1
|
Exposure to host ligands correlates with colocalization of Gal/GalNAc lectin subunits in lipid rafts and phosphatidylinositol (4,5)-bisphosphate signaling in Entamoeba histolytica. EUKARYOTIC CELL 2012; 11:743-51. [PMID: 22505337 DOI: 10.1128/ec.00054-12] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Entamoeba histolytica is an intestinal parasite that causes dysentery and liver abscess. Parasite cell surface receptors, such as the Gal/GalNAc lectin, facilitate attachment to host cells and extracellular matrix. The Gal/GalNAc lectin binds to galactose or N-acetylgalactosamine residues on host components and is composed of heavy (Hgl), intermediate (Igl), and light (Lgl) subunits. Although Igl is constitutively localized to lipid rafts (cholesterol-rich membrane domains), Hgl and Lgl transiently associate with this compartment in a cholesterol-dependent fashion. In this study, trophozoites were exposed to biologically relevant ligands to determine if ligand binding influences the submembrane distribution of the subunits. Exposure to human red blood cells (hRBCs) or collagen, which are bona fide Gal/GalNAc lectin ligands, was correlated with enrichment of Hgl and Lgl in rafts. This enrichment was abrogated in the presence of galactose, suggesting that direct lectin-ligand interactions are necessary to influence subunit location. Using a cell line that is able to attach to, but not phagocytose, hRBCs, it was shown that physical attachment to ligands was not sufficient to induce the enrichment of lectin subunits in rafts. Additionally, the mutant had lower levels of phosphatidylinositol (4,5)-bisphosphate (PIP(2)); PIP(2) loading restored the ability of this mutant to respond to ligands with enrichment of subunits in rafts. Finally, intracellular calcium levels increased upon attachment to collagen; this increase was essential for the enrichment of lectin subunits in rafts. Together, these data provide evidence that ligand-induced enrichment of lectin subunits in rafts may be the first step in a signaling pathway that involves both PIP(2) and calcium signaling.
Collapse
|
2
|
Abstract
Cell migration is essential for many physiological and pathological processes that include embryonic development, the immune response, wound healing, angiogenesis, and cancer metastasis. It is also important for emerging tissue engineering applications such as tissue reconstitution and the colonization of biomedical implants. By summarizing results from recent experimental and theoretical studies, this review outlines the role played by growth factors or substrate-adhesion molecules in modulating cell motility and shows that cell motility can be an important factor in determining the rates of tissue formation. The application of cell motility assays and the use of theoretical models for analyzing cell migration and proliferation are also discussed.
Collapse
Affiliation(s)
- K Zygourakis
- Department of Chemical Engineering and Institute of Biosciences and Bioengineering, Rice University, Houston, Texas 77251-1892
| |
Collapse
|
3
|
Banas A, Banas K, Kwiatek WM, Gajda M, Pawlicki B, Cichocki T. Neoplastic disorders of prostate glands in the light of synchrotron radiation and multivariate statistical analysis. J Biol Inorg Chem 2011; 16:1187-96. [PMID: 21706339 PMCID: PMC3221053 DOI: 10.1007/s00775-011-0807-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Accepted: 06/12/2011] [Indexed: 11/28/2022]
Abstract
The prostate gland is the most common site of neoplastic disorders in men. The pathogenesis of inflammatory cells, prostatic intraepithelial neoplasia (PIN) lesions, and prostate cancer is still under investigation. Inflammatory cells by producing free radicals are considered as major and universal contributors to cancerogenesis. PIN is regarded as a precursor lesion to prostate cancer or a marker signaling the vulnerability of the epithelium to neoplastic transformation [1]. Differentiation markers that are frequently changed in early invasive carcinoma are also changed in PIN lesions. In this study, prostate tissue samples obtained during surgical operation and classified as various disease states (inflammation, PIN lesions, and cancer) were examined. The samples were measured by means of microbeam synchrotron-radiation-induced X-ray emission (micro-SRIXE). Special attention was paid to examine the relationship between the earlier-mentioned disorders and changes in relative concentrations of S, K, Ca, Fe, Cu, and Zn. Applying the image-processing program ImageJ enabled us to select the areas of interest from two-dimensional maps of various prostate samples according to the histopathologist's evaluation. Detailed analysis of micro-SRIXE spectra based on multivariate methods shows significant differences between elemental concentrations in inflammatory cells, PIN lesions, and cancerous tissues, which confirms that this method can be used to distinguish various pathological states in prostate tissues. Information obtained in this way may provide better understanding of the biochemistry of unhealthy prostate tissues, thus opening the way to find new medicines/treatments to prevent or slow down some harmful intracellular processes.
Collapse
Affiliation(s)
- A Banas
- Institute of Nuclear Physics, Polish Academy of Sciences, Kraków, Poland
| | | | | | | | | | | |
Collapse
|
4
|
Nozawa H, Howell G, Suzuki S, Zhang Q, Qi Y, Klein-Seetharaman J, Wells A, Grandis JR, Thomas SM. Combined inhibition of PLC{gamma}-1 and c-Src abrogates epidermal growth factor receptor-mediated head and neck squamous cell carcinoma invasion. Clin Cancer Res 2008; 14:4336-44. [PMID: 18594017 DOI: 10.1158/1078-0432.ccr-07-4857] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
PURPOSE Mortality from head and neck squamous cell carcinoma (HNSCC) is usually associated with locoregional invasion of the tumor into vital organs, including the airway. Understanding the signaling mechanisms that abrogate HNSCC invasion may reveal novel therapeutic targets for intervention. The purpose of this study was to investigate the efficacy of combined inhibition of c-Src and PLCgamma-1 in the abrogation of HNSCC invasion. EXPERIMENTAL DESIGN PLCgamma-1 and c-Src inhibition was achieved by a combination of small molecule inhibitors and dominant negative approaches. The effect of inhibition of PLCgamma-1 and c-Src on invasion of HNSCC cells was assessed in an in vitro Matrigel-coated transwell invasion assay. In addition, the immunoprecipitation reactions and in silico database mining was used to examine the interactions between PLCgamma-1 and c-Src. RESULTS Here, we show that inhibition of PLCgamma-1 or c-Src with the PLC inhibitor U73122 or the Src family inhibitor AZD0530 or using dominant-negative constructs attenuated epidermal growth factor (EGF)-stimulated HNSCC invasion. Furthermore, EGF stimulation increased the association between PLCgamma-1 and c-Src in HNSCC cells. Combined inhibition of PLCgamma-1 and c-Src resulted in further attenuation of HNSCC cell invasion in vitro. CONCLUSIONS These cumulative results suggest that PLCgamma-1 and c-Src activation contribute to HNSCC invasion downstream of EGF receptor and that targeting these pathways may be a novel strategy to prevent tumor invasion in HNSCC.
