1
|
Cool-temperature-mediated activation of phospholipase C-γ2 in the human hereditary disease PLAID. Cell Signal 2016; 28:1237-1251. [PMID: 27196803 DOI: 10.1016/j.cellsig.2016.05.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Revised: 05/10/2016] [Accepted: 05/12/2016] [Indexed: 12/24/2022]
Abstract
Deletions in the gene encoding signal-transducing inositol phospholipid-specific phospholipase C-γ2 (PLCγ2) are associated with the novel human hereditary disease PLAID (PLCγ2-associated antibody deficiency and immune dysregulation). PLAID is characterized by a rather puzzling concurrence of augmented and diminished functions of the immune system, such as cold urticaria triggered by only minimal decreases in temperature, autoimmunity, and immunodeficiency. Understanding of the functional effects of the genomic alterations at the level of the affected enzyme, PLCγ2, is currently lacking. PLCγ2 is critically involved in coupling various cell surface receptors to regulation of important functions of immune cells such as mast cells, B cells, monocytes/macrophages, and neutrophils. PLCγ2 is unique by carrying three Src (SH) and one split pleckstrin homology domain (spPH) between the two catalytic subdomains (spPHn-SH2n-SH2c-SH3-spPHc). Prevailing evidence suggests that activation of PLCγ2 is primarily due to loss of SH-region-mediated autoinhibition and/or enhanced plasma membrane translocation. Here, we show that the two PLAID PLCγ2 mutants lacking portions of the SH region are strongly (>100-fold), rapidly, and reversibly activated by cooling by only a few degrees. We found that the mechanism(s) underlying PLCγ2 PLAID mutant activation by cool temperatures is distinct from a mere loss of SH-region-mediated autoinhibition and dependent on both the integrity and the pliability of the spPH domain. The results suggest a new mechanism of PLCγ activation with unique thermodynamic features and assign a novel regulatory role to its spPH domain. Involvement of this mechanism in other human disease states associated with cooling such as exertional asthma and certain acute coronary events appears an intriguing possibility.
Collapse
|
2
|
Walliser C, Tron K, Clauss K, Gutman O, Kobitski AY, Retlich M, Schade A, Röcker C, Henis YI, Nienhaus GU, Gierschik P. Rac-mediated Stimulation of Phospholipase Cγ2 Amplifies B Cell Receptor-induced Calcium Signaling. J Biol Chem 2015; 290:17056-72. [PMID: 25903139 DOI: 10.1074/jbc.m115.645739] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Indexed: 12/21/2022] Open
Abstract
The Rho GTPase Rac is crucially involved in controlling multiple B cell functions, including those regulated by the B cell receptor (BCR) through increased cytosolic Ca(2+). The underlying molecular mechanisms and their relevance to the functions of intact B cells have thus far remained unknown. We have previously shown that the activity of phospholipase Cγ2 (PLCγ2), a key constituent of the BCR signalosome, is stimulated by activated Rac through direct protein-protein interaction. Here, we use a Rac-resistant mutant of PLCγ2 to functionally reconstitute cultured PLCγ2-deficient DT40 B cells and to examine the effects of the Rac-PLCγ2 interaction on BCR-mediated changes of intracellular Ca(2+) and regulation of Ca(2+)-regulated and nuclear-factor-of-activated-T-cell-regulated gene transcription at the level of single, intact B cells. The results show that the functional Rac-PLCγ2 interaction causes marked increases in the following: (i) sensitivity of B cells to BCR ligation; (ii) BCR-mediated Ca(2+) release from intracellular stores; (iii) Ca(2+) entry from the extracellular compartment; and (iv) nuclear translocation of the Ca(2+)-regulated nuclear factor of activated T cells. Hence, Rac-mediated stimulation of PLCγ2 activity serves to amplify B cell receptor-induced Ca(2+) signaling.
Collapse
Affiliation(s)
- Claudia Walliser
- From the Institute of Pharmacology and Toxicology, University of Ulm Medical Center, 89070 Ulm, Germany
| | - Kyrylo Tron
- the Institute of Biophysics, University of Ulm, 89069 Ulm, Germany
| | - Karen Clauss
- the Institute of Biophysics, University of Ulm, 89069 Ulm, Germany
| | - Orit Gutman
- the Department of Neurobiology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Andrei Yu Kobitski
- the Institute of Applied Physics and Center for Functional Nanostructures, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Michael Retlich
- From the Institute of Pharmacology and Toxicology, University of Ulm Medical Center, 89070 Ulm, Germany
| | - Anja Schade
- From the Institute of Pharmacology and Toxicology, University of Ulm Medical Center, 89070 Ulm, Germany
| | - Carlheinz Röcker
- the Institute of Biophysics, University of Ulm, 89069 Ulm, Germany
| | - Yoav I Henis
- the Department of Neurobiology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - G Ulrich Nienhaus
- the Institute of Applied Physics and Center for Functional Nanostructures, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany, the Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany, and the Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Peter Gierschik
- From the Institute of Pharmacology and Toxicology, University of Ulm Medical Center, 89070 Ulm, Germany,
| |
Collapse
|
3
|
Decker C, Hesker P, Zhang K, Faccio R. Targeted inhibition of phospholipase C γ2 adaptor function blocks osteoclastogenesis and protects from pathological osteolysis. J Biol Chem 2013; 288:33634-33641. [PMID: 24081142 DOI: 10.1074/jbc.m113.477281] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phospholipase C γ2 (PLCγ2) is a critical regulator of innate immune cells and osteoclasts (OCs) during inflammatory arthritis. Both the catalytic domain and the adaptor motifs of PLCγ2 are required for OC formation and function. Due to the high homology between the catalytic domains of PLCγ2 and the ubiquitously expressed PLCγ1, molecules encompassing the adaptor motifs of PLCγ2 were designed to test the hypothesis that uncoupling the adaptor and catalytic functions of PLCγ2 could specifically inhibit osteoclastogenesis and bone erosion. Wild-type (WT) bone marrow macrophages (BMM) that overexpress the tandem Src homology 2 (SH2) domains of PLCγ2 (SH2(N+C)) failed to form mature OCs and resorb bone in vitro. Activation of the receptor activator of NF-κB (RANK) signaling pathway, which is critical for OC development, was impaired in cells expressing SH2(N+C). Arrest in OC differentiation was evidenced by a reduction of p38 and Iκ-Bα phosphorylation as well as decreased NFATc1 and c-Fos/c-Jun levels. Consistent with our hypothesis, SH2(N+C) abrogated formation of the RANK-Gab2 complex, which mediates NF-κB and AP-1 activation following RANK ligand (RANKL) stimulation. Furthermore, the ability of SH2(N+C) to prevent inflammatory osteolysis was examined in vivo following RANKL or LPS injections over the calvaria. Both models induced osteolysis in the control group, whereas the SH2(N+C)-treated cohort was largely protected from bone erosion. Collectively, these data indicate that inflammatory osteolysis can be abrogated by treatment with a molecule composed of the tandem SH2 domains of PLCγ2.
Collapse
Affiliation(s)
- Corinne Decker
- Department of Orthopaedic Surgery, Musculoskeletal Research Center, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Pamela Hesker
- Department of Orthopaedic Surgery, Musculoskeletal Research Center, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Kaihua Zhang
- Department of Orthopaedic Surgery, Musculoskeletal Research Center, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Roberta Faccio
- Department of Orthopaedic Surgery, Musculoskeletal Research Center, Washington University School of Medicine, St. Louis, Missouri 63110.
| |
Collapse
|
4
|
Shpakov AO. Signal protein-derived peptides as functional probes and regulators of intracellular signaling. JOURNAL OF AMINO ACIDS 2011; 2011:656051. [PMID: 22312467 PMCID: PMC3268021 DOI: 10.4061/2011/656051] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2010] [Accepted: 06/01/2011] [Indexed: 12/21/2022]
Abstract
The functionally important regions of signal proteins participating in their specific interaction and responsible for transduction of hormonal signal into cell are rather short in length, having, as a rule, 8 to 20 amino acid residues. Synthetic peptides corresponding to these regions are able to mimic the activated form of full-size signal protein and to trigger signaling cascades in the absence of hormonal stimulus. They modulate protein-protein interaction and influence the activity of signal proteins followed by changes in their regulatory and catalytic sites. The present review is devoted to the achievements and perspectives of the study of signal protein-derived peptides and to their application as selective and effective regulators of hormonal signaling systems in vitro and in vivo. Attention is focused on the structure, biological activity, and molecular mechanisms of action of peptides, derivatives of the receptors, G protein α subunits, and the enzymes generating second messengers.
Collapse
Affiliation(s)
- Alexander O Shpakov
- I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Thorez avenue 44, 194223 St. Petersburg, Russia
| |
Collapse
|
5
|
Membrane environment exerts an important influence on rac-mediated activation of phospholipase Cγ2. Mol Cell Biol 2011; 31:1240-51. [PMID: 21245382 DOI: 10.1128/mcb.01408-10] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We performed analyses of the molecular mechanisms involved in the regulation of phospholipase Cγ2 (PLCγ2). We identified several regions in the PLCγ-specific array, γSA, that contribute to autoinhibition in the basal state by occlusion of the catalytic domain. While the activation of PLCγ2 by Rac2 requires stable translocation to the membrane, the removal of the domains required for membrane translocation in the context of an enzyme with impaired autoinhibition generated constitutive, highly active PLC in cells. We further tested the possibility that the interaction of PLCγ2 with its activator protein Rac2 was sufficient for activation through the release of autoinhibition. However, we found that Rac2 binding in the absence of lipid surfaces was not able to activate PLCγ2. Together with other observations, these data suggest that an important consequence of Rac2 binding and translocation to the membrane is that membrane proximity, on its own or together with Rac2, has a role in the release of autoinhibition, resulting in interfacial activation.
