1
|
Škulj S, Kožić M, Barišić A, Vega A, Biarnés X, Piantanida I, Barisic I, Bertoša B. Comparison of two peroxidases with high potential for biotechnology applications - HRP vs. APEX2. Comput Struct Biotechnol J 2024; 23:742-751. [PMID: 38298178 PMCID: PMC10828542 DOI: 10.1016/j.csbj.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 01/01/2024] [Accepted: 01/01/2024] [Indexed: 02/02/2024] Open
Abstract
Peroxidases are essential elements in many biotechnological applications. An especially interesting concept involves split enzymes, where the enzyme is separated into two smaller and inactive proteins that can dimerize into a fully active enzyme. Such split forms were developed for the horseradish peroxidase (HRP) and ascorbate peroxidase (APX) already. Both peroxidases have a high potential for biotechnology applications. In the present study, we performed biophysical comparisons of these two peroxidases and their split analogues. The active site availability is similar for all four structures. The split enzymes are comparable in stability with their native analogues, meaning that they can be used for further biotechnology applications. Also, the tertiary structures of the two peroxidases are similar. However, differences that might help in choosing one system over another for biotechnology applications were noticed. The main difference between the two systems is glycosylation which is not present in the case of APX/sAPEX2, while it has a high impact on the HRP/sHRP stability. Further differences are calcium ions and cysteine bridges that are present only in the case of HRP/sHRP. Finally, computational results identified sAPEX2 as the systems with the smallest structural variations during molecular dynamics simulations showing its dominant stability comparing to other simulated proteins. Taken all together, the sAPEX2 system has a high potential for biotechnological applications due to the lack of glycans and cysteines, as well as due to high stability.
Collapse
Affiliation(s)
- Sanja Škulj
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, Zagreb HR-10000, Croatia
- Institute of Physiology, Pathophysiology and Biophysics, Department of Biomedical Sciences, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Matej Kožić
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, Zagreb HR-10000, Croatia
| | - Antun Barišić
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, Zagreb HR-10000, Croatia
| | - Aitor Vega
- Laboratory of Biochemistry, Institut Químic de Sarrià, Universitat Ramon Llull, Via Augusta 390, 08017 Barcelona, Spain
| | - Xevi Biarnés
- Laboratory of Biochemistry, Institut Químic de Sarrià, Universitat Ramon Llull, Via Augusta 390, 08017 Barcelona, Spain
| | - Ivo Piantanida
- Division of Organic Chemistry & Biochemistry, Ruđer Bošković Institute, Bijenička Cesta 54, 10 000 Zagreb, Croatia
| | - Ivan Barisic
- Molecular Diagnostics, Center for Health and Bioresources, AIT Austrian Institute of Technology GmbH, Giefinggasse 4, Vienna 1210, Austria
- Eko Refugium, Crno Vrelo 2, Slunj 47240, Croatia
| | - Branimir Bertoša
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, Zagreb HR-10000, Croatia
| |
Collapse
|
2
|
Abraheh K, Esmaeili M, Shans N, Ghaffari S, Mohammadi M. A Simple and Cost-Efficient Method for the Production of Recombinant Horseradish Peroxidase in E. coli. Mol Biotechnol 2024:10.1007/s12033-024-01314-3. [PMID: 39585503 DOI: 10.1007/s12033-024-01314-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 10/24/2024] [Indexed: 11/26/2024]
Abstract
Horseradish peroxidase (HRP) is a chromogenic glycoenzyme widely used in research, diagnostics, and therapeutics. Due to its high demand, various eukaryotic and prokaryotic expression systems have been employed for the production of recombinant HRP. Eukaryotic systems yield properly folded, fully functional enzymes with the necessary post-translational modifications. However, these systems can be costly, time-consuming, and prone to hyperglycosylation. In contrast, prokaryotic systems are simple, inexpensive, and readily available, but achieving proper folding and subsequent modifications can be challenging. In this study, we employed a simple and cost-effective method to produce recombinant HRP in soluble form, using the E. coli expression system. The produced enzyme demonstrated substantial activity (89.75 ± 3.25 U/mg) and resistance to heat (T1/2 = 5 min at 50 °C), pH variations (up to 8), and H2O2 concentrations (up to 10 mM). Additionally, we systematically compared our method with those of other researchers, highlighting methodological details and outcomes of HRP production in E. coli.
Collapse
Affiliation(s)
- Kimia Abraheh
- HPGC Research Group, Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Maryam Esmaeili
- HPGC Research Group, Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Nazanin Shans
- HPGC Research Group, Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Saba Ghaffari
- HPGC Research Group, Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Marjan Mohammadi
- HPGC Research Group, Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
3
|
Miura D, Hayashi W, Hirano K, Sasaki I, Tsukakoshi K, Kakizoe H, Asai S, Vavricka CJ, Takemae H, Mizutani T, Tsugawa W, Sode K, Ikebukuro K, Asano R. Proximity-Unlocked Luminescence by Sequential Enzymatic Reactions from Antibody and Antibody/Aptamer (PULSERAA): A Platform for Detection and Visualization of Virus-Containing Spots. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403871. [PMID: 39316377 DOI: 10.1002/advs.202403871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 08/23/2024] [Indexed: 09/25/2024]
Abstract
The SARS-CoV-2 pandemic has challenged more scientists to detect viruses and to visualize virus-containing spots for diagnosis and infection control; however, detection principles of commercially available technologies are not optimal for visualization. Here, a convenient and universal homogeneous detection platform named proximity-unlocked luminescence by sequential enzymatic reactions from antibody and antibody/aptamer (PULSERAA) is developed. This is designed so that the signal appears only when the donor and acceptor are in proximity on the viral surface. PULSERAA specifically detected in the range of 25-500 digital copies/mL of inactivated SARS-CoV-2 after simply mixing reagents; it is elucidated that the accumulation of chemical species in a limited space of the viral surface contributed to such high sensitivity. PULSERAA was quickly adapated to detect another virus variant, inactivated influenza A virus, and infectious SARS-CoV-2 in a clinical sample. Furthermore, on-site (direct, rapid, and portable) visualization of the inactivated SARS-CoV-2-containing spots by a conventional smartphone camera was achieved, demonstrating that PULSERAA can be a practical tool for preventing the next pandemic in the future.
Collapse
Affiliation(s)
- Daimei Miura
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 3-8-1 Harumi-cho, Fuchu, Tokyo, 183-8538, Japan
| | - Wakana Hayashi
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Kensuke Hirano
- Department of Industrial Technology and Innovation, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Ikkei Sasaki
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Kaori Tsukakoshi
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Hidehumi Kakizoe
- Department of Laboratory Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
| | - Satomi Asai
- Department of Laboratory Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
- Division of Infection Control, Tokai University Hospital, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
| | - Christopher J Vavricka
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 3-8-1 Harumi-cho, Fuchu, Tokyo, 183-8538, Japan
| | - Hitoshi Takemae
- Center for Infectious Disease Epidemiology and Prevention Research, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo, 183-8509, Japan
| | - Tetsuya Mizutani
- Center for Infectious Disease Epidemiology and Prevention Research, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo, 183-8509, Japan
- Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo, 183-8509, Japan
| | - Wakako Tsugawa
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Koji Sode
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, 27599, USA
| | - Kazunori Ikebukuro
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Ryutaro Asano
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 3-8-1 Harumi-cho, Fuchu, Tokyo, 183-8538, Japan
| |
Collapse
|
4
|
Abo Qoura L, Morozova E, Ramaa СS, Pokrovsky VS. Smart nanocarriers for enzyme-activated prodrug therapy. J Drug Target 2024; 32:1029-1051. [PMID: 39045650 DOI: 10.1080/1061186x.2024.2383688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/26/2024] [Accepted: 07/17/2024] [Indexed: 07/25/2024]
Abstract
Exogenous enzyme-activated prodrug therapy (EPT) is a potential cancer treatment strategy that delivers non-human enzymes into or on the surface of the cell and subsequently converts a non-toxic prodrug into an active cytotoxic substance at a specific location and time. The development of several pharmacological pairs based on EPT has been the focus of anticancer research for more than three decades. Numerous of these pharmacological pairs have progressed to clinical trials, and a few have achieved application in specific cancer therapies. The current review highlights the potential of enzyme-activated prodrug therapy as a promising anticancer treatment. Different microbial, plant, or viral enzymes and their corresponding prodrugs that advanced to clinical trials have been listed. Additionally, we discuss new trends in the field of enzyme-activated prodrug nanocarriers, including nanobubbles combined with ultrasound (NB/US), mesoscopic-sized polyion complex vesicles (PICsomes), nanoparticles, and extracellular vesicles (EVs), with special emphasis on smart stimuli-triggered drug release, hybrid nanocarriers, and the main application of nanotechnology in improving prodrugs.
Collapse
Affiliation(s)
- Louay Abo Qoura
- Research Institute of Molecular and Cellular Medicine, People's Friendship University of Russia (RUDN University), Moscow, Russia
- Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Elena Morozova
- Engelhardt Institute of Molecular Biology of the, Russian Academy of Sciences, Moscow, Russia
| | - С S Ramaa
- Department of Pharmaceutical Chemistry, Bharati Vidyapeeth's College of Pharmacy, Mumbai, India
| | - Vadim S Pokrovsky
- Research Institute of Molecular and Cellular Medicine, People's Friendship University of Russia (RUDN University), Moscow, Russia
- Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, Moscow, Russia
| |
Collapse
|
5
|
Si H, Du D, Jiao C, Sun Y, Li L, Tang B. Biomimetic synergistic effect of redox site and Lewis acid for construction of efficient artificial enzyme. Nat Commun 2024; 15:6315. [PMID: 39060279 PMCID: PMC11282276 DOI: 10.1038/s41467-024-50687-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
In enzymatic catalysis, the redox site and Lewis acid are the two main roles played by metal to assist amino acids. However, the reported enzyme mimics only focus on the redox-active metal as redox site, while the redox-inert metal as Lewis acid has, to the best of our knowledge, not been studied, presenting a bottleneck of enzyme mimics construction. Based on this, a series of highly efficient MxV2O5·nH2O peroxidase mimics with vanadium as redox site and alkaline-earth metal ion (M2+) as Lewis acid are reported. Experimental results and theoretical calculations indicate the peroxidase-mimicking activity of MxV2O5·nH2O show a periodic change with the Lewis acidity (ion potential) of M2+, revealing the mechanism of redox-inert M2+ regulating electron transfer of V-O through non-covalent polarization and thus promoting H2O2 adsorbate dissociation. The biomimetic synergetic effect of redox site and Lewis acid is expected to provide an inspiration for design of enzyme mimics.
Collapse
Affiliation(s)
- Haibin Si
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014, P. R. China
| | - Dexin Du
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014, P. R. China
| | - Chengcheng Jiao
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014, P. R. China
| | - Yan Sun
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014, P. R. China
| | - Lu Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014, P. R. China.
