1
|
Alti D, Sambamurthy C, Kalangi SK. Emergence of Leptin in Infection and Immunity: Scope and Challenges in Vaccines Formulation. Front Cell Infect Microbiol 2018; 8:147. [PMID: 29868503 PMCID: PMC5954041 DOI: 10.3389/fcimb.2018.00147] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 04/20/2018] [Indexed: 01/01/2023] Open
Abstract
Deficiency of leptin (ob/ob) and/or desensitization of leptin signaling (db/db) and elevated expression of suppressor of cytokine signaling-3 (SOCS3) reported in obesity are also reported in a variety of pathologies including hypertriglyceridemia, insulin resistance, and malnutrition as the risk factors in host defense system. Viral infections cause the elevated SOCS3 expression, which inhibits leptin signaling. It results in immunosuppression by T-regulatory cells (Tregs). The host immunity becomes incompetent to manage pathogens' attack and invasion, which results in the accelerated infections and diminished vaccine-specific antibody response. Leptin was successfully used as mucosal vaccine adjuvant against Rhodococcus equi. Leptin induced the antibody response to Helicobacter pylori vaccination in mice. An integral leptin signaling in mucosal gut epithelial cells offered resistance against Clostridium difficile and Entameoba histolytica infections. We present in this review, the intervention of leptin in lethal diseases caused by microbial infections and propose the possible scope and challenges of leptin as an adjuvant tool in the development of effective vaccines.
Collapse
Affiliation(s)
- Dayakar Alti
- School of Life Sciences, University of Hyderabad, Hyderabad, India
| | | | - Suresh K Kalangi
- School of Life Sciences, University of Hyderabad, Hyderabad, India
| |
Collapse
|
2
|
A Cross-Species Study of PI3K Protein-Protein Interactions Reveals the Direct Interaction of P85 and SHP2. Sci Rep 2016; 6:20471. [PMID: 26839216 PMCID: PMC4738311 DOI: 10.1038/srep20471] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 01/05/2016] [Indexed: 12/14/2022] Open
Abstract
Using a series of immunoprecipitation (IP) – tandem mass spectrometry (LC-MS/MS) experiments and reciprocal BLAST, we conducted a fly-human cross-species comparison of the phosphoinositide-3-kinase (PI3K) interactome in a drosophila S2R+ cell line and several NSCLC and human multiple myeloma cell lines to identify conserved interacting proteins to PI3K, a critical signaling regulator of the AKT pathway. Using H929 human cancer cells and drosophila S2R+ cells, our data revealed an unexpected direct binding of Corkscrew, the drosophila ortholog of the non-receptor protein tyrosine phosphatase type II (SHP2) to the Pi3k21B (p60) regulatory subunit of PI3K (p50/p85 human ortholog) but no association with Pi3k92e, the human ortholog of the p110 catalytic subunit. The p85-SHP2 association was validated in human cell lines, and formed a ternary regulatory complex with GRB2-associated-binding protein 2 (GAB2). Validation experiments with knockdown of GAB2 and Far-Western blots proved the direct interaction of SHP2 with p85, independent of adaptor proteins and transfected FLAG-p85 provided evidence that SHP2 binding on p85 occurred on the SH2 domains. A disruption of the SHP2-p85 complex took place after insulin/IGF1 stimulation or imatinib treatment, suggesting that the direct SHP2-p85 interaction was both independent of AKT activation and positively regulates the ERK signaling pathway.
Collapse
|
3
|
STAGSTED JAN. Journey beyond immunology. Regulation of receptor internalization by major histocompatibility complex class I (MHC-I) and effect of peptides derived from MHC-I. APMIS 2011. [DOI: 10.1111/j.1600-0463.1998.tb05657.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
4
|
Sam68 interacts with IRS1. Biochem Pharmacol 2011; 83:78-87. [PMID: 22005517 DOI: 10.1016/j.bcp.2011.09.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Revised: 09/26/2011] [Accepted: 09/28/2011] [Indexed: 12/18/2022]
Abstract
Sam68 (Src associated in mitosis) is a RNA binding protein that links cellular signaling to RNA processing. In previous studies we found that insulin promotes Sam68 relocalization in the cytoplasm allowing Sam68 to associate with p85PI3K, Grb2, GAP and probably the insulin receptor (IR), modulating insulin action positively. In the present work, we wanted to define the role of Sam68 in the first stages of IR signaling. Both BRET and co-immunoprecipitation assays have been used for the study of Sam68 binding to IR, IRS1 and p85-PI3K. BRET saturation experiments indicated, for the first time, that Sam68 associates with IRS1 in basal condition. To map the region of Sam68 implicated in the interaction with IRS1, different Sam68 mutants deleted in the proline-rich domains were used. The deletion of P0, P1 and P2 proline rich domains in N-terminus as well as P4 and P5 in C-terminus of Sam68 increased BRET(50), thus indicating that the affinity of Sam68 for IRS1 is lower when these domains are missing. Moreover, in IR-transfected HEK-293 cells, BRET saturation experiment indicated that insulin increases the affinity between Sam68-Rluc and IRS1-YFP. In conclusion, our data indicate that Sam68 interacts with IRS-1 in basal conditions, and insulin increases the affinity between these two partners.
Collapse
|
5
|
Buts JP, De Keyser N. Transduction pathways regulating the trophic effects of Saccharomyces boulardii in rat intestinal mucosa. Scand J Gastroenterol 2010; 45:175-85. [PMID: 19958054 DOI: 10.3109/00365520903453141] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
UNLABELLED Saccharomyces boulardii is a probiotic yeast that is widely prescribed in lyophilized form; it determines several effects in human and rat small intestine including endoluminal secretion of enzymes and of polyamines, stimulation of microvillous enzymes, of sIgA, increased production of the receptor for polymeric immunoglobulins by crypt cells, and enhanced d-glucose uptake. AIM The objective of this study was to determine the pathway(s) by which these effects generated by the yeast are transduced into mucosal cells. METHODS Litters of six growing Wistar rats each were treated with S. boulardii (50 microg/gram body weight) or with saline between days 30 and 34 postpartum. For each animal, the cytosol was prepared from the whole mucosa after the fat cake was discarded. Several known intestinal substrates were immunoprecipitated and immunoblotted using specific antibodies recognizing the non-, mono-, or diphosphorylated forms of these substrates. The signals were detected using Echochemiluminoscence (ECL) and were measured by optodensitometry. RESULTS Treatment with S. boulardii markedly enhanced the RAS-GAP-RAF-ERK(1,2) pathway with participation of growth receptor bound 2 protein, SHC, SOS, and CRKII. Unit p85alpha of phosphatidylinositol 3 kinase, tested in its phosphorylated form, was also enhanced by the probiotic compared to control samples. In rats treated with an inhibitor of RAF-1 and of ERK(1,2) (PD098059) the expression of mucosal disaccharidases was inhibited by about 50%. CONCLUSION The probiotic S. boulardii generates in vivo mitogen and metabolic signals that are transduced into intestinal mucosal cells, downstream from the apical membrane to the nuclei, using recruitment substrates and serine, threonine, or tyrosine kinases.
Collapse
Affiliation(s)
- Jean-Paul Buts
- Unit of Pediatric Research, Laboratory of Pediatric Gastroenterology and Nutrition, Faculty of Medicine, Université Catholique de Louvain, Brussels, Belgium.
| | | |
Collapse
|
6
|
Oleoylethanolamide, a natural ligand for PPAR-alpha, inhibits insulin receptor signalling in HTC rat hepatoma cells. Biochim Biophys Acta Mol Cell Biol Lipids 2009; 1791:740-5. [PMID: 19345745 DOI: 10.1016/j.bbalip.2009.03.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2008] [Revised: 03/20/2009] [Accepted: 03/23/2009] [Indexed: 02/08/2023]
Abstract
Oleoylethanolamide (OEA) is a lipid mediator belonging to the fatty acid ethanolamides family. It is produced by intestine and adipose tissue. It inhibits food intake and body weight gain, and has hypolipemiant action in vivo, as well as a lipolytic effect in vitro. OEA is a PPAR-alpha agonist, and recently it has been found that OEA is an endogenous ligand of an orphan receptor. Previously, we have shown that OEA inhibits insulin-stimulated glucose uptake in isolated adipocytes, and produces glucose intolerance in rats. In the present work, we have studied another insulin target cell, the hepatocyte using a rat hepatoma cell line (HTC), and we have studied the cross-talk of OEA signalling with metabolic and mitotic signal transduction of insulin receptor. OEA dose-dependently activates JNK and p38 MAPK, and inhibits insulin receptor phosphorylation. OEA inhibits insulin receptor activation, blunting insulin signalling in the downstream PI3K pathway, decreasing phosphorylation of PKB and its target GSK-3. OEA also inhibits insulin-dependent MAPK pathway, as assessed by immunoblot of phosphorylated MEK and MAPK. These effects were reversed by blocking JNK or p38 MAPK using pharmacological inhibitors (SP 600125, and SB 203580). Since OEA is an endogenous PPAR-alpha agonist, we investigated whether a pharmacologic agonist (WY 14643) may mimic the OEA effect on insulin receptor signalling. Activation of PPAR-alpha by the pharmacological agonist WY14643 in HTC hepatoma cells is sufficient to inhibit insulin signalling and this effect is also dependent on p38 MAPK but not JNK kinase. In summary, OEA inhibits insulin metabolic and mitogenic signalling by activation of JNK and p38 MAPK via PPAR-alpha.
Collapse
|
7
|
González-Yanes C, Serrano A, Bermúdez-Silva FJ, Hernández-Dominguez M, Páez-Ochoa MA, Rodríguez de Fonseca F, Sánchez-Margalet V. Oleylethanolamide impairs glucose tolerance and inhibits insulin-stimulated glucose uptake in rat adipocytes through p38 and JNK MAPK pathways. Am J Physiol Endocrinol Metab 2005; 289:E923-9. [PMID: 15886223 DOI: 10.1152/ajpendo.00555.2004] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Oleylethanolamide (OEA) is a lipid mediator that inhibits food intake and body weight gain and also exhibits hypolipemiant actions. OEA exerts its anorectic effects peripherally through the stimulation of C-fibers. OEA is synthesized in the intestine in response to feeding, increasing its levels in portal blood after the meal. Moreover, OEA is produced by adipose tissue, and a lipolytic effect has been found. In this work, we have examined the effect of OEA on glucose metabolism in rats in vivo and in isolated adipocytes. In vivo studies showed that acute administration (30 min and 6 h) of OEA produced glucose intolerance without decreasing insulin levels. Ex vivo, we found that 10 min of preincubation with OEA inhibited 30% insulin-stimulated glucose uptake in isolated adipocytes. Maximal effect was achieved at 1 microM OEA. The related compounds palmitylethanolamide and oleic acid had no effect, suggesting a specific mechanism. Insulin-stimulated GLUT4 translocation was not affected, but OEA promoted Ser/Thr phosphorylation of GLUT4, which may impair transport activity. This phosphorylation may be partly mediated by p38 and JNK kinases, since specific inhibitors (SB-203580 and SP-600125) partly reverted the inhibitory effect of OEA on insulin-stimulated glucose uptake. These results suggest that the lipid mediator OEA inhibits insulin action in the adipocyte, impairing glucose uptake via p38 and JNK kinases, and these effects may at least in part explain the glucose intolerance produced in rats in vivo. These effects of OEA may contribute to the anorectic effects induced by this mediator, and they might be also relevant for insulin resistance in adipose tissue.
