1
|
Pascreau T, de la Morena-Barrio ME, Lasne D, Serrano M, Bianchini E, Kossorotoff M, Boddaert N, Bruneel A, Seta N, Vicente V, de Lonlay P, Corral J, Borgel D. Elevated thrombin generation in patients with congenital disorder of glycosylation and combined coagulation factor deficiencies. J Thromb Haemost 2019; 17:1798-1807. [PMID: 31271700 DOI: 10.1111/jth.14559] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 06/25/2019] [Accepted: 07/01/2019] [Indexed: 12/24/2022]
Abstract
BACKGROUND Congenital disorders of glycosylation are rare inherited diseases affecting many different proteins. The lack of glycosylation notably affects the hemostatic system and leads to deficiencies of both procoagulant and anticoagulant factors. OBJECTIVE To assess the hemostatic balance in patients with multiple coagulation disorders by using a thrombin generation assay. METHOD We performed conventional coagulation assays and a thrombin generation assay on samples from patients with congenital disorder of glycosylation. The thrombin generation assay was performed before and after activation of the protein C system by the addition of soluble thrombomodulin. RESULTS A total of 35 patients were included: 71% and 57% had low antithrombin and factor XI levels, respectively. Protein C and protein S levels were abnormally low in 29% and 26% of the patients, respectively, whereas only 11% displayed low factor IX levels. Under baseline conditions, the thrombin generation assay revealed a significantly higher endogenous thrombin potential and thrombin peak in patients, relative to controls. After spiking with thrombomodulin, we observed impaired involvement of the protein C system. Hence, 54% of patients displayed a hypercoagulant phenotype in vitro. All the patients with a history of stroke-like episodes or thrombosis displayed this hypercoagulant phenotype. CONCLUSION A thrombin generation assay revealed a hypercoagulant in vitro phenotype under baseline condition; this was accentuated by impaired involvement of the protein C system. This procoagulant phenotype may thus reflect the risk of severe vascular complications. Further research will have to determine whether the thrombin generation assay is predictive of vascular events.
Collapse
Affiliation(s)
- Tiffany Pascreau
- Laboratoire d'Hématologie, AP-HP, Hôpital Necker-Enfants malades, Paris, France
- INSERM UMR-S1176, Le Kremlin-Bicêtre, France
| | - Maria E de la Morena-Barrio
- Servicio de Hematología y Oncología Médica, Centro Regional de Hemodonación, Hospital Universitario Morales Meseguer, Universidad de Murcia, IMIB-Arrixaca, CIBERER, Murcia, Spain
| | - Dominique Lasne
- Laboratoire d'Hématologie, AP-HP, Hôpital Necker-Enfants malades, Paris, France
- INSERM UMR-S1176, Le Kremlin-Bicêtre, France
| | - Mercedes Serrano
- Department of Pediatric Neurology, Institute of Pediatric Research-Hospital Sant Joan de Déu, U-703 Center for Biomedical Research on Rare Diseases, Barcelona, Spain
- Department of Genetic Medicine, Institute of Pediatric Research-Hospital Sant Joan de Déu, U-703 Center for Biomedical Research on Rare Diseases, Barcelona, Spain
| | | | - Manoelle Kossorotoff
- Paediatric Neurology Department, French Center for Paediatric Stroke, AP-HP, Hôpital Necker-Enfants-Malades, Paris, France
| | - Nathalie Boddaert
- Pediatric Radiology Department, AP-HP, Hôpital Necker-Enfants-Malades, Paris, France
- Institut Imagine, INSERM U1000 and UMR 1163, Paris, France
| | - Arnaud Bruneel
- Biochimie Métabolique, AP-HP, Hôpital Bichat-Claude Bernard, Paris, France
| | - Nathalie Seta
- Biochimie Métabolique, AP-HP, Hôpital Bichat-Claude Bernard, Paris, France
| | - Vicente Vicente
- Servicio de Hematología y Oncología Médica, Centro Regional de Hemodonación, Hospital Universitario Morales Meseguer, Universidad de Murcia, IMIB-Arrixaca, CIBERER, Murcia, Spain
| | - Pascale de Lonlay
- Reference Center of Metabolism, Imagine Institute, AP-HP, Hôpital Necker-Enfants Maladies, University Paris-Descartes, Paris, France
| | - Javier Corral
- Servicio de Hematología y Oncología Médica, Centro Regional de Hemodonación, Hospital Universitario Morales Meseguer, Universidad de Murcia, IMIB-Arrixaca, CIBERER, Murcia, Spain
| | - Delphine Borgel
- Laboratoire d'Hématologie, AP-HP, Hôpital Necker-Enfants malades, Paris, France
- INSERM UMR-S1176, Le Kremlin-Bicêtre, France
| |
Collapse
|
2
|
Mallu MR, Vemula S, Ronda SR. Efficient single step chromatographic purification of recombinant human antithrombin (rhAT) from Saccharomyces cerevisiae. 3 Biotech 2016; 6:112. [PMID: 28330182 PMCID: PMC5398195 DOI: 10.1007/s13205-016-0412-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 03/14/2016] [Indexed: 11/24/2022] Open
Abstract
Antithrombin (AT) is a glycoprotein that inactivates the several physiological target enzymes of coagulation system. The effect of purification strategies plays a crucial role in getting maximum recovery of yield, purity and biological activity of recombinant human antithrombin (rhAT). In the present work, the task of purifying rhAT from Saccharomyces cerevisiae BY4741 has been carried out using two different approaches such as cross flow filtration (CFF) system and chromatography methods. In the first approach, the protein was concentrated and partially purified through CFF to achieve maximum recovery yield and purity of 87 and 94 %, respectively. In the second approach, purification involved a single step chromatography with various types of ion exchange and size exclusion resins to analyze the maximum rhAT recovery yield and purity. From the experimental results, it has been observed that the size exclusion chromatography (SEC) technique with Superose 12 matrix was suitable for the purification of rhAT and achieved the maximum recovery yield and purity of 51 and 97 %, respectively. Further, to acquire a high recovery yield and purity of rhAT, the effect of various chromatographic conditions such as mobile phase, mobile phase pH, flow rate, sample volume and sample concentration were also investigated. Under the optimal chromatographic conditions, rhAT was significantly recovered and purified in a single step with maximum recovery yield, purity and biological activity of 67, 99 % and 410 IU/L, respectively. Based on these investigations, it was concluded that SEC with Superose 12 matrix was a more suitable and a potential method for the purification of rhAT.