Collapse
|
6
|
Chung SH, Kim SK, Kim JK, Yang YR, Suh PG, Chang JS. A double point mutation in PCL-gamma1 (Y509A/F510A) enhances Y783 phosphorylation and inositol phospholipid-hydrolyzing activity upon EGF stimulation. Exp Mol Med 2010; 42:216-27. [PMID: 20164676 DOI: 10.3858/emm.2010.42.3.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Growth factor stimulation induces Y783 phosphorylation of phosphoinositide-specific PLC-gamma1, and the subsequent activation of this enzyme in a cellular signaling cascade. Previously, we showed that a double point mutation, Y509A/F510A, of PLC-gamma1, abolished interactions with translational elongation factor 1-alpha. Here, we report that the Y509A/F510A mutant PLC-gamma1 displayed extremely high levels of Y783 phosphorylation and enhanced catalytic activity, compared to wild-type PLC-gamma1, upon treatment of COS7 cells with EGF. In quiescent COS7 cells, the Y509A/F510A mutant PLC-gamma1 exhibited a constitutive hydrolytic activity, whereas the wild-type counterpart displayed a basal level of activity. Upon treatment of COS7 cells with EGF, the Y783F mutation in Y509A/F510A PLC-gamma1 (Y509A/F510A/Y783F triple mutant) cells also led to an enhanced catalytic activity, whereas Y783F mutation alone displayed a basal level of activity. Our results collectively suggest that the Y509A/F510A mutant is more susceptible to receptor tyrosine kinase-induced Y783 phosphorylation than is wild-type PLC-gamma1, but no longer requires Y783 phosphorylation step for the Y509A/F510A mutant PLC-gamma1 activation in vivo.
Collapse
Affiliation(s)
- Sang Hee Chung
- Department of Life Science, College of Natural Science, Daejin University, Pocheon 487-711, Korea
| | | | | | | | | | | |
Collapse
|
7
|
Gresset A, Hicks SN, Harden TK, Sondek J. Mechanism of phosphorylation-induced activation of phospholipase C-gamma isozymes. J Biol Chem 2010; 285:35836-47. [PMID: 20807769 DOI: 10.1074/jbc.m110.166512] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The lipase activity of most phospholipases C (PLCs) is basally repressed by a highly degenerate and mostly disordered X/Y linker inserted within the catalytic domain. Release of this auto-inhibition is driven by electrostatic repulsion between the plasma membrane and the electronegative X/Y linker. In contrast, PLC-γ isozymes (PLC-γ1 and -γ2) are structurally distinct from other PLCs because multiple domains are present in their X/Y linker. Moreover, although many tyrosine kinases directly phosphorylate PLC-γ isozymes to enhance their lipase activity, the underlying molecular mechanism of this activation remains unclear. Here we define the mechanism for the unique regulation of PLC-γ isozymes by their X/Y linker. Specifically, we identify the C-terminal SH2 domain within the X/Y linker as the critical determinant for auto-inhibition. Tyrosine phosphorylation of the X/Y linker mediates high affinity intramolecular interaction with the C-terminal SH2 domain that is coupled to a large conformational rearrangement and release of auto-inhibition. Consequently, PLC-γ isozymes link phosphorylation to phospholipase activation by elaborating upon primordial regulatory mechanisms found in other PLCs.
Collapse
Affiliation(s)
- Aurelie Gresset
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7365, USA
| | | | | | | |
Collapse
|
8
|
Jung SH, Jeong JH, Seul HJ, Lee JR. Competition between SLP76 and LAT for PLCγ1 binding in resting T cells. Eur J Immunol 2010; 40:2330-9. [DOI: 10.1002/eji.200939411] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
9
|
Harada D, Yamanaka Y, Ueda K, Nishimura R, Morishima T, Seino Y, Tanaka H. Sustained phosphorylation of mutated FGFR3 is a crucial feature of genetic dwarfism and induces apoptosis in the ATDC5 chondrogenic cell line via PLCgamma-activated STAT1. Bone 2007; 41:273-81. [PMID: 17561467 DOI: 10.1016/j.bone.2006.11.030] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2006] [Revised: 11/03/2006] [Accepted: 11/14/2006] [Indexed: 12/23/2022]
Abstract
The most frequent type of rhizomelic dwarfism, achondroplasia (ACH), is caused by mutations in the fibroblast growth factor receptor 3 (FGFR3) gene. Mutations in FGFR3 result in skeletal dysplasias of variable severity, including mild phenotypic effects in hypochondroplasia (HCH), severe phenotypic effects in thanatophoric dysplasia types I (TDI) and II (TDII), and severe but survivable phenotypic effects in severe achondroplasia with developmental delay and acanthosis nigricans (SADDAN). To explore the molecular mechanisms that result in the different phenotypes, we investigated the kinetics of mutated versions of FGFR3. First, we assayed the phosphorylation states of the mutated FGFR3s and found that the level of phosphorylation in TDI-FGFR3 was lower than in ACH-FGFR3, although the other mutants were phosphorylated according to phenotypic severity. Second, we analyzed the duration of the phosphorylation. TDI-FGFR3 was not highly phosphorylated under ligand-free conditions, but the peak phosphorylation levels of TDI-FGFR3 and ACH-FGFR3 were maintained for 30 min after stimulation with FGF-1. Moreover, ligand-dependent phosphorylation of TDI-FGFR3, but not ACH-FGFR3, lasted for more than 8 h after FGF-1 administration. The other mutant proteins showed sustained phosphorylation independent of ligand presence. Third, we investigated the intracellular localization of the mutant proteins. Immunofluorescence analysis showed accumulations of TDII-FGFR3, SADDAN-FGFR3, and a portion of TDI-FGFR3 in the endoplasmic reticulum (ER). Based on these data, we concluded that sustained phosphorylation of FGFR3 causes chondrodysplasia, and the phenotypic severity depends on the proportion of ER-localized mutant FGFR3. In FGFR3 signaling, the transcription factor, signal transducer and activator of transcription 1 (STAT1) inhibit proliferation and induce apoptosis of chondrocytes. Here we reveal that phospholipase C gamma (PLCgamma) mediates FGFR3-induced STAT1 activation. Both PLCgamma and STAT1 were activated by FGFR3 signaling, but a dominant-negative form of PLCgamma (DN-PLCgamma) remarkably reduced STAT1 phosphorylation. Apoptosis assays revealed that the constitutively active forms of FGFR3 (TDII-FGFR3) and STAT1 (STAT1-C) induce apoptosis of chondrogenic ATDC5 cells via caspase activity. DN-PLCgamma reduced the apoptosis of ATDC5 cells expressing TDII-FGFR3, but over-expression of both DN-PLCgamma and STAT1-C induced apoptosis. Therefore, we conclude that a PLCgamma-STAT1 pathway mediates apoptotic signaling by FGFR3.
Collapse
Affiliation(s)
- Daisuke Harada
- Department of Pediatrics, Okayama University, Graduate School of Medicine and Dentistry, 2-5-1 Shikata-Cho, Okayama 700-8558, Japan
| | | | | | | | | | | | | |
Collapse
|
10
|
Shepard CR, Kassis J, Whaley DL, Kim HG, Wells A. PLCγ contributes to metastasis of in situ-occurring mammary and prostate tumors. Oncogene 2006; 26:3020-6. [PMID: 17130835 DOI: 10.1038/sj.onc.1210115] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Phospholipase C-gamma (PLCgamma) has been implicated in tumor cell motility required for invasiveness and metastasis. Diminished tumor dissemination has been demonstrated in xenograft models, but studies in naturally-occurring tumors are lacking, having been limited by the timing of the interventions. Therefore, we generated mice that express a doxycycline (DOX)-inducible dominant-negative fragment of PLCgamma, PLCz; this approach avoids the in utero lethality caused by the absence of PLCgamma. As we targeted two de novo-occurring carcinomas of the mammary (MMTV-driven polyoma middle T antigen model, PyVmT) and prostate (TRAMP model) glands, we limited expression to these epithelial cells by driving DOX transactivator from the prostatein C3 promoter. This avoids the confounding variable of potentially abrogating motility in stromal and endothelial cells. These mice developed normally in the presence of DOX, except for limited mammary development if treated before 6 weeks and immaturity of the prostate gland if treated before 2 weeks of age. DOX-mediated induction of PLCz from age 8 to 16 weeks in PyVmT mice decreased the number of lung metastases by >10-fold (P<0.06) without a detectable effect on in situ tumor cell proliferation or tumor size. Lung metastases were also significantly decreased in the TRAMP model in which the mice expressed the PLCz fragment (P<0.05). DOX treatment itself had no effect on tumor size or metastasis in control mice, nor did it affect tumor dissemination in nontransgenic littermates. In conclusion, abrogation of the PLCgamma signaling pathway can limit the metastatic potential of carcinomas.