Collapse
Affiliation(s)
- Carmen González-Yanes
- Dept. of Medical Biochemistry and Molecular Biology, School of Medicine, Investigation Unit, Virgen Macarena Univ. Hospital, Av. Sanchez Pizjuan 4, Seville 41009, Spain
| | | | | | | | | | | | | |
Collapse
|
8
|
Díaz-Troya S, Najib S, Sánchez-Margalet V. eNOS, nNOS, cGMP and protein kinase G mediate the inhibitory effect of pancreastatin, a chromogranin A-derived peptide, on growth and proliferation of hepatoma cells. ACTA ACUST UNITED AC 2005; 125:41-6. [PMID: 15582712 DOI: 10.1016/j.regpep.2004.07.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2004] [Revised: 06/21/2004] [Accepted: 07/23/2004] [Indexed: 10/26/2022]
Abstract
Pancreastatin (PST), a chromogranin A-derived peptide, has an anti-insulin metabolic effect and inhibits growth and proliferation by producing nitric oxide (NO) in HTC rat hepatoma cells. When NO production is blocked, a proliferative effect prevails due to the activation a Galphaq/11-phospholipase C-beta (PLC-beta) pathway, which leads to an increase in [Ca2+]i, protein kinase C (PKC) and mitogen-activated protein kinase (MAPK) activation. The aim of the present study was to investigate the NO synthase (NOS) isoform that mediates these effects of PST on HTC hepatoma cells and the possible roles of cyclic GMP (cGMP) and cGMP-dependent protein kinase. DNA and protein synthesis in response to PST were measured as [3H]-thymidine and [3H]-leucine incorporation in the presence of various pharmacological inhibitors: N-monomethyl-L-arginine (NMLA, nonspecific NOS inhibitor), L-NIO (endothelial nitric oxide synthase (eNOS) inhibitor), espermidine (neuronal nitric oxide synthase (nNOS) inhibitor), LY83583 (guanylyl cyclase inhibitor), and KT5823 (protein kinase G inhibitor, (PKG)). L-NIO, similarly to NMLA, reverted the inhibitory effect of PST on hepatoma cell into a stimulatory effect on growth and proliferation. Nevertheless, espermidine also prevented the inhibitory effect of PST, but there was no stimulation of growth and proliferation. When guanylyl cyclase activity was blocked, there was again a reversion of the inhibitory effect into a stimulatory action, suggesting that the effect of NO was mediated by the production of cGMP. PKG inhibition prevented the inhibitory effect of PST, but there was no stimulatory effect. Therefore, the inhibitory effect of PST on growth and proliferation of hepatoma cells may be mainly mediated by eNOS activation. In turn, the effect of NO may be mediated by cGMP, whereas other pathways in addition to PKG activation seem to mediate the inhibition of DNA and protein synthesis by PST in HTC hepatoma cells.
Collapse
Affiliation(s)
- Sandra Díaz-Troya
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Investigation Unit, University Hospital Virgen Macarena, Av. Sanchez Pizjuan 4, Seville 41009, Spain
| | | | | |
Collapse
|
9
|
Chamberlain MD, Berry TR, Pastor MC, Anderson DH. The p85alpha subunit of phosphatidylinositol 3'-kinase binds to and stimulates the GTPase activity of Rab proteins. J Biol Chem 2004; 279:48607-14. [PMID: 15377662 DOI: 10.1074/jbc.m409769200] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Rab5 and Rab4 are small monomeric GTPases localized on early endosomes and function in vesicle fusion events. These Rab proteins regulate the endocytosis and recycling or degradation of activated receptor tyrosine kinases such as the platelet-derived growth factor receptor (PDGFR). The p85alpha subunit of phosphatidylinositol 3'-kinase contains a BH domain with sequence homology to GTPase activating proteins (GAPs), but has not previously been shown to possess GAP activity. In this report, we demonstrate that p85alpha has GAP activity toward Rab5, Rab4, Cdc42, Rac1 and to a lesser extent Rab6, with little GAP activity toward Rab11. Purified recombinant Rab5 and p85alpha can bind directly to each other and not surprisingly, the p85alpha-encoded GAP activity is present in the BH domain. Because p85alpha stays bound to the PDGFR during receptor endocytosis, p85alpha will also be localized to the same early endosomal compartment as Rab5 and Rab4. Taken together, the physical co-localization and the ability of p85alpha to preferentially stimulate the down-regulation of Rab5 and Rab4 GTPases suggests that p85alpha regulates how long Rab5 and Rab4 remain in their GTP-bound active state. Cells expressing BH domain mutants of p85 show a reduced rate of PDGFR degradation as compared with wild type p85 expressing cells. These cells also show sustained activation of the mitogen-activated protein kinase and Akt pathways. Thus, the p85alpha protein may play a role in the down-regulation of activated receptors through its temporal control of the GTPase cycles of Rab5 and Rab4.
Collapse
Affiliation(s)
- M Dean Chamberlain
- Cancer Research Unit, Health Research Division, Saskatchewan Cancer Agency, Saskatoon, Saskatchewan S7N 4H4, Canada
| | | | | | | |
Collapse
|
10
|
Sánchez-Margalet V, Martín-Romero C, Santos-Alvarez J, Goberna R, Najib S, Gonzalez-Yanes C. Role of leptin as an immunomodulator of blood mononuclear cells: mechanisms of action. Clin Exp Immunol 2003; 133:11-9. [PMID: 12823272 PMCID: PMC1808745 DOI: 10.1046/j.1365-2249.2003.02190.x] [Citation(s) in RCA: 252] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2003] [Indexed: 01/13/2023] Open
Abstract
Leptin is a an adipocyte-secreted hormone that regulates weight centrally. However, the leptin receptor is expressed not only in the central nervous system, but also in peripheral tissues, such as haematopoietic and immune systems. Therefore, the physiological role of leptin should not be limited to the regulation of food intake and energy expenditure. Moreover, the leptin receptor bears homology to members of the class I cytokine family, and recent data have demonstrated that leptin is able to modulate the immune response. Thus, the leptin receptor is expressed in human peripheral blood mononuclear cells, mediating the leptin effect on proliferation and activation. In vitro activation and HIV infection in vivo induce the expression of the long isoform of the leptin receptor in mononuclear cells. Also, leptin stimulates the production of proinflammatory cytokines from cultured monocytes and enhances the production of Th1 type cytokines from stimulated lymphocytes. Moreover, leptin has a trophic effect on monocytes, preventing apoptosis induced by serum deprivation. Leptin stimulation activates JAK-STAT, IRS-1-PI3K and MAPK signalling pathways. Leptin also stimulates Tyr-phosphorylation of the RNA-binding protein Sam68 mediating the dissociation from RNA. In this way, leptin signalling could modulate RNA metabolism. These signal transduction pathways provide possible mechanisms whereby leptin may modulate activation of peripheral blood mononuclear cells. Therefore, these data support the hypothesis regarding leptin as a proinflammatory cytokine with a possible role as a link between the nutritional status and the immune response. Moreover, these immunoregulatory functions of leptin could have some relevance in the pathophysiology of obesity.
Collapse
Affiliation(s)
- V Sánchez-Margalet
- Department of Clinical Biochemistry, Investigation Unit, University Hospital Virgen Macarena, Seville, Spain.
| | | | | | | | | | | |
Collapse
|
11
|
Haddad PS, Vallerand D, Mathé L, Benzeroual K, Van de Werve G. Synergistic activation of mitogen-activated protein kinase by insulin and adenosine triphosphate in liver cells: permissive role of Ca2+. Metabolism 2003; 52:590-8. [PMID: 12759889 DOI: 10.1053/meta.2003.50094] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We have previously demonstrated that insulin and G(q)-coupled receptor agonists individually activate mitogen-activated protein kinase (MAPK) in liver cells and both effects involve an influx of extracellular Ca(2+). Yet, these agonists have opposing physiological actions on hepatocyte glucose metabolism. We thus investigated the interaction between insulin and the P2Y(2) purinergic agonist adenosine triphosphate (ATP) on MAPK in HTC cells, a model hepatocyte cell line, and determined the involvement of cytosolic Ca(2+). Insulin and ATP each induced a dose-dependent phosphorylation of p44/42 MAPK that was partially inhibited by EGTA. However, pretreatment with insulin markedly increased the MAPK phosphorylation response to ATP. This potentiation was canceled by chelation of extracellular Ca(2+) with EGTA. We used patch clamp electrophysiology and fluorescence microscopy to understand the role of intracellular Ca(2+) in this effect. Insulin and ATP, respectively, induced monophasic and multiphasic changes in membrane potential and intracellular Ca(2+) as expected. Pretreatment with 10 nmol/L insulin significantly decreased the initial rapid depolarization (inward nonselective cation current [NSCC]), as well as the compounded Ca(2+) response induced by 100 micro mol/L ATP. However, in Ca(2+)-free conditions, insulin did not modify the Ca(2+) mobilized from internal pools after stimulation with ATP. Upon Ca(2+) readmission, internal store depletion by ATP or thapsigargin doubled the rate of capacitative Ca(2+) influx, whereas insulin increased this influx 1.32-fold. On the other hand, insulin pretreatment counteracted the increased rate of Ca(2+) influx induced by ATP but not by thapsigargin. In summary, insulin counteracts the membrane potential and Ca(2+) responses to ATP in HTC cells. However, insulin and ATP effects on MAPK activation are synergistic and Ca(2+) influx plays a permissive role. Therefore, the opposing metabolic actions of insulin and G(q)-coupled receptor agonists involve an interaction in signaling pathways that resides downstream of Ca(2+) influx.
Collapse
Affiliation(s)
- Pierre S Haddad
- Groupe de recherche en transport membranaire, Départements de Pharmacologie et de Nutrition, Université de Montréal et Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada
| | | | | | | | | |
Collapse
|
12
|
Najib S, Sánchez-Margalet V. Sam68 associates with the SH3 domains of Grb2 recruiting GAP to the Grb2-SOS complex in insulin receptor signaling. J Cell Biochem 2002; 86:99-106. [PMID: 12112020 DOI: 10.1002/jcb.10198] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The 68 kDa Src substrate associated during mitosis (Sam68) is an RNA binding protein with Src homology (SH) 2 and 3 domain binding sites. We have recently found that Sam68 is a substrate of the insulin receptor (IR) that translocates from the nucleus to the cytoplasm and that Tyr-phosphorylated Sam68 associates with the SH2 domains of p85 PI3K and GAP, in vivo and in vitro. In the present work, we have further demonstrated the cytoplasmic localization of Sam68, which is increased in cells overexpressing IR. Besides, we sought to further study the association of Sam68 with the Ras-GAP pathway by assessing the interactions with SH3 domains of Grb2. We employed GST-fusion proteins containing the SH3 domains of Grb2 (N or C), and recombinant Sam68 for in vitro studies. In vivo studies of protein-protein interaction were assessed by co-immunoprecipitation experiments with specific antibodies against Sam68, GAP, Grb2, SOS, and phosphotyrosine; and by affinity precipitation with the fusion proteins (SH3-Grb2). Insulin stimulation of HTC-IR cells promotes phosphorylation of Sam68 and its association with the SH2 domains of GAP. Sam68 is constitutively associated with the SH3 domains of Grb2 and it does not change upon insulin stimulation, but Sam68 is Tyr-phosphorylated and promotes the association of GAP with the Grb2-SOS complex. In vitro studies with fusion proteins showed that Sam68 association with Grb2 is preferentially mediated by the C-terminal SH3 domains of Grb2. In conclusion, Sam68 is a substrate of the IR and may have a role as a docking protein in IR signaling, recruiting GAP to the Grb2-SOS complex, and in this way it may modulate Ras activity.