Collapse
Affiliation(s)
- Maheswara Reddy Mallu
- Centre for Bioprocess Technology, Department of Biotechnology, KLEF University, Green Fields, Vaddeswaram, Guntur, Andhra Pradesh, 522 502, India
| | - Sandeep Vemula
- Centre for Bioprocess Technology, Department of Biotechnology, KLEF University, Green Fields, Vaddeswaram, Guntur, Andhra Pradesh, 522 502, India
| | - Srinivasa Reddy Ronda
- Centre for Bioprocess Technology, Department of Biotechnology, KLEF University, Green Fields, Vaddeswaram, Guntur, Andhra Pradesh, 522 502, India.
| |
Collapse
|
3
|
Kumar A, Baycin-Hizal D, Wolozny D, Pedersen LE, Lewis NE, Heffner K, Chaerkady R, Cole RN, Shiloach J, Zhang H, Bowen MA, Betenbaugh MJ. Elucidation of the CHO Super-Ome (CHO-SO) by Proteoinformatics. J Proteome Res 2015; 14:4687-703. [PMID: 26418914 DOI: 10.1021/acs.jproteome.5b00588] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Chinese hamster ovary (CHO) cells are the preferred host cell line for manufacturing a variety of complex biotherapeutic drugs including monoclonal antibodies. We performed a proteomics and bioinformatics analysis on the spent medium from adherent CHO cells. Supernatant from CHO-K1 culture was collected and subjected to in-solution digestion followed by LC/LC-MS/MS analysis, which allowed the identification of 3281 different host cell proteins (HCPs). To functionally categorize them, we applied multiple bioinformatics tools to the proteins identified in our study including SignalP, TargetP, SecretomeP, TMHMM, WoLF PSORT, and Phobius. This analysis provided information on the presence of signal peptides, transmembrane domains, and cellular localization and showed that both secreted and intracellular proteins were constituents of the supernatant. Identified proteins were shown to be localized to the secretory pathway including ones playing roles in cell growth, proliferation, and folding as well as those involved in protein degradation and removal. After combining proteins predicted to be secreted or having a signal peptide, we identified 1015 proteins, which we termed as CHO supernatant-ome (CHO-SO), or superome. As a part of this effort, we created a publically accessible web-based tool called GO-CHO to functionally categorize proteins found in CHO-SO and identify enriched molecular functions, biological processes, and cellular components. We also used a tool to evaluate the immunogenicity potential of high-abundance HCPs. Among enriched functions were catalytic activity and structural constituents of the cytoskeleton. Various transport related biological processes, such as vesicle mediated transport, were found to be highly enriched. Extracellular space and vesicular exosome associated proteins were found to be the most enriched cellular components. The superome also contained proteins secreted from both classical and nonclassical secretory pathways. The work and database described in our study will enable the CHO community to rapidly identify high-abundance HCPs in their cultures and therefore help assess process and purification methods used in the production of biologic drugs.
Collapse
Affiliation(s)
- Amit Kumar
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University , Baltimore, Maryland 21218, United States.,Biotechnology Core Laboratory, National Institute of Diabetes and Digestive and Kidney Diseases , National Institute of Health, Building 14A, Bethesda, Maryland 20892, United States
| | - Deniz Baycin-Hizal
- Antibody Discovery and Protein Engineering, MedImmune LLC , 1 MedImmune Way, Gaithersburg, Maryland 20878, United States
| | - Daniel Wolozny
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University , Baltimore, Maryland 21218, United States
| | - Lasse Ebdrup Pedersen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark , DK-2970 Hørsholm, Denmark
| | - Nathan E Lewis
- Department of Biology, Brigham Young University , Provo, Utah 84602, United States.,Department of Pediatrics, University of California , San Diego, California 92093, United States
| | - Kelley Heffner
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University , Baltimore, Maryland 21218, United States
| | - Raghothama Chaerkady
- Institute of Basic Biomedical Sciences, Mass Spectrometry and Proteomics Facility, Johns Hopkins University School of Medicine , 733 North Broadway Street, Baltimore, Maryland 21205, United States
| | - Robert N Cole
- Institute of Basic Biomedical Sciences, Mass Spectrometry and Proteomics Facility, Johns Hopkins University School of Medicine , 733 North Broadway Street, Baltimore, Maryland 21205, United States
| | - Joseph Shiloach
- Biotechnology Core Laboratory, National Institute of Diabetes and Digestive and Kidney Diseases , National Institute of Health, Building 14A, Bethesda, Maryland 20892, United States
| | - Hui Zhang
- Department of Pathology, Johns Hopkins School of Medicine , 400 North Broadway Street, Baltimore, Maryland 21287, United States
| | - Michael A Bowen
- Antibody Discovery and Protein Engineering, MedImmune LLC , 1 MedImmune Way, Gaithersburg, Maryland 20878, United States
| | - Michael J Betenbaugh
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University , Baltimore, Maryland 21218, United States
| |
Collapse
|
4
|
Grabenhorst E, Hoffman A, Nimtz M, Zettlmeissl G, Conradt HS. Construction of Stable BHK-21 Cells Coexpressing Human Secretory Glycoproteins and Human Gal(β1-4)GlcNAc-R α2,6-Sialyltransferase. ACTA ACUST UNITED AC 2008. [DOI: 10.1111/j.1432-1033.1995.0718a.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
5
|
Hirose M, Tsukada M, Hirayama F, Kubo Y, Kajii M, Mochizuki S, Hamato N, Ohi H. Recombinant human antithrombin expressed in Chinese hamster ovary cells shows in vivo efficacy on rat DIC model similarly to plasma-derived antithrombin regardless of different N-glycosylation. Thromb Res 2006; 119:631-41. [PMID: 16844203 DOI: 10.1016/j.thromres.2006.05.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2005] [Revised: 04/10/2006] [Accepted: 05/22/2006] [Indexed: 11/23/2022]
Abstract
Plasma-derived human antithrombin (pAT) is used for the treatments of disseminated intravascular coagulation (DIC) and hereditary antithrombin deficiencies. We expressed recombinant human antithrombin (rAT) in Chinese hamster ovary (CHO) cells. The purified rAT is composed of 55% alpha-isoform and 45% beta-isoform. The structure of the N-linked oligosaccharides of rAT is the same biantennary complex type as previously found in pAT with less sialylated on the non-reducing ends. Most of the oligosaccharides of rAT are fucosylated at the reducing ends of N-acetylglucosamine, while those of pAT are not fucosylated. Despite of the difference in sialylation and fucosylation of the oligosaccharide units, rAT and pAT showed indistinguishable heparin cofactor and progressive activities, and they bound to thrombin in a one-to-one stoichiometric manner. In lipopolysaccharide (LPS)-induced and thromboplastin-induced DIC rat models, rAT reduced fibrinogen and platelet consumption to a similar extent with pAT. In LPS-induced DIC model, both ATs similarly restrained the increase of alanine aminotransferase and aspartate aminotransferase activities. Finally, pharmacokinetic analysis showed that both ATs had similar half-lives in the circulation of normal rats. Together, the present study demonstrated that rAT prepared in CHO cells has potential for a substitute of pAT in therapeutic use.