- Jinan Institute of Quantum Technology, Jinan, 250101, P. R. China.
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014, P. R. China.
- Laoshan Laboratory, Qingdao, 266237, P. R. China.
| |
Collapse
|
6
|
Guo Y, Wang P, Jiang L, Deng C, Zheng L, Song C, Jiao J. Multifunctional Proximity Labeling Strategy for Lipid Raft-Specific Sialic Acid Tracking and Engineering. Bioconjug Chem 2023; 34:1719-1726. [PMID: 37767911 DOI: 10.1021/acs.bioconjchem.3c00236] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
Lipid raft-specific glycosylation has been implicated in many biological processes, including intracellular trafficking, cell adhesion, signal transduction, and host-pathogen interactions. The major predicament in lipid raft-specific glycosylation research is the unavailability of tools for tracking and manipulating glycans on lipid rafts at the microstructural level. To overcome this challenge, we developed a multifunctional proximity labeling (MPL) platform that relies on cholera toxin B subunit to localize horseradish peroxidase on lipid rafts. In addition to the prevailing electron-rich amino acids, modified sialic acid was included in the horseradish peroxidase-mediated proximity labeling substrate via purposefully designed chemical transformation reactions. In combination with sialic acid editing, the self-renewal of lipid raft-specific sialic acid was visualized. The MPL method enabled tracking of lipid raft dynamics under methyl-β-cyclodextrin and mevinolin treatments; in particular, the alteration of lipid rafts markedly affected cell migration. Furthermore, we embedded functional molecules into the method and implemented raft-specific sialic acid gradient engineering. Our novel strategy presents opportunities for tailoring lipid raft-specific sialic acids, thereby regulating interactions associated with lipid raft regions (such as cell-virus and cell-microenvironment interactions), and can aid in the development of lipid raft-based therapeutic regimens for tumors.
Collapse
Affiliation(s)
- Yuna Guo
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan 250117, China
| | - Pingping Wang
- School of Pharmacy and Pharmaceutical Sciences, Shandong First Medical University, Jinan 250117, China
| | - Liangyu Jiang
- School of Clinical and Basic Medical Sciences, Shandong First Medical University, Jinan 250117, China
| | - Chaowen Deng
- School of Clinical and Basic Medical Sciences, Shandong First Medical University, Jinan 250117, China
| | - Lei Zheng
- School of Pharmacy and Pharmaceutical Sciences, Shandong First Medical University, Jinan 250117, China
| | - Cong Song
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan 250117, China
| | - Jianwei Jiao
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| |
Collapse
|
7
|
Ramakrishnan K, Johnson RL, Winter SD, Worthy HL, Thomas C, Humer DC, Spadiut O, Hindson SH, Wells S, Barratt AH, Menzies GE, Pudney CR, Jones DD. Glycosylation increases active site rigidity leading to improved enzyme stability and turnover. FEBS J 2023; 290:3812-3827. [PMID: 37004154 PMCID: PMC10952495 DOI: 10.1111/febs.16783] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 03/14/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023]
Abstract
Glycosylation is the most prevalent protein post-translational modification, with a quarter of glycosylated proteins having enzymatic properties. Yet, the full impact of glycosylation on the protein structure-function relationship, especially in enzymes, is still limited. Here, we show that glycosylation rigidifies the important commercial enzyme horseradish peroxidase (HRP), which in turn increases its turnover and stability. Circular dichroism spectroscopy revealed that glycosylation increased holo-HRP's thermal stability and promoted significant helical structure in the absence of haem (apo-HRP). Glycosylation also resulted in a 10-fold increase in enzymatic turnover towards o-phenylenediamine dihydrochloride when compared to its nonglycosylated form. Utilising a naturally occurring site-specific probe of active site flexibility (Trp117) in combination with red-edge excitation shift fluorescence spectroscopy, we found that glycosylation significantly rigidified the enzyme. In silico simulations confirmed that glycosylation largely decreased protein backbone flexibility, especially in regions close to the active site and the substrate access channel. Thus, our data show that glycosylation does not just have a passive effect on HRP stability but can exert long-range effects that mediate the 'native' enzyme's activity and stability through changes in inherent dynamics.
Collapse
Affiliation(s)
| | - Rachel L. Johnson
- Molecular Biosciences Division, School of BiosciencesCardiff UniversityUK
| | | | - Harley L. Worthy
- Molecular Biosciences Division, School of BiosciencesCardiff UniversityUK
- Biosciences, Faculty of Health and Life SciencesUniversity of ExeterUK
| | | | - Diana C. Humer
- Institute of Chemical, Environmental and Bioscience Engineering, Research Area Biochemical EngineeringTU WienAustria
| | - Oliver Spadiut
- Institute of Chemical, Environmental and Bioscience Engineering, Research Area Biochemical EngineeringTU WienAustria
| | | | | | - Andrew H. Barratt
- Molecular Biosciences Division, School of BiosciencesCardiff UniversityUK
| | | | - Christopher R. Pudney
- Department of Biology and BiochemistryUniversity of BathUK
- Centre for Therapeutic InnovationUniversity of BathUK
| | - D. Dafydd Jones
- Molecular Biosciences Division, School of BiosciencesCardiff UniversityUK
| |
Collapse
|
8
|
Kotajima M, Choi JH, Suzuki H, Suzuki T, Wu J, Hirai H, Nelson DC, Ouchi H, Inai M, Dohra H, Kawagishi H. Identification of Biosynthetic and Metabolic Genes of 2-Azahypoxanthine in Lepista sordida Based on Transcriptomic Analysis. JOURNAL OF NATURAL PRODUCTS 2023; 86:710-718. [PMID: 36802627 DOI: 10.1021/acs.jnatprod.2c00789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
2-Azahypoxanthine was isolated from the fairy ring-forming fungus Lepista sordida as a fairy ring-inducing compound. 2-Azahypoxanthine has an unprecedented 1,2,3-triazine moiety, and its biosynthetic pathway is unknown. The biosynthetic genes for 2-azahypoxanthine formation in L. sordida were predicted by a differential gene expression analysis using MiSeq. The results revealed that several genes in the purine and histidine metabolic pathways and the arginine biosynthetic pathway are involved in the biosynthesis of 2-azahypoxanthine. Furthermore, nitric oxide (NO) was produced by recombinant NO synthase 5 (rNOS5), suggesting that NOS5 can be the enzyme involved in the formation of 1,2,3-triazine. The gene encoding hypoxanthine-guanine phosphoribosyltransferase (HGPRT), one of the major phosphoribosyltransferases of purine metabolism, increased when 2-azahypoxanthine content was the highest. Therefore, we hypothesized that HGPRT might catalyze a reversible reaction between 2-azahypoxanthine and 2-azahypoxanthine-ribonucleotide. We proved the endogenous existence of 2-azahypoxanthine-ribonucleotide in L. sordida mycelia by LC-MS/MS for the first time. Furthermore, it was shown that recombinant HGPRT catalyzed reversible interconversion between 2-azahypoxanthine and 2-azahypoxanthine-ribonucleotide. These findings demonstrate that HGPRT can be involved in the biosynthesis of 2-azahypoxanthine via 2-azahypoxanthine-ribonucleotide generated by NOS5.
Collapse
Affiliation(s)
| | | | | | - Tomohiro Suzuki
- Center for Bioscience Research and Education, Utsunomiya University, 350 mine-machi, Utsunomiya, Tochigi 321-8505, Japan
| | | | | | - David C Nelson
- Department of Botany and Plant Sciences, University of California, Riverside, California 92521, United States
| | - Hitoshi Ouchi
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Makoto Inai
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | | | | |
Collapse
|
9
|
Pauwels J, Fijałkowska D, Eyckerman S, Gevaert K. Mass spectrometry and the cellular surfaceome. MASS SPECTROMETRY REVIEWS 2022; 41:804-841. [PMID: 33655572 DOI: 10.1002/mas.21690] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 06/12/2023]
Abstract
The collection of exposed plasma membrane proteins, collectively termed the surfaceome, is involved in multiple vital cellular processes, such as the communication of cells with their surroundings and the regulation of transport across the lipid bilayer. The surfaceome also plays key roles in the immune system by recognizing and presenting antigens, with its possible malfunctioning linked to disease. Surface proteins have long been explored as potential cell markers, disease biomarkers, and therapeutic drug targets. Despite its importance, a detailed study of the surfaceome continues to pose major challenges for mass spectrometry-driven proteomics due to the inherent biophysical characteristics of surface proteins. Their inefficient extraction from hydrophobic membranes to an aqueous medium and their lower abundance compared to intracellular proteins hamper the analysis of surface proteins, which are therefore usually underrepresented in proteomic datasets. To tackle such problems, several innovative analytical methodologies have been developed. This review aims at providing an extensive overview of the different methods for surfaceome analysis, with respective considerations for downstream mass spectrometry-based proteomics.
Collapse
Affiliation(s)
- Jarne Pauwels
- VIB Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | | | - Sven Eyckerman
- VIB Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Kris Gevaert
- VIB Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| |
Collapse
|
10
|
Ito A, Choi JH, Yokoyama-Maruyama W, Kotajima M, Wu J, Suzuki T, Terashima Y, Suzuki H, Hirai H, Nelson DC, Tsunematsu Y, Watanabe K, Asakawa T, Ouchi H, Inai M, Dohra H, Kawagishi H. 1,2,3-Triazine formation mechanism of the fairy chemical 2-azahypoxanthine in the fairy ring-forming fungus Lepista sordida. Org Biomol Chem 2022; 20:2636-2642. [PMID: 35293930 DOI: 10.1039/d2ob00328g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
2-Azahypoxanthine (AHX) was first isolated from the culture broth of the fungus Lepista sordida as a fairy ring-inducing compound. It has since been found that a large number of plants and mushrooms produce AHX endogenously and that AHX has beneficial effects on plant growth. The AHX molecule has an unusual, nitrogen-rich 1,2,3-triazine moiety of unknown biosynthetic origin. Here, we establish the biosynthetic pathway for AHX formation in L. sordida. Our results reveal that the key nitrogen sources that are responsible for the 1,2,3-triazine formation are reactive nitrogen species (RNS), which are derived from nitric oxide (NO) produced by NO synthase (NOS). Furthermore, RNS are also involved in the biochemical conversion of 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranosyl 5'-monophosphate (AICAR) to AHX-ribotide (AHXR), suggesting that a novel biosynthetic route that produces AHX exists in the fungus. These findings demonstrate a physiological role for NOS in AHX biosynthesis as well as in biosynthesis of other natural products containing a nitrogen-nitrogen bond.