Collapse
Affiliation(s)
- C R Shepard
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | | | | | | | | |
Collapse
|
11
|
DeBell K, Graham L, Reischl I, Serrano C, Bonvini E, Rellahan B. Intramolecular regulation of phospholipase C-gamma1 by its C-terminal Src homology 2 domain. Mol Cell Biol 2006; 27:854-63. [PMID: 17116690 PMCID: PMC1800685 DOI: 10.1128/mcb.01400-06] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Phosphoinositide-specific phospholipase C-gamma1 (PLC-gamma1) is a key enzyme that governs cellular functions such as gene transcription, secretion, proliferation, motility, and development. Here, we show that PLC-gamma1 is regulated via a novel autoinhibitory mechanism involving its carboxy-terminal Src homology (SH2C) domain. Mutation of the SH2C domain tyrosine binding site led to constitutive PLC-gamma1 activation. The amino-terminal split pleckstrin homology (sPHN) domain was found to regulate the accessibility of the SH2C domain. PLC-gamma1 constructs with mutations in tyrosine 509 and phenylalanine 510 in the sPHN domain no longer required an intact amino-terminal Src homology (SH2N) domain or phosphorylation of tyrosine 775 or 783 for activation. These data are consistent with a model in which the SH2C domain is blocked by an intramolecular interaction(s) that is released upon cellular activation by occupancy of the SH2N domain.
Collapse
Affiliation(s)
- Karen DeBell
- Laboratory of Immunobiology, Division of Monoclonal Antibodies, Centrer for Drug Evaluation and Research, Food and Drug Administration/DHHS, 29 Lincoln Drive, Bethesda, MD 20892-4555, USA.
| | | | | | | | | | | |
Collapse
|
12
|
Ishimura A, Lee HS, Bong YS, Saucier C, Mood K, Park EK, Daar IO. Oncogenic Met receptor induces ectopic structures in Xenopus embryos. Oncogene 2006; 25:4286-99. [PMID: 16518409 DOI: 10.1038/sj.onc.1209463] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
When aberrantly expressed or activated, the Met receptor tyrosine kinase is involved in tumor invasiveness and metastasis. In this study, we have used the Xenopus embryonic system to define the role of various Met proximal-binding partners and downstream signaling pathways in regulating an induced morphogenetic event. We show that expression of an oncogenic derivative of the Met receptor (Tpr-Met) induces ectopic morphogenetic structures during Xenopus embryogenesis. Using variant forms of Tpr-Met that are engineered to recruit a specific signaling molecule of choice, we demonstrate that the sole recruitment of either the Grb2 or the Shc adaptor protein is sufficient to induce ectopic structures and anterior reduction, while the recruitment of PI-3Kinase (PI-3K) is necessary but not sufficient for this effect. In contrast, the recruitment of PLCgamma can initiate the induction, but fails to maintain or elongate supernumerary structures. Finally, evidence indicates that the Ras/Raf/MAPK pathway is necessary, but not sufficient to induce these structures. This study also emphasizes the importance of examining signaling molecules in the regulatory context that is provided by receptor/effector interactions when assessing a role in cell growth and differentiation.
Collapse
Affiliation(s)
- A Ishimura
- Laboratory of Protein Dynamics & Signaling, National Cancer Institute-Frederick, MD 21702, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Mariappan MM, Senthil D, Natarajan KS, Choudhury GG, Kasinath BS. Phospholipase Cγ-Erk Axis in Vascular Endothelial Growth Factor-induced Eukaryotic Initiation Factor 4E Phosphorylation and Protein Synthesis in Renal Epithelial Cells. J Biol Chem 2005; 280:28402-11. [PMID: 15919658 DOI: 10.1074/jbc.m504861200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Vascular endothelial growth factor (VEGF) increases protein synthesis and induces hypertrophy in renal tubular epithelial cells (Senthil, D., Choudhury, G. G., McLaurin, C., and Kasinath, B. S. (2003) Kidney Int. 64, 468-479). We examined the role of Erk1/2 MAP kinase in protein synthesis induced by VEGF. VEGF stimulated Erk phosphorylation that was required for induction of protein synthesis. VEGF-induced Erk activation was not dependent on phosphoinositide (PI) 3-kinase activation but required sequential phosphorylation of type 2 VEGF receptor, PLCgamma and c-Src, as demonstrated by inhibitors SU1498, U73122, and PP1, respectively. c-Src phosphorylation was inhibited by U73122, indicating it was downstream of phospholipase (PL)Cgamma. Studies with PP1/2 showed that phosphorylation of c-Src was required for tyrosine phosphorylation of Raf-1, an upstream regulator of Erk. VEGF also stimulated phosphorylation of Pyk-2; VEGF-induced phosphorylation of Pyk2, c-Src and Raf-1 could be abolished by BAPTA/AM, demonstrating requirement for induction of intracellular calcium currents. We examined the downstream events following the phosphorylation of Erk. VEGF stimulated phosphorylation of Mnk1 and eIF4E and induced Mnk1 to shift from the cytoplasm to the nucleus upon phosphorylation. VEGF-induced phosphorylation of Mnk1 and eIF4E required phosphorylation of PLCgamma, c-Src, and Erk. Expression of dominant negative Mnk1 abrogated eIF4E phosphorylation and protein synthesis induced by VEGF. VEGF-stimulated protein synthesis could be blocked by inhibition of PLCgamma by a chemical inhibitor or expression of a dominant negative construct. Our data demonstrate that VEGF-stimulated protein synthesis is Erk-dependent and requires the activation of VEGF receptor 2, PLCgamma, c-Src, Raf, and Erk pathway. VEGF also stimulates Erk-dependent phosphorylation of Mnk1 and eIF4E, crucial events in the initiation phase of protein translation.
Collapse
Affiliation(s)
- Meenalakshmi M Mariappan
- O'Brien Kidney Research Center, Department of Medicine, University of Texas Health Science Center, South Texas Veterans Healthcare System, Geriatric Research, Education, and, Clinical Center, San Antonio, Texas 78229, USA
| | | | | | | | | |
Collapse
|
14
|
Katan M, Rodriguez R, Matsuda M, Newbatt YM, Aherne GW. Structural and mechanistic aspects of phospholipase Cgamma regulation. ADVANCES IN ENZYME REGULATION 2004; 43:77-85. [PMID: 12791384 DOI: 10.1016/s0065-2571(02)00027-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Matilda Katan
- Chester Beatty Laboratories, Cancer Research UK Centre for Cell and Molecular Biology, The Institute of Cancer Research, Fulham Road, London SW3 6JB, UK.
| | | | | | | | | |
Collapse
|
15
|
Banan A, Zhang LJ, Shaikh M, Fields JZ, Farhadi A, Keshavarzian A. Inhibition of oxidant-induced nuclear factor-kappaB activation and inhibitory-kappaBalpha degradation and instability of F-actin cytoskeletal dynamics and barrier function by epidermal growth factor: key role of phospholipase-gamma isoform. J Pharmacol Exp Ther 2004; 309:356-68. [PMID: 14724221 DOI: 10.1124/jpet.103.062232] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Using monolayers of intestinal (Caco-2) cells as a model for studying inflammatory bowel disease (IBD), we previously showed that nuclear factor-kappaB (NF-kappaB) activation is required for oxidant-induced disruption of cytoskeletal and barrier integrity. Epidermal growth factor (EGF) stabilizes the F-actin cytoskeleton and protects against oxidant damage, but the mechanism remains unclear. We hypothesized that the mechanism involves activation of phospholipase C-gamma (PLC-gamma), which prevents NF-kappaB activation and the consequences of this activation, namely, cytoskeletal and barrier disruption. We studied wild-type and transfected cells. The latter were transfected with varying levels (1-5 microg) of cDNA to either stably overexpress PLC-gamma or to inhibit its activation. Cells were pretreated with EGF before exposure to oxidant (H(2)O(2)). Stably overexpressing PLC-gamma (+2.0-fold) or preincubating with EGF protected against oxidant injury as indicated by 1) decreases in several NF-kappaB-related variables [NF-kappaB (p50/p65 subunit) nuclear translocation, NF-kappaB subunit activity, inhibitory-kappaBalpha (I-kappaBalpha) phosphorylation and degradation]; 2) increases in F-actin and decreases in G-actin; 3) stabilization of the actin cytoskeletal architecture; and 4) enhancement of barrier function. Overexpression induced inactivation of NF-kappaB was potentiated by EGF. PLC-gamma was found mostly in membrane and cytoskeletal fractions (<9% in the cytosolic fractions), indicating its activation. Dominant negative inhibition of endogenous PLC-gamma (-99%) substantially prevented all measures of EGF protection against NF-kappaB activation. We concluded 1) EGF protects against oxidant-induced barrier disruption through PLC-gamma activation, which inactivates NF-kappaB; 2) Activation of PLC-gamma by itself is protective against NF-kappaB activation; 3) the ability to modulate the dynamics of NF-kappaB/I-kappa Balpha is a novel mechanism not previously attributed to the PLC family of isoforms in cells; and 4) development of PLC-gamma mimetics represents a possible new therapeutic strategy for IBD.