Collapse
Affiliation(s)
- Souad Najib
- Department of Medical Biochemistry and Molecular Biology, Medical School, Investigation Unit, Virgen Macarena University Hospital, Seville, Spain
| | | |
Collapse
|
13
|
González-Yanes C, Sánchez-Margalet V. Pancreastatin, a chromogranin A-derived peptide, activates protein synthesis signaling cascade in rat adipocytes. Biochem Biophys Res Commun 2002; 299:525-31. [PMID: 12459169 DOI: 10.1016/s0006-291x(02)02682-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Pancreastatin (PST), a chromogranin A-derived peptide, has been found to modulate glucose, lipid, and protein metabolism in rat adipocytes. PST has an overall counterregulatory effect on insulin action by activating a specific receptor-effector system (Galpha(q/11) protein-PLC-beta-PKC(classical)). However, PST stimulates both basal and insulin-mediated protein synthesis in rat adipocytes. In order to further investigate the mechanisms underlying the effect of PST stimulating protein synthesis, we sought to study the regulation of different components of the core translational machinery by the signaling triggered by PST. Thus, we studied ribosomal p70 S6 kinase, phosphorylation of the cap-binding protein (initiation factor) eIF4E, and phosphorylation of the eIF4E-binding protein 4E-BP1 (PHAS-I). We have found that PST stimulates the S6 kinase activity, as assessed by kinase assay using specific immunoprecipitates and substrate. This effect was checked by Western blot with specific antibodies against the phosphorylated S6 kinase. Thus, PST dose-dependently stimulates Thr421/Ser424 phosphorylation of S6 kinase. Moreover, PST promotes phosphorylation of regulatory sites in 4E-BP1 (PHAS-I) (Thr37, Thr46). The initiation factor eIF4E itself, whose activity is also increased upon phosphorylation, is phosphorylated in Ser209 by PST stimulation. Finally, we have found that these effects of PST on S6 kinase and the translation machinery can be blocked by preventing the activation of PKC. These results indicate that PST stimulates protein synthesis machinery by activating PKC and provides some evidence of the molecular mechanisms involved, i.e., the activation of S6K and the phosphorylation of 4E-BP1 (PHAS-I) and the initiation factor eIF4E.
Collapse
Affiliation(s)
- Carmen González-Yanes
- Department of Medical Biochemistry and Molecular Biology, Medical School, Investigation Unit, Virgen Macarena University Hospital, Av. Sánchez Pizjuan, 4. Seville 41009, Spain
| | | |
Collapse
|
14
|
Sánchez-Margalet V, Martín-Romero C, González-Yanes C, Goberna R, Rodríguez-Baño J, Muniain MA. Leptin receptor (Ob-R) expression is induced in peripheral blood mononuclear cells by in vitro activation and in vivo in HIV-infected patients. Clin Exp Immunol 2002; 129:119-24. [PMID: 12100031 PMCID: PMC1906417 DOI: 10.1046/j.1365-2249.2002.01900.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Leptin, the Ob gene product, is an adipocyte hormone that centrally regulates weight control. In addition, other effects of leptin in peripheral tissues have been described. Thus, leptin has been found to regulate reproduction, haematopoiesis and immune function. We have found recently that leptin has a stimulatory effect on human peripheral blood mononuclear cells (PBMC). Monocytes are activated by leptin alone whereas T lymphocytes need a suboptimal stimulus of PHA or ConA before further activation by leptin. These effects are mediated by the long isoform of the leptin receptor, which has been shown to trigger signalling in PBMC. In fact, we have found that human leptin stimulates Janus kinase (JAK)-signal transducer and activator of transcription (STAT), phosphatidylinositol 3-kinase (PI3K) and mitogen-activated protein kinase (MAPK) pathways in PBMC. In order to assess possible regulation of the long isoform of the leptin receptor (Ob-R) in mononuclear cells upon activation, we have studied the expression of Ob-R by RT-PCR and Western blotting in PBMC activated in vitro by PHA or ConA and in vivo in HIV-infected patients. We have found that in vitro activation and in vivo HIV infection correlates with an increase in leptin receptor expression in PBMC. Moreover, the leptin receptor is tyrosine phosphorylated in PBMC from HIV-infected patients, suggesting that the leptin receptor is activated. These results are consistent with the suggested role of leptin in modulating the immune response.
Collapse
Affiliation(s)
- V Sánchez-Margalet
- Department of Clinical Biochemistry, Internal Medicine, Virgen Macarena University Hospital, Seville, Spain.
| | | | | | | | | | | |
Collapse
|
15
|
González-Yanes C, Sánchez-Margalet V. Pancreastatin, a chromogranin-A-derived peptide, inhibits insulin-stimulated glycogen synthesis by activating GSK-3 in rat adipocytes. Biochem Biophys Res Commun 2001; 289:282-7. [PMID: 11708813 DOI: 10.1006/bbrc.2001.5967] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have previously found that pancreastatin (PST) inhibits glucose uptake in rat adipocytes by preventing GLUT4 translocation to the plasma membrane. We have also described that this effect is mediated by the cross-talk with insulin signaling, inhibiting Tyr-phosphorylation and PI3-kinase (PI3K) activity, via protein kinase C (PKC) activation. In the present work, we have further investigated the effects of PST on glucose metabolism and the signaling pathways involved in its regulation. As expected, we found that PST inhibited insulin-stimulated PKB activity, since it depends on PI3-kinase activity. Next, we studied the activity of the target enzyme of PKB, glycogen synthase kinase-3 (GSK-3). PST not only prevented the insulin effect decreasing GSK-3 activity, but PST itself was able to activate GSK-3 activity in rat adipocytes. As previously described, phosphorylation level of GSK-3 was negatively correlated with the activity. Thus, insulin stimulated GSK-3 serine phosphorylation, whereas PST inhibited this effect, and even decreased basal phosphorylation. The PST stimulation of GSK-3 activity seems to be mediated by PKC since it can be prevented by a specific PKC inhibitor (bisindolylmaleimide). Finally, the PST effect on GSK-3 activity resulted in an inhibition on both basal and insulin stimulated glycogen synthesis in rat adipocytes. This effect of PST can also be prevented by using a PKC inhibitor. In conclusion, the chromogranin-A-derived peptide PST inhibits glycogen synthesis in rat adipocytes by activating GSK-3 activity through the activation of PKC.
Collapse
Affiliation(s)
- C González-Yanes
- Department of Medical Biochemistry and Molecular Biology, Investigation Unit University Hospital Virgen Macarena, School of Medicine, University of Seville, Spain
| | | |
Collapse
|
16
|
Abstract
The 68 kDa Src substrate associated during mitosis (Sam68) is an RNA binding protein with Src homology (SH) 2 and 3 domain binding sites. We have recently found that Sam68 is a substrate of the insulin receptor (IR) and that Tyr-phosphorylated Sam68 associates with the SH2 domains of p85 PI3K. In the present work, using HTC-IR cells, we have found that insulin stimulation promotes the relocalization of Sam68 from the nucleus to the cytoplasm, and we have further studied the role of Sam68 in insulin receptor signaling complexes, by co-precipitating experiments. Thus, Sam68 is co-precipitated with p85 PI3K, IRS-1 and IR. The association of Sam68 with these complexes is mediated by the SH2 domains of PI3K. Moreover, we have found that Sam68 is a p120GAP associated protein after Tyr-phosphorylation by the IR. This association is mediated by the SH2 domains of GAP (preferentially the C-terminal SH2). Thus, Sam68 is linking p120GAP to PI3K signaling pathway. In fact, PI3K activity was increased in both anti-Sam68 and anti-GAP immmunoprecipitates upon insulin stimulation. We propose that the recruitment of the docking protein Sam68 to the PI3K pathway may serve to allow the association of other signaling molecules, i.e. p120GAP. In this way, these signaling complexes may modulate other signaling cascades of IR, such as p21Ras pathway.
Collapse
Affiliation(s)
- V Sánchez-Margalet
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, University of Seville and Investigation Unit, University Hospital Virgen Macarena, Av. Sanchez Pizjuan 4, 41009 Seville, Spain.
| | | |
Collapse
|
17
|
Martín-Romero C, Sánchez-Margalet V. Human leptin activates PI3K and MAPK pathways in human peripheral blood mononuclear cells: possible role of Sam68. Cell Immunol 2001; 212:83-91. [PMID: 11748924 DOI: 10.1006/cimm.2001.1851] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Leptin, the adipocyte-secreted hormone that centrally regulates weight control, is known to function as an immunomodulatory regulator. Thus, we have recently found that human leptin promotes stimulation and proliferation of human peripheral blood mononuclear cells. In the present work, we sought to study the mechanisms underlying these effects. First, we have assessed the presence of the long isoform of the human leptin receptor by RT-PCR. Next, we have studied tyrosine phosphorylation of cell proteins in response to leptin stimulation. We have found that leptin receptor, IRS-1 and the RNA-binding protein Sam68 are tyrosine phosphorylated upon leptin challenge in a dose-dependent manner. Moreover, tyrosine phosphorylation of IRS-1 and Sam68 promotes their association with p85, the regulatory subunit of PI3K, and this association leads to the stimulation of PI3K activity. On the other hand, the leptin-stimulated tyrosine phosphorylation of Sam68 mediates the dissociation from RNA as assessed by Sepharose-conjugated poly(U) binding. Finally, leptin receptor activation also triggers MAPK signaling pathway. Thus, leptin dose-dependently stimulates tyrosine and threonine phosphorylation of MAPK in mononuclear cells. In summary, the present work demonstrates the presence of the long isoform of the human leptin receptor in peripheral blood mononuclear cells and the activation of two signaling pathways, PI3K and MAPK. The effects on Sam68 phosphorylation may modulate its binding to RNA, although the physiological implications remain to be studied. These signal transduction pathways may mediate the described effects of human leptin on human peripheral blood mononuclear cells.
Collapse
Affiliation(s)
- C Martín-Romero
- Department of Clinical Biochemistry, Virgen Macarena University Hospital, University of Seville, 41071-Seville, Spain
| | | |
Collapse
|
18
|
Chandrasekher G, Kakazu AH, Bazan HE. HGF- and KGF-induced activation of PI-3K/p70 s6 kinase pathway in corneal epithelial cells: its relevance in wound healing. Exp Eye Res 2001; 73:191-202. [PMID: 11446769 DOI: 10.1006/exer.2001.1026] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In this study we have investigated the involvement of PI-3K and its downstream target p70 S6K in the signaling response of corneal epithelial cells after HGF and KGF stimulation. HGF induced three- to five-fold increase in PI-3K activity in 5-10 min, whereas KGF stimulation resulted in two- to three-fold increase in activity in 2-10 min. Both growth factors also caused the phosphorylation of p70 S6K and stimulation of its activity. HGF increased p70 S6K activity by 300% and KGF by about 200%. Protein kinase C (PKC) activator TPA also induced the phosphorylation of p70 S6K. Both the PI-3K inhibitor wortmannin and PKC inhibitor calphostin C blocked the phosphorylation of p70 S6K mediated by the growth factors. However, the mitogen-activated protein kinase (p42/44 MAPK) cascade inhibitor PD98059 had no effect on p70 S6K activation. Furthermore, HGF and KGF increased the rate of corneal epithelial wound healing in an organ culture model, and wortmannin and rapamycin (the p70 S6K inhibitor) blocked corneal epithelial wound healing promoted by the growth factors. These studies suggest that PI-3K and p70 S6K are important signal transducers in the stimulation of corneal epithelial cells by HGF and KGF. PKC is involved in the PI-3K-dependent activation of p70 S6K but not MAPK. Inhibition of wound closure by PI-3K and p70 S6K inhibitors suggests these enzymes play a significant role in corneal wound repair stimulated by HGF and KGF.