Collapse
Affiliation(s)
- Akinobu Ito
- Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan. .,Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Jae-Hoon Choi
- Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan. .,Research Fellow of Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo 102-0083, Japan.,Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Waki Yokoyama-Maruyama
- Research Fellow of Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo 102-0083, Japan
| | - Mihaya Kotajima
- Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan.
| | - Jing Wu
- Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Tomohiro Suzuki
- Center for Bioscience Research and Education, Utsunomiya University, 350 Minemachi, Tochigi 321-8505, Japan
| | - Yurika Terashima
- Research Fellow of Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo 102-0083, Japan
| | - Hyogo Suzuki
- Research Fellow of Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo 102-0083, Japan
| | - Hirofumi Hirai
- Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan. .,Research Fellow of Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo 102-0083, Japan.,Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - David C Nelson
- Department of Botany and Plant Sciences, University of California, Riverside, California 92521, USA
| | - Yuta Tsunematsu
- Department of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Kenji Watanabe
- Department of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Tomohiro Asakawa
- Marine Science and Technology, Tokai University, 4-1-1 Kitakaname, Hiratsuka City, Kanagawa 259-1292, Japan
| | - Hitoshi Ouchi
- Department of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Makoto Inai
- Department of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Hideo Dohra
- Research Fellow of Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo 102-0083, Japan.,Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Hirokazu Kawagishi
- Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan. .,Research Fellow of Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo 102-0083, Japan.,Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| |
Collapse
|
11
|
Škulj S, Barišić A, Mutter N, Spadiut O, Barišić I, Bertoša B. Effect of N-glycosylation on horseradish peroxidase structural and dynamical properties. Comput Struct Biotechnol J 2022; 20:3096-3105. [PMID: 35782731 PMCID: PMC9233188 DOI: 10.1016/j.csbj.2022.06.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 06/03/2022] [Accepted: 06/04/2022] [Indexed: 11/03/2022] Open
|
12
|
Characterization of Two Hydrogen Peroxide Resistant Peroxidases from Rhodococcus opacus 1CP. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11177941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The dye-decolorizing peroxidases (DyP) are a family of heme-dependent enzymes present on a broad spectrum of microorganisms. While the natural function of these enzymes is not fully understood, their capacity to degrade highly contaminant pigments such as azo dyes or anthraquinones make them excellent candidates for applications in bioremediation and organic synthesis. In this work, two novel DyP peroxidases from the organism Rhodococcus opacus 1CP (DypA and DypB) were cloned and expressed in Escherichia coli. The enzymes were purified and biochemically characterized. The activities of the two DyPs via 2,2′-azino-bis [3-ethylbenzthiazoline-6-sulphonic acid] (ABTS) assay and against Reactive Blue 5 were assessed and optimized. Results showed varying trends for DypA and DypB. Remarkably, these enzymes presented a particularly high tolerance towards H2O2, retaining its activities at about 10 mM H2O2 for DypA and about 4.9 mM H2O2 for DypB.
Collapse
|
13
|
Sakono M, Arisawa T, Ohya T, Sakono N, Manaka A. Preparation of Luciferase-fused Peptides for Immunoassay of Amyloid Beta. ANAL SCI 2021; 37:759-763. [PMID: 33583860 DOI: 10.2116/analsci.20scp19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
An immunoassay, such as the enzyme-linked immunosorbent assay (ELISA), is an analytical method that utilizes the interaction of antigens and antibodies. Enzyme-labeled antigens require both molecular recognition by the antibody and enzymatic activity as a reporter. We designed and constructed an immunodetection system for amyloid beta peptides (Aβ) using an enzyme-labeled antigen expressed from Escherichia coli. Aβ(1-16) fused with renilla luciferase was prepared as the enzyme-labeled antigen. In the presence of this luciferase-fused peptide, the luminescence of coelenterazine-h was observed. The influence of the fusion with Aβ on the luminescence reaction was insignificant. Surface plasmon resonance analysis indicated that the interaction between the luciferase-fused Aβ and anti-Aβ antibody was sufficiently strong. In the competitive ELISA assay for Aβ detection using the luciferase-fused Aβ, the luminescence intensity decreased as the Aβ concentration increased.
Collapse
Affiliation(s)
- Masafumi Sakono
- Department of Applied Chemistry, Faculty of Engineering, University of Toyama
| | - Taiki Arisawa
- Department of Applied Chemistry, Faculty of Engineering, University of Toyama
| | - Takuma Ohya
- Department of Applied Chemistry, Faculty of Engineering, University of Toyama
| | - Naomi Sakono
- Department of Applied Chemistry and Chemical Engineering, National Institute of Technology, Toyama College
| | - Atsushi Manaka
- Department of Applied Chemistry and Chemical Engineering, National Institute of Technology, Toyama College
| |
Collapse
|
14
|
Comparison of three palm tree peroxidases expressed by Escherichia coli: Uniqueness of African oil palm peroxidase. Protein Expr Purif 2020; 179:105806. [PMID: 33301885 DOI: 10.1016/j.pep.2020.105806] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 12/03/2020] [Accepted: 12/04/2020] [Indexed: 11/23/2022]
Abstract
Palm tree peroxidase has greater catalytic activity, stability and broad application prospects in comparison with horseradish peroxidase. However, slow growth, ecological destruction and high costs prohibit isolation of native peroxidases directly from palm trees. Bioreactor production of palm tree peroxidases would therefore be preferred to overcome such production limitations. Comparison of different recombinant glycan-free palm tree peroxidases would allow understanding the criticality of total glycans to the functions and characteristics. In the present study, African oil palm tree peroxidase expressed by Escherichia coli showed similar stability and 30-100-fold greater activity than that of recombinant royal palm tree peroxidases, but both of their comprehensive indexes were superior to the commercial, native horseradish peroxidase. Recombinant Chamaerops excelsa peroxidase showed no activity possibly due to incorrect protein folding. The results confirmed that recombinant expression by E. coli is potentially an effective means to obtain a mass of palm peroxidases with high activity and stability.
Collapse
|
15
|
Scalable High-Performance Production of Recombinant Horseradish Peroxidase from E. coli Inclusion Bodies. Int J Mol Sci 2020; 21:ijms21134625. [PMID: 32610584 PMCID: PMC7369975 DOI: 10.3390/ijms21134625] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/19/2020] [Accepted: 06/26/2020] [Indexed: 01/31/2023] Open
Abstract
Horseradish peroxidase (HRP), an enzyme omnipresent in biotechnology, is still produced from hairy root cultures, although this procedure is time-consuming and only gives low yields. In addition, the plant-derived enzyme preparation consists of a variable mixture of isoenzymes with high batch-to-batch variation preventing its use in therapeutic applications. In this study, we present a novel and scalable recombinant HRP production process in Escherichia coli that yields a highly pure, active and homogeneous single isoenzyme. We successfully developed a multi-step inclusion body process giving a final yield of 960 mg active HRP/L culture medium with a purity of ≥99% determined by size-exclusion high-performance liquid chromatography (SEC-HPLC). The Reinheitszahl, as well as the activity with 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) and 3,3',5,5'-tetramethylbenzidine (TMB) as reducing substrates, are comparable to commercially available plant HRP. Thus, our preparation of recombinant, unglycosylated HRP from E. coli is a viable alternative to the enzyme from plant and highly interesting for therapeutic applications.
Collapse
|
16
|
Engineering of Bifunctional Enzymes with Uricase and Peroxidase Activities for Simple and Rapid Quantification of Uric Acid in Biological Samples. Catalysts 2020. [DOI: 10.3390/catal10040428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Serum uric acid (SUA) is an important biomarker for prognosis and management of gout and other diseases. The development of a low-cost, simple, rapid and reliable assay for SUA detection is of great importance. In the present study, to save the cost of enzyme production and to shorten the reaction time for uric acid quantification, bifunctional proteins with uricase and peroxidase activities were engineered. In-frame fusion of Candida utilis uricase (CUOX) and Vitreoscilla hemoglobin (VHb) resulted in two versions of the bifunctional protein, CUOX-VHb (CV) and VHb-CUOX (VC). To our knowledge, this is the first report to describe the production of proteins with uricase and peroxidase activities. Based on the measurement of the initial rates of the coupled reaction (between uricase and peroxidase), CV was proven to be the most efficient enzyme followed by VC and native enzymes (CUOX+VHb), respectively. CV was further applied for the development of an assay for colorimetric detection of SUA, which was based on VHb-catalyzed oxidation of Amplex Red in the presence of hydrogen peroxide (H2O2). Under the optimized conditions, the assay exhibited a linear relationship between the absorbance and UA concentration over the range of 2.5 to 50 μM, with a detection limit of 1 μM. In addition, the assay can be performed at a single pH (8.0) so adjustment of the pH for peroxidase activity was not required. This advantage helped to further reduce costs and time. The developed assay was also successfully applied to detect UA in pooled human serum with the recoveries over 94.8%. These results suggest that the proposed assay holds great potential for clinical application.
Collapse
|
17
|
Periplasmic Nanobody-APEX2 Fusions Enable Facile Visualization of Ebola, Marburg, and Mĕnglà virus Nucleoproteins, Alluding to Similar Antigenic Landscapes among Marburgvirus and Dianlovirus. Viruses 2019; 11:v11040364. [PMID: 31010013 PMCID: PMC6521291 DOI: 10.3390/v11040364] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 04/17/2019] [Accepted: 04/18/2019] [Indexed: 11/26/2022] Open
Abstract
We explore evolved soybean ascorbate peroxidase (APEX2) as a reporter when fused to the C-termini of llama nanobodies (single-domain antibodies, sdAb; variable domains of heavy chain-only antibodies, VHH) targeted to the E. coli periplasm. Periplasmic expression preserves authentic antibody N-termini, intra-domain disulphide bond(s), and capitalizes on efficient haem loading through the porous E. coli outer membrane. Using monomeric and dimeric anti-nucleoprotein (NP) sdAb cross-reactive within the Marburgvirus genus and cross-reactive within the Ebolavirus genus, we show that periplasmic sdAb–APEX2 fusion proteins are easily purified at multi-mg amounts. The fusions were used in Western blotting, ELISA, and microscopy to visualize NPs using colorimetric and fluorescent imaging. Dimeric sdAb–APEX2 fusions were superior at binding NPs from viruses that were evolutionarily distant to that originally used to select the sdAb. Partial conservation of the anti-Marburgvirus sdAb epitope enabled the recognition of a novel NP encoded by the recently discovered Mĕnglà virus genome. Antibody–antigen interactions were rationalized using monovalent nanoluciferase titrations and contact mapping analysis of existing crystal structures, while molecular modelling was used to reveal the potential landscape of the Mĕnglà NP C-terminal domain. The sdAb–APEX2 fusions also enabled live Marburgvirus and Ebolavirus detection 24 h post-infection of Vero E6 cells within a BSL-4 laboratory setting. The simple and inexpensive mining of large amounts of periplasmic sdAb–APEX2 fusion proteins should help advance studies of past, contemporary, and perhaps Filovirus species yet to be discovered.