Collapse
Affiliation(s)
- Masaaki Hirose
- Protein Research Laboratory, Pharmaceutical Research Division, Mitsubishi Pharma Corporation, 2-25-1, Shodai-Ohtani, Hirakata, Osaka, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Hansson K, Stenflo J. Post-translational modifications in proteins involved in blood coagulation. J Thromb Haemost 2005; 3:2633-48. [PMID: 16129023 DOI: 10.1111/j.1538-7836.2005.01478.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- K Hansson
- Department of Clinical Chemistry, Lund University, University Hospital Malmö, Malmö, Sweden.
| | | |
Collapse
|
7
|
Mochizuki S, Miyano K, Kondo M, Hirose M, Masaki A, Ohi H. Purification and characterization of recombinant human antithrombin containing the prelatent form in Chinese hamster ovary cells. Protein Expr Purif 2005; 41:323-31. [PMID: 15866718 DOI: 10.1016/j.pep.2005.03.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2004] [Revised: 03/07/2005] [Indexed: 11/17/2022]
Abstract
Antithrombin (AT) is a serine proteinase inhibitor and a major regulator of the blood coagulation cascade. AT in human plasma has two isoforms, a predominant alpha-isoform and a minor beta-isoform; the latter lacks N-glycosylation at Asn 135 and has a higher heparin affinity. From the difference in its folding states, the AT molecule can be separated into three forms: a native form, a denatured and inactive form known as the latent form, and a partially denatured form called the prelatent form. In this study, we purified and characterized recombinant human AT (rAT) containing the prelatent form produced by Chinese hamster ovary (CHO) cells. When rAT was purified at physiological pH, its specific activity was lower than that of plasma-derived human AT (pAT). The latent and prelatent forms were detected in rAT by using hydrophobic interaction chromatography analysis. However, when rAT was purified at alkaline pH, the prelatent form was reversibly folded to the native form and the inhibitory activity of rAT increased to a value similar to that of pAT. Highly purified rAT was analyzed and compared with pAT by using sodium dodecyl sulfate-polyacrylamide gel electrophoresis, circular dichroism spectroscopy, amino acid composition, N-terminal sequence, monosaccharide composition, peptide mapping, and heparin-binding affinity. From these analyses, rAT was found to be structurally identical to pAT, except for carbohydrate side-chains. rAT in CHO cells had a high beta-isoform content and it caused a higher heparin affinity than by pAT and also pH-dependent reversible inhibitory activity.
Collapse
Affiliation(s)
- Shinobu Mochizuki
- Protein Research Laboratory, Pharmaceuticals Research Unit, Research and Development Division, Mitsubishi Pharma Corporation, 2-25-1 Shodai-ohtani, Hirakata, Osaka 573-1153, Japan.
| | | | | | | | | | | |
Collapse
|
8
|
Zhao R, Luo J, Shangguan D, Liu G. A novel matrix for high performance affinity chromatography and its application in the purification of antithrombin III. J Chromatogr B Analyt Technol Biomed Life Sci 2005; 816:175-81. [PMID: 15664348 DOI: 10.1016/j.jchromb.2004.11.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2004] [Accepted: 11/15/2004] [Indexed: 10/26/2022]
Abstract
Viscose fiber, a regenerated cellulose, was evaluated for using as a novel matrix for high performance affinity chromatography. With a one-step activation with epichlorohydrin, heparin can be readily covalently attached to the matrix. This heparin-viscose fiber material was used for purifying antithrombin III (AT III) from human plasma. The purity of the AT III from this one-step purification is 93% as measured by SDS-PAGE and the protein recovery yield is about 90%. This column is highly specific as described by the dissociation constant of the complex of immobilized heparin and AT III, which was 2.83 x 10(-5)mol/L. And more important, this viscose fiber material demonstrated its excellent mechanical property that allows the flow rate to reach up to 900 cm/h or more.
Collapse
Affiliation(s)
- Rui Zhao
- Center for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun, 100080 Beijing, P.R China.
| | | | | | | |
Collapse
|
9
|
McCoy AJ, Pei XY, Skinner R, Abrahams JP, Carrell RW. Structure of beta-antithrombin and the effect of glycosylation on antithrombin's heparin affinity and activity. J Mol Biol 2003; 326:823-33. [PMID: 12581643 DOI: 10.1016/s0022-2836(02)01382-7] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Antithrombin is a member of the serpin family of protease inhibitors and the major inhibitor of the blood coagulation cascade. It is unique amongst the serpins in that it circulates in a conformation that is inactive against its target proteases. Activation of antithrombin is brought about by a conformational change initiated upon binding heparin or heparan sulphate. Two isoforms exist in the circulation, alpha-antithrombin and beta-antithrombin, which differ in the amount of glycosylation present on the polypeptide chain; beta-antithrombin lacks the carbohydrate present at Asn135 in alpha-antithrombin. Of the two forms, beta-antithrombin has the higher affinity for heparin and thus functions as the major inhibitor in vivo even though it is the less abundant form. The reason for the differences in heparin affinity between the alpha and beta-forms have been shown to be due to the additional carbohydrate changing the rate of the conformational change. Here, we describe the most accurate structures of alpha-antithrombin and alpha-antithrombin+heparin pentasaccharide reported to date (2.6A and 2.9A resolution, respectively, both re-refinements using old data), and the structure of beta-antithrombin (2.6A resolution). The new structures have a remarkable degree of ordered carbohydrate and include parts of the antithrombin chain not modeled before. The structures have allowed a detailed comparison of the conformational differences between the three. They show that the structural basis of the lower affinity for heparin of alpha-antithrombin over beta-antithrombin is due to the conformational change that occurs upon heparin binding being sterically hindered by the presence of the additional bulky carbohydrate at Asn135.