Collapse
Affiliation(s)
- G Chandrasekher
- Department of Ophthalmology, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | | | | |
Collapse
|
19
|
Sanchez-Margalet V, Martin-Romero C. Human leptin signaling in human peripheral blood mononuclear cells: activation of the JAK-STAT pathway. Cell Immunol 2001; 211:30-6. [PMID: 11585385 DOI: 10.1006/cimm.2001.1815] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Leptin is an adipocyte-secreted hormone that centrally regulates weight control. However, the leptin receptor is expressed not only in the central nervous system, but also in other systems, such as reproductive, hematopoietic, and immune tissues, suggesting various roles in addition to the regulation of food intake and energy expenditure. The leptin receptor bears homology to members of the class I cytokine receptor family. Leptin has previously been shown to enhance cytokine production by murine peritoneal macrophages and human circulating monocytes, where human leptin promotes activation and proliferation. We have recently found that the leptin receptor is expressed not only in monocytes but also in both CD4(+) and CD8(+) T lymphocytes. Besides, leptin enhances proliferation and activation of T lymphocytes when they are costimulated by PHA or Con A. In this paper, we have studied the signal transduction of the leptin receptor in peripheral blood mononuclear cells. We found that leptin stimulation activates the JAK-STAT signaling pathway. More specifically, we found that JAK-2/3 and STAT-3 are activated by tyrosine phosphorylation upon leptin stimulation. Moreover, leptin stimulated tyrosine phosphorylation of the RNA binding protein Sam68 and its association with STAT-3. These effects were dose-dependent (0.1-10 nM) and transient (5-30 min). We also observed the leptin stimulated translocation of activated STAT-3 from the cytoplasm to the nucleus. These results indicate that human leptin receptor in circulating mononuclear cells has the signaling capacity to activate JAK-STAT cascade. This pathway may mediate, at least in part, the action of human leptin in human peripheral blood mononuclear cells.
Collapse
Affiliation(s)
- V Sanchez-Margalet
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Investigation Unit, University of Seville, 41009-Seville, Spain.
| | | |
Collapse
|
20
|
Sánchez-Margalet V, González-Yanes C, Najib S. Pancreastatin, a chromogranin A-derived peptide, inhibits DNA and protein synthesis by producing nitric oxide in HTC rat hepatoma cells. J Hepatol 2001; 35:80-5. [PMID: 11495046 DOI: 10.1016/s0168-8278(01)00071-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND/AIMS Pancreastatin, a chromogranin A-derived peptide, has a counter-regulatory effect on insulin action. We have previously characterized pancreastatin receptor and signalling in rat liver and HTC hepatoma cells. A G alpha(q/11)-PLC-beta pathway leads to an increase in [Ca2+]i, PKC and mitogen activated protein kinase (MAPK) activation. These data suggested that pancreastatin might have a role in growth and proliferation, similar to other calcium-mobilizing hormones. METHODS DNA and protein synthesis were measured as [3H]-thymidine and [3H]-leucine incorporation. Nitric oxide (NO) was determined by the Griess method and cGMP production was quantified by enzyme-linked immunoassay. RESULTS Contrary to the expected results, we have found that pancreastatin inhibits protein and DNA synthesis in HTC hepatoma cells. On the other hand, when the activity of NO synthase was inhibited by N-monomethyl-L-arginine (NMLA), the inhibitory effect of pancreastatin on DNA and protein synthesis was not only reverted, but a dose-dependent stimulatory effect was observed, probably due to MAPK activation, since it was prevented by PD98059. These data strongly suggested the role of NO in the inhibitory effect of pancreastatin on protein and DNA synthesis, which is overcoming the effect on MAPK activation. Moreover, pancreastatin dose-dependently increased NO production in parallel to cyclic guanosine monophosphate (cGMP). Both effects were prevented by NMLA. Finally, an indirect effect of pancreastatin through the induction of apoptosis was ruled out. CONCLUSIONS Therefore, the NO and the cGMP produced by the NO-activated guanylate cyclase may mediate the dose-dependent inhibitory effect of pancreastatin on growth and proliferation in HTC hepatoma cells.
Collapse
Affiliation(s)
- V Sánchez-Margalet
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, University Hospital Virgen Macarena, Seville, Spain.
| | | | | |
Collapse
|
21
|
Chang N, Uribe JM, Keely SJ, Calandrella S, Barrett KE. Insulin and IGF-I inhibit calcium-dependent chloride secretion by T84 human colonic epithelial cells. Am J Physiol Gastrointest Liver Physiol 2001; 281:G129-37. [PMID: 11408264 DOI: 10.1152/ajpgi.2001.281.1.g129] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
D-Myo-inositol (3,4,5,6) tetrakisphosphate [Ins(3,4,5,6)P(4)] or phosphatidylinositol 3-kinase (PI 3-kinase) activity acts to inhibit calcium-dependent chloride secretion in T84 colonic epithelial cells. To further distinguish between the contributions of these two signaling pathways to the inhibition of secretion, we studied effects of insulin, because the insulin receptor links to PI 3-kinase but not to pathways postulated to generate Ins(3,4,5,6)P(4). Chloride secretion across T84 cell monolayers was studied in Ussing chambers. Activation of PI 3-kinase was assessed by Western blotting. Basolateral, but not apical, addition of insulin inhibited carbachol- and thapsigargin-induced chloride secretion in a time- and concentration-dependent fashion. Insulin-like growth factor-I (IGF-I) had similar effects. Insulin had no effect on Ins(3,4,5,6)P(4) levels, and the inhibitory effects of insulin and IGF-I on chloride secretion were fully reversed by the PI 3-kinase inhibitors wortmannin and LY-294002. Western blot analysis showed that both insulin and IGF-I recruited the 85-kDa regulatory and 110-kDa catalytic subunits of PI 3-kinase to anti-phosphotyrosine immunoprecipitates. In conclusion, insulin and IGF-I act to inhibit calcium-dependent chloride secretion through a PI 3-kinase-dependent pathway. Because insulin is released in a pulsatile fashion postprandially and IGF-I levels are elevated in pathological settings, our findings may have physiological and/or pathophysiological significance.
Collapse
Affiliation(s)
- N Chang
- Department of Medicine, University of California, San Diego, School of Medicine, San Diego, California 92103, USA
| | | | | | | | | |
Collapse
|
22
|
Gilbert C, Barabé F, Rollet-Labelle E, Bourgoin SG, McColl SR, Damaj BB, Naccache PH. Evidence for a role for SAM68 in the responses of human neutrophils to ligation of CD32 and to monosodium urate crystals. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 166:4664-71. [PMID: 11254726 DOI: 10.4049/jimmunol.166.7.4664] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
SAM68 (Src-associated in mitosis 68 kDa) is a member of the signal transduction of activator RNA novel gene family coding for proteins postulated to be involved in signal transduction and activation of RNA. It has been implicated through its phosphorylation status in the control of the transition from the G(1) to the S phases during mitosis. However, the implication and role of SAM68 in nonproliferative cells are unknown. The present study was initiated to examine the role of SAM68 in the phagocytic responses of the terminally differentiated human neutrophils. The results obtained show that SAM68 is present in human neutrophils and that it is tyrosine phosphorylated in response to stimulation by monosodium urate crystals or by ligation of CD32. Stimulation of neutrophils by these agonists decreases the association of SAM68 with Sepharose-conjugated poly-U beads. Additionally, the amount of immunoprecipitable SAM68 was modulated differentially after stimulation by monosodium urate crystals or by CD32 engagement indicating that the posttranslational modifications and/or protein associations of SAM68 induced by these two agonists differed. The results of this study provide evidence for an involvement of SAM68 in signal transduction by phagocytic agonists in human neutrophils and indicate that SAM68 may play a role in linking the early events of signal transduction to the posttranscriptional modulation of RNA.
Collapse
Affiliation(s)
- C Gilbert
- Centre de Recherche en Rhumatologie et Immunologie, Centre de Recherche du Centre Hospitalier de l'Universite Laval, Ste-Foy, Québec, Canada
| | | | | | | | | | | | | |
Collapse
|
23
|
Marandi S, De Keyser N, Saliez A, Maernoudt AS, Sokal EM, Stilmant C, Rider MH, Buts JP. Insulin signal transduction in rat small intestine: role of MAP kinases in expression of mucosal hydrolases. Am J Physiol Gastrointest Liver Physiol 2001; 280:G229-40. [PMID: 11208545 DOI: 10.1152/ajpgi.2001.280.2.g229] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The postreceptor events regulating the signal of insulin downstream in rat intestinal cells have not yet been analyzed. Our objectives were to identify the nature of receptor substrates and phosphorylated proteins involved in the signaling of insulin and to investigate the mechanism(s) by which insulin enhances intestinal hydrolases. In response to insulin, the following proteins were rapidly phosphorylated on tyrosine residues: 1) insulin receptor substrates-1 (IRS-1), -2, and -4; 2) phospholipase C-isoenzyme-gamma; 3) the Ras-GTPase-activating protein (GAP) associated with Rho GAP and p62(Src); 4) the insulin receptor beta-subunit; 5) the p85 subunits of phosphatidylinositol 3-kinase (PI 3-kinase); 6) the Src homology 2 alpha-collagen protein; 7) protein kinase B; 8) mitogen-activated protein (MAP) kinase-1 and -2; and 9) growth receptor-bound protein-2. Compared with controls, insulin enhanced the intestinal activity of MAP kinase-2 and protein kinase B by two- and fivefold, respectively, but did not enhance p70/S6 ribosomal kinase. Administration of an antireceptor antibody or MAP-kinase inhibitor PD-98059 but not a PI 3-kinase inhibitor (wortmannin) to sucklings inhibited the effects of insulin on mucosal mass and enzyme expression. We conclude that normal rat enterocytes express all of the receptor substrates and mediators involved in different insulin signaling pathways and that receptor binding initiates a signal enhancing brush-border membrane hydrolase, which appears to be regulated by the cascade of MAP kinases but not by PI 3-kinase.
Collapse
Affiliation(s)
- S Marandi
- Laboratory of Pediatric Gastroenterology and Nutrition, Christian de Duve Institute of Cellular and Molecular Pathology, Université Catholique de Louvain, 1200 Brussels, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Drake PG, Balbis A, Wu J, Bergeron JJ, Posner BI. Association of phosphatidylinositol 3-kinase with the insulin receptor: compartmentation in rat liver. Am J Physiol Endocrinol Metab 2000; 279:E266-74. [PMID: 10913025 DOI: 10.1152/ajpendo.2000.279.2.e266] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Phosphatidylinositol 3-kinase (PI 3-kinase) plays an important role in a variety of hormone and growth factor-mediated intracellular signaling cascades and has been implicated in the regulation of a number of metabolic effects of insulin, including glucose transport and glycogen synthase activation. In the present study we have examined 1) the association of PI 3-kinase with the insulin receptor kinase (IRK) in rat liver and 2) the subcellular distribution of PI 3-kinase-IRK interaction. Insulin treatment promoted a rapid and pronounced recruitment of PI 3-kinase to IRKs located at the plasma membrane, whereas no increase in association with endosomal IRKs was observed. In contrast to IRS-1-associated PI 3-kinase activity, association of PI 3-kinase with the plasma membrane IRK did not augment the specific activity of the lipid kinase. With use of the selective PI 3-kinase inhibitor wortmannin, our data suggest that the cell surface IRK beta-subunit is not a substrate for the serine kinase activity of PI 3-kinase. The functional significance for the insulin-stimulated selective recruitment of PI 3-kinase to cell surface IRKs remains to be elucidated.