Collapse
|
18
|
Improving the Performance of Horseradish Peroxidase by Site-Directed Mutagenesis. Int J Mol Sci 2019; 20:ijms20040916. [PMID: 30791559 PMCID: PMC6412888 DOI: 10.3390/ijms20040916] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 02/13/2019] [Accepted: 02/16/2019] [Indexed: 01/17/2023] Open
Abstract
Horseradish peroxidase (HRP) is an intensely studied enzyme with a wide range of commercial applications. Traditionally, HRP is extracted from plant; however, recombinant HRP (rHRP) production is a promising alternative. Here, non-glycosylated rHRP was produced in Escherichia coli as a DsbA fusion protein including a Dsb signal sequence for translocation to the periplasm and a His tag for purification. The missing N-glycosylation results in reduced catalytic activity and thermal stability, therefore enzyme engineering was used to improve these characteristics. The amino acids at four N-glycosylation sites, namely N13, N57, N255 and N268, were mutated by site-directed mutagenesis and combined to double, triple and quadruple enzyme variants. Subsequently, the rHRP fusion proteins were purified by immobilized metal affinity chromatography (IMAC) and biochemically characterized. We found that the quadruple mutant rHRP N13D/N57S/N255D/N268D showed 2-fold higher thermostability and 8-fold increased catalytic activity with 2,2’-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) as reducing substrate when compared to the non-mutated rHRP benchmark enzyme.
Collapse
|
19
|
Soluble expression of horseradish peroxidase in Escherichia coli and its facile activation. J Biosci Bioeng 2018; 126:431-435. [DOI: 10.1016/j.jbiosc.2018.04.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 04/02/2018] [Accepted: 04/04/2018] [Indexed: 12/19/2022]
|
20
|
Optimization of in vitro refolding conditions of recombinant Lepidium draba peroxidase using design of experiments. Int J Biol Macromol 2018; 118:1369-1376. [DOI: 10.1016/j.ijbiomac.2018.06.122] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 06/17/2018] [Accepted: 06/25/2018] [Indexed: 01/26/2023]
|
21
|
Xxxx P, Minamihata K, Tatsuke T, Lee JM, Kusakabe T, Kamiya N. Expression and Activation of Horseradish Peroxidase-Protein A/G Fusion Protein in Silkworm Larvae for Diagnostic Purposes. Biotechnol J 2018; 13:e1700624. [PMID: 29717548 DOI: 10.1002/biot.201700624] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 03/06/2018] [Indexed: 11/07/2022]
Abstract
Recombinant protein production can create artificial proteins with desired functions by introducing genetic modifications to the target proteins. Horseradish peroxidase (HRP) has been used extensively as a reporter enzyme in biotechnological applications; however, recombinant production of HRP has not been very successful, hampering the utilization of HRP with genetic modifications. A fusion protein comprising an antibody binding protein and HRP will be an ideal bio-probe for high-quality HRP-based diagnostic systems. A HRP-protein A/G fusion protein (HRP-pAG) is designed and its production in silkworm (Bombyx mori) is evaluated for the first time. HRP-pAG is expressed in a soluble apo form, and is activated successfully by incubating with hemin. The activated HRP-pAG is used directly for ELISA experiments and retains its activity over 20 days at 4 °C. Moreover, HRP-pAG is modified with biotin by the microbial transglutaminase (MTG) reaction. The biotinylated HRP-pAG is conjugated with streptavidin to form a HRP-pAG multimer and the multimeric HRP-pAG produced higher signals in the ELISA system than monomeric HRP-pAG. The successful production of recombinant HRP in silkworm will contribute to creating novel HRP-based bioconjugates as well as further functionalization of HRP by applying enzymatic post-translational modifications.
Collapse
Affiliation(s)
- Patmawati Xxxx
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan
| | - Kosuke Minamihata
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan
| | - Tsuneyuki Tatsuke
- Laboratory of Insect Genome Science, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Hakozaki 6-10-1, Higashi-ku, Fukuoka 812-8581, Japan
| | - Jae Man Lee
- Laboratory of Insect Genome Science, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Hakozaki 6-10-1, Higashi-ku, Fukuoka 812-8581, Japan
| | - Takahiro Kusakabe
- Laboratory of Insect Genome Science, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Hakozaki 6-10-1, Higashi-ku, Fukuoka 812-8581, Japan
| | - Noriho Kamiya
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan
- Division of Biotechnology, Center for Future Chemistry, Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
22
|
Huddy SM, Hitzeroth II, Meyers AE, Weber B, Rybicki EP. Transient Expression and Purification of Horseradish Peroxidase C in Nicotiana benthamiana. Int J Mol Sci 2018; 19:E115. [PMID: 29301255 PMCID: PMC5796064 DOI: 10.3390/ijms19010115] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 12/24/2017] [Accepted: 12/30/2017] [Indexed: 02/02/2023] Open
Abstract
Horseradish peroxidase (HRP) is a commercially important reagent enzyme used in molecular biology and in the diagnostic product industry. It is typically purified from the roots of the horseradish (Armoracia rusticana); however, this crop is only available seasonally, yields are variable and often low, and the product is a mixture of isoenzymes. Engineering high-level expression in transiently transformed tobacco may offer a solution to these problems. In this study, a synthetic Nicotiana benthamiana codon-adapted full-length HRP isoenzyme gene as well as C-terminally truncated and both N- and C-terminally truncated versions of the HRP C gene were synthesized, and their expression in N. benthamiana was evaluated using an Agrobacterium tumefaciens-mediated transient expression system. The influence on HRP C expression levels of co-infiltration with a silencing suppressor (NSs) construct was also evaluated. Highest HRP C levels were consistently obtained using either the full length or C-terminally truncated HRP C constructs. HRP C purification by ion exchange chromatography gave an overall yield of 54% with a Reinheitszahl value of >3 and a specific activity of 458 U/mg. The high level of HRP C production in N. benthamiana in just five days offers an alternative, viable, and scalable system for production of this commercially significant enzyme.
Collapse
Affiliation(s)
- Suzanne M Huddy
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Rondebosch 7701, South Africa.
| | - Inga I Hitzeroth
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Rondebosch 7701, South Africa.
| | - Ann E Meyers
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Rondebosch 7701, South Africa.
| | - Brandon Weber
- Aaron Klug Centre for Imaging Analysis, University of Cape Town, Rondebosch 7701, South Africa.
| | - Edward P Rybicki
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Rondebosch 7701, South Africa.
- Institute for Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa.
| |
Collapse
|
23
|
Thermostable exoshells fold and stabilize recombinant proteins. Nat Commun 2017; 8:1442. [PMID: 29129910 PMCID: PMC5682286 DOI: 10.1038/s41467-017-01585-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 09/29/2017] [Indexed: 12/04/2022] Open
Abstract
The expression and stabilization of recombinant proteins is fundamental to basic and applied biology. Here we have engineered a thermostable protein nanoparticle (tES) to improve both expression and stabilization of recombinant proteins using this technology. tES provides steric accommodation and charge complementation to green fluorescent protein (GFPuv), horseradish peroxidase (HRPc), and Renilla luciferase (rLuc), improving the yields of functional in vitro folding by ~100-fold. Encapsulated enzymes retain the ability to metabolize small-molecule substrates, presumably via four 4.5-nm pores present in the tES shell. GFPuv exhibits no spectral shifts in fluorescence compared to a nonencapsulated control. Thermolabile proteins internalized by tES are resistant to thermal, organic, chaotropic, and proteolytic denaturation and can be released from the tES assembly with mild pH titration followed by proteolysis. Improving recombinant protein expression and stabilization remains a significant challenge. Here, the authors engineer Archaeoglobus fulgidus ferritin as a thermostable exoshell to provide steric accommodation and charge complementation for recombinant proteins, which can improve yields by 100 fold.
Collapse
|
24
|
Heterologous Expression, Purification and Characterization of a Peroxidase Isolated from Lepidium draba. Protein J 2017; 36:461-471. [DOI: 10.1007/s10930-017-9741-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
25
|
Liu C, Zheng K, Xu Y, Stephen LT, Wang J, Zhao H, Yue T, Nian R, Zhang H, Xian M, Liu H. Expression and characterization of soybean seed coat peroxidase in Escherichia coli BL21(DE3). Prep Biochem Biotechnol 2017; 47:768-775. [PMID: 28644760 DOI: 10.1080/10826068.2017.1342258] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Soybean seed coat peroxidase (SBP) is a valuable enzyme having a broad variety of applications in analytical chemistry, biochemistry, and food processing. In the present study, the sscp gene (Gene ID: 548068) was optimized based on the preferred codon usage of Escherichia coli, synthesized, and expressed in E. coli BL21(DE3). SDS-PAGE and western blot analysis of this expressed protein revealed that its molecular weight is approximately 39 kDa. The effects of induction temperature, concentration of isopropyl-β-D-thiogalactoside and hemin, induction time, expression time were optimized to enhance SBP production with a maximum activity of 11.23 U/mL (8.64 U/mg total protein). Furthermore, the kinetics of enzyme-catalyzed reactions of recombinant protein was determined. When 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) was used as substrate, optimum reaction temperature and pH of the enzyme were 85°C and 5.0, respectively. The effects of metal ions on the enzymatic reaction were also further investigated. The SBP was successfully expressed in E. coli BL21(DE3) which would provide a more efficient production strategy for industrial applications of SBP.