Collapse
Affiliation(s)
- Airlie J McCoy
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 2XY, UK
| | | | | | | | | |
Collapse
|
10
|
Schröder M, Schäfer R, Friedl P. Induction of protein aggregation in an early secretory compartment by elevation of expression level. Biotechnol Bioeng 2002; 78:131-40. [PMID: 11870603 DOI: 10.1002/bit.10206] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A variety of valuable therapeutic proteins are expressed in mammalian cells. Currently, rate-limiting for secretion of recombinant glycoproteins are activities in the secretory pathway of eukaryotic cells, i.e., folding and glycosylation of the naked polypeptide chain. In this paper we provide evidence that elevation of expression level alone is sufficient to cause intracellular aggregation of a structurally relatively simple glycoprotein, antithrombin III (ATIII). Elevation of expression level by selection for increased drug resistance in Chinese hamster ovary cells stably expressing ATIII resulted in formation of disulfide-bonded aggregates of ATIII. Aggregated ATIII displayed incomplete sialylation and Endo H-sensitivity and located to the endoplasmic reticulum and the cis-Golgi compartment in subcellular fractionations. To explore possible causes for aggregation of ATIII at elevated expression levels we investigated the influence of the two major energy sources of cultured mammalian cells, D-glucose and L-glutamine, on the ATIII-yield. We found that utilization of D-glucose was not limiting for synthesis of ATIII at elevated expression levels. However, the amount of ATIII-synthesized per L-glutamine consumed did not seem to increase steadily with expression level for ATIII, indicating that secretion of ATIII may be limited by the capacity of the cell to utilize L-glutamine.
Collapse
Affiliation(s)
- Martin Schröder
- Howard Hughes Medical Institute, University of Michigan Medical Center, 4566 Medical Science Research Building II, 1150 W. Medical Center Drive, Ann Arbor, MI 48109-0650, USA.
| | | | | |
Collapse
|
11
|
Rezaie AR, Yang L. Probing the molecular basis of factor Xa specificity by mutagenesis of the serpin, antithrombin. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1528:167-76. [PMID: 11687304 DOI: 10.1016/s0304-4165(01)00189-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The molecular basis of the substrate and inhibitor specificity of factor Xa, the serine proteinase of the prothrombinase complex, was investigated by constructing two mutants of human antithrombin (HAT) in which the reactive site loop of the serpin from the P4-P4' site was replaced with the corresponding residues of the two factor Xa cleavage sites in prothrombin (HAT/Proth-1 and HAT/Proth-2). These mutants together with prethrombin-2, the smallest zymogen form of thrombin containing only the second factor Xa cleavage site, were expressed in mammalian cells, purified to homogeneity and characterized in kinetic reactions with factor Xa in both the absence and presence of cofactors; factor Va, high affinity heparin and pentasaccharide fragment of heparin. HAT/Proth-1 inactivated factor Xa approximately 3-4-fold better than HAT/Proth-2 in either the absence or presence of heparin cofactors. In the absence of a cofactor, factor Xa reacted with the HAT/Proth-2 and prethrombin-2 with similar second-order rate constants (approximately 2-3x10(2) M(-1)s(-1)). Pentasaccharide catalyzed the inactivation rate of factor Xa by the HAT mutants 300-500-fold. A similar 10(4)-10(5)-fold enhancement in the reactivity of factor Xa with prethrombin-2 and the HAT mutants was observed in the presence of the cofactors Va and heparin, respectively. Factor Va did not influence the reactivity of factor Xa with either one of the HAT mutants. These results suggest that (1) in the absence of a cofactor, the P4-P4' residues of HAT and prethrombin-2 primarily determine the specificity reactions with factor Xa, (2) factor Va binding to factor Xa is not associated with allosteric changes in the catalytic pocket of enzyme that would involve interactions with the P4-P4' binding sites, and (3) similar to allosteric activation of HAT by heparin, a role for factor Va in the prothrombinase complex may involve rearrangement of the residues surrounding the scissile bond of the substrate to facilitate its optimal docking into the catalytic pocket of factor Xa.
Collapse
Affiliation(s)
- A R Rezaie
- Edward A. Doisy Department of Biochemistry and Molecular Biology, St. Louis University School of Medicine, 1402 South Grand Boulevard, St. Louis, MO 63104, USA.
| | | |
Collapse
|
12
|
Mochizuki S, Hamato N, Hirose M, Miyano K, Ohtani W, Kameyama S, Kuwae S, Tokuyama T, Ohi H. Expression and characterization of recombinant human antithrombin III in Pichia pastoris. Protein Expr Purif 2001; 23:55-65. [PMID: 11570846 DOI: 10.1006/prep.2001.1479] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Antithrombin III (ATIII) is a member of the serpin superfamily and a major regulator of the blood coagulation cascade. To express recombinant human ATIII (rATIII) in the methylotrophic yeast Pichia pastoris, we constructed an rATIII expression plasmid which contained the ATIII cDNA encoding mature protein region connected with the truncated mAOX2 promoter and the SUC2 secretion signal, introduced it into the P. pastoris genome, and screened for a single copy transformant. The secretion of rATIII from the transformant reached a level of 320 IU/L in the culture broth at 169 h. From the culture-supernatant, rATIII was purified to over 99% by heparin-affinity chromatography and other column chromatography methods. We characterized rATIII and compared it with human plasma-derived ATIII (pATIII). The purified rATIII possessed correct N-terminal amino acid sequence, and its molecular weight by SDS-PAGE of 56,000 Da was slightly different from the 58,000 Da of pATIII. Sequence and mass spectrometry analysis of BrCN fragments revealed that posttranslational modifications had occurred in rATIII. O-linked mannosylation was found at Ser 3 and Thr 9, and in some rATIII molecules, modification with O-linked mannosyl-mannose had probably occurred at Thr 386, close to the reactive center. Although the heparin-binding affinity of rATIII was 10-fold higher than that of pATIII, its inhibitory activity against thrombin was only half. As the conformation of rATIII and pATIII by circular dichroism spectroscopy was similar, O-glycosylation in the reactive center loop was assumed to be mainly responsible for the decreased inhibitory activity. pATIII can inactivate thrombin through formation of a stable thrombin-ATIII complex, but rATIII modified with O-glycosylation in the reactive center loop may act as a substrate rather than an inhibitor of thrombin.