Collapse
Affiliation(s)
- Hiroshi Nozawa
- Department of Oral and Maxillofacial Surgery, National Defense Medical College, Tokorozawa, Saitama, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Casas A, Di Venosa G, Vanzulli S, Perotti C, Mamome L, Rodriguez L, Simian M, Juarranz A, Pontiggia O, Hasan T, Batlle A. Decreased metastatic phenotype in cells resistant to aminolevulinic acid-photodynamic therapy. Cancer Lett 2008; 271:342-51. [PMID: 18662847 DOI: 10.1016/j.canlet.2008.06.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Revised: 04/30/2008] [Accepted: 06/23/2008] [Indexed: 10/21/2022]
Abstract
Photodynamic therapy (PDT) is a novel cancer treatment utilising a photosensitiser, visible light and oxygen. PDT often leaves a significant number of surviving tumour cells. In a previous work, we isolated and studied two PDT resistant clones derived from the mammary adenocarcinoma LM3 line (Int. J. Oncol. 29 (2006) 397-405). The isolated Clon 4 and Clon 8 exhibited a more fibroblastic, dendritic pattern and were larger than the parentals. In the present work we studied the metastatic potential of the two clones in comparison with LM3. We found that 100% of LM3 invaded Matrigel, whereas only 19+/-6% and 24+/-7% of Clon 4 and Clon 8 cells invaded. In addition, 100% of LM3 cells migrated towards a chemotactic stimulus whereas 38+/-8% and 73+/-10% of Clones 4 and 8, respectively, were able to migrate. In vivo, 100% of the LM3 injected mice developed spontaneous lung metastasis, whereas none of the Clon 8 did, and only one of the mice injected with Clon 4 did. No differences were found in the proteolytic enzyme profiles among the cells. Anchorage-dependent adhesion was also impaired in vivo in the resistant clones, evidenced by the lower tumour take, latency time and growth rates, although both clones showed in vitro higher binding to collagen I without overexpression of beta1 integrin. This is the first work where the metastatic potential of cells surviving to PDT has been studied. PDT strongly affects the invasive phenotype of these cells, probably related to a higher binding to collagen. These findings may be crucial for the outcome of ALA-PDT of metastatic tumours, although further studies are needed to extrapolate the results to the clinic employing another photosensitisers and cell types.
Collapse
Affiliation(s)
- Adriana Casas
- Centro de Investigaciones sobre Porfirinas y Porfirias, CONICET and Hospital de Clínicas José de San Martín, University of Buenos Aires, 1056 Ciudad de Buenos Aires, Córdoba 2351 1er subsuelo, CP 1120AAF, Buenos Aires, Argentina.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Wright A, Li YH, Zhu C. The differential effect of endothelial cell factors on in vitro motility of malignant and non-malignant cells. Ann Biomed Eng 2008; 36:958-69. [PMID: 18398681 PMCID: PMC2504021 DOI: 10.1007/s10439-008-9489-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2007] [Accepted: 03/24/2008] [Indexed: 10/22/2022]
Abstract
Motility of cancer cells plays a critical role in tumor metastasis, and as such is a target for intervention. The motility of malignant Calu-1 human lung epithelial carcinoma cells is upregulated when placed on a human umbilical vein endothelial cell monolayer, while that of non-malignant L132 human lung epithelial cells is not. To dissect the factor(s) causing such differential behaviors, the motile responses of both cell lines to endothelial cell factors-secreted to the media, on the endothelial cell surface, and secreted to the extracellular matrix-and to individual extracellular matrix proteins were compared. Cell motility was quantified by tracking the cell movement on a surface with time-lapse video microscopy, which was analyzed with the persistent random walk model of motility. None of the factors tested had a remarkable effect on L132 cell motility, but the Calu-1 cell motility was significantly upregulated by endothelial cell extracellular matrix and by laminin, fibronectin, collagen I and collagen VI individually. Flow cytometry analysis revealed significantly higher expression levels of integrin subunits beta1, alpha2, alpha3, and alpha6, which are known receptors for these extracellular matrix proteins, on the Calu-1 than L132 cells, implicating a role of these integrins in the observed motile behaviors of these cell lines.
Collapse
Affiliation(s)
- Adele Wright
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332−0363
| | - Yu-Hua Li
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332−0363
| | - Cheng Zhu
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332−0363
- Wallace H.Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332−0363
| |
Collapse
|
7
|
Kim DH, Hee SQ, Norris AJ, Faull KF, Eckhert CD. Boric acid inhibits adenosine diphosphate-ribosyl cyclase non-competitively. J Chromatogr A 2006; 1115:246-52. [PMID: 16545389 DOI: 10.1016/j.chroma.2006.02.066] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2006] [Revised: 02/15/2006] [Accepted: 02/21/2006] [Indexed: 11/20/2022]
Abstract
Adenosine diphosphate-ribosyl cyclase (ADP-ribosyl cyclase) is a ubiquitous enzyme in eukaryotes that converts NAD+ to cyclic-ADP-ribose (cADPR) and nicotinamide. A quantitative assay for cADPR was developed using capillary electrophoresis to separate NAD+, cADPR, ADP-ribose, and ADP with UV detection (254 nm). Using this assay, the apparent Km and Vmax for Aplysia ADP-ribosyl cyclase were determined to be 1.24+/-0.05 mM and 131.8+/-2.0 microM/min, respectively. Boric acid inhibited ADP-ribosyl cyclase non-competitively with a Ki of 40.5+/-0.5 mM. Boric acid binding to cADPR, determined by electrospray ionization mass spectrometry, was characterized by an apparent binding constant, KA, of 655+/-99 L/mol at pH 10.3.
Collapse
Affiliation(s)
- Danny H Kim
- Department of Environmental Health Sciences, Box 951772, University of California, 650 Charles E Young Dr South, Los Angeles, CA 90095-1772, USA
| | | | | | | | | |
Collapse
|
8
|
Novel Biological Properties of Peptides Arising from Basement Membrane Proteins. CURRENT TOPICS IN MEMBRANES 2005. [DOI: 10.1016/s1063-5823(05)56013-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
9
|
Pasco S, Brassart B, Ramont L, Maquart FX, Monboisse JC. Control of melanoma cell invasion by type IV collagen. ACTA ACUST UNITED AC 2004; 29:260-6. [PMID: 15936594 DOI: 10.1016/j.cdp.2004.09.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2004] [Accepted: 09/15/2004] [Indexed: 11/19/2022]
Abstract
Malignant melanoma is the leading cause of death from diseases of the skin. This review summarizes the data from the literature and our laboratory addressing the effects of type IV collagen on melanoma progression. Many different sequences from type IV collagen promote melanoma cell adhesion, migration and invasion. The triple helical conformation of the collagenous domain plays a critical role in some of these interactions. However, recent studies from our group demonstrated that a sequence from the alpha3(IV) NC1 domain inhibits melanoma cell proliferation, migration and invasion by decreasing MMP production and activation. Peptide sequences from the alpha1(IV), alpha2(IV) and alpha3(IV) chains named arresten, canstatin and tumstatin, respectively were shown to inhibit angiogenesis. Further investigations regarding the inhibitory effects of the alpha(IV) NC1 domains will have a paramount relevance for the design of efficient strategies to limit melanoma development.