Collapse
Affiliation(s)
- P G Drake
- Polypeptide Hormone Laboratory, McGill University, Montreal, Quebec, Canada H3A 2B2
| | | | | | | | | |
Collapse
|
25
|
Choi WS, Sung CK. Characterization of insulin receptor substrate 3 in rat liver derived cells. Biochem Biophys Res Commun 2000; 272:953-8. [PMID: 10860857 DOI: 10.1006/bbrc.2000.2869] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In rat liver derived HTC cells transfected with and expressing human insulin receptors, there are multiple p60-70 proteins that are tyrosine phosphorylated following insulin treatment of cells. Employing antibodies to insulin receptor substrate 3 (alpha-IRS-3), we found that IRS-3 is a major p60 phosphoprotein that is tyrosine phosphorylated following insulin treatment of cells and interacts with phosphatidylinositol-3-kinase (PI3K). Majority of IRS-3 when phosphorylated appears to interact with PI3K. Tyrosine phosphorylation of IRS-3 is robust at 2 min and steadily increases up to 30-90 min of insulin treatment. Following insulin treatment of cells, some high molecular weight phosphoproteins are coimmunoprecipitated with alpha-IRS-3. In summary, IRS-3 is the major p60 protein that is tyrosine phosphorylated and interacts with PI3K in HTC rat liver derived cells following insulin treatment of cells. Unlike related IRS-1/2 that is transiently phosphorylated, IRS-3 shows robust and prolonged tyrosine phosphorylation upon insulin treatment of cells and may play a role in delayed and/or prolonged insulin actions.
Collapse
Affiliation(s)
- W S Choi
- Department of Physiology and Biophysics, University of Southern California, Los Angeles 90033, USA
| | | |
Collapse
|
26
|
Sánchez-Margalet V, González-Yanes C, Santos-Alvarez J, Najib S. Characterization of pancreastatin receptor and signaling in rat HTC hepatoma cells. Eur J Pharmacol 2000; 397:229-35. [PMID: 10844119 DOI: 10.1016/s0014-2999(00)00253-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Pancreastatin, a chromogranin A-derived peptide widely distributed throughout the neuroendocrine system, has a general inhibitory effect on endocrine secretion and a counterregulatory effect on insulin action. We have recently described the cross-talk of pancreastatin with insulin signaling in rat hepatoma cells (HTC), where it inhibits insulin action and signaling through the serine phosphorylation of the insulin receptor, thereby impairing tyrosine kinase activity. Here, we have characterized pancreastatin receptors and signaling in HTC cells. The pancreastatin effector systems were studied by determining phospholipase C activity in HTC membranes and mitogen-activated protein kinase (MAPK) phosphorylation activity in HTC cells. Binding studies with radiolabeled pancreastatin showed a population of high affinity binding sites, with a B(max) of 8 fmol/mg protein and a K(d) of 0.6 nM. Moreover, we assessed the coupling of the receptor with a G protein system by inhibiting the binding with guanine nucleotide and by measuring the GTP binding to HTC membranes. We found that pancreastatin receptor was coupled with a G alpha(q/11) protein which activates phospholipase C-beta(1) and phospholipase C-beta(3), in addition to MAPK via both beta gamma and alpha(q/11).
Collapse
Affiliation(s)
- V Sánchez-Margalet
- Departamento de Bioquímica Médica y Biología Molecular, Facultad de Medicina, Unidad de Investigación, Hospital Universitario Virgen Macarena, Universidad de Sevilla, Av. Sánchez Pizjuan 4, 41009, Sevilla, Spain.
| | | | | | | |
Collapse
|
27
|
Rondinone CM, Carvalho E, Rahn T, Manganiello VC, Degerman E, Smith UP. Phosphorylation of PDE3B by phosphatidylinositol 3-kinase associated with the insulin receptor. J Biol Chem 2000; 275:10093-8. [PMID: 10744689 DOI: 10.1074/jbc.275.14.10093] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phosphatidylinositol 3-kinase mediates several actions of insulin including its antilipolytic effect. This effect is elicited by the insulin-stimulated serine phosphorylation and activation of cGMP-inhibited phosphodiesterase (PDE3B). In human adipocytes, we found that insulin differentially stimulated phosphatidylinositol 3-kinase activity; the lipid kinase activity was associated with IRS-1, whereas the serine kinase activity was associated with the insulin receptor and phosphorylated a number of proteins including p85, p110, and a 135-kDa protein identified as PDE3B. PDE3B phosphorylation was associated with enzyme activation, thus initiating the antilipolytic effect of insulin. These results show a novel pathway for intracellular signaling through the insulin receptor leading to the serine phosphorylation of key proteins involved in insulin action.
Collapse
Affiliation(s)
- C M Rondinone
- Lundberg Laboratory for Diabetes Research, Department of Internal Medicine, Goteborg University, Sahlgrenska University Hospital, Goteborg S-413 45, Sweden
| | | | | | | | | | | |
Collapse
|
28
|
Sánchez-Margalet V. Stimulation of glycogen synthesis by insulin requires S6 kinase and phosphatidylinositol-3-kinase in HTC-IR cells. J Cell Physiol 2000; 182:182-8. [PMID: 10623881 DOI: 10.1002/(sici)1097-4652(200002)182:2<182::aid-jcp6>3.0.co;2-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In order to study the role of phosphatidylinositol-3-kinase (PI3K), PKB, FRAP, S6 kinase, and MAP kinase in insulin-stimulated glycogen synthesis, we used a specific inhibitor of PI3K, LY294002, the immunosuppressant inhibitor of FRAP, rapamycin, and the inhibitor of MAPK kinase (MEK)/MAPK, PD98059, in rat HTC hepatoma cells overexpressing human insulin receptors. The PI3K inhibitor LY294002 completely blocks insulin-stimulated glycogen synthesis by inhibiting glycogen synthase, PKB (Akt-1), and FRAP (RAFT) autophosphorylation, as well as p70 S6 kinase activation, whereas insulin receptor substrates tyrosine phosphorylation and MEK activity were not affected. However, rapamycin only partially blocks insulin-stimulated glycogen synthesis by partial inhibition of glycogen synthase, whereas it completely blocks S6 kinase activation and FRAP autophosphorylation, but does not affect either PKB autophosphorylation, MEK activity, or insulin receptor tyrosine phosphorylation. Insulin-stimulated glycogen synthesis and glycogen synthase were not affected by the MEK/MAPK inhibitor PD98059. These data suggest that the PI3K, and not the MAPK pathway plays an important role in the insulin-stimulated glycogen synthesis in the hepatocyte, partly mediated by FRAP and S6 kinase activation. However, the inhibition of FRAP and S6 kinase activation is not sufficient to block insulin-stimulated glycogen synthesis, suggesting an important role of a branching pathway upstream of S6 kinase and downstream of PI3K, which is probably mediated by PKB in the signaling of the insulin receptor in hepatoma HTC cells.
Collapse
Affiliation(s)
- V Sánchez-Margalet
- Departamento de Bioquímica Médica y Biología Molecular, Facultad de Medicina, Universidad de Sevilla; Unidad de Investigación del Hospital Universitario Virgen Macarena, Sevilla, Spain.
| |
Collapse
|
29
|
Sánchez-Margalet V, Najib S. p68 Sam is a substrate of the insulin receptor and associates with the SH2 domains of p85 PI3K. FEBS Lett 1999; 455:307-10. [PMID: 10437794 DOI: 10.1016/s0014-5793(99)00887-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The 68 kDa Src substrate associated during mitosis is an RNA binding protein with Src homology 2 and 3 domain binding sites. A role for Src associated in mitosis 68 as an adaptor protein in signaling transduction has been proposed in different systems such as T-cell receptors. In the present work, we have sought to assess the possible role of Src associated in mitosis 68 in insulin receptor signaling. We performed in vivo studies in HTC-IR cells and in vitro studies using recombinant Src associated in mitosis 68, purified insulin receptor and fusion proteins containing either the N-terminal or the C-terminal Src homology 2 domain of p85 phosphatidylinositol-3-kinase. We have found that Src associated in mitosis 68 is a substrate of the insulin receptor both in vivo and in vitro. Moreover, tyrosine-phosphorylated Src associated in mitosis 68 was found to associate with p85 phosphatidylinositol-3-kinase in response to insulin, as assessed by co-immunoprecipitation studies. Therefore, Src associated in mitosis 68 may be part of the signaling complexes of insulin receptor along with p85. In vitro studies demonstrate that Src associated in mitosis 68 associates with the Src homology 2 domains of p85 after tyrosine phosphorylation by the activated insulin receptor. Moreover, tyr-phosphorylated Src associated in mitosis 68 binds with a higher affinity to the N-terminal Src homology 2 domain of p85 compared to the C-terminal Src homology 2 domain of p85, suggesting a preferential association of Src associated in mitosis 68 with the N-terminal Src homology 2 domain of p85. This association may be important for the link of the signaling with RNA metabolism.
Collapse
Affiliation(s)
- V Sánchez-Margalet
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, University of Seville, University Hospital Virgen Macarena, Spain.
| | | |
Collapse
|
30
|
Gustafson TA, Moodie SA, Lavan BE. The insulin receptor and metabolic signaling. Rev Physiol Biochem Pharmacol 1999; 137:71-190. [PMID: 10207305 DOI: 10.1007/3-540-65362-7_5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- T A Gustafson
- Metabolex, Inc., Section of Signal Transduction, Hayward, CA 94545, USA
| | | | | |
Collapse
|
31
|
Tsuchida M, Knechtle SJ, Hamawy MM. CD28 ligation induces tyrosine phosphorylation of Pyk2 but not Fak in Jurkat T cells. J Biol Chem 1999; 274:6735-40. [PMID: 10037772 DOI: 10.1074/jbc.274.10.6735] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein tyrosine kinases are critical for the function of CD28 in T cells. We examined whether the tyrosine kinases Pyk2 and Fak (members of the focal adhesion kinase family) are involved in CD28 signaling. We found that ligating CD28 in Jurkat T cells rapidly increases the tyrosine phosphorylation of Pyk2 but not of Fak. Paxillin, a substrate for Pyk2 and Fak, was not tyrosine-phosphorylated after CD28 ligation. CD28-induced tyrosine phosphorylation of Pyk2 was markedly reduced in the absence of external Ca2+. Previous studies have shown that the T cell antigen receptor (TCR) induces tyrosine phosphorylation of Pyk2. In this report, the concurrent ligation of CD28 and TCR increased tyrosine phosphorylation of Pyk2; however, the extent of phosphorylation by both receptors was equivalent to the sum of that induced by each receptor alone. The Syk/Zap inhibitor piceatannol blocked CD28, and TCR induced tyrosine phosphorylation of Pyk2, suggesting that Syk/Zap is involved in Pyk2 phosphorylation. In contrast, the phosphatidylinositol 3-kinase inhibitor wortmannin blocked TCR- but not CD28-induced phosphorylation of Pyk2, suggesting that CD28 and TCR activate distinct pathways to induce tyrosine phosphorylation of Pyk2. Notably, depleting phorbol 12-myristate 13-acetate-sensitive protein kinase C did not block CD28- and CD3-induced tyrosine phosphorylation of Pyk2. These data provide evidence for the involvement of Pyk2 in the CD28 signaling cascade and suggest that neither Fak nor paxillin is involved in the signaling pathways of CD28.