Collapse
Affiliation(s)
- A Banan
- Division of Digestive Diseases, Department of Internal Medicine, Section of Gastroenterology and Nutrition, Rush University of Chicago School of Medicine, 1725 W. Harrison, Suite 206, Chicago, IL 60612, USA.
| | | | | | | | | | | |
Collapse
|
16
|
Sukumaran SK, McNamara G, Prasadarao NV. Escherichia coli K-1 interaction with human brain micro-vascular endothelial cells triggers phospholipase C-gamma1 activation downstream of phosphatidylinositol 3-kinase. J Biol Chem 2003; 278:45753-62. [PMID: 12952950 DOI: 10.1074/jbc.m307374200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Escherichia coli, the most common Gram-negative bacterium that causes meningitis in neonates, invades human brain microvascular endothelial cells (HBMEC) by rearranging host cell actin via the activation of phosphatidylinositol 3-kinase (PI3K) and PKC-alpha. Here, further, we show that phospholipase (PLC)-gamma1 is phosphorylated on tyrosine 783 and condenses at the HBMEC membrane beneath the E. coli entry site. Overexpression of a dominant negative (DN) form of PLC-gamma, the PLC-z fragment, in HBMEC inhibits PLC-gamma1 activation and significantly blocks E. coli invasion. PI3K activation is not affected in PLC-z/HBMEC upon infection, whereas PKC-alpha phosphorylation is completely abolished, indicating that PLC-gamma1 is downstream of PI3K. Concomitantly, the phosphorylation of PLC-gamma1 is blocked in HBMEC overexpressing a dominant negative form of the p85 subunit of PI3K but not in HBMEC overexpressing a dominant negative form of PKC-alpha. In addition, the recruitment of PLC-gamma1 to the cell membrane in both PLC-z/HBMEC and DN-p85/HBMEC is inhibited. Activation of PI3K is associated with the conversion of phosphatidylinositol 4,5-bisphosphate (PIP2) to phosphatidylinositol 1,4,5-trisphosphate (PIP3), which in turn recruits PLC-gamma1 to the cell membrane via its interaction with pleckstrin homology domain of PLC-gamma1. Utilizing the pleckstrin homology domains of PKC-delta and Btk proteins fused to green fluorescent protein (GFP), which specifically interact with PIP2 and PIP3, respectively, we show herein that E. coli invasion induces the breakdown of PIP2 at the plasma membrane near the site of E. coli interaction. PIP3, on the other hand, recruits the GFPBkt to the cell membrane beneath the sites of E. coli attachment. Our studies further show that E. coli invasion induces the release of Ca2+ from intracellular pools as well as the influx of Ca2+ from the extracellular medium. This elevation in Ca2+ levels is completely blocked both in PLC-z/HBMEC and DN-p85/HBMEC, but not in DN-PKC/HBMEC. Taken together, these results suggest that E. coli infection of HBMEC induces PLC-gamma1 activation in a PI3K-dependent manner to increase Ca2+ levels in HBMEC. This is the first report demonstrating the recruitment of activated PLC-gamma1 to the sites of bacterial entry.
Collapse
Affiliation(s)
- Sunil K Sukumaran
- Division of Infectious Diseases and Congressman Dixon Image Core, Childrens Hospital Los Angeles, California, USA
| | | | | |
Collapse
|
17
|
Banan A, Zhang LJ, Shaikh M, Fields JZ, Farhadi A, Keshavarzian A. Key role of PLC-gamma in EGF protection of epithelial barrier against iNOS upregulation and F-actin nitration and disassembly. Am J Physiol Cell Physiol 2003; 285:C977-93. [PMID: 12788694 DOI: 10.1152/ajpcell.00121.2003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Upregulation of inducible nitric oxide synthase (iNOS) is key to oxidant-induced disruption of intestinal (Caco-2) monolayer barrier, and EGF protects against this disruption by stabilizing the cytoskeleton. PLC-gamma appears to be essential for monolayer integrity. We thus hypothesized that PLC-gamma activation is essential in EGF protection against iNOS upregulation and the consequent cytoskeletal oxidation and disarray and monolayer disruption. Intestinal cells were transfected to stably overexpress PLC-gamma or to inhibit its activation and were then pretreated with EGF +/- oxidant (H2O2). Wild-type (WT) intestinal cells were treated similarly. Relative to WT monolayers exposed to oxidant, pretreatment with EGF protected monolayers by: increasing native PLC-gamma activity; decreasing six iNOS-related variables (iNOS activity/protein, NO levels, oxidative stress, actin oxidation/nitration); increasing stable F-actin; maintaining actin stability; and enhancing barrier integrity. Relative to WT cells exposed to oxidant, transfected monolayers overexpressing PLC-gamma (+2.3-fold) were protected, as indicated by decreases in all measures of iNOS-driven pathway and enhanced actin and barrier integrity. Overexpression-induced inhibition of iNOS was potentiated by low doses of EGF. Stable inhibition of PLC-gamma prevented all measures of EGF protection against iNOS upregulation. We conclude that 1) EGF protects against oxidative stress disruption of intestinal barrier by stabilizing F-Actin, largely through the activation of PLC-gamma and downregulation of iNOS pathway; 2) activation of PLC-gamma is by itself essential for cellular protection against oxidative stress of iNOS; and 3) the ability to suppress iNOS-driven reactions and cytoskeletal oxidation and disassembly is a novel mechanism not previously attributed to the PLC family of isoforms.
Collapse
Affiliation(s)
- A Banan
- Department of Internal Medicine, Section of Gastroenterology and Nutrition, Rush University School of Medicine, 1725 W. Harrison, Suite 206, Chicago, IL 60612, USA.
| | | | | | | | | | | |
Collapse
|
18
|
Nogami M, Yamazaki M, Watanabe H, Okabayashi Y, Kido Y, Kasuga M, Sasaki T, Maehama T, Kanaho Y. Requirement of autophosphorylated tyrosine 992 of EGF receptor and its docking protein phospholipase C gamma 1 for membrane ruffle formation. FEBS Lett 2003; 536:71-6. [PMID: 12586341 DOI: 10.1016/s0014-5793(03)00013-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Stimulation of the epidermal growth factor receptor (EGFR) produces membrane ruffles through the small G protein Rac1; however, the signaling pathway from EGFR to Rac1 has not yet been clarified. Here, we show that autophosphorylation of EGFR at tyrosine 992 is required for EGF-induced membrane ruffle formation in CHO cells. Signaling from the autophosphorylated tyrosine 992 appears to be mediated by phospholipase C (PLC) gamma 1. Furthermore, activation of Rac1 by EGF is inhibited by a PLC inhibitor. These results, taken together, suggest that autophosphorylation of EGFR at tyrosine 992 and the subsequent PLC gamma 1 activation transduce the signal to Rac1 to induce membrane ruffle formation.
Collapse
Affiliation(s)
- Masahiro Nogami
- Department of Pharmacology, Tokyo Metropolitan Institute of Medical Science, 3-18-22 Honkomagome, Bunkyo-ku, Tokyo 113-8613, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Ozdener F, Dangelmaier C, Ashby B, Kunapuli SP, Daniel JL. Activation of phospholipase Cgamma2 by tyrosine phosphorylation. Mol Pharmacol 2002; 62:672-9. [PMID: 12181444 DOI: 10.1124/mol.62.3.672] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Phospholipase Cgamma2 (PLCgamma2) has been implicated in collagen-induced signal transduction in platelets and antigen-dependent signaling in B-lymphocytes. It has been suggested that tyrosine kinases activate PLCgamma2. We expressed the full-length cDNA for human PLCgamma2 in bacteria and purified the recombinant enzyme. The recombinant enzyme was Ca(2+)-dependent with optimal activity in the range of 1 to 10 microM Ca(2+). In vitro phosphorylation experiments with recombinant PLCgamma2 and recombinant Lck, Fyn, and Lyn tyrosine kinases showed that phosphorylation of PLCgamma2 led to activation of the recombinant enzyme. Using site-directed mutagenesis, we investigated the role of specific tyrosine residues in activation of PLCgamma2. A mutant form of PLCgamma2, in which all three tyrosines at positions 743, 753, and 759 in the SH2-SH3 linker region were replaced by phenylalanines, exhibited decreased Lck-induced phosphorylation and completely abolished the Lck-dependent activation of PLCgamma2. Individual mutations of these tyrosine residues demonstrated that tyrosines 753 and 759, but not 743, were responsible for Lck-induced activation of PLCgamma2. To confirm these results, we procured a phosphospecific antibody to a peptide containing phosphorylated tyrosines corresponding to residues 753 and 759. This antibody recognized phosphorylated wild-type PLCgamma2 on Western blots but did not interact with unphosphorylated PLCgamma2 or with PLCgamma2 containing mutated tyrosine residues at 753 and 759. Using this antibody, we showed in intact platelets that collagen, a PLCgamma2-dependent agonist, induces phosphorylation of PLCgamma2 at Y753 and Y759. These studies demonstrate the importance of these two tyrosine residues in regulating the activity of PLCgamma2.
Collapse
Affiliation(s)
- Fatih Ozdener
- Department of Pharmacology, Temple University Medical School, Philadelphia, Pennsylvania 19140, USA
| | | | | | | | | |
Collapse
|
20
|
Kurosaki T, Okada T. Regulation of phospholipase C-gamma2 and phosphoinositide 3-kinase pathways by adaptor proteins in B lymphocytes. Int Rev Immunol 2002; 20:697-711. [PMID: 11913946 DOI: 10.3109/08830180109045586] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The importance of phosphoinositide 3-kinase (PI3K) and phospholipase C (PLC)-gamma2 in B cell function and development has been highlighted by gene targeting experiments in mice. In fact, these knockout mice exhibit a profound inhibition of proliferative responses upon B cell receptor (BCR) engagement. The molecular connections between these effectors and upstream tyrosine kinases such as Syk have been studied intensively in the past few years. This mechanism involves the action of cytoplasmic adaptor molecules, which participate in forming multicomponent signaling complexes, thereby directing the appropriate subcellular localization of effector enzymes. In addition to these cytoplasmic adaptor proteins, cell surface coreceptors can be viewed as transmembrane adaptor proteins, because coreceptors can also change the localization of effector enzymes, which in turn modulates the BCR-initiated signals.