Collapse
Affiliation(s)
- Sylvie Pasco
- Laboratoire de Biochimie, UMR 6198 CNRS, IFR 53 Biomolecules, UFR Médecine, Université de Reims Champagne-Ardenne, 51 Rue Cognacq Jay, F51095, REIMS Cedex, France.
| | | | | | | | | |
Collapse
|
10
|
Pasco S, Ramont L, Maquart FX, Monboisse JC. Control of melanoma progression by various matrikines from basement membrane macromolecules. Crit Rev Oncol Hematol 2004; 49:221-33. [PMID: 15036262 DOI: 10.1016/j.critrevonc.2003.09.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/12/2003] [Indexed: 11/25/2022] Open
Abstract
Many biological processes such as cell differentiation, cell migration or gene expression are tightly controlled by cell-cell interactions or by various cytokines. During tumor progression, cancer cells are in contact with extracellular matrix (ECM) macromolecules involving specific receptors such as integrins. The different stages of tumor progression, and mainly the proteolytic cascades implicated in extracellular matrix degradation and cell migration, may be controlled by the extracellular matrix macromolecules or by domains released by directed and limited proteolysis of these molecules. In this review, we summarise the biological effects of various peptides, named matrikines, derived from basement membranes (BM) components, such as laminins (LN), proteoglycans or collagens. These peptides may control tumor progression by regulating the proteolytic cascades leading to cancer cell dissemination and metastasis.
Collapse
Affiliation(s)
- Sylvie Pasco
- Laboratoire de Biochimie Médicale et Biologie Moléculaire, CNRS FRE 2534, Faculté de Médecine, IFR 53 Biomolécules, 51 Rue Cognac Jay, 51095 Reims Cedex, France
| | | | | | | |
Collapse
|
11
|
Baronas-Lowell D, Lauer-Fields JL, Borgia JA, Sferrazza GF, Al-Ghoul M, Minond D, Fields GB. Differential modulation of human melanoma cell metalloproteinase expression by alpha2beta1 integrin and CD44 triple-helical ligands derived from type IV collagen. J Biol Chem 2004; 279:43503-13. [PMID: 15292257 DOI: 10.1074/jbc.m405979200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tumor cell binding to components of the basement membrane is well known to trigger intracellular signaling pathways. Signaling ultimately results in the modulation of gene expression, facilitating metastasis. Type IV collagen is the major structural component of the basement membrane and is known to be a polyvalent ligand, possessing sequences bound by the alpha1beta1, alpha2beta1, and alpha3beta1 integrins, as well as cell surface proteoglycan receptors, such as CD44/chondroitin sulfate proteoglycan (CSPG). The role of alpha2beta1 integrin and CD44/CSPG receptor binding on human melanoma cell activation has been evaluated herein using triple-helical peptide ligands incorporating the alpha1(IV)382-393 and alpha1(IV)1263-1277 sequences, respectively. Gene expression and protein production of matrix metalloproteinases-1 (MMP-1), -2, -3, -13, and -14 were modulated with the alpha2beta1-specific sequence, whereas the CD44-specific sequence yielded significant stimulation of MMP-8 and lower levels of modulation of MMP-1, -2, -13, and -14. Analysis of enzyme activity confirmed different melanoma cell proteolytic potentials based on engagement of either the alpha2beta1 integrin or CD44/CSPG. These results are indicative of specific activation events that tumor cells undergo upon binding to select regions of basement membrane collagen. Based on the present study, triple-helical peptide ligands provide a general approach for monitoring the regulation of proteolysis in cellular systems.
Collapse
Affiliation(s)
- Diane Baronas-Lowell
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton 33431-0991, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Sennoune SR, Bakunts K, Martínez GM, Chua-Tuan JL, Kebir Y, Attaya MN, Martínez-Zaguilán R. Vacuolar H+-ATPase in human breast cancer cells with distinct metastatic potential: distribution and functional activity. Am J Physiol Cell Physiol 2004; 286:C1443-52. [PMID: 14761893 DOI: 10.1152/ajpcell.00407.2003] [Citation(s) in RCA: 269] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Tumor cells thrive in a hypoxic microenvironment with an acidic extracellular pH. To survive in this harsh environment, tumor cells must exhibit a dynamic cytosolic pH regulatory system. We hypothesize that vacuolar H(+)-ATPases (V-ATPases) that normally reside in acidic organelles are also located at the cell surface, thus regulating cytosolic pH and exacerbating the migratory ability of metastatic cells. Immunocytochemical data revealed for the first time that V-ATPase is located at the plasma membrane of human breast cancer cells: prominent in the highly metastatic and inconspicuous in the lowly metastatic cells. The V-ATPase activities in isolated plasma membranes were greater in highly than in lowly metastatic cells. The proton fluxes via V-ATPase evaluated by fluorescence spectroscopy in living cells were greater in highly than in lowly metastatic cells. Interestingly, lowly metastatic cells preferentially used the ubiquitous Na(+)/H(+) exchanger and HCO(3)(-)-based H(+)-transporting mechanisms, whereas highly metastatic cells used plasma membrane V-ATPases. The highly metastatic cells were more invasive and migratory than the lowly metastatic cells. V-ATPase inhibitors decreased the invasion and migration in the highly metastatic cells. Altogether, these data indicate that V-ATPases located at the plasma membrane are involved in the acquisition of a more metastatic phenotype.