Collapse
Affiliation(s)
- S Mochizuki
- Pharmaceutical Research Division, Drug Discovery Laboratories, Welfide Corporation, 2-25-1 Shodai-ohtani, Hirakata, Osaka, 573-1153, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Lynch TJ. Biotechnology: alternatives to human plasma-derived therapeutic proteins. Best Pract Res Clin Haematol 2000; 13:669-88. [PMID: 11102283 DOI: 10.1053/beha.2000.0100] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Proteins derived from human plasma have become critically important therapeutic products since their introduction in the 1940s. In the last 20 years, the tools of molecular biology have provided alternatives to the administration of the natural products. Recombinant analogues of Factor VIII and Factor IX are commercially available, and recombinant forms of other plasma proteins are under development. Genetic engineering also provides the opportunity to modify a natural protein to improve the efficiency with which it can be produced in vitro, or to change its therapeutic profile. More efficient production systems, such as transgenic plants or animals, may yield less costly therapies and a wider availability of products that are now in limited supply. Finally, gene therapy offers the prospect of permanently correcting conditions arising from deficiencies in any one of several plasma proteins, freeing individuals from the need to undergo periodic treatments with exogenous proteins.
Collapse
Affiliation(s)
- T J Lynch
- Division of Hematology, U.S. Food and Drug Administration, Rockville, MD, USA
| |
Collapse
|
14
|
Ni H, Blajchman MA, Ananthanarayanan VS, Smith IJ, Sheffield WP. Mutation of any site of N-linked glycosylation accelerates the in vivo clearance of recombinant rabbit antithrombin. Thromb Res 2000; 99:407-15. [PMID: 10963791 DOI: 10.1016/s0049-3848(00)00263-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Antithrombin (AT) is a plasma protein with four sites of N-linked glycosylation. Asn 135 is incompletely glycosylated, and the resulting 3-glycan AT is cleared more rapidly in vivo than the 4-glycan form. The Asn codons in each of the four sites of glycosylation were altered in turn, to create four mutant rabbit AT cDNAs. Permanently transfected CHO cell lines were generated following transfection of the resulting constructs, encoding either the wild-type rabbit AT (AT-WT) or one of the four underglycosylated variants (AT-N96Q, AT-N135Q, AT-N155Q, and AT-N155Q). Comparison of the five resulting recombinant AT proteins revealed that the major AT species of each variant co-migrated on SDS gels, and migrated more rapidly than the major form of AT-WT. The shift in mobility, from 60 to 57 kDa, was consistent with the loss of one fully sialylated complex N-linked glycan. Neither the amount of AT secreted (range: 1.25 to 4.2 microg/10(6) cells/day) nor the kinetics of secretion differed significantly between cell lines expressing AT-WT or any of the AT variants. All forms of recombinant rabbit AT were capable of forming denaturation-resistant complexes with thrombin. Purification and radioiodination of each of the five recombinant AT proteins permitted pharmacokinetic analysis of their individual clearance in rabbits. While neither the equilibration half-life (t(0.5)alpha) nor the terminal catabolic half-life (t(0. 5)beta) differed significantly between plasma-derived rabbit AT and AT-WT, the t(0.5)beta of all the underglycosylated variants was decreased relative to that of AT-WT (maximum reduction in mean: from 70.1+/-3.2 h to 52.4+/-2.5 h). These results suggest that the overall extent of glycosylation, rather than the location within AT of the glycan chains, is a primary determinant of AT clearance.
Collapse
Affiliation(s)
- H Ni
- Departments of Pathology and Molecular Medicine and Biochemistry McMaster University, Hamilton, Ontario, Canada
| | | | | | | | | |
Collapse
|
15
|
Abstract
Class I alpha-mannosidases are thought to exist exclusively as integral membrane proteins that play intracellulary an essential role in the N-glycan biosynthesis. Using [3H]Man9GlcNAc2 as a substrate, we were able to identify a soluble alpha-mannosidase in human serum that trims the substrate Man9GlcNAc2 to Man(5-8)GlcNAc2 with Man6GlcNAc2 being the major product. This serum mannosidase is Ca2+-dependent, sensitive to 1-deoxymannojirimycin but insensitive to the class II inhibitor swainsonine and, hence, belongs to class I mannosidases. The enzymatic properties of the serum class I mannosidase are similar to that of the membrane bound class I mannosidases Golgi-mannosidase IA and IB and Man9-mannosidase.
Collapse
Affiliation(s)
- S Porwoll
- Institut für Laboratoriumsmedizin und Pathobiochemie, Medizinische Fakultät Charité der Humboldt-Universität zu Berlin, Campus Virchow-Klinikum, Germany
| | | | | |
Collapse
|
16
|
Grabenhorst E, Nimtz M, Costa J, Conradt HS. In vivo specificity of human alpha1,3/4-fucosyltransferases III-VII in the biosynthesis of LewisX and Sialyl LewisX motifs on complex-type N-glycans. Coexpression studies from bhk-21 cells together with human beta-trace protein. J Biol Chem 1998; 273:30985-94. [PMID: 9812995 DOI: 10.1074/jbc.273.47.30985] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Each of the five human alpha1,3/4-fucosyltransferases (FT3 to FT7) has been stably expressed in BHK-21 cells together with human beta-trace protein (beta-TP) as a secretory reporter glycoprotein. In order to study their in vivo properties for the transfer of peripheral Fuc onto N-linked complex-type glycans, detailed structural analysis was performed on the purified glycoprotein. All fucosyltransferases were found to peripherally fucosylate 19-52% of the diantennary beta-TP N-glycans, and all enzymes were capable of synthesizing the sialyl LewisX (sLex) motif. However, each enzyme produced its own characteristic ratio of sLex/Lex antennae as follows: FT7 (only sLex), FT3 (14:1), FT5 (3:1), FT6 (1.1:1), and FT4 (1:7). Fucose transfer onto beta-TP N-glycans was low in FT3 cells (11% of total antennae), whereas the values for FT7, FT5, FT4, and FT6 cells were 21, 25, 35, and 47%, respectively. FT3, FT4, FT5, and FT7 transfer preponderantly one Fuc per diantennary N-glycan. FT4 preferentially synthesizes di-Lex on asialo diantennary N-glycans and mono-Lex with monosialo chains. In contrast, FT6 forms mostly alpha1,3-difucosylated chains with no, one, or two NeuAc residues. FT3, FT4, and FT6 were proteolytically cleaved and released into the culture medium in significant amounts, whereas FT7 and FT5 were found to be largely resistant toward proteolysis. Studies on engineered soluble variants of FT6 indicate that these forms do not significantly contribute to the in vivo fucose transfer activity of the enzyme when expressed at activity levels comparable to those obtained for the wild-type Golgi form of FT6 in the recombinant host cells.