Collapse
Affiliation(s)
- Changqing Liu
- a CAS Key Laboratory of Biobased Materials , Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences , Qingdao , China ; University of Chinese Academy of Sciences , Beijing , China
| | - Kai Zheng
- b Qilu University of Technology , Jinan , Shandong Province , P. R. China
| | - Ying Xu
- a CAS Key Laboratory of Biobased Materials , Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences , Qingdao , China ; University of Chinese Academy of Sciences , Beijing , China
| | - Lacmata Tamekou Stephen
- a CAS Key Laboratory of Biobased Materials , Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences , Qingdao , China ; University of Chinese Academy of Sciences , Beijing , China
- d Laboratory of Microbiology and Antimicrobials Substances, Department of Biochemistry , Faculty of Sciences, University of Dschang , Dschang , Cameroon
| | - Jiming Wang
- a CAS Key Laboratory of Biobased Materials , Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences , Qingdao , China ; University of Chinese Academy of Sciences , Beijing , China
| | - Hongwei Zhao
- a CAS Key Laboratory of Biobased Materials , Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences , Qingdao , China ; University of Chinese Academy of Sciences , Beijing , China
| | - Tongqing Yue
- c College of Life Science , Qingdao University , Qingdao , P.R. China
| | - Rui Nian
- a CAS Key Laboratory of Biobased Materials , Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences , Qingdao , China ; University of Chinese Academy of Sciences , Beijing , China
| | - Haibo Zhang
- a CAS Key Laboratory of Biobased Materials , Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences , Qingdao , China ; University of Chinese Academy of Sciences , Beijing , China
| | - Mo Xian
- a CAS Key Laboratory of Biobased Materials , Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences , Qingdao , China ; University of Chinese Academy of Sciences , Beijing , China
| | - Huizhou Liu
- a CAS Key Laboratory of Biobased Materials , Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences , Qingdao , China ; University of Chinese Academy of Sciences , Beijing , China
| |
Collapse
|
26
|
Gundinger T, Spadiut O. A comparative approach to recombinantly produce the plant enzyme horseradish peroxidase in Escherichia coli. J Biotechnol 2017; 248:15-24. [PMID: 28288816 PMCID: PMC5453243 DOI: 10.1016/j.jbiotec.2017.03.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 02/21/2017] [Accepted: 03/04/2017] [Indexed: 11/17/2022]
Abstract
Horseradish peroxidase (HRP) is used in various biotechnological and medical applications. Since its isolation from plant provides several disadvantages, the bacterium Escherichia coli was tested as recombinant expression host in former studies. However, neither production from refolded inclusion bodies nor active enzyme expression in the periplasm exceeded final titres of 10 mg per litre cultivation broth. Thus, the traditional way of production of HRP from plant still prevails. In this study, we revisited the recombinant production of HRP in E. coli and investigated and compared both strategies, (a) the production of HRP as inclusion bodies (IBs) and subsequent refolding and (b) the production of active HRP in the periplasm. In fact, we were able to produce HRP in E. coli either way. We obtained a refolding yield of 10% from IBs giving a final titre of 100 mg L−1 cultivation broth, and were able to produce 48 mg active HRP per litre cultivation broth in the periplasm. In terms of biochemical properties, soluble HRP showed a highly reduced catalytic activity and stability which probably results from the fusion partner DsbA used in this study. Refolded HRP showed similar substrate affinity, an 11-fold reduced catalytic efficiency and 2-fold reduced thermal stability compared to plant HRP. In conclusion, we developed a toolbox for HRP engineering and production. We propose to engineer HRP by directed evolution or semi-rational protein design, express HRP in the periplasm of E. coli allowing straight forward screening for improved variants, and finally produce these variants as IB in high amounts, which are then refolded.
Collapse
Affiliation(s)
- Thomas Gundinger
- TU Wien, Institute of Chemical, Environmental and Biological Engineering, Research Area Biochemical Engineering, Gumpendorfer Strasse 1a, 1060 Vienna, Austria
| | - Oliver Spadiut
- TU Wien, Institute of Chemical, Environmental and Biological Engineering, Research Area Biochemical Engineering, Gumpendorfer Strasse 1a, 1060 Vienna, Austria.
| |
Collapse
|
27
|
Wang N, Ren K, Jia R, Chen W, Sun R. Expression of a fungal manganese peroxidase in Escherichia coli: a comparison between the soluble and refolded enzymes. BMC Biotechnol 2016; 16:87. [PMID: 27908283 PMCID: PMC5134096 DOI: 10.1186/s12896-016-0317-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 11/23/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Manganese peroxidase (MnP) from Irpex lacteus F17 has been shown to have a strong ability to degrade recalcitrant aromatic pollutants. In this study, a recombinant MnP from I. lacteus F17 was expressed in Escherichia coli Rosetta (DE3) in the form of inclusion bodies, which were refolded to achieve an active enzyme. Further, we optimized the in vitro refolding conditions to increase the recovery yield of the recombinant protein production. Additionally, we attempted to express recombinant MnP in soluble form in E. coli, and compared its activity with that of refolded MnP. RESULTS Refolded MnP was obtained by optimizing the in vitro refolding conditions, and soluble MnP was produced in the presence of four additives, TritonX-100, Tween-80, ethanol, and glycerol, through incubation at 16 °C. Hemin and Ca2+ supplementation was crucial for the activity of the recombinant protein. Compared with refolded MnP, soluble MnP showed low catalytic efficiencies for Mn2+ and H2O2 substrates, but the two enzymes had an identical, broad range substrate specificity, and the ability to decolorize azo dyes. Furthermore, their enzymatic spectral characteristics were analysed by circular dichroism (CD), electronic absorption spectrum (UV-VIS), fluorescence and Raman spectra, indicating the differences in protein conformation between soluble and refolded MnP. Subsequently, size exclusion chromatography (SEC) and dynamic light scattering (DLS) analyses demonstrated that refolded MnP was a good monomer in solution, while soluble MnP predominantly existed in the oligomeric status. CONCLUSIONS Our results showed that two forms of recombinant MnP could be expressed in E. coli by varying the culture conditions during protein expression.
Collapse
Affiliation(s)
- Nan Wang
- School of Life Science, Anhui University, 111 Jiulong Road, Economic and Technology Development Zone, Hefei, Anhui, 230601, People's Republic of China
| | - Kai Ren
- School of Life Science, Anhui University, 111 Jiulong Road, Economic and Technology Development Zone, Hefei, Anhui, 230601, People's Republic of China
| | - Rong Jia
- School of Life Science, Anhui University, 111 Jiulong Road, Economic and Technology Development Zone, Hefei, Anhui, 230601, People's Republic of China.
| | - Wenting Chen
- School of Life Science, Anhui University, 111 Jiulong Road, Economic and Technology Development Zone, Hefei, Anhui, 230601, People's Republic of China
| | - Ruirui Sun
- School of Life Science, Anhui University, 111 Jiulong Road, Economic and Technology Development Zone, Hefei, Anhui, 230601, People's Republic of China
| |
Collapse
|
28
|
Biotechnological advances towards an enhanced peroxidase production in Pichia pastoris. J Biotechnol 2016; 233:181-9. [PMID: 27432633 DOI: 10.1016/j.jbiotec.2016.07.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 07/10/2016] [Accepted: 07/14/2016] [Indexed: 01/20/2023]
Abstract
Horseradish peroxidase (HRP) is a high-demand enzyme for applications in diagnostics, bioremediation, biocatalysis and medicine. Current HRP preparations are isolated from horseradish roots as mixtures of biochemically diverse isoenzymes. Thus, there is a strong need for a recombinant production process enabling a steady supply with enzyme preparations of consistent high quality. However, most current recombinant production systems are limited at titers in the low mg/L range. In this study, we used the well-known yeast Pichia pastoris as host for recombinant HRP production. To enhance recombinant enzyme titers we systematically evaluated engineering approaches on the secretion process, coproduction of helper proteins, and compared expression from the strong methanol-inducible PAOX1 promoter, the strong constitutive PGAP promoter, and a novel bidirectional promoter PHTX1. Ultimately, coproduction of HRP and active Hac1 under PHTX1 control yielded a recombinant HRP titer of 132mg/L after 56h of cultivation in a methanol-independent and easy-to-do bioreactor cultivation process. With regard to the many versatile applications for HRP, the establishment of a microbial host system suitable for efficient recombinant HRP production was highly overdue. The novel HRP production platform in P. pastoris presented in this study sets a new benchmark for this medically relevant enzyme.
Collapse
|
29
|
Eggenreich B, Willim M, Wurm DJ, Herwig C, Spadiut O. Production strategies for active heme-containing peroxidases from E. coli inclusion bodies - a review. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2016; 10:75-83. [PMID: 28352527 PMCID: PMC5040872 DOI: 10.1016/j.btre.2016.03.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 03/18/2016] [Accepted: 03/19/2016] [Indexed: 01/28/2023]
Abstract
Heme-containing peroxidases are frequently used in medical applications. However, these enzymes are still extracted from their native source, which leads to inadequate yields and a mixture of isoenzymes differing in glycosylation which limits subsequent enzyme applications. Thus, recombinant production of these enzymes in Escherichia coli is a reasonable alternative. Even though production yields are high, the product is frequently found as protein aggregates called inclusion bodies (IBs). These IBs have to be solubilized and laboriously refolded to obtain active enzyme. Unfortunately, refolding yields are still very low making the recombinant production of these enzymes in E. coli not competitive. Motivated by the high importance of that enzyme class, this review aims at providing a comprehensive summary of state-of-the-art strategies to obtain active peroxidases from IBs. Additionally, various refolding techniques, which have not yet been used for this enzyme class, are discussed to show alternative and potentially more efficient ways to obtain active peroxidases from E. coli.
Collapse
Affiliation(s)
- Britta Eggenreich
- Vienna University of Technology, Institute of Chemical Engineering, Research Area Biochemical Engineering, Vienna, Austria
- Christian Doppler Laboratory for Mechanistic and Physiological Methods for Improved Bioprocesses, Institute of Chemical Engineering, Vienna University of Technology, Vienna, Austria
| | - Melissa Willim
- Vienna University of Technology, Institute of Chemical Engineering, Research Area Biochemical Engineering, Vienna, Austria
| | - David Johannes Wurm
- Vienna University of Technology, Institute of Chemical Engineering, Research Area Biochemical Engineering, Vienna, Austria
| | - Christoph Herwig
- Vienna University of Technology, Institute of Chemical Engineering, Research Area Biochemical Engineering, Vienna, Austria
- Christian Doppler Laboratory for Mechanistic and Physiological Methods for Improved Bioprocesses, Institute of Chemical Engineering, Vienna University of Technology, Vienna, Austria
| | - Oliver Spadiut
- Vienna University of Technology, Institute of Chemical Engineering, Research Area Biochemical Engineering, Vienna, Austria
- Christian Doppler Laboratory for Mechanistic and Physiological Methods for Improved Bioprocesses, Institute of Chemical Engineering, Vienna University of Technology, Vienna, Austria
| |
Collapse
|
30
|
Bae SW, Eom D, Mai NL, Koo YM. Refolding of horseradish peroxidase is enhanced in presence of metal cofactors and ionic liquids. Biotechnol J 2016; 11:464-72. [PMID: 26901453 DOI: 10.1002/biot.201500142] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 01/04/2016] [Accepted: 02/19/2016] [Indexed: 11/11/2022]
Abstract
The effects of various refolding additives, including metal cofactors, organic co-solvents, and ionic liquids, on the refolding of horseradish peroxidase (HRP), a well-known hemoprotein containing four disulfide bonds and two different types of metal centers, a ferrous ion-containing heme group and two calcium atoms, which provide a stabilizing effect on protein structure and function, were investigated. Both metal cofactors (Ca(2+) and hemin) and ionic liquids have positive impact on the refolding of HRP. For instance, the HRP refolding yield remarkably increased by over 3-fold upon addition of hemin and calcium chloride to the refolding buffer as compared to that in the conventional urea-containing refolding buffer. Moreover, the addition of ionic liquids [EMIM][Cl] to the hemin and calcium cofactor-containing refolding buffer further enhanced the HRP refolding yield up to 80% as compared to 12% in conventional refolding buffer at relatively high initial protein concentration (5 mg/ml). These results indicated that refolding method utilizing metal cofactors and ionic liquids could enhance the yield and efficiency for metalloprotein.
