeting, but decreased with an increasing dose of streptavidin. In the three-step targeting, i.p. injection also gave a higher tumor uptake of radiolabeled biotin than i.v. injection. In conclusion, i.p. administration of radiolabeled streptavidin or biotin resulted in more efficient IP tumor targeting with the multistep methods.
Collapse
Affiliation(s)
- M Zhang
- Department of Nuclear Medicine, Faculty of Medicine, Kyoto University, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Wang BL, Springer GF, Carlstedt SC. Quantitative computerized image analysis of Tn and T (Thomsen-Friedenreich) epitopes in prognostication of human breast carcinoma. J Histochem Cytochem 1997; 45:1393-400. [PMID: 9313800 DOI: 10.1177/002215549704501007] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The precursors of the blood group N and M-immunodominant structures, Tn and T (Thomsen-Friedenreich) epitopes (EPs) occur in approximately 90% of carcinomas (CAs) but are masked in benign-diseased and healthy tissues. We determined quantitatively on 55 primary invasive ductal breast CAs, stages I to IV, the prognostic value of extent of Tn and T EP expression over an observation period exceeding 5 years postoperatively. Classical, established pathological and histological prognostic characteristic indicators associated with survival were subdivided by standard criteria into favorable and unfavorable categories. Tissue sections were reacted with monoclonal anti-Tn and -T antibodies, followed by the streptavidin-biotin-peroxidase-DAB procedure; counterstain was methyl green. Tn and T EPs were then quantitated by computerized image analysis. Of the 55 CAs, 51 clearly expressed Tn and T, and four had traces. Strong Tn EP expression was statistically significantly associated with shortened 5-year disease-free interval, increasing pTNM stages, positive lymph node status, and increasing combined histological grades. T EPs were usually well expressed but showed no significant association with prognostic factors. Our results suggest that quantitative immunohistochemistry-image analysis of Tn EPs of primary breast CAs may add new parameters to prognostication.
Collapse
Affiliation(s)
- B L Wang
- Heather M. Bligh Cancer Research Laboratories, Chicago Medical School, North Chicago, Illinois 60064, USA
| | | | | |
Collapse
|
44
|
Bay S, Berthier-Vergnes O, Biberovic V, Cantacuzène D. Unusual lactam formation occurring in the synthesis of a biotinylated T-antigen-serine derivative. Carbohydr Res 1997; 303:25-31. [PMID: 9345750 DOI: 10.1016/s0008-6215(97)00146-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Synthesis of the biotinylated T-antigens, linked to a serine by an alpha (7 alpha) or a beta (7 beta) 2-acetamido-2-deoxy-D-galactoside bond, is described. These derivatives were needed for the detection of a specific endogenous lectin at the surface and/or on the migration pathway of melanoma cells. In the course of the synthesis, an unusual lactam formation was observed with the beta anomer of the azido-disaccharide 5 beta.
Collapse
Affiliation(s)
- S Bay
- Institut Pasteur, Département de Biochimie et Génétique Moléculaire, Paris, France
| | | | | | | |
Collapse
|
45
|
Bay S, Lo-Man R, Osinaga E, Nakada H, Leclerc C, Cantacuzène D. Preparation of a multiple antigen glycopeptide (MAG) carrying the Tn antigen. A possible approach to a synthetic carbohydrate vaccine. THE JOURNAL OF PEPTIDE RESEARCH : OFFICIAL JOURNAL OF THE AMERICAN PEPTIDE SOCIETY 1997; 49:620-5. [PMID: 9266491 DOI: 10.1111/j.1399-3011.1997.tb01171.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The glycosidic tumor-associated Tn antigen was conjugated to a lysine backbone containing a helper T-cell epitope in order to activate immune responses specific for some types of carcinomas. As opposed to traditional protein conjugates, this multiple antigen glycopeptide (MAG) offers the advantages of the lack of immunogenicity of the polylysine core and of accurate chemical definition. The MAG construction was assembled by conventional solid-phase peptide synthesis. The analysis of its antigenicity demonstrated that the Tn antigen on the MAG is recognized by Tn-specific monoclonal antibodies.