Collapse
Affiliation(s)
- M Tsuchida
- Department of Surgery, University of Wisconsin, Madison, Wisconsin 53792, USA
| | | | | |
Collapse
|
32
|
Sung CK, Choi WS, Scalia P. Insulin-stimulated glycogen synthesis in cultured hepatoma cells: differential effects of inhibitors of insulin signaling molecules. J Recept Signal Transduct Res 1998; 18:243-63. [PMID: 9879060 DOI: 10.3109/10799899809047746] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
In rat HTC hepatoma cells overexpressing human insulin receptors, insulin stimulated glycogen synthesis by 55-70%. To study postreceptor signaling events leading to insulin-stimulated glycogen synthesis in these cells, we have employed pathway-specific chemical inhibitors such as LY294002, rapamycin and PD98059 to inhibit phosphatidylinositol-3-kinase (PI3K), p70 ribosomal S6 kinase and mitogen-activated protein kinase (MAPK) kinase/MAPK, respectively. LY294002 (50 microM) completely abolished insulin-stimulated glycogen synthesis whereas rapamycin (2-20 nM) partially inhibited it. Neither LY294002 nor rapamycin significantly affected the basal glycogen synthesis. However, PD98059 (100 microM) significantly inhibited the basal glycogen synthesis without affecting insulin-stimulated glycogen synthesis. In these cells, insulin at 100 nM decreased glycogen synthase kinase 3 alpha (GSK3 alpha) activity by 30-35%. LY294002, but neither rapamycin nor PD98059, abolished insulin-induced inactivation of GSK3 alpha. These data suggest that insulin-stimulated glycogen synthesis in rat HTC hepatoma cells is mediated mainly by PI3K-dependent mechanism. In these cells, inactivation of GSK3 alpha, downstream of PI3K, may play a role in insulin-stimulated glycogen synthesis.
Collapse
Affiliation(s)
- C K Sung
- Department of Physiology and Biophysics, University of Southern California, School of Medicine, Los Angeles 90033, USA
| | | | | |
Collapse
|
33
|
Sung CK, Choi WS, Sanchez-Margalet V. Guanosine triphosphatase-activating protein-associated protein, but not src-associated protein p68 in mitosis, is a part of insulin signaling complexes. Endocrinology 1998; 139:2392-8. [PMID: 9564850 DOI: 10.1210/endo.139.5.6019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The insulin receptor, following insulin stimulation of cells, triggers formation of various signaling complexes. In rat HTC hepatoma cells overexpressing normal human insulin receptors (HTC-IR), p85 regulatory subunit of phosphatidylinositol-3-kinase (PI3K) forms signaling complexes containing the insulin receptor, insulin receptor substrate 1 (IRS-1), guanosine triphosphatase-activating protein (GAP) and 60-70 kDa phosphotyrosine proteins (p60-70). In the present study, we demonstrate that p60-70 interacts directly with the p85 subunit via src homology 2 domain of the latter. Employing antibodies specific to two p85 isoforms, p85alpha and p85beta, we demonstrate that HTC-IR cells express both p85 isoforms, and these isoforms induce the formation of similar signaling complexes in response to insulin. p60-70, present in both alpha-p85alpha and alpha-p85beta immunoprecipitates, is a GAP-associated protein, but is distinct from the p68 src-associated protein in mitosis (Sam68) by several criteria. These data suggest that 1) GAP-associated protein, but not Sam68, is a part of insulin signaling complexes; and 2) p85alpha and p85beta form similar, but distinct, insulin receptor signaling complexes.
Collapse
Affiliation(s)
- C K Sung
- Department of Physiology and Biophysics, University of Southern California School of Medicine, Los Angeles 90033, USA.
| | | | | |
Collapse
|
34
|
Abstract
An elevated content of membrane glycoprotein PC-1 has been observed in cells and tissues of insulin resistant patients. In addition, in vitro overexpression of PC-1 in cultured cells induces insulin resistance associated with diminished insulin receptor tyrosine kinase activity. We now find that PC-1 overexpression also influences insulin receptor signaling at a step downstream of insulin receptor tyrosine kinase, independent of insulin receptor tyrosine kinase. In the present studies, we employed Chinese hamster ovary cells that overexpress the human insulin receptor (CHO IR cells; approximately 10(6) receptors per cell), and transfected them with human PC-1 c-DNA (CHO IR PC-1). In CHO IR PC-1 cells, insulin receptor tyrosine kinase activity was unchanged, following insulin treatment of cells. However, several biological effects of insulin, including glucose and amino acid uptake, were decreased. In CHO IR PC-1 cells, insulin stimulation of mitogen-activated protein (MAP) kinase activity was normal, suggesting that PC-1 overexpression did not affect insulin receptor activation of Ras, which is upstream of MAP kinase. Also, insulin-stimulated phosphatidylinositol (PI)-3-kinase activity was normal, suggesting that PC-1 overexpression did not interfere with the activation of this enzyme by insulin receptor substrate-1. In these cells, however, insulin stimulation of p70 ribosomal S6 kinase activity was diminished. These studies suggest, therefore, that, in addition to blocking insulin receptor tyrosine kinase activation, PC-1 can also block insulin receptor signaling at a post-receptor site.
Collapse
Affiliation(s)
- S Kumakura
- Diabetes and Endocrine Research, Mt. Zion Medical Center, University of California, San Francisco 94115, USA
| | | | | |
Collapse
|
35
|
Band CJ, Posner BI, Dumas V, Contreres JO. Early signaling events triggered by peroxovanadium [bpV(phen)] are insulin receptor kinase (IRK)-dependent: specificity of inhibition of IRK-associated protein tyrosine phosphatase(s) by bpV(phen). Mol Endocrinol 1997; 11:1899-910. [PMID: 9415395 DOI: 10.1210/mend.11.13.0041] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Peroxovanadiums (pVs) are potent protein tyrosine phosphatase (PTP) inhibitors with insulin-mimetic properties in vivo and in vitro. We have established the existence of an insulin receptor kinase (IRK)-associated PTP whose inhibition by pVs correlates closely with IRK tyrosine phosphorylation, activation, and downstream signaling. pVs have also been shown to activate various tyrosine kinases (TKs) that could participate in activation of the insulin-signaling pathway. In the present study we have sought to determine whether pV-induced IRK tyrosine phosphorylation requires the intrinsic kinase activity of the IRK, and whether IRK activation is necessary to realize the early steps in the insulin-signaling cascade. To address this we evaluated the effect of a pure pV compound, bis peroxovanadium 1,10-phenanthroline [bpV(phen)], in HTC rat hepatoma cells overexpressing normal (HTC-IR) or kinase-deficient (HTC-M1030) mutant IRKs. We showed that at a dose of 0.1 mM, but not 1 mM, bpV(phen) induced IRK-dependent events. Thus, 0.1 mM bpV(phen) increased tyrosine phosphorylation and IRK activity in HTC-IR but not HTC-M1030 cells. Tyrosine phosphorylation of insulin signal-transducing molecules was promoted in HTC-IR but not HTC-M1030 cells by bpV(phen). The association of p185 and p60 with the src homology-2 (SH2) domains of Syp and the p85-regulatory subunit of phosphatidylinositol 3'-kinase was induced by bpV(phen) in HTC-IR, but not in HTC-M1030 cells, as was insulin receptor substrate-1-associated phosphatidylinositol 3'-kinase activity. Thus autophosphorylation and activation of the IRK by bpV(phen) is effected by the IRK itself, and the early events in the insulin- signaling cascade follow from this activation event. This establishes a critical role for PTP(s) in the regulation of IRK activity. bpV(phen) could be distinguished from insulin only in its ability to activate ERK1 in HTC-M1030 cells, thus indicating that this event is IRK independent, consistent with our previous hypothesis that bpV(phen) inhibits a PTP involved in the negative regulation of mitogen-activated protein kinases.
Collapse
Affiliation(s)
- C J Band
- Department of Medicine, McGill University, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
36
|
Kaburagi Y, Satoh S, Tamemoto H, Yamamoto-Honda R, Tobe K, Veki K, Yamauchi T, Kono-Sugita E, Sekihara H, Aizawa S, Cushman SW, Akanuma Y, Yazaki Y, Kadowaki T. Role of insulin receptor substrate-1 and pp60 in the regulation of insulin-induced glucose transport and GLUT4 translocation in primary adipocytes. J Biol Chem 1997; 272:25839-44. [PMID: 9325314 DOI: 10.1074/jbc.272.41.25839] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
In muscle and fat, glucose transport occurs through the translocation of GLUT4 from an intracellular pool to the cell surface. Phosphatidylinositol (PI) 3-kinase has been shown to be required in this process. Insulin is thought to activate this enzyme by stimulating its association with tyrosine-phosphorylated proteins such as insulin receptor substrate (IRS)-1, IRS-2, Grb2-associated binder-1, and pp60. To study the role of these endogenous substrates in glucose transport, we analyzed adipocytes from IRS-1 null mice that we previously generated (Tamemoto, H., Kadowaki, T., Tobe, K., Yagi, T., Sakura, H., Hayakawa, T., Terauchi, Y., Ueki, K., Kaburagi, Y., Satoh, S., Sekihara, H., Yoshioka, S., Horikoshi, H., Furuta, Y. , Ikawa, Y., Kasuga, M., Yazaki Y., and Aizawa S. (1994) Nature 372, 182-186). In adipocytes from these mice, we showed that: 1) insulin-induced PI 3-kinase activity in the antiphosphotyrosine immunoprecipitates was 54% of wild-type; 2) pp60 was the major tyrosine-phosphorylated protein that associated with PI 3-kinase, whereas tyrosine phosphorylaion of IRS-2 as well as its association with this enzyme was almost undetectable; and 3) glucose transport and GLUT4 translocation at maximal insulin stimulation were decreased to 52 and 68% of those from wild-type. These data suggest that both IRS-1 and pp60 play a major role in insulin-induced glucose transport in adipocytes, and that pp60 is predominantly involved in regulating this process in the absence of IRS-1.
Collapse
Affiliation(s)
- Y Kaburagi
- Third Department of Internal Medicine, Faculty of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Yuan ZM, Utsugisawa T, Huang Y, Ishiko T, Nakada S, Kharbanda S, Weichselbaum R, Kufe D. Inhibition of phosphatidylinositol 3-kinase by c-Abl in the genotoxic stress response. J Biol Chem 1997; 272:23485-8. [PMID: 9295282 DOI: 10.1074/jbc.272.38.23485] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Activation of phosphatidylinositol (PI) 3-kinase by growth factors results in phosphorylation of phosphatidylinositol lipids at the D3 position. Although PI 3-kinase is essential to cell survival, little is known about mechanisms that negatively regulate this activity. Here we show that the c-Abl tyrosine kinase interacts directly with the p85 subunit of PI 3-kinase. Activation of c-Abl by ionizing radiation exposure is associated with c-Abl-dependent phosphorylation of PI 3-kinase. We also show that phosphorylation of p85 by c-Abl inhibits PI 3-kinase activity in vitro and in irradiated cells. These findings indicate that c-Abl negatively regulates PI 3-kinase in the stress response to DNA damage.