Collapse
Affiliation(s)
- Sang-Woo Bae
- Department of Biological Engineering, Inha University, Incheon, Republic of Korea
| | - Doyoung Eom
- Department of Biological Engineering, Inha University, Incheon, Republic of Korea
| | - Ngoc Lan Mai
- Department of Biological Engineering, Inha University, Incheon, Republic of Korea.,Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Yoon-Mo Koo
- Department of Biological Engineering, Inha University, Incheon, Republic of Korea.
| |
Collapse
|
31
|
Nnamchi CI, Parkin G, Efimov I, Basran J, Kwon H, Svistunenko DA, Agirre J, Okolo BN, Moneke A, Nwanguma BC, Moody PCE, Raven EL. Structural and spectroscopic characterisation of a heme peroxidase from sorghum. J Biol Inorg Chem 2015; 21:63-70. [PMID: 26666777 PMCID: PMC4771821 DOI: 10.1007/s00775-015-1313-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 11/05/2015] [Indexed: 10/28/2022]
Abstract
A cationic class III peroxidase from Sorghum bicolor was purified to homogeneity. The enzyme contains a high-spin heme, as evidenced by UV-visible spectroscopy and EPR. Steady state oxidation of guaiacol was demonstrated and the enzyme was shown to have higher activity in the presence of calcium ions. A Fe(III)/Fe(II) reduction potential of -266 mV vs NHE was determined. Stopped-flow experiments with H2O2 showed formation of a typical peroxidase Compound I species, which converts to Compound II in the presence of calcium. A crystal structure of the enzyme is reported, the first for a sorghum peroxidase. The structure reveals an active site that is analogous to those for other class I heme peroxidase, and a substrate binding site (assigned as arising from binding of indole-3-acetic acid) at the γ-heme edge. Metal binding sites are observed in the structure on the distal (assigned as a Na(+) ion) and proximal (assigned as a Ca(2+)) sides of the heme, which is consistent with the Ca(2+)-dependence of the steady state and pre-steady state kinetics. It is probably the case that the structural integrity (and, thus, the catalytic activity) of the sorghum enzyme is dependent on metal ion incorporation at these positions.
Collapse
Affiliation(s)
| | - Gary Parkin
- Department of Chemistry, University of Leicester, University Road, Leicester, LE1 7RH, UK
| | - Igor Efimov
- Department of Chemistry, University of Leicester, University Road, Leicester, LE1 7RH, UK
| | - Jaswir Basran
- Department of Molecular and Cell Biology, Henry Wellcome Laboratory for Structural Biology, University of Leicester, Lancaster Road, Leicester, LE1 9HN, UK
| | - Hanna Kwon
- Department of Molecular and Cell Biology, Henry Wellcome Laboratory for Structural Biology, University of Leicester, Lancaster Road, Leicester, LE1 9HN, UK
| | - Dimitri A Svistunenko
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
| | - Jon Agirre
- York Structural Biology Laboratory, Department of Chemistry, The University of York, Heslington, York, YO10 5DD, UK
| | | | - Anene Moneke
- Department of Microbiology, University of Nigeria, Nsukka, Nigeria
| | | | - Peter C E Moody
- Department of Molecular and Cell Biology, Henry Wellcome Laboratory for Structural Biology, University of Leicester, Lancaster Road, Leicester, LE1 9HN, UK
| | - Emma L Raven
- Department of Chemistry, University of Leicester, University Road, Leicester, LE1 7RH, UK.
| |
Collapse
|
32
|
Olloqui-Sariego JL, Zakharova GS, Poloznikov AA, Calvente JJ, Hushpulian DM, Gorton L, Andreu R. Interprotein Coupling Enhances the Electrocatalytic Efficiency of Tobacco Peroxidase Immobilized at a Graphite Electrode. Anal Chem 2015; 87:10807-14. [PMID: 26437673 DOI: 10.1021/acs.analchem.5b01710] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Covalent immobilization of enzymes at electrodes via amide bond formation is usually carried out by a two-step protocol, in which surface carboxylic groups are first activated with the corresponding cross-coupling reagents and then reacted with protein amine groups. Herein, it is shown that a modification of the above protocol, involving the simultaneous incubation of tobacco peroxidase and the pyrolytic graphite electrode with the cross-coupling reagents produces higher and more stable electrocatalytic currents than those obtained with either physically adsorbed enzymes or covalently immobilized enzymes according to the usual immobilization protocol. The remarkably improved electrocatalytic properties of the present peroxidase biosensor that operates in the 0.3 V ≤ E ≤ 0.8 V (vs SHE) potential range can be attributed to both an efficient electronic coupling between tobacco peroxidase and graphite and to the formation of intra- and intermolecular amide bonds that stabilize the protein structure and improve the percentage of anchoring groups that provide an adequate orientation for electron exchange with the electrode. The optimized tobacco peroxidase sensor exhibits a working concentration range of 10-900 μM, a sensitivity of 0.08 A M(-1) cm(-2) (RSD 0.05), a detection limit of 2 μM (RSD 0.09), and a good long-term stability, as long as it operates at low temperature. These parameter values are among the best reported so far for a peroxidase biosensor operating under simple direct electron transfer conditions.
Collapse
Affiliation(s)
- José Luis Olloqui-Sariego
- Department of Physical Chemistry, University of Sevilla , Profesor García González 1, 41012, Sevilla, Spain
| | - Galina S Zakharova
- A.N. Bach Institute of Biochemistry, Russian Academy of Sciences , Leninsky Prospect 33/2, Moscow, 119071, Russia
| | - Andrey A Poloznikov
- Department of Chemistry, Lomonosov Moscow State University , Vorob'evy Gory 1, Moscow, 119991, Russia
| | - Juan José Calvente
- Department of Physical Chemistry, University of Sevilla , Profesor García González 1, 41012, Sevilla, Spain
| | - Dmitry M Hushpulian
- Department of Chemistry, Lomonosov Moscow State University , Vorob'evy Gory 1, Moscow, 119991, Russia
| | - Lo Gorton
- Department of Biochemistry and Structural Biology, University of Lund, Kemicentrum , Box 118, 221 00, Lund, Sweden
| | - Rafael Andreu
- Department of Physical Chemistry, University of Sevilla , Profesor García González 1, 41012, Sevilla, Spain
| |
Collapse
|
33
|
Bahrami H, Zahedi M. Comparison of the effects of sucrose molecules on alcohol dehydrogenase folding with those of sorbitol molecules on alcohol dehydrogenase folding using molecular dynamics simulation. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2015. [DOI: 10.1007/s13738-015-0671-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
34
|
Ultra-high-throughput screening of an in vitro-synthesized horseradish peroxidase displayed on microbeads using cell sorter. PLoS One 2015; 10:e0127479. [PMID: 25993095 PMCID: PMC4439038 DOI: 10.1371/journal.pone.0127479] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 04/14/2015] [Indexed: 11/30/2022] Open
Abstract
The C1a isoenzyme of horseradish peroxidase (HRP) is an industrially important heme-containing enzyme that utilizes hydrogen peroxide to oxidize a wide variety of inorganic and organic compounds for practical applications, including synthesis of fine chemicals, medical diagnostics, and bioremediation. To develop a ultra-high-throughput screening system for HRP, we successfully produced active HRP in an Escherichia coli cell-free protein synthesis system, by adding disulfide bond isomerase DsbC and optimizing the concentrations of hemin and calcium ions and the temperature. The biosynthesized HRP was fused with a single-chain Cro (scCro) DNA-binding tag at its N-terminal and C-terminal sites. The addition of the scCro-tag at both ends increased the solubility of the protein. Next, HRP and its fusion proteins were successfully synthesized in a water droplet emulsion by using hexadecane as the oil phase and SunSoft No. 818SK as the surfactant. HRP fusion proteins were displayed on microbeads attached with double-stranded DNA (containing the scCro binding sequence) via scCro-DNA interactions. The activities of the immobilized HRP fusion proteins were detected with a tyramide-based fluorogenic assay using flow cytometry. Moreover, a model microbead library containing wild type hrp (WT) and inactive mutant (MUT) genes was screened using fluorescence-activated cell-sorting, thus efficiently enriching the WT gene from the 1:100 (WT:MUT) library. The technique described here could serve as a novel platform for the ultra-high-throughput discovery of more useful HRP mutants and other heme-containing peroxidases.
Collapse
|
35
|
Zakharova GS, Poloznikov AA, Chubar TA, Gazaryan IG, Tishkov VI. High-yield reactivation of anionic tobacco peroxidase overexpressed in Escherichia coli. Protein Expr Purif 2015; 113:85-93. [PMID: 25986322 DOI: 10.1016/j.pep.2015.05.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 05/08/2015] [Accepted: 05/10/2015] [Indexed: 10/23/2022]
Abstract
Anionic tobacco peroxidase (TOP) is extremely active in chemiluminescence reaction of luminol oxidation without addition of enhancers and more stable than horseradish peroxidase under antibody conjugation conditions. In addition, recombinant TOP (rTOP) produced in Escherichia coli is known to be a perfect direct electron transfer catalyst on electrodes of various origin. These features make the task of development of a high-yield reactivation protocol for rTOP practically important. Previous attempts to reactivate the enzyme from E. coli inclusion bodies were successful, but the reported reactivation yield was only 14%. In this work, we thoroughly screened the refolding conditions for dilution protocol and compared it with gel-filtration chromatography. The impressive reactivation yield in the dilution protocol (85%) was achieved for 8 μg/mL solubilized rTOP protein and the refolding medium containing 0.3 mM oxidized glutathione, 0.05 mM dithiothreitol, 5 mM CaCl2, 5% glycerol in 50 mM Tris-HCl buffer, pH 9.6, with 1 μM hemin added at the 24th hour of incubation. A practically important discovery was a 30-40% increase in the reactivation yield upon delayed addition of hemin. The reactivation yield achieved is one of the highest reported in the literature on protein refolding by dilution. The final yield of purified active non-glycosylated rTOP was ca. 60 mg per L of E. coli culture, close to the yield reported before for tomato and tobacco plants overexpressing glycosylated TOP (60 mg/kg biomass) and much higher than for the previously reported refolding protocol (2.6 mg per L of E. coli culture).