Collapse
Affiliation(s)
- Souad R Sennoune
- Department of Physiology, Texas Tech University Health Sciences Center, Lubbock, Texas 79430-6551, USA.
| | | | | | | | | | | | | |
Collapse
|
13
|
Hodgson L, Henderson AJ, Dong C. Melanoma cell migration to type IV collagen requires activation of NF-kappaB. Oncogene 2003; 22:98-108. [PMID: 12527912 PMCID: PMC2778843 DOI: 10.1038/sj.onc.1206059] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2002] [Revised: 09/18/2002] [Accepted: 09/24/2002] [Indexed: 01/19/2023]
Abstract
Chemotaxis is the consequence of environmental factors engaging their receptors to initiate signaling cascades. However, the biochemical mechanisms controlling this phenomenon are not clear. We employed an in vitro modified Boyden 48-well chemotaxis migration system to characterize the role of signal transducers in type IV collagen (CIV) induced A2058 human melanoma cell migration. Using specific pharmacological inhibitors and a series of dominant-negative and constitutively active signaling proteins, we show that Ras and Rac GTPases, PI-3K, and PKC participate in cell migration mediated by beta1 integrins. Collagen also induces a time- dependent degradation of IkappaB-alpha and an increase in nuclear translocation of NF-kappaB which is dependent on PKC pathway. More importantly, collagen-stimulated melanoma cell migration directly correlated with an increase in NF-kappaB transactivation. Furthermore, CIV induced an increase in beta1 integrin mRNA levels. Specific NF-kappaB inhibitors Helenalin and SN-50 inhibited melanoma cell migration to collagen, indicating a novel requirement for NF-kappaB transactivation in cell chemotaxis mediated by beta1 integrin signals. These results describe signal transduction events that are initiated by type IV collagen through beta1 integrins and demonstrate an important role for NF-kappaB in regulating melanoma chemotaxis.
Collapse
Affiliation(s)
- Louis Hodgson
- Department of Bioengineering, 229 Hallowell, The Pennsylvania State University, University Park, PA 16802, USA
| | - Andrew J Henderson
- Department of Veterinary Science, 115 Henning, The Pennsylvania State University, University Park, PA 16802, USA
| | - Cheng Dong
- Department of Bioengineering, 229 Hallowell, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
14
|
Abstract
Cellular regulatory mechanisms normally maintain a delicate balance between cell proliferation, quiescence and death. The imbalance between these functions resulting from molecular intracellular changes is a key factor in tumorigenesis. Tumor cells detaching from the primary tumor possess a propension for invasion and metastasis formation. These tumor cells can attach, migrate, proliferate and grow in host tissue. The surrounding extracellular matrix (ECM) modulates these functions. It is now widely accepted that cell-matrix interactions play an important role in these processes. Most investigators concentrated their attention on the role of integrins in the above processes. There are, however, only scant data on the role of elastin and its receptors in tumor invasion. Nevertheless, experimental evidence indicates that the 67 kDa elastin-laminin receptor (ELR) subunit plays an important role in tumor invasion by mediating essential tumor cell functions leading to metastases. In this review we will concentrate on the putative role of the 67 kDa ELR subunit in tumor invasion.
Collapse
Affiliation(s)
- Tamas Fülöp
- Département de Médecine, Center de recherché sur le vieillissement, Service de Gériatrie, Institut Universitaire de Gériatrie de Sherbrooke, 1036 rue Belvedere sud, Sherbrooke, Que., Canada J1H 4C4.
| | | |
Collapse
|
15
|
Jiang JL, Zhou Q, Yu MK, Ho LS, Chen ZN, Chan HC. The involvement of HAb18G/CD147 in regulation of store-operated calcium entry and metastasis of human hepatoma cells. J Biol Chem 2001; 276:46870-7. [PMID: 11591720 DOI: 10.1074/jbc.m108291200] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The present study examined the effect of hepatoma-associated antigen HAb18G (homologous to CD147) expression on the NO/cGMP-regulated Ca(2+) mobilization and metastatic process of human hepatoma cells. HAb18G/CD147 cDNA was transfected into human 7721 hepatoma cells to obtain a cell line stably expressing HAb18G/CD147, T7721, as demonstrated by Northern blot and immunocytochemical studies. 8-Bromo-cGMP (cGMP) inhibited the thapsigargin-induced Ca(2+) entry in a concentration-dependent manner in 7721 cells. The cGMP-induced inhibition was abolished by an inhibitor of protein kinase G, KT5823 (1 microm). However, expression of HAb18G/CD147 in T7721 cells decreased the inhibitory response to cGMP. A similar concentration-dependent inhibitory effect on the Ca(2+) entry was observed in 7721 cells in response to a NO donor, (+/-)-S-nitroso-N-acetylpenicillamine (SNAP). The inhibitory effect of SNAP on the thapsigargin-induced Ca(2+) entry was significantly reduced in HAb18G/CD147-expressing T7721 cells, indicating a role for HAb18G/CD147 in NO/cGMP-regulated Ca(2+) entry. Experiments investigating metastatic potentials demonstrated that HAb18G/CD147-expressing T7721 cells attached to the Matrigel-coated culture plates and invaded through Matrigel-coated permeable filters at the rate significantly greater than that observed in 7721 cells. Both the attachment and invasion rates could be suppressed by SNAP, and the inhibitory effect of SNAP could be reversed by NO inhibitor, N(G)-nitro-l-arginine methyl ester. The sensitivity of the attachment and invasion rates to cGMP was significantly reduced in T7721 cells as compared with 7721 cells when cells were pretreated with thapsigargin. The difference in the sensitivity between the two cells could be abolished by a Ca(2+) channel blocker, Ni(2+) (3 mm). These results suggest that HAb18G/CD147 enhances metastatic potentials in human hepatoma cells by disrupting the regulation of store-operated Ca(2+) entry by NO/cGMP.
Collapse
Affiliation(s)
- J L Jiang
- Epithelial Cell Biology Research Center, Department of Physiology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| | | | | | | | | | | |
Collapse
|
16
|
Hodgson L, Dong C. [Ca2+]i as a potential downregulator of alpha2beta1-integrin-mediated A2058 tumor cell migration to type IV collagen. Am J Physiol Cell Physiol 2001; 281:C106-13. [PMID: 11401832 PMCID: PMC2796124 DOI: 10.1152/ajpcell.2001.281.1.c106] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have investigated cellular Ca2+ regulation during A2058 human melanoma cell chemotaxis to type IV collagen (CIV). We have identified alpha2beta1-integrin as the primary mediator of A2058 cell response to CIV in vitro. Integrin ligation initiated a characteristic intracellular Ca2+ concentration ([Ca2+]i) response consisting of an internal release and a receptor-mediated Ca2+ entry. Thapsigargin (TG) pretreatment drained overlapping and CIV-inducible internal Ca2+ stores while initiating a store-operated Ca2+ release (SOCR). CIV-mediated Ca2+ entry was additive to TG-SOCR, suggesting an independent signaling mechanism. Similarly, ionophore application in a basal medium containing Ca2+ initiated a sustained influx. Elevated [Ca2+]i from TG-SOCR or ionophore significantly attenuated cell migration to CIV by recruiting the Ca2+/calcineurin-mediated signaling pathway. Furthermore, low [Ca2+]i induced by EGTA application in the presence of ionophore fully restored cell motility to CIV. Together, these results suggest that [Ca2+]i signaling accompanying A2058 cell response to alpha2beta1-integrin ligation is neither necessary nor sufficient and that elevated [Ca2+]i downregulates cell motility via a calcineurin-mediated mechanism in A2058 cell chemotaxis to CIV.