Collapse
Affiliation(s)
- T Kurosaki
- Department of Molecular Genetics, Institute for Liver Research, Kansai Medical University, Moriguchi, Japan.
| | | |
Collapse
|
21
|
Kassis J, Radinsky R, Wells A. Motility is rate-limiting for invasion of bladder carcinoma cell lines. Int J Biochem Cell Biol 2002; 34:762-75. [PMID: 11950593 DOI: 10.1016/s1357-2725(01)00173-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Induced migration of tumor cells is generally considered to be one critical step in cancer progression to the invasive and metastatic stage. The implicit caveat of studies that show this is that other, unknown, signaling pathways and biophysical events are actually the operative rate-limiting steps, and not motility per se. Thus, to examine the hypothesis that motility is a single, but overall rate-limiting function required for invasion, disparate motility processes need be blocked with concordant effects on tumor invasion. Recently, we and others have described two signaling pathways that are critical to growth factor-induced motility but not mitogenesis. The key molecular switches are phospholipase C-gamma (PLCgamma) and calpain for cytoskeletal reorganization and rear detachment, respectively. We examined this hypothesis in a highly invasive tumor, bladder carcinoma. Three different human tumor cell lines, 253J-B-V, UMUC and T-24, were tested for invasiveness in vitro by transmigration of a Matrigel barrier. Inhibiting PLCgamma with the pharmacologic agent U73122 or the molecular dominant-negative PLCz construct reduced both invasiveness and motility. The same was noted when calpain was blocked using calpain inhibitor I (ALLN). These results demonstrate that one interventional target for limiting invasion is not necessarily an individual motility pathway but rather cell migration per se.
Collapse
Affiliation(s)
- Jareer Kassis
- Pathology and Laboratory Medicine Service, Pittsburgh VAMC & Department of Pathology, University of Pittsburgh, S713 Scaife, 3550 Terrace Street, Pittsburgh, PA 15261, USA
| | | | | |
Collapse
|
22
|
Kanazawa H, Ohsawa K, Sasaki Y, Kohsaka S, Imai Y. Macrophage/microglia-specific protein Iba1 enhances membrane ruffling and Rac activation via phospholipase C-gamma -dependent pathway. J Biol Chem 2002; 277:20026-32. [PMID: 11916959 DOI: 10.1074/jbc.m109218200] [Citation(s) in RCA: 142] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Iba1 is a macrophage/microglia-specific calcium-binding protein that is involved in RacGTPase-dependent membrane ruffling and phagocytosis. In this study, we introduced Iba1 into Swiss 3T3 fibroblasts and demonstrated the enhancement of platelet-derived growth factor (PDGF)-induced membrane ruffling and chemotaxis. Wortmannin treatment did not completely suppressed this enhanced membrane ruffling in Iba1-expressing cells, whereas it did in Iba1-nonexpressing cells, suggesting that the enhancement is mediated through a phosphatidylinositol 3-kinase (PI3K)-independent signaling pathway. Porcine aorta endothelial cells transfected with expression constructs of Iba1 and PDGF receptor add-back mutants were used to analyze the signaling pathway responsible for the Iba1-induced enhancement of membrane ruffling. In the absence of Iba1 expression, PDGF did not induced membrane ruffling in cells expressing the Tyr-1021 receptor mutant, which is capable of activating phospholipase C-gamma (PLC-gamma) but not PI3K. In contrast, in the presence of Iba1 expression, membrane ruffling was formed in cells expressing the Tyr-1021 mutant. In addition, Rac was shown to be activated during membrane ruffling in cells expressing Iba1 and the Tyr-1021 mutant. Furthermore, dominant negative forms of PLC-gamma completely suppressed PDGF-induced Iba1-dependent membrane ruffling and Rac activation. These results indicate the existence of a novel signaling pathway where PLC-gamma activates Rac in a manner dependent on Iba1.
Collapse
Affiliation(s)
- Hiroko Kanazawa
- Department of Neurochemistry, National Institute of Neuroscience, 4-1-1 Ogawahigashi, Kodaira, Tokyo 187-8502, Japan
| | | | | | | | | |
Collapse
|
23
|
Yamazaki T, Takeda K, Gotoh K, Takeshima H, Akira S, Kurosaki T. Essential immunoregulatory role for BCAP in B cell development and function. J Exp Med 2002; 195:535-45. [PMID: 11877477 PMCID: PMC2193770 DOI: 10.1084/jem.20011751] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
BCAP was recently cloned as a binding molecule to phosphoinositide 3-kinase (PI3K). To investigate the role of BCAP, mutant mice deficient in BCAP were generated. While BCAP-deficient mice are viable, they have decreased numbers of mature B cells and B1 B cell deficiency. The mice produce lower titers of serum immunoglobulin (Ig)M and IgG3, and mount attenuated responses to T cell--independent type II antigen. Upon B cell receptor cross-linking, BCAP-deficient B cells exhibit reduced Ca(2+) mobilization and poor proliferative responses. These findings demonstrate that BCAP plays a pivotal immunoregulatory role in B cell development and humoral immune responses.
Collapse
Affiliation(s)
- Tetsuo Yamazaki
- Department of Molecular Genetics, Institute for Liver Research, Kansai Medical University, Moriguchi, Osaka, Japan
| | | | | | | | | | | |
Collapse
|
24
|
Watanabe D, Hashimoto S, Ishiai M, Matsushita M, Baba Y, Kishimoto T, Kurosaki T, Tsukada S. Four tyrosine residues in phospholipase C-gamma 2, identified as Btk-dependent phosphorylation sites, are required for B cell antigen receptor-coupled calcium signaling. J Biol Chem 2001; 276:38595-601. [PMID: 11507089 DOI: 10.1074/jbc.m103675200] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Activation of phospholipase C-gamma2 (PLCgamma2) is the critical step in B cell antigen receptor (BCR)-coupled calcium signaling. Although genetic dissection experiments on B cells have demonstrated that Bruton's tyrosine kinase (Btk) and Syk are required for activating PLCgamma2, the exact activation mechanism of PLCgamma2 by these kinases has not been established. We identify the tyrosine residues 753, 759, 1197, and 1217 in rat PLCgamma2 as Btk-dependent phosphorylation sites by using an in vitro kinase assay. To evaluate the role of these tyrosine residues in phosphorylation-dependent activation of PLCgamma2, PLCgamma2-deficient DT40 cells were reconstituted with a series of mutant PLCgamma2s in which the phenylalanine was substituted for tyrosine. Substitution of all four tyrosine residues almost completely eliminated the BCR-induced PLCgamma2 phosphorylation, indicating that these residues include the major phosphorylation sites upon BCR engagement. Cells expressing PLCgamma2 with a single substitution exhibited some extent of reduction in calcium mobilization, whereas those expressing quadruple mutant PLCgamma2 showed greatly reduced calcium response. These findings indicate that the phosphorylations of the tyrosine residues 753, 759, 1197, and 1217, which have been identified as Btk-dependent phosphorylation sites in vitro, coordinately contribute to BCR-induced activation of PLCgamma2.
Collapse
Affiliation(s)
- D Watanabe
- Osaka University Medical School, Department of Molecular Medicine, 2-2 Yamada-oka, Suita City, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Wilde JI, Watson SP. Regulation of phospholipase C gamma isoforms in haematopoietic cells: why one, not the other? Cell Signal 2001; 13:691-701. [PMID: 11602179 DOI: 10.1016/s0898-6568(01)00191-7] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Phospholipase C gamma (PLCgamma) isoforms are critical for the generation of calcium signals in haematopoietic systems in response to the stimulation of immune receptors. PLCgamma is unique amongst phospholipases in that it is tightly regulated by the action of a number of tyrosine kinases. It is itself directly phosphorylated on a number of tyrosines and contains several domains through which it can interact with other signalling proteins and lipid products such as phosphatidylinositol 3,4,5-trisphosphate. Through this network of interactions, PLCgamma is activated and recruited to its substrate, phosphatidylinositol 4,5-bisphosphate, at the membrane. Both isoforms of PLCgamma, PLCgamma1 and PLCgamma2, are present in haematopoietic cells. The signalling cascade involved in the regulation of these two isoforms varies between cells, though the systems are similar for both PLCgamma1 and PLCgamma2. We will compare these cascades for both PLCgamma1 and PLCgamma2 and discuss possible reasons as to why one form of PLCgamma and not the other is required for signalling in specific haematopoietic cells, including T lymphocytes, B lymphocytes, platelets, and mast cells.