Collapse
Affiliation(s)
- Z M Yuan
- Division of Cancer Pharmacology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Esposito DL, Blakesley VA, Koval AP, Scrimgeour AG, LeRoith D. Tyrosine residues in the C-terminal domain of the insulin-like growth factor-I receptor mediate mitogenic and tumorigenic signals. Endocrinology 1997; 138:2979-88. [PMID: 9202243 DOI: 10.1210/endo.138.7.5281] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We investigated cellular proliferation, the transforming activity, and activation of known signal transduction pathways in NIH-3T3 cells stably expressing insulin-like growth factor-I receptors (IGF-IRs) with amino acid substitutions in the carboxy(C)-terminal domain. The mutant receptors contained substitutions of both tyrosines 1250 and 1251 with phenylalanine and histidine (amino acids present in the analogous positions in the insulin receptor), as well as phenylalanine 1310 replaced by tyrosine (IsY clones) to resemble the placement of tyrosine residues in the C-terminal domain of the insulin receptor. As a control for the IsY clones, a second mutant receptor was expressed with a substitution of phenylalanine 1310 with tyrosine only (DBY clones). Clones expressing IGF-IRs with the IsY substitutions had a significantly slower rate of growth compared with cells expressing an equivalent number of wild-type IGF-IRs (NWT). In contrast, the DBY clones showed relatively normal growth rates. Cells with wild-type IGF-IR demonstrated a transformed phenotype in soft agar assays. The IsY clones lost the transforming ability of the wild type IGF-IR, whereas DBY clones formed colonies. IGF-I-stimulated autophosphorylation of the IGF-IR and tyrosine phosphorylation of IRS-1 and SHC, known substrates in the IGF-IR signal transduction pathway, were studied. Mutated IGF-IRs (IsY and DBY) did not alter the IGF-I-induced tyrosine phosphorylation of these proteins. Furthermore, the mutated IGF-IRs did not alter Grb2 association with phosphorylated IRS-1 and SHC. IGF-I stimulation of Crk-II phosphorylation, a novel substrate of the IGF-IR, was similar in cells expressing mutated and wild-type IGF-IRs. IGF-I-induced activation of phosphatidylinositol (PI) 3'-kinase was equivalent in cells expressing either mutant or wild-type IGF-IRs. These data suggest that the IGF-IR mediates, at least in part, cellular proliferation and increased transforming ability through its C-terminal domain. The exact postreceptor signaling pathway(s) involved have yet to be fully elucidated.
Collapse
Affiliation(s)
- D L Esposito
- Diabetes Branch, NIDDK, NIH, Bethesda, Maryland 20892-1770, USA
| | | | | | | | | |
Collapse
|
39
|
Morinelli TA, Finley EL, Jaffa AA, Kurtz DT, Ullian ME. Tyrosine phosphorylation of phosphatidylinositol 3-kinase and of the thromboxane A2 (TXA2) receptor by the TXA2 mimetic I-BOP in A7r5 cells. Biochem Pharmacol 1997; 53:1823-32. [PMID: 9256157 DOI: 10.1016/s0006-2952(97)00005-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Thromboxane A2 (TXA2) interacts with its G-protein coupled receptor, the TP receptor, to produce contraction and proliferation of vascular smooth muscle cells. We have shown previously that proliferation of primary cultures of vascular smooth muscle cells initiated by [1S-(1alpha, 2beta(5Z), 3alpha(1E, 3R), 4alpha]-7-[3-(3-hydroxy-4-(4'-iodophenoxy)-1-butenyl)-7-oxab icyclo-[2.2.1]heptan-2yl]-5'-heptenoic acid (I-BOP), a stable TXA2 mimetic, is mediated by activation of mitogen-activated protein (MAP) kinase. In the present study, we examined further the intracellular mediators involved in TXA2 activation of vascular smooth muscle cells. Transient transfection of the cDNA for the TP receptor into A7r5 vascular smooth muscle cells resulted in expression of TP receptors with a receptor density, Bmax, of 0.7 +/- 0.2 pmol/mg protein and a receptor affinity, Kd, of 0.6 +/- 0.1 nM (N = 7). Mock transfected cells lacked significant receptor expression. In TP receptor transfected cells, I-BOP increased the activation of MAP kinase 2-fold, stimulated tyrosine phosphorylation of cellular proteins of relative molecular mass (Mr) of 140, 85, 60, 56, and 45 kDa, and increased the message for c-jun, a nuclear transcription factor involved in mitogenesis, 2.6-fold. Immunoblot analysis indicated that the 85-kDa protein represented phosphoinositide 3-kinase (PI3-K), while the 60 kDa protein was the TP receptor. The activity of PI3-K was increased 3.5-fold by the addition of I-BOP (0.1 microM). In summary, the present study demonstrated that stimulation of the TP receptor results in tyrosine phosphorylation of the receptor and of PI3-K.
Collapse
Affiliation(s)
- T A Morinelli
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston 29425, USA
| | | | | | | | | |
Collapse
|
40
|
Thrombopoietin Enhances the αIIbβ3-Dependent Adhesion of Megakaryocytic Cells to Fibrinogen or Fibronectin Through PI 3 Kinase. Blood 1997. [DOI: 10.1182/blood.v89.3.883] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractThe effect of thrombopoietin (TPO) on the functional activity of surface αIIbβ3 (GPIIbIIIa) was investigated in both primary human megakaryocytic cells, derived from peripheral blood CD34+ cells, and HEL hematopoietic cell line. TPO (100 ng/mL) induced a sixfold to ninefold enhancement of adhesion of both primary megakaryocytic and HEL cells to plates coated with either fibrinogen or fibronectin and a parallel increase of immunoreactivity to the PAC1 monoclonal antibody (MoAb) and fluorescein isothiocyanate-fibrinogen, both of which recognize an activated state of αIIbβ3 . The enhanced adhesion to fibrinogen or fibronectin was mediated by the Arg-Gly-Asp (RGD) recognition sequence of αIIbβ3 , as it was abolished by pretreatment of cells with saturating concentrations of RGDS peptide. A MoAb specific for the αIIb subunit of αIIbβ3 also inhibited cell attachment to fibrinogen or fibronectin, while MoAb to anti-αvβ3 or anti-α5 integrins were completely ineffective, clearly indicating that αIIbβ3 participates in this association. A role for PI 3 kinase (PI 3-K) in the TPO-mediated increase in αIIbβ3 function in megakaryocytic cells was suggested by the ability of the PI 3-K inhibitor wortmannin (100 nmol/L) and antisense oligonucleotides directed against the p85 regulatory subunit of PI 3-K to completely block the TPO-induced increase in αIIbβ3 integrin activity upon TPO stimulation. The modulation of adhesiveness to extracellular matrix proteins containing the RGD motif mediated by TPO likely plays a physiologic role in megakaryocytopoiesis, as pretreatment of CD34+ cells with RGDS or anti-αIIb MoAb significantly reduced the number of megakaryocytic colonies obtained in a fibrinclot semisolid assay.
Collapse
|
41
|
Smith RM, Harada S, Jarett L. Insulin internalization and other signaling pathways in the pleiotropic effects of insulin. INTERNATIONAL REVIEW OF CYTOLOGY 1997; 173:243-80. [PMID: 9127955 DOI: 10.1016/s0074-7696(08)62479-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Insulin is the major anabolic hormone in humans and affects multiple cellular processes. Insulin rapidly regulates short-term effects on carbohydrate, lipid, and protein metabolism and is also a potent growth factor controlling cell proliferation and differentiation. The metabolic and growth-related effects require insulin binding to its receptor and receptor phosphorylation. Evidence suggests these events result in subsequent substrate phosphorylation and activation of multiple signaling pathways involving Src homology domain-containing proteins and the internalization of the insulin:receptor complex. The role of insulin internalization in insulin action is largely speculative. For more than two decades, extensive investigation has been carried out by numerous laboratories of the mechanisms by which insulin causes its pleiotropic responses and the cellular processing of insulin receptors. This chapter reviews our current knowledge of the phosphorylation signaling pathways activated by insulin and presents evidence that substrates other than insulin receptor substrate-1 are involved in insulin's regulation of immediate-early gene expression. We also review the mechanisms involved in insulin internalization and present evidence that internalization may play a key role in insulin action through both signal transduction processes and translocation of insulin to the cell cytoplasm and nucleus.
Collapse
Affiliation(s)
- R M Smith
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Medical Center, Philadelphia 19104, USA
| | | | | |
Collapse
|
42
|
Biener Y, Feinstein R, Mayak M, Kaburagi Y, Kadowaki T, Zick Y. Annexin II is a novel player in insulin signal transduction. Possible association between annexin II phosphorylation and insulin receptor internalization. J Biol Chem 1996; 271:29489-96. [PMID: 8910617 DOI: 10.1074/jbc.271.46.29489] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Annexin II is a Ca2+-, phospholipid-, and actin- binding protein that was implicated in the regulation of vesicular traffic and endosome fusion. It is a known substrate for protein kinases including the platelet-derived growth factor receptor, src protein-tyrosine kinase, and protein kinase C. In the present study we investigated the possible involvement of annexin II in insulin signal transduction. Phosphorylation of annexin II in response to insulin treatment of intact Chinese hamster ovary (CHO)-T cells was detected by 5 min and reached maximal levels after a 2-3-h incubation with the hormone. However, unlike other receptor substrates, annexin II failed to undergo insulin-induced Tyr phosphorylation under conditions where receptor internalization was inhibited. This was evident in CHO cells, overexpressing the insulin receptor, in which internalization was inhibited either by tyrosine kinase inhibitors or by lowering the temperature to 4 degrees C, and in CHO cells overexpressing various insulin receptor mutants in which normal internalization was impaired. Hence, Tyr phosphorylation of annexin II could be part of the internalization and sorting mechanism of the insulin receptor.
Collapse
Affiliation(s)
- Y Biener
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot 76100, Israel.
| | | | | | | | | | | |
Collapse
|
43
|
Uribe JM, Keely SJ, Traynor-Kaplan AE, Barrett KE. Phosphatidylinositol 3-kinase mediates the inhibitory effect of epidermal growth factor on calcium-dependent chloride secretion. J Biol Chem 1996; 271:26588-95. [PMID: 8900131 DOI: 10.1074/jbc.271.43.26588] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Epidermal growth factor (EGF) and carbachol both inhibit calcium-activated chloride secretion by the human colonic epithelial cell line, T84. Although the inhibitory mechanism for the carbachol effect involves the 3,4,5,6-isomer of inositol tetrakisphosphate, the mechanisms responsible for the EGF effect have not yet been fully elucidated. Here, we studied the role of phosphatidylinositol 3-kinase (PI 3-kinase) in the inhibitory effect of EGF. The PI 3-kinase inhibitor, wortmannin, slightly increased basal chloride secretion and potentiated the secretory response to thapsigargin. Wortmannin also partially reversed EGF-induced, but not carbachol-induced, inhibition of thapsigargin-stimulated chloride secretion. Wortmannin alone had no effect on carbachol- or histamine-induced chloride secretion and completely reversed EGF-induced inhibition of the secretory response to these agonists. EGF, carbachol, histamine, and thapsigargin all increased levels of the 85-kDa regulatory subunit of PI 3-kinase in antiphosphotyrosine immunoprecipitates. However, only EGF significantly increased levels of the 110-kDa catalytic subunit. Furthermore, only EGF increased PI 3-kinase activity in an in vitro kinase assay. High levels of phosphatidylinositol (3)-monophosphate were present in unstimulated cells and significantly reduced by wortmannin. EGF, but not carbachol, rapidly increased levels of phosphatidylinositol (3,4)-bisphosphate and phosphatidylinositol (3,4,5)-trisphosphate. Production of these lipids was also sensitive to wortmannin. Our data suggest that EGF activates PI 3-kinase and that its lipid products may mediate the inhibitory effect of EGF on calcium-dependent chloride secretion. Our data also suggest that a phosphatidylinositol-specific 3-kinase activity is present in unstimulated T84 cells and may regulate production of phosphatidylinositol (3)-monophosphate and basal secretory tone.