Collapse
Affiliation(s)
- L Hodgson
- Department of Bioengineering, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | |
Collapse
|
17
|
Bouillier H, Samain E, Rücker-Martin C, Renaud JF, Safar M, Dagher G. Effect of extracellular matrix elements on angiotensin II-induced calcium release in vascular smooth muscle cells from normotensive and hypertensive rats. Hypertension 2001; 37:1465-72. [PMID: 11408396 DOI: 10.1161/01.hyp.37.6.1465] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The interaction of the vascular smooth muscle cells (VSMCs) with the components of the matrix determines several functions of the cell, such as growth and differentiation. In contrast, an alteration in angiotensin (Ang) II-induced Ca(2+) mechanisms in VSMCs was reported in genetic hypertension. In this study, we wished to assess the effect of different components of the extracellular matrix on the increase of [Ca(2+)](i) induced by Ang II in VSMCs from spontaneously hypertensive rats (SHR) compared with those from normotensive Wistar-Kyoto rats (WKY). Results demonstrate for the first time that elements of the extracellular matrix modulate the Ang II-induced Ca(2+) transport mechanisms. This modulation is different in cells from WKY compared with those from SHR. Thus, growing cells from SHR on collagen I, collagen IV, fibronectin, vitronectin, or Matrigel induced a significant decrease in Ang II-induced Ca(2+) release from internal stores, whereas in cells from WKY, no effect could be observed except for those grown on collagen I, which increased Ca(2+) release. Fibronectin and vitronectin, however, induced a decrease in Ang II-induced Ca(2+) influx in WKY, whereas no effect could be observed in SHR. Conversely, collagen I and collagen IV induced an increase in this influx in SHR but not in WKY, whereas Matrigel increased the influx in both strains. These results suggest a modulation of the Ang II-associated signaling events by the matrix elements via the focal adhesion points. The understanding of these synergies should provide insight into issues such as development of hypertrophy of large vessels in hypertension.
Collapse
Affiliation(s)
- H Bouillier
- INSERM U337, Faculty Broussais-Hotel Dieu, Paris, France
| | | | | | | | | | | |
Collapse
|
18
|
Abstract
We have pioneered an in vitro pseudopod-generation model wherein suspended tumor cells are stimulated to form pseudopods into glass micropipettes in response to soluble collagen type IV (CIV). Pertussis toxin and removing intracellular calcium were found previously to be inhibitory to that process. We now extend those observations to dissect the roles of transmembrane calcium influx and circulating fatty acids on pseudopod extension. Removal of fatty acids from BSA in basal media resulted in abrogation of pseudopod formation, while reconstitution of free fatty acids restored cell pseudopod protrusion. We thus hypothesized that fatty acids may provide necessary pseudopod stimulatory signals. Addition of lysophosphatidic acid (LPA) to the fatty acid-free CIV solution or in an opposite pipette without CIV permitted approximately 50% pseudopod recovery in all pipette directions in a dose-dependent fashion. Thapsigargin (TG), an agent that releases internal calcium stores and causes opening of store-operated calcium channels, restored pseudopod protrusion up to 80% in CIV with fatty acid-free albumin. [Ca(2+)](i) release was non-additive when cells were stimulated by TG and LPA, suggesting overlapping [Ca(2+)](i) stores. The combination of TG and LPA in fatty acid-free albumin fully restored the pseudopod response to CIV. Addition of EGTA to chelate stimulatory media calcium blocked the pseudopod response to CIV in the presence of fatty acids. This indicates that pseudopod protrusion requires transmembrane calcium entry. Thus, extracellular lipids and calcium mobilization are required to complement CIV in pseudopod protrusion from suspended cells.
Collapse
Affiliation(s)
- Louis Hodgson
- Department of Bioengineering, Pennsylvania State University, University Park, PA, USA
| | - Elise C. Kohn
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD, USA
| | - Cheng Dong
- Department of Bioengineering, Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
19
|
Shahan TA, Fawzi A, Bellon G, Monboisse JC, Kefalides NA. Regulation of tumor cell chemotaxis by type IV collagen is mediated by a Ca(2+)-dependent mechanism requiring CD47 and the integrin alpha(V)beta(3). J Biol Chem 2000; 275:4796-802. [PMID: 10671513 DOI: 10.1074/jbc.275.7.4796] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Studies from our laboratories demonstrated that synthetic peptides from the non-collagenous (NC-1) domain of the alpha3 (IV) chain of type IV collagen (COL IV) enhanced tumor cell adhesion (Han, J., Ohno, N., Monboisse, J. C., Pasco, S., Borel, J. P., and Kefalides, N. A. (1997) J. Biol. Chem. 272, 20395-20401). We have isolated the receptors for the alpha3(IV)185-203 peptide from melanoma and prostate tumor cells and identified them as CD47/integrin-associated protein and the integrin alpha(V)beta(3) (Shahan, T. A., Ziaie, Z., Pasco, S., Fawzi, A., Bellon, G., Monboisse, J. C., and Kefalides, N. A. (1999) Cancer Res. 59, 4584-4590). In the present study we have examined the effect of CD47 and the integrin alpha(V)beta(3) on in vitro tumor cell chemotaxis and Ca(2+)(i) modulation in response to COL IV, from the anterior lens capsule (ALC-COL IV) and peptides from its NC-1 domain. COL IV as well as the alpha3(IV) peptide promoted tumor cell chemotaxis with an immediate increase in intracellular [Ca(2+)]. Treating tumor cells with CD47 and integrin alpha(V)beta(3)-reactive antibodies reduced chemotaxis as well as the rise in [Ca(2+)](i) in response to ALC-COL IV or the alpha3(IV)185-203 peptide but not to Engelbreth-Holm-Swarm-COL IV or fibronectin. The alpha3(IV)185-203 synthetic peptide stimulated an increase in calcium from intracellular stores exclusively, whereas ALC-COL IV, Engelbreth-Holm-Swarm-COL IV, and fibronectin stimulated Ca(2+) flux from both internal and external stores. Furthermore, treatment of the cells with Ca(2+) chelator bis-(O-aminophenoxyl)ethane-N,N,N',N'-tetraaceticacid- acetomethoxy ester inhibited chemotaxis toward both ALC-COL IV and the alpha3(IV)185-203 peptide. These data indicate that CD47 and integrin alpha(V)beta(3) regulate tumor cell chemotaxis in response to COL IV and the alpha3(IV)185-203 peptide through a Ca(2+)-dependent mechanism.