Collapse
Affiliation(s)
- G S Zakharova
- A.N. Bach Institute of Biochemistry, RAS, 119071 Moscow, Russia; Innovations and High Technologies MSU Ltd, 109559 Moscow, Russia.
| | - A A Poloznikov
- Innovations and High Technologies MSU Ltd, 109559 Moscow, Russia; M.V. Lomonosov Moscow State University, Chemistry Faculty, Department of Chemical Enzymology, 119899 Moscow, Russia
| | - T A Chubar
- M.V. Lomonosov Moscow State University, Chemistry Faculty, Department of Chemical Enzymology, 119899 Moscow, Russia
| | - I G Gazaryan
- M.V. Lomonosov Moscow State University, Chemistry Faculty, Department of Chemical Enzymology, 119899 Moscow, Russia
| | - V I Tishkov
- A.N. Bach Institute of Biochemistry, RAS, 119071 Moscow, Russia; Innovations and High Technologies MSU Ltd, 109559 Moscow, Russia; M.V. Lomonosov Moscow State University, Chemistry Faculty, Department of Chemical Enzymology, 119899 Moscow, Russia
| |
Collapse
|
36
|
Grigorenko VG, Andreeva IP, Rubtsova MY, Egorov AM. Recombinant horseradish peroxidase: Production and analytical applications. BIOCHEMISTRY (MOSCOW) 2015; 80:408-16. [DOI: 10.1134/s0006297915040033] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
37
|
Gmeiner C, Spadiut O. Effects of different media supplements on the production of an active recombinant plant peroxidase in a Pichia pastoris Δoch1 strain. Bioengineered 2015; 6:175-8. [PMID: 25837321 PMCID: PMC4601512 DOI: 10.1080/21655979.2015.1036208] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Recombinant protein production in microorganisms is one of the most studied areas of research in biotechnology today. In this respect the yeast Pichia pastoris is an important microbial production host due to its capability of secreting the target protein and performing posttranslational modifications. In a recent study, we described the development of a robust bioprocess for a glyco-engineered recombinant P. pastoris strain where the native α-1,6-mannosyltransfrease OCH1 was knocked out (Δoch1 strain). This strain produced the glycosylated enzyme horseradish peroxidase (HRP) with more homogeneous and shorter surface glycans than the respective benchmark strain. However, the recombinant Δoch1 strain was physiologically impaired and thus hard to cultivate. We faced cell cluster formation, cell lysis and consequent intensive foam formation. Thus, we investigated the effects of the 3 process parameters temperature, pH and dissolved oxygen concentration on (1) cell physiology, (2) cell morphology, (3) cell lysis, (4) productivity and (5) product purity in a multivariate manner. However, not only process parameters might influence these characteristics, but also media supplements might have an impact. Here, we describe the effects of different heme-precursors as well as of a protease-inhibitor cocktail on the production of active HRP in therecombinant P. pastoris Δoch1strain.
Collapse
Affiliation(s)
- Christoph Gmeiner
- a Vienna University of Technology ; Institute of Chemical Engineering; Research Area; Biochemical Engineering ; Vienna , Austria
| | | |
Collapse
|
38
|
Krainer FW, Glieder A. An updated view on horseradish peroxidases: recombinant production and biotechnological applications. Appl Microbiol Biotechnol 2015; 99:1611-25. [PMID: 25575885 PMCID: PMC4322221 DOI: 10.1007/s00253-014-6346-7] [Citation(s) in RCA: 131] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 12/19/2014] [Accepted: 12/21/2014] [Indexed: 11/28/2022]
Abstract
Horseradish peroxidase has been the subject of scientific research for centuries. It has been used exhaustively as reporter enzyme in diagnostics and histochemistry and still plays a major role in these applications. Numerous studies have been conducted on the role of horseradish peroxidase in the plant and its catalytic mechanism. However, little progress has been made in its recombinant production. Until now, commercial preparations of horseradish peroxidase are still isolated from plant roots. These preparations are commonly mixtures of various isoenzymes of which only a small fraction has been described so far. The composition of isoenzymes in these mixed isolates is subjected to uncontrollable environmental conditions. Nowadays, horseradish peroxidase regains interest due to its broad applicability in the fields of medicine, life sciences, and biotechnology in cancer therapy, biosensor systems, bioremediation, and biocatalysis. These medically and commercially relevant applications, the recent discovery of new natural isoenzymes with different biochemical properties, as well as the challenges in recombinant production render this enzyme particularly interesting for future biotechnological solutions. Therefore, we reviewed previous studies as well as current developments with biotechnological emphasis on new applications and the major remaining biotechnological challenge—the efficient recombinant production of horseradish peroxidase enzymes.
Collapse
Affiliation(s)
- Florian W Krainer
- Institute of Molecular Biotechnology, NAWI Graz, Graz University of Technology, Petersgasse 14, 8010, Graz, Austria,
| | | |
Collapse
|
39
|
Pandey VP, Dwivedi UN. A ripening associated peroxidase from papaya having a role in defense and lignification: Heterologous expression and in-silico and in-vitro experimental validation. Gene 2015; 555:438-47. [DOI: 10.1016/j.gene.2014.11.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 10/25/2014] [Accepted: 11/08/2014] [Indexed: 11/16/2022]
|
40
|
Shigeto J, Nagano M, Fujita K, Tsutsumi Y. Catalytic profile of Arabidopsis peroxidases, AtPrx-2, 25 and 71, contributing to stem lignification. PLoS One 2014; 9:e105332. [PMID: 25137070 PMCID: PMC4138150 DOI: 10.1371/journal.pone.0105332] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 07/21/2014] [Indexed: 01/01/2023] Open
Abstract
Lignins are aromatic heteropolymers that arise from oxidative coupling of lignin precursors, including lignin monomers (p-coumaryl, coniferyl, and sinapyl alcohols), oligomers, and polymers. Whereas plant peroxidases have been shown to catalyze oxidative coupling of monolignols, the oxidation activity of well-studied plant peroxidases, such as horseradish peroxidase C (HRP-C) and AtPrx53, are quite low for sinapyl alcohol. This characteristic difference has led to controversy regarding the oxidation mechanism of sinapyl alcohol and lignin oligomers and polymers by plant peroxidases. The present study explored the oxidation activities of three plant peroxidases, AtPrx2, AtPrx25, and AtPrx71, which have been already shown to be involved in lignification in the Arabidopsis stem. Recombinant proteins of these peroxidases (rAtPrxs) were produced in Escherichia coli as inclusion bodies and successfully refolded to yield their active forms. rAtPrx2, rAtPrx25, and rAtPrx71 were found to oxidize two syringyl compounds (2,6-dimethoxyphenol and syringaldazine), which were employed here as model monolignol compounds, with higher specific activities than HRP-C and rAtPrx53. Interestingly, rAtPrx2 and rAtPrx71 oxidized syringyl compounds more efficiently than guaiacol. Moreover, assays with ferrocytochrome c as a substrate showed that AtPrx2, AtPrx25, and AtPrx71 possessed the ability to oxidize large molecules. This characteristic may originate in a protein radical. These results suggest that the plant peroxidases responsible for lignin polymerization are able to directly oxidize all lignin precursors.
Collapse
Affiliation(s)
- Jun Shigeto
- Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Mariko Nagano
- Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Koki Fujita
- Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Yuji Tsutsumi
- Faculty of Agriculture, Kyushu University, Fukuoka, Japan
- * E-mail:
| |
Collapse
|
41
|
Heterologous expression and physicochemical characterization of a fungal dye-decolorizing peroxidase from Auricularia auricula-judae. Protein Expr Purif 2014; 103:28-37. [PMID: 25153532 DOI: 10.1016/j.pep.2014.08.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 08/07/2014] [Accepted: 08/10/2014] [Indexed: 11/21/2022]
Abstract
An efficient heterologous expression system for Auricularia auricula-judae dye-decolorizing peroxidase (DyP) has been constructed. DNA coding for the mature protein sequence was cloned into the pET23a vector and expressed in Escherichia coli BL21(DE3)pLysS. Recombinant DyP was obtained in high yield as inclusion bodies, and different parameters for its in vitro activation were optimized with a refolding yield of ∼8.5% of the E. coli-expressed DyP. Then, a single chromatographic step allowed the recovery of 17% of the refolded DyP as pure enzyme (1.5mg per liter of culture). The thermal stabilities of wild DyP from A. auricula-judae and recombinant DyP from E. coli expression were similar up to 60°C, but the former was more stable in the 62-70°C range. Stabilities against pH and H2O2 were also measured, and a remarkably high stability at extreme pH values (from pH 2 to 12) was observed. The kinetic constants of recombinant DyP for the oxidation of different substrates were determined and, when compared with those of wild DyP, no important differences were ascertained. Both enzymes showed high affinity for Reactive Blue 19 (anthraquinone dye), Reactive Black 5 (azo dye), 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) and 2,6-dimethoxyphenol, with similar acidic pH optima and oxidative stabilities. Oxidation of veratryl alcohol and a nonphenolic lignin model dimer were confirmed, although as minor enzymatic activities. Interestingly, two sets of kinetic constants could be obtained for the oxidation of Reactive Blue 19 and other substrates, suggesting the existence of more than one oxidation site in this new peroxidase family.
Collapse
|
42
|
Zhou XM, Entwistle A, Zhang H, Jackson AP, Mason TO, Shimanovich U, Knowles TPJ, Smith AT, Sawyer EB, Perrett S. Self-Assembly of Amyloid Fibrils That Display Active Enzymes. ChemCatChem 2014; 6:1961-1968. [PMID: 25937845 PMCID: PMC4413355 DOI: 10.1002/cctc.201402125] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Indexed: 12/04/2022]
Abstract
Enzyme immobilization is an important strategy to enhance the stability and recoverability of enzymes and to facilitate the separation of enzymes from reaction products. However, enzyme purification followed by separate chemical steps to allow immobilization on a solid support reduces the efficiency and yield of the active enzyme. Here we describe polypeptide constructs that self-assemble spontaneously into nanofibrils with fused active enzyme subunits displayed on the amyloid fibril surface. We measured the steady-state kinetic parameters for the appended enzymes in situ within fibrils and compare these with the identical protein constructs in solution. Finally, we demonstrated that the fibrils can be recycled and reused in functional assays both in conventional batch processes and in a continuous-flow microreactor.