Collapse
Affiliation(s)
- J I Wilde
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK.
| | | |
Collapse
|
26
|
Goitsuka R, Tatsuno A, Ishiai M, Kurosaki T, Kitamura D. MIST functions through distinct domains in immunoreceptor signaling in the presence and absence of LAT. J Biol Chem 2001; 276:36043-50. [PMID: 11463797 DOI: 10.1074/jbc.m106390200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
MIST (also termed Clnk) is an adaptor protein structurally related to SLP-76 and BLNK/BASH/SLP-65 hematopoietic cell-specific adaptor proteins. By using the BLNK-deficient DT40 chicken B cell system, we demonstrated MIST functions through distinct intramolecular domains in immunoreceptor signaling depending on the availability of linker for activation of T cells (LAT). MIST can partially restore the B cell antigen receptor (BCR) signaling in the BLNK-deficient cells, which requires phosphorylation of the two N-terminal tyrosine residues. Co-expression of LAT with MIST fully restored the BCR signaling and dispenses with the requirement of the two tyrosines in MIST for BCR signaling. However, some other tyrosine(s), as well as the Src homology (SH) 2 domain and the two proline-rich regions in MIST, is still required for full reconstitution of the BCR signaling, in cooperation with LAT. The C-terminal proline-rich region of MIST is dispensable for the LAT-aided full restoration of MAP kinase activation, although it is responsible for the interaction with LAT and for the localization in glycolipid-enriched microdomains. On the other hand, the N-terminal proline-rich region, which is a binding site of the SH3 domain of phospholipase Cgamma, is essential for BCR signaling. These results revealed a marked plasticity of MIST function as an adaptor in the cell contexts with or without LAT.
Collapse
Affiliation(s)
- R Goitsuka
- Division of Molecular Biology, Research Institute for Biological Sciences, Science University of Tokyo, 2669 Yamazaki, Noda, Chiba 278-0022, Japan.
| | | | | | | | | |
Collapse
|
27
|
Banan A, Fields JZ, Zhang Y, Keshavarzian A. Phospholipase C-gamma inhibition prevents EGF protection of intestinal cytoskeleton and barrier against oxidants. Am J Physiol Gastrointest Liver Physiol 2001; 281:G412-23. [PMID: 11447022 DOI: 10.1152/ajpgi.2001.281.2.g412] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Loss of intestinal barrier integrity is associated with oxidative inflammatory GI disorders including inflammatory bowel disease. Using monolayers of human intestinal epithelial (Caco-2) cells, we recently reported that epidermal growth factor (EGF) protects barrier integrity against oxidants by stabilizing the microtubule cytoskeleton, but the mechanism downstream of the EGF receptor (EGFR) is not established. We hypothesized that phospholipase C (PLC)-gamma is required. Caco-2 monolayers were exposed to oxidant (H2O2) with or without pretreatment with EGF or specific inhibitors of EGFR tyrosine kinase (AG-1478, tyrphostin 25) or of PLC (L-108, U-73122). Other Caco-2 cells were stably transfected with a dominant negative fragment for PLC-gamma (PLCz) to inhibit PLC-gamma activation. Doses of EGF that enhanced PLC activity also protected monolayers against oxidant-induced tubulin disassembly, disruption of the microtubule cytoskeleton, and barrier leakiness as assessed by radioimmunoassay, quantitative Western blots, high-resolution laser confocal microscopy, and fluorometry, respectively. Pretreatment with either type of inhibitor abolished EGF protection. Transfected cells also lost EGF protection and showed reduced PLC-gamma phosphorylation and activity. We conclude that EGF protection requires PLC-gamma signaling and that PLC-gamma may be a useful therapeutic target.
Collapse
Affiliation(s)
- A Banan
- Division of Digestive Diseases, Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois 60612, USA.
| | | | | | | |
Collapse
|
28
|
Yablonski D, Kadlecek T, Weiss A. Identification of a phospholipase C-gamma1 (PLC-gamma1) SH3 domain-binding site in SLP-76 required for T-cell receptor-mediated activation of PLC-gamma1 and NFAT. Mol Cell Biol 2001; 21:4208-18. [PMID: 11390650 PMCID: PMC87082 DOI: 10.1128/mcb.21.13.4208-4218.2001] [Citation(s) in RCA: 167] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
SLP-76 is an adapter protein required for T-cell receptor (TCR) signaling. In particular, TCR-induced tyrosine phosphorylation and activation of phospholipase C-gamma1 (PLC-gamma1), and the resultant TCR-inducible gene expression, depend on SLP-76. Nonetheless, the mechanisms by which SLP-76 mediates PLC-gamma1 activation are not well understood. We now demonstrate that SLP-76 directly interacts with the Src homology 3 (SH3) domain of PLC-gamma1. Structure-function analysis of SLP-76 revealed that each of the previously defined protein-protein interaction domains can be individually deleted without completely disrupting SLP-76 function. Additional deletion mutations revealed a new, 67-amino-acid functional domain within the proline-rich region of SLP-76, which we have termed the P-1 domain. The P-1 domain mediates a constitutive interaction of SLP-76 with the SH3 domain of PLC-gamma1 and is required for TCR-mediated activation of Erk, PLC-gamma1, and NFAT (nuclear factor of activated T cells). The adjacent Gads-binding domain of SLP-76, also within the proline-rich region, mediates inducible recruitment of SLP-76 to a PLC-gamma1-containing complex via the recruitment of both PLC-gamma1 and Gads to another cell-type-specific adapter, LAT. Thus, TCR-induced activation of PLC-gamma1 entails the binding of PLC-gamma1 to both LAT and SLP-76, a finding that may underlie the requirement for both LAT and SLP-76 to mediate the optimal activation of PLC-gamma1.
Collapse
Affiliation(s)
- D Yablonski
- Department of Pharmacology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Bat Galim, Haifa 31096, Israel
| | | | | |
Collapse
|
29
|
Eichhorn J, Kayali AG, Austin DA, Webster NJ. Insulin activates phospholipase C-gamma1 via a PI-3 kinase dependent mechanism in 3T3-L1 adipocytes. Biochem Biophys Res Commun 2001; 282:615-20. [PMID: 11401505 DOI: 10.1006/bbrc.2001.4616] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previously we have shown that the insulin receptor and phospholipase C-gamma1 physically interact in the 3T3-L1 adipocyte cell line. In this study, we investigated the ability of insulin and PDGF to stimulate PLC-gamma1 enzyme activity as measured by PI-(4,5)P(2) hydrolysis. Both insulin and PDGF caused a rapid (<1 min) increase in PLC activity associated with the respective receptor. PDGF treatment resulted in a higher and more sustained stimulation of PLC-gamma1 activity compared to insulin (0.95 pmol/min/mg vs 0.68 pmol/min/mg). Furthermore, insulin and PDGF promoted increases in total cellular DAG, one of the products of PI-(4,5)P(2) hydrolysis. Insulin-stimulated PLC activity appears to be downstream of PI-3Kinase as the DAG increase was partially blocked by Wortmannin and addition of PI-(3,4,5)P(3) activated PLC-gamma1 in vitro. Inhibition of PLC using U73122 or an inhibitory peptide caused a decrease in insulin-stimulated 2-deoxyglucose transport and GLUT4 translocation that was rescued by the addition of OAG, a cell-permeable synthetic DAG.
Collapse
Affiliation(s)
- J Eichhorn
- Medical Research Service, San Diego Veterans Affairs Healthcare System, San Diego, California 92161, USA
| | | | | | | |
Collapse
|
30
|
Jones GA, Lazarchic M. Phosphatidylinositol-specific phospholipase C-gamma1 undergoes pH-induced activation and conformational change. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1487:209-21. [PMID: 11018473 DOI: 10.1016/s1388-1981(00)00097-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Phospholipase C-gamma1 displayed sigmoidal kinetics with a S(0.5) value of 0.17 mole fraction PIP(2) when assayed at pH 6.8 using detergent:lipid mixed micelles. The pH optimum for hydrolysis of phosphatidylinositol 4,5-bisphosphate by phospholipase C-gamma1 was dependent on the mole fraction of substrate in the micelle. The pH optimum was 5.5 when the enzyme was assayed below the S(0.5). The pH optima shifted to a pH range of 6.0-6.3 when the enzyme was assayed above the S(0.5). The kinetic parameters for phospholipase C-gamma1 assayed at various pH values from pH 7.0 to 5.0 yielded similar n values (n=4), but the constant, K', decreased from 1x10(-2) (mole fraction)(2) at pH 7.0 to 1x10(-5) (mole fraction)(2) at pH 5.0. Maximum enzyme specificity occurred at pH values below pH 6.0 as determined by the plot of logk(cat)/S(0.5) versus pH. Intrinsic fluorescence spectroscopy revealed that at a pH value above 7.0 or below 6.3, tryptophan quenching occurred. Fluorescence quenching experiments performed with acrylamide determined phospholipase C-gamma1 incubated at pH 5.0 had a larger collisional quenching constant than enzyme incubated at pH 7.0. Lowering the pH to 5.0 apparently resulted in interior tryptophans becoming more solvent accessible. These data suggest that pH may activate phospholipase C-gamma1 by disrupting ionizable groups leading to a conformational change.