Collapse
Affiliation(s)
- T A Shahan
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | |
Collapse
|
20
|
Abstract
Cancer progression to the invasive and metastatic stage represents the most formidable barrier to successful treatment. To develop rational therapies, we must determine the molecular bases of these transitions. Cell motility is one of the defining characteristics of invasive tumors, enabling tumors to migrate into adjacent tissues or transmigrate limiting basement membranes and extracellular matrices. Invasive tumor cells have been demonstrated to present dysregulated cell motility in response to extracellular signals from growth factors and cytokines. Recent findings suggest that this growth factor receptor-mediated motility is one of the most common aberrations in tumor cells leading to invasiveness and represents a cellular behavior distinct from-adhesion-related haptokinetic and haptotactic migration. This review focuses on the emerging understanding of the biochemical and biophysical foundations of growth factor-induced cell motility and tumor cell invasiveness, and the implications for development of targeted agents, with particular emphasis on signaling from the epidermal growth factor (EGF) and hepatocyte growth factor (HGF) receptors, as these have most often been associated with tumor invasion. The nascent models highlight the roles of various intracellular signaling pathways including phospholipase C-gamma (PLC gamma), phosphatidylinositol (PI)3'-kinase, mitogen-activated protein (MAP) kinase, and actin cytoskeleton-related events. Development of novel agents against tumor invasion will require not only a detailed appreciation of the biochemical regulatory elements of motility but also a paradigm shift in our approach to and assessment of cancer therapy.
Collapse
Affiliation(s)
- A Wells
- Department of Pathology, University of Alabama at Birmingham, USA
| |
Collapse
|
21
|
You J, Mastro AM, Dong C. Application of the dual-micropipet technique to the measurement of tumor cell locomotion. Exp Cell Res 1999; 248:160-71. [PMID: 10094823 DOI: 10.1006/excr.1999.4388] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The objective of this work was to characterize tumor cell locomotion in response to chemotactic stimulation using a dual-micropipet assay. The assay involves two micropipets. An individual A2058 human melanoma cell was retained, without pressure gradient, in a pipet of approximately 14 micrometers i.d. A solution of type IV collagen, chosen as the chemotactic source, was placed in another pipet (approximately 10 micrometers o.d.) with zero pressure at the pipet tip. The smaller pipet was then inserted into the larger one containing the melanoma cell. The initial chemoattractant concentration (C0) and the distance between the tip of the small pipet and the cell surface (delta) provided a gradient (C0/delta) for tumor cell locomotion toward stimulation. This novel assay provides a direct measure of cell movement: cyclic pseudopod protrusion (Lp) and subsequent cell locomotion (Lc). The influences of different adhesion substrates on cell locomotion were also studied. The peak length in Lp precedes the highest locomotion velocity (dLc/dt) by an apparent lag time. C0/delta influences pseudopod protrusion frequency (fp) and dLc/dt, but not significantly on Lp. Substrate adhesions affect dLc/dt, but apparently not Lp or fp. In conclusion, pseudopod protrusion and substrate adhesion are two necessary but mutually independent factors in tumor cell locomotion. dLc/dt correlates with changes in C0/delta, which is in significant correlation with fp but not Lp.
Collapse
Affiliation(s)
- J You
- Department of Bioengineering, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| | | | | |
Collapse
|
22
|
Abstract
BACKGROUND: Cytotoxic therapy for malignant gliomas is limited by poor delivery and drug resistance, and local therapy is ineffective in managing migratory cells. However, recent developments in malignant glioma therapy involve trials of cytostatic rather than conventional cytotoxic agents. METHODS: The biology of the brain extracellular matrix, tumor invasion, and angiogenesis are reviewed, and the cytostatic agents that inhibit matrix metalloproteinases, angiogenesis, cell proliferation, and signal transduction are discussed, as well as studies of the angiogenic and migratory capacity of malignant brain tumors. RESULTS: Two specific and interrelated areas, anti-invasion (migration) and anti-angiogenesis, are potential areas to develop new treatment strategies. Tumor invasion and angiogenesis are important components of the spread and biologic effects of malignant gliomas. Several proteinase inhibitors are in clinical trial, as well as anti-angiogenic agents and signal transduction cascade inhibitors. CONCLUSIONS: Biologic control of brain tumor cell populations may offer a new management approach to add to currently available management options for malignant brain tumors.
Collapse
Affiliation(s)
- T Mikkelsen
- Henry Ford Midwest Neuro-Oncology Center, Department of Neurosurgery, Detroit, Ml 48202, USA
| |
Collapse
|
23
|
Wasilenko WJ, Cooper J, Palad AJ, Somers KD, Blackmore PF, Rhim JS, Wright GL, Schellhammer PF. Calcium signaling in prostate cancer cells: evidence for multiple receptors and enhanced sensitivity to bombesin/GRP. Prostate 1997; 30:167-73. [PMID: 9122041 DOI: 10.1002/(sici)1097-0045(19970215)30:3<167::aid-pros4>3.0.co;2-j] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Cellular calcium is an important second messenger for growth regulation. We sought to identify potentially important receptors on prostate tumor cells by screening over 20 agonists for their ability to increase intracellular free calcium ([Ca2+]i) in several human prostate tumor cell lines. METHODS Intracellular calcium mobilization was detected using fura-2. RESULTS We found bombesin, GRP, ATP/UTP, lysophosphatidic acid, thrombin, endothelin, histamine, and bradykinin increased [Ca2+]i in the advanced tumor cell lines DU-145, PC3, and PPC-1. Bombesin failed to elevate [Ca2+]i in an immortalized human prostate cell line. Rank-order of potency studies suggested the presence of P2U nucleotide receptors for ATP/UTP on prostate epithelial cells. Potency studies also revealed GRP > > bombesin > > neuromedin B at elevating [Ca2+]i in responding tumor cells. CONCLUSIONS These findings indicate that androgen independent prostate tumor cell lines express multiple receptors capable of elevating intracellular calcium, and suggest that GRP receptors may be selectively expressed and/or coupled to calcium signaling during prostate tumor progression. Calcium sensitive cellular events may therefore contribute to the progression of prostate cancer.