Collapse
Affiliation(s)
- E Grabenhorst
- Protein Glycosylation, Gesellschaft für Biotechnologische Forschung mbH, D-38124 Braunschweig, Germany
| | | | | | | |
Collapse
|
17
|
Olson ST, Frances-Chmura AM, Swanson R, Björk I, Zettlmeissl G. Effect of individual carbohydrate chains of recombinant antithrombin on heparin affinity and on the generation of glycoforms differing in heparin affinity. Arch Biochem Biophys 1997; 341:212-21. [PMID: 9169007 DOI: 10.1006/abbi.1997.9973] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Two major glycoforms of recombinant antithrombin which differ 10-fold in their affinity for the effector glycosaminoglycan, heparin, were previously shown to be expressed in BHK or CHO mammalian cell lines (I. Björk, et al., 1992, Biochem. J. 286, 793-800; B. Fan et al., 1993, J. Biol. Chem. 268, 17588-17596). To determine the source of the glycosylation heterogeneity responsible for these different heparin-affinity forms, each of the four Asn residue sites of glycosylation, residues 96, 135, 155, and 192, was mutated to Gln to block glycosylation at these sites. Heparin-agarose chromatography of the four antithrombin variants revealed that Gln 96, Gln 135, and Gln 192 variants still displayed the two functional heparin-affinity forms previously observed with the wild-type inhibitor, whereas the Gln 155 variant showed only a single functional high heparin affinity form. These results demonstrate that heterogeneous glycosylation of Asn 155 of recombinant antithrombin is responsible for generating the low heparin affinity glycoform. Analysis of heparin binding to the higher heparin affinity forms of the four variants showed that all exhibited increased heparin affinities of two- to sevenfold compared to wild-type higher heparin affinity form or to plasma antithrombin, with the Gln 135 variant showing the largest effect on this affinity. The extent of heparin-affinity enhancement was correlated with the distance of the mutated glycosylation site to the putative heparin-binding site in the X-ray structure of antithrombin. All variants displayed normal kinetics of thrombin inhibition in the absence and presence of saturating heparin, indicating that the carbohydrate chains solely affected heparin binding and not heparin-activation or proteinase-binding functions. These results indicate that all carbohydrate chains of recombinant antithrombin adversely affect heparin-binding affinity to an extent that correlates with their relative proximity to the putative heparin-binding site in antithrombin.
Collapse
Affiliation(s)
- S T Olson
- Center for Molecular Biology of Oral Diseases, University of Illinois at Chicago 60612-7213, USA
| | | | | | | | | |
Collapse
|
18
|
Costa J, Grabenhorst E, Nimtz M, Conradt HS. Stable expression of the Golgi form and secretory variants of human fucosyltransferase III from BHK-21 cells. Purification and characterization of an engineered truncated form from the culture medium. J Biol Chem 1997; 272:11613-21. [PMID: 9111078 DOI: 10.1074/jbc.272.17.11613] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Stable BHK-21 cell lines were constructed expressing the Golgi membrane-bound form and two secretory forms of the human alpha1, 3/4-fucosyltransferase (amino acids 35-361 and 46-361). It was found that 40% of the enzyme activity synthesized by cells transfected with the Golgi form of the fucosyltransferase was constitutively secreted into the medium. The corresponding enzyme detected by Western blot had an apparent molecular mass similar to those of the truncated secretory forms. The secretory variant (amino acids 46-361) was purified by a single affinity-chromatography step on GDP-Fractogel resin with a 20% final recovery. The purified enzyme had a unique NH2 terminus and contained N-linked endo H sensitive carbohydrate chains at its two glycosylation sites. The fucosyltransferase transferred fucose to the O-4 position of GlcNAc in small oligosaccharides, glycolipids, glycopeptides, and glycoproteins containing the type I Galbeta1-3GlcNAc motif. The acceptor oligosaccharide in bovine asialofetuin was identified as the Man-3 branched triantennary isomer with one Galbeta1-3GlcNAc. The type II motif Galbeta1-4GlcNAc in bi-, tri-, or tetraantennary neutral or alpha2-3/alpha2-6 sialylated oligosaccharides with or without N-acetyllactosamine repeats and in native glycoproteins were not modified. The soluble forms of fucosyltransferase III secreted by stably transfected cells may be used for in vitro synthesis of the Lewisa determinant on carbohydrates and glycoproteins, whereas Lewisx and sialyl-Lewisx structures cannot be synthesized.