Collapse
Affiliation(s)
- G A Jones
- Department of Pharmacology, University of Virginia Health Sciences Center, Charlottesville, VA 22908, USA.
| | | |
Collapse
|
31
|
Abstract
Phospholipase C-gamma1 is a tightly regulated, multidomain protein that generates the second messengers inositol 1,4,5-trisphosphate and diacylglycerol. Kinetic analysis reveals that phospholipase C-gamma1 displays apparent allosteric behavior. A previous study determined that proteolytic cleavage of the SH domain region of phospholipase C-gamma1 yields an activated form of the enzyme (A. W. Fernald, G. A. Jones, and G. Carpenter Biochem. J. 302, 508, 1994). In this study, we show that activation of phospholipase C-gamma1 by proteolysis decreases both the cooperativity and the half-maximal value of the enzyme for substrate. Kinetic analysis revealed that the mole fraction of phosphatidylinositol 4,5-bisphosphate (PIP(2)) that resulted in half-maximal PIP(2) hydrolysis (S(0.5)) was lower for proteolyzed than uncleaved phospholipase C-gamma1 (0.08 mole fraction vs 0.18 mole fraction of PIP(2)). The cooperativity index was lower for proteolyzed than full-length phospholipase C-gamma1 (n = 2.5 vs n = 4). Kinetic analysis also revealed that the estimated dissociation constant was lower for phospholipase C-gamma1 that had been subjected to proteolysis (0.1 mM vs 1.0 mM PIP(2) for cleaved vs uncleaved phospholipase C-gamma1, respectively). It was previously hypothesized that activation of phospholipase C-gamma1 requires a conformational change that results in increased accessibility of substrate to the active site and that the SH domain of the enzyme is involved in the activation event. These experiments support the hypothesis that a portion of the protein covers the active site, allosterically inhibiting the enzyme, and that the removal of this "lid" domain activates the enzyme.
Collapse
Affiliation(s)
- G A Jones
- Department of Pharmacology, University of Virginia Health Sciences Center, Charlottesville, Virginia, 22908, USA.
| | | |
Collapse
|
32
|
Affiliation(s)
- T Kurosaki
- Department of Molecular Genetics, Institute for Liver Research, Kansai Medical University, Japan.
| | | |
Collapse
|
33
|
DeBell KE, Stoica BA, Verí MC, Di Baldassarre A, Miscia S, Graham LJ, Rellahan BL, Ishiai M, Kurosaki T, Bonvini E. Functional independence and interdependence of the Src homology domains of phospholipase C-gamma1 in B-cell receptor signal transduction. Mol Cell Biol 1999; 19:7388-98. [PMID: 10523627 PMCID: PMC84732 DOI: 10.1128/mcb.19.11.7388] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
B-cell receptor (BCR)-induced activation of phospholipase C-gamma1 (PLCgamma1) and PLCgamma2 is crucial for B-cell function. While several signaling molecules have been implicated in PLCgamma activation, the mechanism coupling PLCgamma to the BCR remains undefined. The role of PLCgamma1 SH2 and SH3 domains at different steps of BCR-induced PLCgamma1 activation was examined by reconstitution in a PLCgamma-negative B-cell line. PLCgamma1 membrane translocation required a functional SH2 N-terminal [SH2(N)] domain, was decreased by mutation of the SH3 domain, but was unaffected by mutation of the SH2(C) domain. Tyrosine phosphorylation did not require the SH2(C) or SH3 domains but depended exclusively on a functional SH2(N) domain, which mediated the association of PLCgamma1 with the adapter protein, BLNK. Forcing PLCgamma1 to the membrane via a myristoylation signal did not bypass the SH2(N) domain requirement for phosphorylation, indicating that the phosphorylation mediated by this domain is not due to membrane anchoring alone. Mutation of the SH2(N) or the SH2(C) domain abrogated BCR-stimulated phosphoinositide hydrolysis and signaling events, while mutation of the SH3 domain partially decreased signaling. PLCgamma1 SH domains, therefore, have interrelated but distinct roles in BCR-induced PLCgamma1 activation.
Collapse
Affiliation(s)
- K E DeBell
- Laboratory of Immunobiology, Division of Monoclonal Antibodies, Center for Biologics Evaluation and Research, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Ishiai M, Sugawara H, Kurosaki M, Kurosaki T. Cutting Edge: Association of Phospholipase C-γ2 Src Homology 2 Domains with BLNK Is Critical for B Cell Antigen Receptor Signaling. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.163.4.1746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Abstract
To explore the mechanism(s) by which phospholipase C (PLC)-γ2 participates in B cell Ag receptor (BCR) signaling, we have studied the function of PLC-γ2 mutants in B cells deficient in PLC-γ2. Mutation of the N-terminal Src homology 2 domain [SH2(N)] resulted in the complete loss of inositol 1,4,5-trisphosphate generation upon BCR engagement. A possible explanation for the SH2(N) requirement was provided by findings that this mutation abrogates the association of PLC-γ2 with an adaptor protein BLNK. Moreover, expression of a membrane-associated form (CD16/PLC-γ2) with SH2(N) mutation required coligation of BCR and CD16 for inositol 1,4,5-trisphosphate generation. Together, our results suggest a central role for the SH2(N) domain in directing PLC-γ2 into the close proximity of BCR signaling complex by its association with BLNK, whereby PLC-γ2 becomes tyrosine phosphorylated and thereby activated.
Collapse
Affiliation(s)
- Masamichi Ishiai
- *Department of Molecular Genetics, Institute for Liver Research, Kansai Medical University, Moriguchi, Japan; and
| | - Hitoshi Sugawara
- †Department of Integrated Medicine, Omiya Medical Center, Jichi Medical School, Omiya, Japan
| | - Mari Kurosaki
- *Department of Molecular Genetics, Institute for Liver Research, Kansai Medical University, Moriguchi, Japan; and
| | - Tomohiro Kurosaki
- *Department of Molecular Genetics, Institute for Liver Research, Kansai Medical University, Moriguchi, Japan; and
| |
Collapse
|
35
|
Horstman DA, Chattopadhyay A, Carpenter G. The influence of deletion mutations on phospholipase C-gamma 1 activity. Arch Biochem Biophys 1999; 361:149-55. [PMID: 9882440 DOI: 10.1006/abbi.1998.0978] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Phospholipase C-gamma1, a substrate for many growth factor receptor and nonreceptor tyrosine kinases, produces second messenger molecules that are elements of signal transduction pathways related to cell proliferation. The influence of deletion mutations, which do not intrude on the domains required for catalytic function, on the basal activity of this enzyme is reported. Removal of the first 74 amino-terminal residues increases phospholipase C activity, while deletion of the carboxy-terminal 81 residues decreases enzyme activity. Deletion of the SH2-SH2-SH3 central region, which separates the two domains (X, Y) responsible for catalytic function, also increases enzymatic activity. Interestingly, addition of a recombinant SH2-SH2-SH3 fragment of phospholipase C-gamma1 to the holoenzyme inhibits its phospholipase activity at pH 7.0, but not at pH 5.0. However, addition of individual SH2 or SH3 domains does not influence activity of the holoenzyme. All three deletion mutants, in contrast to the holoenzyme, are relatively resistant to V8 proteolysis and activation induced by the epidermal growth factor receptor tyrosine kinase, which require, respectively, specific proteolysis and phosphorylation sites within the SH region. This suggests a conformational change is induced in the SH region by deletion at either the amino- or carboxy-terminus.
Collapse
Affiliation(s)
- D A Horstman
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, 37232, USA
| | | | | |
Collapse
|
36
|
Katan M. Families of phosphoinositide-specific phospholipase C: structure and function. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1436:5-17. [PMID: 9838022 DOI: 10.1016/s0005-2760(98)00125-8] [Citation(s) in RCA: 157] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A large number of extracellular signals stimulate hydrolysis of phosphatidylinositol 4,5-bisphosphate by phosphoinositide-specific phospholipase C (PI-PLC). PI-PLC isozymes have been found in a broad spectrum of organisms and although they have common catalytic properties, their regulation involves different signalling pathways. A number of recent studies provided an insight into domain organisation of PI-PLC isozymes and contributed towards better understanding of the structural basis for catalysis, cellular localisation and molecular changes that could underlie the process of their activation.
Collapse
Affiliation(s)
- M Katan
- CRC Centre for Cell and Molecular Biology, Chester Beatty Laboratories, Fulham Road, London SW3 6JB, UK.
| |
Collapse
|
37
|
Singer WD, Brown HA, Sternweis PC. Regulation of eukaryotic phosphatidylinositol-specific phospholipase C and phospholipase D. Annu Rev Biochem 1997; 66:475-509. [PMID: 9242915 DOI: 10.1146/annurev.biochem.66.1.475] [Citation(s) in RCA: 335] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
This review focuses on two phospholipase activities involved in eukaryotic signal transduction. The action of the phosphatidylinositol-specific phospholipase C enzymes produces two well-characterized second messengers, inositol 1,4,5-trisphosphate and diacylglycerol. This discussion emphasizes recent advances in elucidation of the mechanisms of regulation and catalysis of the various isoforms of these enzymes. These are especially related to structural information now available for a phospholipase C delta isozyme. Phospholipase D hydrolyzes phospholipids to produce phosphatidic acid and the respective head group. A perspective of selected past studies is related to emerging molecular characterization of purified and cloned phospholipases D. Evidence for various stimulatory agents (two small G protein families, protein kinase C, and phosphoinositides) suggests complex regulatory mechanisms, and some studies suggest a role for this enzyme activity in intracellular membrane traffic.
Collapse
Affiliation(s)
- W D Singer
- Department of Pharmacology, University of Texas-Southwestern Medical Center, DaHas 75235-9041, USA
| | | | | |
Collapse
|
38
|
Williams RL, Katan M. Structural views of phosphoinositide-specific phospholipase C: signalling the way ahead. Structure 1996; 4:1387-94. [PMID: 8994965 DOI: 10.1016/s0969-2126(96)00146-3] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Recent structural studies of mammalian phosphoinositide-specific phospholipase C (PI-PLC) have begun to shed light on the mechanism whereby this family of effector enzymes is able to hydrolyze phospholipid substrates to yield second messengers. PI-PLC isozymes employ a variety of modules (PH domain, EF-hand domain, SH2 domain, SH3 domain and C2 domain) that are common in proteins involved in signal transduction to reversibly interact with membranes and protein components of the signalling pathways.