Collapse
Affiliation(s)
- S Bay
- Unité de Chimie Organique, Institut Pasteur, Paris, France
| | | | | | | | | | | |
Collapse
|
46
|
Zhang M, Sakahara H, Yao Z, Saga T, Nakamoto Y, Sato N, Nakada H, Yamashina I, Konishi J. Intravenous avidin chase improved localization of radiolabeled streptavidin in intraperitoneal xenograft pretargeted with biotinylated antibody. Nucl Med Biol 1997; 24:61-4. [PMID: 9080476 DOI: 10.1016/s0969-8051(96)00162-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In the present study, we examined the effect of avidin administered intravenously (i.v.) on the biodistribution of radiolabeled streptavidin in mice bearing intraperitoneal (IP) xenografts pretargeted with biotinylated antibody. Tumors were established in nude mice by IP inoculation of LS180 human colon cancer cells. Monoclonal antibody MLS128, which recognizes Tn antigen on mucin, was biotinylated and injected IP into the IP tumor-bearing mice. Radioiodinated streptavidin was administered IP or i.v. 48 h after pretargeting of biotinylated antibody. Avidin was administered i.v. 30 min prior to streptavidin injection. The localization of radioiodinated streptavidin in the tumor pretargeted with biotinylated antibody was significantly higher than that without pretargeting and that of radioiodinated MLS128 by the one-step method. Avidin administration significantly accelerated the clearance of radioiodinated streptavidin in blood and other normal tissues and increased the tumor-to-blood radioactivity ratio regardless of administration route of streptavidin. The i.v. avidin chase improved tumor localization of radiolabeled streptavidin in the IP xenografts pretargeted with biotinylated antibody.
Collapse
Affiliation(s)
- M Zhang
- Department of Nuclear Medicine, Faculty of Medicine, Kyoto University, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Pinczower GD, Williams RP, Gianello RD, Robinson HC, Preston BN, Linnane AW. Characterisation of the tumour-associated carbohydrate epitope recognised by monoclonal antibody 4D3. Int J Cancer 1996; 66:636-44. [PMID: 8647626 DOI: 10.1002/(sici)1097-0215(19960529)66:5<636::aid-ijc10>3.0.co;2-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The tumour-associated epitope recognised by monoclonal antibody (MAb) 4D3 is expressed on a high m.w. mucin glycoprotein preparation known as small intestinal mucin antigen (SIMA). This epitope is detected in tissue from a high proportion of patients with colorectal cancer, and elevated levels occur in serum from a significant number of such patients, highlighting the potential clinical utility of MAb 4D3. In the present study, insight into the composition and structure of the carbohydrate epitope recognised by MAb 4D3 was gained following characterisation of 2 glycopeptides that co-purified with SIMA. Sequence analysis of 1 of these glycopeptides revealed that it was identical to the glycoprotein alpha-1-anti-chymotrypsin. This glycoprotein was subsequently deglycosylated to yield 5 forms corresponding to alpha-1-anti-chymotrypsin substituted with 4, 3, 2, 1 or no branched glycans. MAb 4D3 was reactive with each of the glycosylated forms, including the form carrying only 1 branched glycan, but did not react with fully deglycosylated alpha-1-anti-chymotrypsin. MAb 4D3 also reacted to different extents with ovine, bovine or porcine submaxillary mucins, each of which has a different amount of the O-linked sialylated disaccharide known as sialosyl Tn. Of these mucins, MAb 4D3 was most reactive with ovine submaxillary mucin, in which almost all of the carbohydrate chains are sialosyl Tn. Reactivity of MAb 4D3 towards isolated glycans, sialosyl Tn and related structures led to the conclusion that the preferred MAb 4D3 epitope involves the sialylated N-acetyl galactosamine disaccharide as well as an additional monosaccharide present on a neighbouring carbohydrate chain. Although the preferred epitope recognised by MAb 4D3 involves this sialylated disaccharide, the specificity of MAb 4D3 was different from that of other MAbs with a reported specificity for sialosyl Tn.