Collapse
Affiliation(s)
- W J Wasilenko
- Department of Microbiology and Immunology, Eastern Virginia Medical School, Norfolk 23510, USA
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Albrecht DE, Tidball JG. Platelet-derived growth factor-stimulated secretion of basement membrane proteins by skeletal muscle occurs by tyrosine kinase-dependent and -independent pathways. J Biol Chem 1997; 272:2236-44. [PMID: 8999929 DOI: 10.1074/jbc.272.4.2236] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The basement membrane of skeletal muscle is produced by the muscle cells it ensheathes and by nonmuscle cells located in the surrounding extracellular matrix. In this study, we have shown that platelet-derived growth factor (PDGF) stimulates secretion of three basement membrane components of skeletal muscle: laminin (70% increase), fibronectin (30%), and type IV collagen (70%). Furthermore, we have found using the signal transduction inhibitors, genistein (tyrosine kinase inhibitor), phorbol 12-myristate 13-acetate (protein kinase C (PKC) inhibitor), thapsigargin (depletes intracellular Ca2+ stores), and H89 (protein kinase A inhibitor), that PDGF-stimulated secretion of these proteins occurs through distinct signaling pathways. Densitometry of Western blots of L6 myoblast supernatant indicates that the PDGF-induced increase in secretion of laminin and type IV collagen is tyrosine kinase-dependent. The increase in type IV collagen secretion also shows dependence on PKC, as well as the release of intracellular Ca2+. Inhibition of either of these pathways reduces the increase in type IV collagen secretion to 20%. In contrast, the PDGF-induced increase in laminin secretion is unaffected by inhibition of either PKC or intracellular Ca2+ release. The increase in fibronectin secretion by PDGF uses yet a third set of signals. PDGF-induced fibronectin secretion is not dependent on tyrosine kinase activity but is dependent on protein kinase A as well as the release of intracellular Ca2+. These divergent signaling pathways provide for independent regulation of basement membrane protein secretion, allowing a muscle cell to modify both the quantity and composition of its basement membrane in response to its environment.
Collapse
Affiliation(s)
- D E Albrecht
- Department of Physiological Science, UCLA, Los Angeles, California 90024-1527, USA
| | | |
Collapse
|
25
|
Abstract
The progression of a tumor cell from one of benign delimited proliferation to invasive and metastatic growth is the major cause of poor clinical outcome of cancer patients. Recent research has revealed that this complex process requires many components for successful dissemination and growth of the tumor cell at secondary sites. These include angiogenesis, enhanced extracellular matrix degradation via tumor and host-secreted proteases, tumor cell migration, and modulation of tumor cell adhesion. Each individual component is multifaceted and is discussed within this review with respect to historical and recent findings. The identification of components and their interrelationship have yielded new therapeutic targets leading to the development of agents that may prove effective in the treatment of cancer and its metastatic progression.
Collapse
Affiliation(s)
- J T Price
- Molecular Signaling Section, National Cancer Institute, Bethesda, Maryland, USA
| | | | | |
Collapse
|
26
|
Sjaastad MD, Nelson WJ. Integrin-mediated calcium signaling and regulation of cell adhesion by intracellular calcium. Bioessays 1997; 19:47-55. [PMID: 9008416 DOI: 10.1002/bies.950190109] [Citation(s) in RCA: 123] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Integrins are ubiquitous trans-membrane adhesion molecules that mediate the interaction of cells with the extracellular matrix (ECM). Integrins link cells to the ECM by interacting with the cell cytoskeleton. In cases such as leukocyte binding, integrins mediate cell-cell interactions and cell-ECM interactions. Recent research indicates that integrins also function as signal transduction receptors, triggering a number of intracellular signaling pathways that regulate cell behavior and development. A number of integrins are known to stimulate changes in intracellular calcium levels, resulting in integrin activation. Although changes in intracellular calcium regulate a vast number of cellular functions, this review will discuss the stimulation of calcium signaling by integrins and the role of intracellular calcium in the regulation of integrin-mediated adhesion.
Collapse
Affiliation(s)
- M D Sjaastad
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, CA 94305, USA
| | | |
Collapse
|
27
|
Martínez-Zaguilán R, Seftor EA, Seftor RE, Chu YW, Gillies RJ, Hendrix MJ. Acidic pH enhances the invasive behavior of human melanoma cells. Clin Exp Metastasis 1996; 14:176-86. [PMID: 8605731 DOI: 10.1007/bf00121214] [Citation(s) in RCA: 356] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
As a consequence of poor perfusion and elevated acid production, the extracellular pH (pHex) of tumors is generally acidic. Despite this, most in vitro experiments are still performed at the relatively alkaline pHex of 7.4. This is significant, because slight changes in pHex can have profound effects on cell phenotype. In this study we examined the effects of mildly acidic conditions on the in vitro invasive potential of two human melanoma cell lines; the highly invasive C8161, and poorly invasive A375P. We observed that culturing of either cell line at acidic pH (6.8) caused dramatic increases in both migration and invasion, as measured with the Membrane Invasion Culture System (MICS). This was not due to a direct effect of pH on the invasive machinery, since cells cultured at normal pH (7.4) and tested at acidic pH did not exhibit increased invasive potential. Similarly, cells cultured at acidic pH were more aggressive than control cells when tested at the same medium pH. These data indicate that culturing of cells at mildly acidic pH induces them to become more invasive. Since acid pH will affect the intracellular pH (pHin) and intracellular calcium ([Ca2+]in), we examined the effect of these parameters on invasion. While changes in [Ca2+]in were not consistent with invasive potential, the changes in pHin were. While these conditions decrease the overall amount of gelatinases A and B secreted by these cells, there is a consistent and significant increase in the proportion of the activated form of gelatinase B.
Collapse
Affiliation(s)
- R Martínez-Zaguilán
- Department of Biochemistry, University of Arizona Health Sciences Center, Tucson, USA
| | | | | | | | | | | |
Collapse
|
28
|
Alessandro R, Spoonster J, Wersto RP, Kohn EC. Signal transduction as a therapeutic target. Curr Top Microbiol Immunol 1996; 213 ( Pt 3):167-88. [PMID: 8815004 DOI: 10.1007/978-3-642-80071-9_11] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- R Alessandro
- Signal Transduction and Prevention Unit, National Cancer Institute, Bethesda, MD 20892-1500, USA
| | | | | | | |
Collapse
|
29
|
Pawar S, Kartha S, Toback FG. Differential gene expression in migrating renal epithelial cells after wounding. J Cell Physiol 1995; 165:556-65. [PMID: 7593235 DOI: 10.1002/jcp.1041650314] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
An in vitro model of wound healing was used to study cell migration that is independent of proliferation during renal regeneration after acute tubular necrosis. Monolayer cultures of high-density, quiescent renal epithelial cells of the BSC-1 line were subjected to scrape wounding and then Northern blot analysis was employed to identify genes that mediate cell migration. After wounding the monolayer, there is maximal induction of the immediate-early genes Egr-1, c-fos, NAK-1, and gro at 1 hour, followed by peak induction of connective tissue growth factor (CTGF) and c-myc at 4 hours. Message levels of urokinase-type plasminogen activator (u-PA) and its inhibitor (PAI-1) and heat shock protein (HSP)-70 are markedly raised 4-8 hours after wounding. Constitutive expression is repressed at 1 hour for transcripts that encode receptors for fibronectin (FN), epidermal growth factor, and hepatocyte growth factor (c-met), and the secreted proteins FN and osteopontin. Expression of genes encoding transforming growth factor (TGF)-beta 1 and -beta 2, retinoic acid receptor alpha, int-1, int-2, and gap junction protein which can play a role in cell movement, appeared unchanged after wounding. Differential expression of genes was a function of cell location relative to the wound; NAK-1, PAI-1, and HSP-70 were induced or stimulated only in cells at the wound edge, u-PA was stimulated in cells away from the wound, and CTGF was induced in each of these populations suggesting that cell-to-cell communication may regulate gene expression after wounding. Adenosine diphosphate, a potent stimulator of cell migration which enhances expression of u-PA and PAI-1 in nonwounded cultures, additively stimulates these genes after wounding and may thereby potentiate wound healing. Thus scrape wounding of renal epithelial cells is followed by induction, stimulation, or repression of specific genes with distinct responses in different populations of cells.