Collapse
Affiliation(s)
- R L Williams
- Centre for Protein Engineering, MRC Centre, Cambridge, UK.
| | | |
Collapse
|
39
|
Kobayashi T, Kishimoto M, Okuyama H. Phospholipases involved in lysophosphatidylinositol metabolism in rat brain. JOURNAL OF LIPID MEDIATORS AND CELL SIGNALLING 1996; 14:33-7. [PMID: 8906542 DOI: 10.1016/0929-7855(96)01505-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A phospholipase C activity highly specific for lysophosphoinositide (lysoPI-PLC) has been demonstrated to be present in synaptic plasma membranes of the rat brain. Several lines of evidence suggested that the lysoPI-PLC is an enzyme distinct from known isoforms of phosphoinositide-specific phospholipase C (PI-PLC). On the other hand, the occurrence of a Ca(2+)-independent phospholipase A1 hydrolyzing PI in rat brain was also demonstrated. The lysoPI-PLC hydrolyzed the 2-acyl isomer as well as the 1-acyl isomer of lysoPI. These findings suggest possible pathways for PI metabolism through lysoPI to yield monoacylglycerol (mainly 2-arachidonoyl glycerol) and inositolphosphates in the brain, which are different from the well-characterized PI-PLC pathway.
Collapse
Affiliation(s)
- T Kobayashi
- Department of Biological Chemistry, Faculty of Pharmaceutical Sciences, Nagoya City University, Japan.
| | | | | |
Collapse
|
40
|
Ali H, Tomhave ED, Richardson RM, Haribabu B, Snyderman R. Thrombin primes responsiveness of selective chemoattractant receptors at a site distal to G protein activation. J Biol Chem 1996; 271:3200-6. [PMID: 8621721 DOI: 10.1074/jbc.271.6.3200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
To define the molecular basis of human chemoattractant receptor regulation, rat basophilic leukemia RBL-2H3 cells, which are thrombin-responsive, were transfected to stably express epitope-tagged receptors for C5a, interleukin-8 (IL-8), formylpeptides (e.g. N-formyl-methionyl-leucyl-phenylalanine (fMLP)), and platelet-activating factor (PAF). Here we demonstrate that both thrombin and a synthetic peptide ligand for the thrombin receptor (sequence SFLLRN) caused phosphorylation and heterologous desensitization of the receptors for C5a, IL-8, and PAF but not that for formylpeptides as measured by agonist-stimulated [35S]guanosine 5'-3-O-(thio)triphosphate binding to membranes. Consistent with the PAF receptor phosphorylation, both thrombin and thrombin receptor peptide inhibited phosphoinositide hydrolysis, Ca2+ mobilization, and degranulation stimulated by PAF. Unexpectedly, despite heterologous desensitization at the level of receptor/G protein activation, there was enhancement ("priming") by thrombin of subsequent activities stimulated by C5a and IL-8 as well as fMLP. The priming effect of thrombin was blocked by its inhibitor, hirudin. However, two other activators of the thrombin receptor, the peptide SFLLRN and trypsin, stimulated Ca2+ mobilization in RBL-2H3 cells but did not cause priming. In addition, SFLLRN and the thrombin receptor antagonist peptide FLLRN both inhibited thrombin-induced Ca2+ mobilization but not priming. Furthermore, the proteolytically active gamma-thrombin, which does not stimulate the tethered ligand thrombin receptor and caused little or no Ca2+ mobilization in RBL-2H3 cells, effectively primed the response to fMLP. These data demonstrate that heterologous receptor phosphorylation and attenuation of G protein activation are not, by themselves, sufficient for the inhibition of biological responses mediated by C5a and IL-8. Moreover, thrombin appears to utilize mechanism(s) independent of its tethered ligand receptor to selectively prime phospholipase C-mediated biological responses of the C5a, IL-8, and formylpeptide receptors but not PAF. Because C5a, IL-8, and formylpeptide activate phospholipase Cbeta2, whereas PAF stimulates a different phospholipase C, the striking selectivity of thrombin's priming may be mediated via its ability to enhance receptor-mediated activation of phospholipase Cbeta2.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antigens, CD/biosynthesis
- Antigens, CD/isolation & purification
- Antigens, CD/physiology
- Binding Sites
- Calcium/metabolism
- Cell Line
- Complement C5a/pharmacology
- Endopeptidases/pharmacology
- GTP-Binding Proteins/metabolism
- Humans
- Inositol/metabolism
- Inositol Phosphates/metabolism
- Interleukin-8/pharmacology
- Kinetics
- Leukemia, Basophilic, Acute
- Molecular Sequence Data
- N-Formylmethionine Leucyl-Phenylalanine/pharmacology
- Peptide Fragments/pharmacology
- Phosphorylation
- Platelet Membrane Glycoproteins/biosynthesis
- Platelet Membrane Glycoproteins/isolation & purification
- Platelet Membrane Glycoproteins/physiology
- Rats
- Receptor, Anaphylatoxin C5a
- Receptors, Cell Surface
- Receptors, Complement/biosynthesis
- Receptors, Complement/isolation & purification
- Receptors, Complement/physiology
- Receptors, Formyl Peptide
- Receptors, G-Protein-Coupled
- Receptors, Immunologic/biosynthesis
- Receptors, Immunologic/isolation & purification
- Receptors, Immunologic/physiology
- Receptors, Interleukin/biosynthesis
- Receptors, Interleukin/isolation & purification
- Receptors, Interleukin/physiology
- Receptors, Interleukin-8A
- Receptors, Peptide/biosynthesis
- Receptors, Peptide/isolation & purification
- Receptors, Peptide/physiology
- Recombinant Proteins/biosynthesis
- Recombinant Proteins/isolation & purification
- Recombinant Proteins/metabolism
- Sequence Tagged Sites
- Thrombin/pharmacology
- Transfection
- Tumor Cells, Cultured
- beta-N-Acetylhexosaminidases/metabolism
Collapse
Affiliation(s)
- H Ali
- Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | |
Collapse
|
41
|
Huang PS, Davis L, Huber H, Goodhart PJ, Wegrzyn RE, Oliff A, Heimbrook DC. An SH3 domain is required for the mitogenic activity of microinjected phospholipase C-gamma 1. FEBS Lett 1995; 358:287-92. [PMID: 7843417 DOI: 10.1016/0014-5793(94)01453-8] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Phospholipase activity is elevated in dividing cells. In response to growth factor stimulation, phospholipase C-gamma (PLC-gamma) binds to activated tyrosine kinase receptors via SH2 binding domains, resulting in phosphorylation of PLC-gamma and activation of its enzyme activity. These observations suggest that PLC-gamma participates in the signal transduction pathway employed by growth factors to promote mitogenesis. Consistent with this hypothesis, microinjection of purified bovine PLC-gamma into quiescent fibroblasts has been previously reported to initiate a mitogenic response [Smith et al. (1989) Proc. Natl. Acad. Sci. 86, 3659]. We have reproduced this result using recombinant rat PLC-gamma protein. Surprisingly, however, a catalytically inactive mutant of PLC-gamma, H335Q, also elicited a full mitogenic response. The capacity to induce mitogenesis by microinjection of PLC-gamma was mapped to the 'Z' domain of the protein, which contains PLC-gamma's SH2 and SH3 motifs. Inactivation of the phosphorylated tyrosine binding properties of both SH2 domains had no effect on the mitogenic activity of the Z-domain peptide. However, deletion of the SH3 domain resulted in a complete loss of activity. These results suggest that PLC-gamma's mitogenic properties do not require the enzyme's phospholipase activity, but are instead mediated by a novel pathway for mitogenic stimulation which is dependent upon an intact SH3 domain.
Collapse
Affiliation(s)
- P S Huang
- Department of Cancer Research, Merck Research Laboratories, West Point, PA 19486
| | | | | | | | | | | | | |
Collapse
|
42
|
Emori Y, Sugaya R, Akimaru H, Higashijima S, Shishido E, Saigo K, Homma Y. Drosophila phospholipase C-gamma expressed predominantly in blastoderm cells at cellularization and in endodermal cells during later embryonic stages. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)32193-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
43
|
Simões AP, Schnabel P, Pipkorn R, Camps M, Gierschik P. A peptide corresponding to a potential polyphosphoinositide binding site of phospholipase C-beta 2 enhances its catalytic activity. FEBS Lett 1993; 331:248-51. [PMID: 8397113 DOI: 10.1016/0014-5793(93)80346-v] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
A peptide corresponding to a basic consensus amino acid motif present in both actin-binding proteins and phosphoinositide-specific phospholipases C was synthesized and its effect on the activity of a recombinant phospholipase C-beta 2 (PLC beta 2) expressed in baculovirus-infected insect cells was studied. The peptide markedly and specifically stimulated the activity of the enzyme. This stimulatory effect required a particular primary and/or secondary structure of the peptide and occurred without lowering the affinity of the enzyme for Ca2+. The function of the PLC beta 2 segment corresponding to the peptide might be to bind and offer the substrate to the catalytic domain of this enzyme in a more favorable configuration or, alternatively, to interact with a hypothetical inhibitory constraint.
Collapse
Affiliation(s)
- A P Simões
- German Cancer Research Center, Heidelberg
| | | | | | | | | |
Collapse
|