Collapse
Affiliation(s)
- J Costa
- Department of Protein Glycosylation, Gesellschaft für Biotechnologische Forschung, Mascheroder Weg 1, D-38124 Braunschweig, Germany
| | | | | | | |
Collapse
|
19
|
Schröder M, Friedl P. Overexpression of recombinant human antithrombin III in Chinese hamster ovary cells results in malformation and decreased secretion of recombinant protein. Biotechnol Bioeng 1997; 53:547-59. [DOI: 10.1002/(sici)1097-0290(19970320)53:6<547::aid-bit2>3.0.co;2-m] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
20
|
|
21
|
Grabenhorst E, Hoffmann A, Nimtz M, Zettlmeissl G, Conradt HS. Construction of stable BHK-21 cells coexpressing human secretory glycoproteins and human Gal(beta 1-4)GlcNAc-R alpha 2,6-sialyltransferase alpha 2,6-linked NeuAc is preferentially attached to the Gal(beta 1-4)GlcNAc(beta 1-2)Man(alpha 1-3)-branch of diantennary oligosaccharides from secreted recombinant beta-trace protein. EUROPEAN JOURNAL OF BIOCHEMISTRY 1995; 232:718-25. [PMID: 7588709 DOI: 10.1111/j.1432-1033.1995.718zz.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The human beta-trace protein has been cloned and has been expressed for the first time in a mammalian host cell line. Stable BHK-21 cell lines exhibiting altered terminal sialylation properties were constructed by cotransfection of cells with the plasmids pMT-beta TP or pAB3-1 which contain the cDNAs encoding the human secretory glycoproteins beta-trace protein or antithrombin III and pABSial containing the human Golgi enzyme CMP-NeuAc:Gal(beta 1-4)GlcNAc-R alpha 2,6-sialyltransferase (ST6N) gene. The beta-trace protein was purified by immunoaffinity chromatography and N-linked oligosaccharides were subjected to carbohydrate structural analysis. The enzymically liberated oligosaccharides were found to consist of 90% of diantennary chains as is the case for natural beta-trace protein from human cerebrospinal fluid. About 90% of the total oligosaccharides were recovered in the monosialo and disialo fractions in a ratio of 1:5. The monosialylated oligosaccharides of beta-trace protein coexpressed with human ST6N were found to contain NeuAc in alpha 2,6- or alpha 2,3-linkage in the same ratio. From 1H-NMR analysis as well as calculations of peak areas obtained by HPLC, 60% of the molecules of the disialo fraction were found to contain NeuAc in both alpha 2,3- and alpha 2,6-linkage to Gal beta(1-4)GlcNAc-R, whereas 40% of the molecules of this fraction contained NeuAc in only alpha 2,3-linkage to Gal(beta 1-4)GlcNAc-R. The alpha 2,6-linked NeuAc was shown to be attached preferentially to the Gal(beta 1-4)GlcNAc(beta 1-2)Man(alpha 1-3) branch of the diantennary structure. Therefore the in vivo specificity of the newly introduced recombinant human ST6N observed in this study supports the previously reported in vitro branch specificity of the bovine colostrum ST6N activity. Furthermore, these studies demonstrate the suitability of genetically engineered mammalian host cell lines with novel glycosylation properties for the production of human-type glycosylated secretory recombinant polypeptides.
Collapse
Affiliation(s)
- E Grabenhorst
- Department of Gene Regulation and Differentiation, Gesellschaft für Biotechnologische Forschung, Braunschweig, Germany
| | | | | | | | | |
Collapse
|
22
|
Teige M, Weidemann R, Kretzmer G. Problems with serum-free production of antithrombin III regarding proteolytic activity and product quality. J Biotechnol 1994; 34:101-5. [PMID: 7764741 DOI: 10.1016/0168-1656(94)90171-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Human antithrombin III (AT-III) was produced using a recombinant BHK-21 cell line with a microcarrier culture in spinner flasks. Cells were cultivated for the first 4 days in a medium containing 10% fetal calf serum (FCS). Afterwards, the medium was exchanged and production of AT-III occurred at high cell numbers in a serum-free medium. The product was determined by an immunoassay and further analysed after isolation from the culture medium. During cultivation, high proteolytic activity was detected which caused a considerable product decomposition. Furthermore, a higher level of non-glycosylated AT-III was found after serum-free production.
Collapse
Affiliation(s)
- M Teige
- Institut für Pflanzengenetik und Kulturpflazenforschung, Gatersleben, Germany
| | | | | |
Collapse
|
23
|
Nimtz M, Martin W, Wray V, Klöppel KD, Augustin J, Conradt HS. Structures of sialylated oligosaccharides of human erythropoietin expressed in recombinant BHK-21 cells. EUROPEAN JOURNAL OF BIOCHEMISTRY 1993; 213:39-56. [PMID: 8477709 DOI: 10.1111/j.1432-1033.1993.tb17732.x] [Citation(s) in RCA: 120] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The native structures of the Asn-linked oligosaccharides and the O-glycans at Ser126 of human erythropoietin expressed from recombinant BHK cells have been elucidated. Enzymatically released N-glycans were studied by methylation analyses, fast-atom-bombardment mass spectrometry as well as one- and two-dimensional 1H-NMR spectrometry at 600 MHz. Many (82.7%) were found to be tetraantennary N-acetyllactosamine-type (22.8% with one, 3.6% with two and 0.4% with three N-acetyllactosamine repeats) being tetrasialylated (41%), trisialylated (29.6%) and disialylated (12.2%). A few (9.7%; 4.1% 2,4-branched, 5.6%, 2,6-branched) of the chains were triantennary (5.4% trisialyl, 4.3% disialyl) and 4.6% were of the disialyl diantennary type. Almost all of the innermost GlcNAc residues were alpha 1-6 fucosylated and NeuAc was exclusively alpha 2-3 linked to Gal beta 1-4GlcNAc-R; 60% of the protein was found to be O-glycosylated at Ser126; structures were monosialylated (70%) or disialylated (30%) forms of the Gal beta 1-3GalNAc core type. Glycosylation patterns at individual Asn-Xaa-Thr/Ser sites were determined by analytical high-pH anion-exchange chromatography with pulsed amperometric detection. Only tetraantennary chains with 0-3 N-acetyllactosamine repeats were detected at Asn38 and Asn83, while almost all of the di- and triantennary oligosaccharides were attached to Asn24. Batch analysis of different preparations of recombinant erythropoietin revealed the high reproducibility of the production procedure. Structures containing terminal GalNAc-GlcNAc were detected in small amounts in a few batches.