Collapse
Affiliation(s)
- J M Uribe
- Department of Medicine, University of California, San Diego, School of Medicine, San Diego, California 92103, USA
| | | | | | | |
Collapse
|
44
|
Benito M, Valverde AM, Lorenzo M. IGF-I: a mitogen also involved in differentiation processes in mammalian cells. Int J Biochem Cell Biol 1996; 28:499-510. [PMID: 8697095 DOI: 10.1016/1357-2725(95)00168-9] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The main source of insulin-like growth factor I (IGF-I) postnatally is the liver, under growth hormone stimulation, although IGF-I is already present in embryonic tissues and in fetal serum, when its expression is independent of growth hormone. The extracellular alpha-subunit of the IGF-I receptor (IGF-IR) contains an IGF-I binding domain, and the beta-subunit possesses tyrosine kinase activity, which is greatly enhanced when IGF-I binds to the alpha-subunit and leads to its autophosphorylation. Insulin receptor substrate 1 (IRS-1) is the most well characterized cellular substrate for IGF-I, containing at least 20 potential tyrosine phosphorylation sites. The tyrosine phosphorylated form of IRS-1 acts as a docking protein by associating SH2-containing proteins including the p85 regulatory subunit of phosphatidylinositol-3-kinase (P13-kinase), the protein tyrosine phosphatase SH-PTP2, the SH2- and SH3-containing adaptor protein Nck and the growth factor receptor-bound protein-2 (Grb2/Sem5) protein. Grb2 is found associated with mSOS, a GTP/GDP exchange factor involved in converting the inactive Ras-GDP to the active Ras-GTP. The p85 regulatory subunit of PI3-kinase can be also a direct in vitro substrate of the IGF-IR. Although IRS-1 is the major substrate of the IGF-IR, there is another early phosphotyrosine substrate termed SHC, which also activates Ras via Grb2-mSos complex. Activation of p21-Ras induces a serine/threonine kinase cascade leading to the activation of MAP-kinases. The importance of IGF-I as a mitogen throughout development has been clearly demonstrated in IGF-I and IGF-IR knockout mouse studies and also in transgenic mice over-expressing IGF-I. IGF-I is a mitogen in many cell types in culture such as T lymphocytes, chondrocytes or osteoblasts and it is considered to be a progression factor in mouse fibroblasts. IGF-I is also involved in muscle, neurons and adipogenic differentiation of mesenchymal cells. However, IGF-I induces proliferation and differentiation in fetal brown adipocytes, suggesting that both cellular processes are not necessarily mutually exclusive in fetal cells.
Collapse
Affiliation(s)
- M Benito
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | | | | |
Collapse
|
45
|
Ward SG, June CH, Olive D. PI 3-kinase: a pivotal pathway in T-cell activation? IMMUNOLOGY TODAY 1996; 17:187-97. [PMID: 8871351 DOI: 10.1016/0167-5699(96)80618-9] [Citation(s) in RCA: 137] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- S G Ward
- Dept. of Pharmacology, School of Pharmacy and Pharmacology, University of Bath, Claverton Down, UK.
| | | | | |
Collapse
|
46
|
Seger R, Biener Y, Feinstein R, Hanoch T, Gazit A, Zick Y. Differential activation of mitogen-activated protein kinase and S6 kinase signaling pathways by 12-O-tetradecanoylphorbol-13-acetate (TPA) and insulin. Evidence for involvement of a TPA-stimulated protein-tyrosine kinase. J Biol Chem 1995; 270:28325-30. [PMID: 7499332 DOI: 10.1074/jbc.270.47.28325] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
AG-18, an inhibitor of protein-tyrosine kinases, was employed to study the role of tyrosine-phosphorylated proteins in insulin- and phorbol ester-induced signaling cascades. When incubated with Chinese hamster ovary cells overexpressing the insulin receptor, AG-18 reversibly inhibited insulin-induced tyrosine phosphorylation of insulin receptor substate-1, with minimal effects either on receptor autophosphorylation or on phosphorylation of Shc64. Under these conditions, AG-18 inhibited insulin-stimulated phosphorylation of the ribosomal protein S6, while no inhibition of insulin-induced activation of mitogen-activated protein kinase (MAPK) kinase or MAPK was detected. In contrast, 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced activation of MAPK kinase and MAPK and phosphorylation of S6 were inhibited by AG-18. This correlated with inhibition of TPA-stimulated tyrosine phosphorylation of several proteins, the most prominent ones being pp114 and pp120. We conclude that Tyr-phosphorylated insulin receptor substrate-1 is the main upstream regulator of insulin-induced S6 phosphorylation by p70s6k, whereas MAPK signaling seems to be activated in these cells primarily through the adaptor molecule Shc. In contrast, TPA-induced S6 phosphorylation is mediated by the MAPK/p90rsk cascade. A key element of this TPA-stimulated signaling pathway is an AG-18-sensitive protein-tyrosine kinase.
Collapse
Affiliation(s)
- R Seger
- Department of Membrane Research, Weizmann Institute of Science, Rehovot, Israel
| | | | | | | | | | | |
Collapse
|
47
|
Patti ME, Sun XJ, Bruening JC, Araki E, Lipes MA, White MF, Kahn CR. 4PS/insulin receptor substrate (IRS)-2 is the alternative substrate of the insulin receptor in IRS-1-deficient mice. J Biol Chem 1995; 270:24670-3. [PMID: 7559579 DOI: 10.1074/jbc.270.42.24670] [Citation(s) in RCA: 161] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Insulin receptor substrate-1 (IRS-1) is the major cytoplasmic substrate of the insulin and insulin-like growth factor (IGF)-1 receptors. Transgenic mice lacking IRS-1 are resistant to insulin and IGF-1, but exhibit significant residual insulin action which corresponds to the presence of an alternative high molecular weight substrate in liver and muscle. Recently, Sun et al. (Sun, X.-J., Wang, L.-M., Zhang, Y., Yenush, L. P., Myers, M. G., Jr., Glasheen, E., Lane, W.S., Pierce, J. H., and White, M. F. (1995) Nature 377, 173-177) purified and cloned 4PS, the major substrate of the IL-4 receptor-associated tyrosine kinase in myeloid cells, which has significant structural similarity to IRS-1. To determine if 4PS is the alternative substrate of the insulin receptor in IRS-1-deficient mice, we performed immunoprecipitation, immunoblotting, and phosphatidylinositol (PI) 3-kinase assays using specific antibodies to 4PS. Following insulin stimulation, 4PS is rapidly phosphorylated in liver and muscle, binds to the p85 subunit of PI 3-kinase, and activates the enzyme. Insulin stimulation also results in the association of 4PS with Grb 2 in both liver and muscle. In IRS-1-deficient mice, both the phosphorylation of 4PS and associated PI 3-kinase activity are enhanced, without an increase in protein expression. Immunodepletion of 4PS from liver and muscle homogenates removes most of the phosphotyrosine-associated PI 3-kinase activity in IRS-1-deficient mice. Thus, 4PS is the primary alternative substrate, i.e. IRS-2, which plays a major role in physiologic insulin signal transduction via both PI 3-kinase activation and Grb 2/Sos association. In IRS-1-deficient mice, 4PS/IRS-2 provides signal transduction to these two major pathways of insulin signaling.
Collapse
Affiliation(s)
- M E Patti
- Research Division, Joslin Diabetes Center, Boston, Massachusetts 02215, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
Growth factors are involved in a variety of cellular responses such as growth, differentiation, migration, metabolism, and transformation. Binding of the growth factor to its corresponding cell surface receptor results in activation of the receptor's intrinsic tyrosine kinase activity, and subsequently in activation of complex multistep signal transduction cascades. Activation of these interconnected signaling pathways eventually leads to a biological response, which involves changes in gene expression and protein synthesis. The biological response has been shown to be receptor-specific and also cell-type (tissue)-specific, indicating that various receptors activate distinct signal transduction pathways in one tissue and that one receptor activates different pathways in various tissues. What determines receptor specificity and tissue specificity? In this context, this article will focus on certain receptors with intrinsic tyrosine kinase activity, including receptors for platelet-derived growth factor (PDGF), epidermal growth factor (EGF), insulin, and nerve growth factor (NGF).
Collapse
Affiliation(s)
- K Seedorf
- Department of Molecular Signaling, Hagedorn Research Institute, Gentofte, Denmark
| |
Collapse
|
49
|
Cunningham SA, Waxham MN, Arrate PM, Brock TA. Interaction of the Flt-1 tyrosine kinase receptor with the p85 subunit of phosphatidylinositol 3-kinase. Mapping of a novel site involved in binding. J Biol Chem 1995; 270:20254-7. [PMID: 7657594 DOI: 10.1074/jbc.270.35.20254] [Citation(s) in RCA: 104] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
We have examined the interactions of the p85 regulatory subunit of phosphatidylinositol 3-kinase with the endothelium-specific Flt-1 receptor tyrosine kinase using the yeast two-hybrid system. We find that both the amino- and carboxyl-terminal SH2 domains of p85 bind to Flt-1. We have performed site-directed mutagenesis on the carboxyl-terminal tail of the Flt-1 receptor in order to identify the site(s) that is responsible for the p85 interactions. A single tyrosine to phenylalanine change at position 1213 inhibits the binding of both p85 SH2 domains. Phosphopeptide mapping of the wild type and mutant protein expressed in insect cells verifies that this amino acid is a target for autophosphorylation. The amino acids following this tyrosine are VNA and thus define a novel binding site for p85.
Collapse
Affiliation(s)
- S A Cunningham
- Department of Pharmacology, Texas Biotechnology Corporation, Houston 77030, USA
| | | | | | | |
Collapse
|
50
|
Abstract
An emerging theme in both the biology of signal transduction and the biochemistry of proteins has been the modular function of small protein domains. In some cases these can directly regulate catalytic activity. In others, they serve to interconnect important regulatory proteins. SH2 (src homology 2) domains represent some of the best studied models. Originally identified on the basis of homology in src and fps [1], SH2s are elements that ordinarily respond to tyrosine phosphorylation by binding the phosphorylated sequence. As such, they are key elements in tyrosine kinase regulation of cellular processes. Because SH2 interactions result from phosphorylation, such elements provide a regulatable circuitry along which signals can be transmitted in a timely manner. Because the regulation is based on a common mechanism, signal generators can target several different proteins coordinately. The PDGF receptor (PDGFr), for example, may interact with as many as ten different elements [2,3]. There are a number of excellent reviews on SH2 domains available [4-11]. This discussion will try to show how genetic, biochemical and biophysical results can be integrated in a satisfying way.
Collapse
Affiliation(s)
- B Schaffhausen
- Department of Biochemistry, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| |
Collapse
|