Collapse
Affiliation(s)
- S Pawar
- University of Chicago, Department of Medicine, Illinois 60637-1463, USA
| | | | | |
Collapse
|
30
|
Jiang WG, Puntis MC, Hallett MB. Molecular and cellular basis of cancer invasion and metastasis: implications for treatment. Br J Surg 1994; 81:1576-90. [PMID: 7827878 DOI: 10.1002/bjs.1800811107] [Citation(s) in RCA: 87] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In the past decade significant advances in establishing the underlying biological mechanisms of tumour invasion and metastasis have been made. Some of the triggering factors and genes relevant to metastatic spread have been identified. Advances have also been made in understanding the signal transduction pathways involved in invasion and metastasis. This increased comprehension of the malignant metastatic process has enabled new antimetastatic strategies to be devised. This review summarizes progress in these areas and discusses the implications for the treatment of metastasis.
Collapse
Affiliation(s)
- W G Jiang
- Department of Surgery, University of Wales College of Medicine, Health Park, Cardiff, UK
| | | | | |
Collapse
|
31
|
Schuppan D, Somasundaram R, Dieterich W, Ehnis T, Bauer M. The extracellular matrix in cellular proliferation and differentiation. Ann N Y Acad Sci 1994; 733:87-102. [PMID: 7978906 DOI: 10.1111/j.1749-6632.1994.tb17259.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- D Schuppan
- Department of Gastroenterology and Hepatology, Klinikum Steglitz, Freie Universität Berlin, Germany
| | | | | | | | | |
Collapse
|
32
|
Takenaga K, Nakamura Y, Endo H, Sakiyama S. Involvement of S100-related calcium-binding protein pEL98 (or mts1) in cell motility and tumor cell invasion. Jpn J Cancer Res 1994; 85:831-9. [PMID: 7928629 PMCID: PMC5919561 DOI: 10.1111/j.1349-7006.1994.tb02955.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
We examined the relationship between cell motility and the expressions of pEL98 (mts1) mRNA and protein in various murine normal and transformed cells. The expression of pEL98 (mts1) in v-Ha-ras-transformed NIH3T3 cells and in normal rat kidney cells transformed by either v-Ha-ras or v-src was increased over that in the corresponding parental cells at both mRNA and protein levels. The expression in normal rat fibroblasts (3Y1) transformed by v-Ha-ras was also increased compared with that in 3Y1 cells. However, the expression of pEL98 (mts1) in 3Y1 cells transformed by v-src was increased in one clone (src 3Y1-K), but decreased in another clone (src 3Y1-H). The expression level of pEL98 (mts1) correlated well with cell motility, which was examined by measuring cell tracks by phagokinesis. In order to test direct involvement of the pEL98 (mts1) protein in cell motility, src 3Y1-H cells that showed low cell motility were transfected with pEL98 cDNA. The transfectants expressing large amounts of the pEL98 protein showed significantly higher cell motility than src 3Y1-H cells. The expression of pEL98 (mts1) was also found to be correlated with motile and invasive abilities in various clones derived from Lewis lung carcinoma. These results suggest that the pEL98 (mts1) protein plays a role in regulating cell motility and tumor cell invasiveness.
Collapse
Affiliation(s)
- K Takenaga
- Division of Chemotherapy, Chiba Cancer Center Research Institute
| | | | | | | |
Collapse
|
33
|
Abstract
The process of proliferation, invasion and metastasis is a complex one which involves both the autonomy of the malignant cells and their interaction with the cellular and extracellular environments. The way in which the tumor cells respond to cellular and extracellular stimuli is regulated through transduction of those signals and translation into cellular activity. Transmembrane signal transduction involves three major categories of events: ion channel activation, transmission through guanine nucleotide binding protein intermediates with production of second messengers, and phosphorylation events. A frequent common denominator of these different pathways is a cellular calcium homeostasis. Calcium may be both a result of and a regulator of many of these signal transduction pathways and has been shown to have a role in the regulation of proliferation, invasion, and metastatic potential. The understanding and application of the basic tenets of these pathways to tumor cell proliferation, invasion, and metastases opens a new target for therapeutic intervention. We have identified a novel agent, CAI, which through inhibition of stimulated calcium influx inhibits proliferation and migration in vitro, and growth and dissemination in human cancer xenografts in vivo. CAI offers a new approach to cancer therapy, signal transduction therapy.
Collapse
Affiliation(s)
- K Cole
- Laboratory of Pathology, National Cancer Institute, Bethesda, Maryland 20892
| | | |
Collapse
|
34
|
Schor SL. Cytokine control of cell motility: modulation and mediation by the extracellular matrix. PROGRESS IN GROWTH FACTOR RESEARCH 1994; 5:223-48. [PMID: 7919226 DOI: 10.1016/0955-2235(94)90007-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Cytokines are multifunctional regulators of cell behaviour affecting such diverse activities as cell proliferation, gene expression and motility. Matrix macromolecules influence a similarly wide range of cell functions. A review of the available literature suggests that cytokines may affect cell motility by (a) directly influencing the motility apparatus, and (b) indirectly as a consequence of the altered expression of genes coding for matrix macromolecules, their respective cell surface receptors and matrix degrading enzymes and their inhibitors. Conversely, the composition and supramolecular organisation of the matrix plays a central role in defining cellular response to potentially multifunctional cytokines. Such complex and reciprocal interactions between cytokines and the matrix elicit both positive and negative reiterative feedback loops which must be taken into account when interpreting the results of migration assays in vitro and extrapolating them to in vivo processes.
Collapse
Affiliation(s)
- S L Schor
- School of Biological Sciences, The Medical School, University of Manchester, U.K
| |
Collapse
|