Collapse
Affiliation(s)
- G D Pinczower
- Centre for Molecular Biology and Medicine, Monash University, Clayton, Victoria, Australia
| | | | | | | | | | | |
Collapse
|
48
|
Nakada H, Inoue M, Tanaka N, Wakamiya N, Yamashina I. Expression of the T antigen on a T-lymphoid cell line, supT1. Glycoconj J 1995; 12:356-9. [PMID: 7496150 DOI: 10.1007/bf00731338] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We have measured glycosyltransferase activities of SupT1 cells, a T-lymphoid cell line shown to react with autoantibodies in the sera of many HIV patients. Since considerable alpha-N-acetylgalactosaminyl-transferase and beta 1, 3 galactosyltransferase activities were found in SupT1 cells, at least the O-glycan core 1 structure can probably be synthesized. FACS analysis using an anti-T monoclonal antibody showed expression of the T antigen (Gal beta 1-3 GalNAc). Glycoproteins with the T antigen were isolated by immunoprecipitation with the anti-T antibody from a SupT1 cell lysate labelled metabolically with 3H-glucosamine and then analysed by SDS-PAGE. It was revealed that the precipitate contained a glycoprotein with a molecular weight corresponding to that of leukosialin. O-glycans were prepared from the immunoprecipitate by alkaline-borohydride treatment and then fractionated on Bio-Gel P-2, GalNAcOH and Gal-GalNAcOH being identified inter alia. These results suggest that an anti-T antibody may be included in the autoantibodies found in HIV-1 infected individuals.
Collapse
Affiliation(s)
- H Nakada
- Department of Biotechnology, Faculty of Engineering, Kyoto, Japan
| | | | | | | | | |
Collapse
|
49
|
Ohshio G, Imamura T, Imamura M, Yamabe H, Sakahara H, Nakada H, Yamashina I. Distribution of Tn antigen recognized by an anti-Tn monoclonal antibody (MLS128) in normal and malignant tissues of the digestive tract. J Cancer Res Clin Oncol 1995; 121:247-52. [PMID: 7751324 DOI: 10.1007/bf01366970] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Alterations in the normal glycosylation process are often associated with oncogenic transformation. Using an anti-Tn monoclonal antibody, MLS128, we have investigated the immunohistochemical localization of Tn antigen in normal and malignant tissues of the digestive tract. In normal tissues, MLS128 was immunoreactive with the squamous epithelium of the esophagus and was weakly reactive with the columnar epithelia of the stomach, duodenum, colon, bile duct and pancreatic duct. In malignant tissues, positive immunostaining was detected with high frequency (75%-100%) in carcinomas of the esophagus, stomach colon, biliary tract and pancreas, whereas 2 of 11 (18%) hepatocellular carcinomas were positive. Tn antigen was detected in the upper two-thirds of the normal squamous epithelium, and was often detected in squamous cell carcinomas with cancer pearls (keratinization). These results suggest that the expression of Tn antigen is related to the differentiation of squamous epithelium, or to keratinization. In normal columnar epithelial cells. Tn antigen was localized mainly to the Golgi area. This intracellular localization was preserved in well-differentiated papillary adenocarcinomas of the colon, but was lost in most cases of tubular adenocarcinomas.
Collapse
Affiliation(s)
- G Ohshio
- Department of Surgery, Faculty of Medicine, Kyoto University, Japan
| | | | | | | | | | | | | |
Collapse
|
50
|
Yao Z, Sakahara H, Zhang M, Kobayashi H, Nakada H, Yamashina I, Konishi J. Radioimmunoimaging of colon cancer xenografts with anti-Tn monoclonal antibody. Nucl Med Biol 1995; 22:199-203. [PMID: 7767313 DOI: 10.1016/0969-8051(94)00092-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Tn antigen is a glycosylated tumor associated antigen and a murine monoclonal antibody, MLS128, has been identified to react with it. The potential of MLS128 for the radioimmunoimaging of colorectal cancer was studied. MLS128 was labeled with radioiodine by the chloramine-T method or indium-111 (111In) by using isothiocyanatobenzyl EDTA, and was injected into nude mice bearing human colon cancer xenografts. Radiolabeled MLS128 showed a high and specific localization in xenografted tumor. At 48 h after injection, the %ID/g of 125I-labeled MLS128 in the tumor was 34.69, whereas that of isotype matched control antibody, FLOPC21, was 5.58 and the tumor-to-nontumor radioactivity ratios of 125I-labeled MLS128 reached to 4.56, 17.84 and 23.62 for the blood, liver and bone, respectively. 111In-labeled MLS128 showed similar results. High accumulation of MLS128 in xenografted tumors suggested that the monoclonal antibody MLS128 is promising for radioimmunoimaging of colorectal cancer.
Collapse
Affiliation(s)
- Z Yao
- Department of Nuclear Medicine, Faculty of Medicine, Kyoto University, Japan
| | | | | | | | | | | | | |
Collapse
|