Collapse
Affiliation(s)
- M Nimtz
- Department of Cell Biology and Genetics, GBF-Gesellschaft für Biotechnologische Forschung mbH, Braunschweig, Federal Republic of Germany
| | | | | | | | | | | |
Collapse
|
24
|
Theunissen H, Dijkema R, Grootenhuis P, Swinkels J, de Poorter T, Carati P, Visser A. Dissociation of heparin-dependent thrombin and factor Xa inhibitory activities of antithrombin-III by mutations in the reactive site. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)52974-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
25
|
Hermentin P, Witzel R, Doenges R, Bauer R, Haupt H, Patel T, Parekh RB, Brazel D. The mapping by high-pH anion-exchange chromatography with pulsed amperometric detection and capillary electrophoresis of the carbohydrate moieties of human plasma alpha 1-acid glycoprotein. Anal Biochem 1992; 206:419-29. [PMID: 1443615 DOI: 10.1016/0003-2697(92)90388-n] [Citation(s) in RCA: 60] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The reducing oligosaccharides released from alpha 1-acid glycoprotein (AGP) by conventional hydrazinolysis have been analyzed by two different mapping techniques, using high-pH anion-exchange chromatography with pulsed amperometric detection (HPAE-PAD) and capillary electrophoresis (CE) with uv detection at 190 nm. The CE measurements proved about 4000 times more sensitive than the measurements by HPAE-PAD. The N-glycan pool was fractionated by Mono Q anion-exchange chromatography, and individual fractions so obtained were desialylated using Vibrio cholerae neuraminidase. The resulting asialo-N-glycans were further analyzed by HPAE-PAD, revealing 2 major, 4 intermediate, and 4 small peaks and at least 3 spikes, which counted for at least 13 different asialo-N-glycans. The carbohydrate structures were tentatively assigned by comparison of the Mono Q-separated N-glycans with the known AGP carbohydrate structures and known structures contained in a mapping database that allows structural assignment of N-glycans by mere comparison of retention times. In addition to the hitherto known AGP carbohydrate structures, we have tentatively identified a number of sulfated N-glycans that are currently being analyzed in more detail. We have also compared the glycan pools recovered from AGP using hydrazinolysis and glycopeptidase F (PNGase F). Approximately 40 distinct peaks could be detected in the hydrazinolysis-derived N-glycan pool by either technique (HPAE-PAD and CE), while about 30 distinct peaks were detected in the N-glycan pool derived by PNGase F digestion of the tryptic AGP digest of the same batch of AGP. These differences were attributed to an increased desialylation (approximately 3 mol%) during hydrazinolysis, based on the detection by HPAE-PAD and CE of free sialic acid and monosialylated oligosaccharides in the glycan pool derived by conventional hydrazinolysis. The integrity of the N-glycans' chitobiose core was examined by 500-MHz 1H NMR spectoscopy. The hydrazinolysis procedure could be optimized such that the hydrazinolysis-derived N-glycan pool was chromatographically essentially identical to the PNGase F-derived N-glycan pool. Hydrazinolysis proved best, with practically no loss of N-acetlylneuraminic acid and the closest resemblance to the PNGase F-derived N-glycan pool, using an automated apparatus. Notably, it was recognized that, in our hands, PNGase F digestion in the presence of sodium dodecyl sulfate resulted in partial desialylation of the liberated N-glycans.
Collapse
Affiliation(s)
- P Hermentin
- Research Laboratories of Behringwerke AG, Marburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Hermentin P, Witzel R, Vliegenthart JF, Kamerling JP, Nimtz M, Conradt HS. A strategy for the mapping of N-glycans by high-pH anion-exchange chromatography with pulsed amperometric detection. Anal Biochem 1992; 203:281-9. [PMID: 1416024 DOI: 10.1016/0003-2697(92)90314-w] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We have evaluated the high-pH anion-exchange chromatography with pulsed amperometric detection (HPAE-PAD) with respect to its suitability to establish a carbohydrate mapping database that would enable carbohydrate structural analysis by mere comparison of retention times. The suitability of HPAE-PAD for carbohydrate structural analysis was ascertained by validation experiments. The retention times of distinct N-glycans, prepared and measured on different days, were shown to be highly reproducible, with a coefficient of variation (CV) of less than 0.5%, requiring less than 100 pmol of N-glycan per injection for reliable measurements. Including appropriate internal chromatographic standards, such as (Neu5Ac)1, (Neu5Ac)2, (Neu5Ac)3, and Neu5Gc, the HPAE-PAD method fulfills the analytical requirements with respect to accuracy, precision, reproducibility, and sensitivity. The N-glycan mapping database was established, using two optimized linear gradients "S" and "A" for sialylated and asialo N-glycans, respectively. Approximately 100 different N-glycans of known structure, which have thus far been measured and characterized, have entered our Lotus 1-2-3 mapping database. The efficiency of the database for structural determinations was tested, using the N-linked carbohydrates isolated from rhuEPO, expressed in BHK cells. Nine different sialylated N-glycans of rhuEPO (BHK) could be assigned with a deviation of less than +/- 0.5%, using gradient S, and six of the eight asialo N-glycans of rhuEPO (BHK) detected with gradient A could be assigned with an accuracy of less than +/- 1%, three of them even with an accuracy of less than 0.1%, providing the reliability of the established HPAE-PAD mapping database.
Collapse
Affiliation(s)
- P Hermentin
- Research Laboratories of Behringwerke AG, Marburg, Germany
| | | | | | | | | | | |
Collapse
|
27
|
Sugiura T, Kurosawa-Ohsawa K, Takahashi M, Maruyama HB. Relationship between productivity and ?-carboxylation efficiency of recombinant protein C. Biotechnol Lett 1990. [DOI: 10.1007/bf01022598] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
28
|
Nimtz M, Noll G, Pâques EP, Conradt HS. Carbohydrate structures of a human tissue plasminogen activator variant expressed in recombinant Chinese hamster ovary cells. FEBS Lett 1990; 271:14-8. [PMID: 2226797 DOI: 10.1016/0014-5793(90)80361-l] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The carbohydrate structures of a genetically engineered human tissue plasminogen activator variant bearing a single N-glycosylation site at Asn 448 are reported. After isolation of the tryptic glycopeptide and liberation of the N-linked carbohydrates by polypeptide:N-glycosidase F, 6 major oligosaccharide fractions were separated by HPLC on NH2-bonded phase. Their structures were determined by compositional and methylation analyses combined with fast atom bombardment mass spectrometry. Seventy percent of the carbohydrates were of the biantennary complex type with fucose at the proximal GlcNAc and zero, one or two alpha 2-3 linked NeuAc. The remainder were triantennary structures with one, two or three NeuAc.
Collapse
Affiliation(s)
- M Nimtz
- Department of Cell Biology and Genetics, GBF-Gesellschaft für Biotechnologische Forschung mbH, Braunschweig, FRG
| | | | | | | |
Collapse
|