Collapse
Affiliation(s)
- Xiao-Ming Zhou
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences15 Datun Road, Chaoyang District, Beijing 100101 (China)
- Department of Chemistry, University of CambridgeLensfield Road, Cambridge CB2 1EW (UK)
- University of the Chinese Academy of Sciences19 A Yuquanlu, Shijingshan District, Beijing 100049 (China)
| | - Aiman Entwistle
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences15 Datun Road, Chaoyang District, Beijing 100101 (China)
| | - Hong Zhang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences15 Datun Road, Chaoyang District, Beijing 100101 (China)
| | - Antony P Jackson
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences15 Datun Road, Chaoyang District, Beijing 100101 (China)
- Department of Biochemistry, University of CambridgeTennis Court Road, Cambridge CB2 1QW (UK)
| | - Thomas O Mason
- Department of Chemistry, University of CambridgeLensfield Road, Cambridge CB2 1EW (UK)
| | - Ulyana Shimanovich
- Department of Chemistry, University of CambridgeLensfield Road, Cambridge CB2 1EW (UK)
| | - Tuomas P J Knowles
- Department of Chemistry, University of CambridgeLensfield Road, Cambridge CB2 1EW (UK)
| | - Andrew T Smith
- School of Applied Sciences, RMIT UniversityLa Trobe Street, Melbourne, Victoria 3000 (Australia)
| | - Elizabeth B Sawyer
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences15 Datun Road, Chaoyang District, Beijing 100101 (China)
| | - Sarah Perrett
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences15 Datun Road, Chaoyang District, Beijing 100101 (China)
- Department of Chemistry, University of CambridgeLensfield Road, Cambridge CB2 1EW (UK)
| |
Collapse
|
43
|
Utashima Y, Matsumoto H, Masaki K, Iefuji H. Heterologous production of horseradish peroxidase C1a by the basidiomycete yeast Cryptococcus sp. S-2 using codon and signal optimizations. Appl Microbiol Biotechnol 2014; 98:7893-900. [DOI: 10.1007/s00253-014-5856-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 05/12/2014] [Accepted: 05/19/2014] [Indexed: 10/25/2022]
|
44
|
Capone S, Pletzenauer R, Maresch D, Metzger K, Altmann F, Herwig C, Spadiut O. Glyco-variant library of the versatile enzyme horseradish peroxidase. Glycobiology 2014; 24:852-63. [PMID: 24859724 PMCID: PMC4116046 DOI: 10.1093/glycob/cwu047] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
When the glycosylated plant enzyme horseradish peroxidase (HRP) is conjugated to specific antibodies, it presents a powerful tool for medical applications. The isolation and purification of this enzyme from plant is difficult and only gives low yields. However, HRP recombinantly produced in the yeast Pichia pastoris experiences hyperglycosylation, which impedes the use of this enzyme in medicine. Enzymatic and chemical deglycosylation are cost intensive and cumbersome and hitherto existing P. pastoris strain engineering approaches with the goal to avoid hyperglycosylation only resulted in physiologically impaired yeast strains not useful for protein production processes. Thus, the last resort to obtain less glycosylated recombinant HRP from P. pastoris is to engineer the enzyme itself. In the present study, we mutated all the eight N-glycosylation sites of HRP C1A. After determination of the most suitable mutation at each N-glycosylation site, we physiologically characterized the respective P. pastoris strains in the bioreactor and purified the produced HRP C1A glyco-variants. The biochemical characterization of the enzyme variants revealed great differences in catalytic activity and stability and allowed the combination of the most promising mutations to potentially give an unglycosylated, active HRP C1A variant useful for medical applications. Interestingly, site-directed mutagenesis proved to be a valuable strategy not only to reduce the overall glycan content of the recombinant enzyme but also to improve catalytic activity and stability. In the present study, we performed an integrated bioprocess covering strain generation, bioreactor cultivations, downstream processing and product characterization and present the biochemical data of the HRP glyco-library.
Collapse
Affiliation(s)
- Simona Capone
- Institute of Chemical Engineering, Research Area Biochemical Engineering, Vienna University of Technology, Vienna 1060, Austria
| | - Robert Pletzenauer
- Institute of Chemical Engineering, Research Area Biochemical Engineering, Vienna University of Technology, Vienna 1060, Austria
| | - Daniel Maresch
- Department of Chemistry, University of Natural Resources and Life Sciences, Vienna 1190, Austria
| | - Karl Metzger
- Institute of Chemical Engineering, Research Area Biochemical Engineering, Vienna University of Technology, Vienna 1060, Austria
| | - Friedrich Altmann
- Department of Chemistry, University of Natural Resources and Life Sciences, Vienna 1190, Austria
| | - Christoph Herwig
- Institute of Chemical Engineering, Research Area Biochemical Engineering, Vienna University of Technology, Vienna 1060, Austria
| | - Oliver Spadiut
- Institute of Chemical Engineering, Research Area Biochemical Engineering, Vienna University of Technology, Vienna 1060, Austria
| |
Collapse
|
45
|
Molecular Cloning and Partial Characterization of a Peroxidase Gene Expressed in the Roots ofPortulaca oleraceacv., One Potentially Useful in the Remediation of Phenolic Pollutants. Biosci Biotechnol Biochem 2014; 75:882-90. [DOI: 10.1271/bbb.100823] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
46
|
Gafrikova M, Galova E, Sevcovicova A, Imreova P, Mucaji P, Miadokova E. Extract from Armoracia rusticana and its flavonoid components protect human lymphocytes against oxidative damage induced by hydrogen peroxide. Molecules 2014; 19:3160-72. [PMID: 24637991 PMCID: PMC6271614 DOI: 10.3390/molecules19033160] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 02/27/2014] [Accepted: 03/04/2014] [Indexed: 11/16/2022] Open
Abstract
DNA damage prevention is an important mechanism involved in cancer prevention by dietary compounds. Armoracia rusticana is cultivated mainly for its roots that are used in the human diet as a pungent spice. The roots represent rich sources of biologically active phytocompounds, which are beneficial for humans. In this study we investigated the modulation of H₂O₂ genotoxicity using the A. rusticana root aqueous extract (AE) and two flavonoids (kaempferol or quercetin). Human lymphocytes pre-treated with AE, kaempferol and quercetin were challenged with H₂O₂ and the DNA damage was assessed by the comet assay. At first we assessed a non-genotoxic concentration of AE and flavonoids, respectively. In lymphocytes challenged with H₂O₂ we proved that the 0.0025 mg·mL⁻¹ concentration of AE protected human DNA. It significantly reduced H₂O₂-induced oxidative damage (from 78% to 35.75%). Similarly, a non-genotoxic concentration of kaempferol (5 μg·mL⁻¹) significantly diminished oxidative DNA damage (from 83.3% to 19.4%), and the same concentration of quercetin also reduced the genotoxic effect of H₂O₂ (from 83.3% to 16.2%). We conclude that AE, kaempferol and quercetin probably act as antimutagens. The molecular mechanisms underlying their antimutagenic activity might be explained by their antioxidant properties.
Collapse
Affiliation(s)
- Michala Gafrikova
- Department of Genetics, Faculty of Natural Sciences, Comenius University, Mlynská dolina, Bratislava 842 15, Slovakia
| | - Eliska Galova
- Department of Genetics, Faculty of Natural Sciences, Comenius University, Mlynská dolina, Bratislava 842 15, Slovakia
| | - Andrea Sevcovicova
- Department of Genetics, Faculty of Natural Sciences, Comenius University, Mlynská dolina, Bratislava 842 15, Slovakia
| | - Petronela Imreova
- Department of Genetics, Faculty of Natural Sciences, Comenius University, Mlynská dolina, Bratislava 842 15, Slovakia
| | - Pavel Mucaji
- Department of Pharmacognosy and Botany, Faculty of Pharmacy, Comenius University, Odbojárov 10, Bratislava 832 32, Slovakia.
| | - Eva Miadokova
- Department of Genetics, Faculty of Natural Sciences, Comenius University, Mlynská dolina, Bratislava 842 15, Slovakia
| |
Collapse
|
47
|
Krainer FW, Pletzenauer R, Rossetti L, Herwig C, Glieder A, Spadiut O. Purification and basic biochemical characterization of 19 recombinant plant peroxidase isoenzymes produced in Pichia pastoris. Protein Expr Purif 2013; 95:104-12. [PMID: 24342173 PMCID: PMC3989067 DOI: 10.1016/j.pep.2013.12.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 11/27/2013] [Accepted: 12/06/2013] [Indexed: 01/29/2023]
Abstract
A novel 2-step purification for recombinant HRP from P. pastrois was developed. Both purification steps are negative chromatography steps. The amount of N-glycosylation sites and the success in purification correlate. HRP isoenzymes differ significantly in substrate specificity and catalytic activity.
The plant enzyme horseradish peroxidase (HRP) is used in several important industrial and medical applications, of which especially biosensors and diagnostic kits describe an emerging field. Although there is an increasing demand for high amounts of pure enzyme preparations, HRP is still isolated from the plant as a mixture of different isoenzymes with different biochemical properties. Based on a recent next generation sequencing approach of the horseradish transcriptome, we produced 19 individual HRP isoenzymes recombinantly in the yeast Pichia pastoris. After optimizing a previously reported 2-step purification strategy for the recombinant isoenzyme HRP C1A by substituting an unfavorable size exclusion chromatography step with an anion exchange step using a monolithic column, we purified the 19 HRP isoenzymes with varying success. Subsequent basic biochemical characterization revealed differences in catalytic activity, substrate specificity and thermal stability of the purified HRP preparations. The preparations of the isoenzymes HRP A2A and HRP A2B were found to be highly interesting candidates for future applications in diagnostic kits with increased sensitivity.
Collapse
Affiliation(s)
- Florian W Krainer
- Graz University of Technology, Institute of Molecular Biotechnology, Graz, Austria
| | - Robert Pletzenauer
- Vienna University of Technology, Institute of Chemical Engineering, Research Area Biochemical Engineering, Vienna, Austria
| | - Laura Rossetti
- Vienna University of Technology, Institute of Chemical Engineering, Research Area Biochemical Engineering, Vienna, Austria
| | - Christoph Herwig
- Vienna University of Technology, Institute of Chemical Engineering, Research Area Biochemical Engineering, Vienna, Austria
| | - Anton Glieder
- Austrian Centre of Industrial Biotechnology (ACIB, GmbH), Graz, Austria
| | - Oliver Spadiut
- Vienna University of Technology, Institute of Chemical Engineering, Research Area Biochemical Engineering, Vienna, Austria.
| |
Collapse
|
48
|
The role of coproporphyrinogen III oxidase and ferrochelatase genes in heme biosynthesis and regulation in Aspergillus niger. Appl Microbiol Biotechnol 2013; 97:9773-85. [PMID: 24113826 DOI: 10.1007/s00253-013-5274-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 09/02/2013] [Accepted: 09/03/2013] [Indexed: 10/26/2022]
Abstract
Heme is a suggested limiting factor in peroxidase production by Aspergillus spp., which are well-known suitable hosts for heterologous protein production. In this study, the role of genes coding for coproporphyrinogen III oxidase (hemF) and ferrochelatase (hemH) was analyzed by means of deletion and overexpression to obtain more insight in fungal heme biosynthesis and regulation. These enzymes represent steps in the heme biosynthetic pathway downstream of the siroheme branch and are suggested to play a role in regulation of the pathway. Based on genome mining, both enzymes deviate in cellular localization and protein domain structure from their Saccharomyces cerevisiae counterparts. The lethal phenotype of deletion of hemF or hemH could be remediated by heme supplementation confirming that Aspergillus niger is capable of hemin uptake. Nevertheless, both gene deletion mutants showed an extremely impaired growth even with hemin supplementation which could be slightly improved by media modifications and the use of hemoglobin as heme source. The hyphae of the mutant strains displayed pinkish coloration and red autofluorescence under UV indicative of cellular porphyrin accumulation. HPLC analysis confirmed accumulation of specific porphyrins, thereby confirming the function of the two proteins in heme biosynthesis. Overexpression of hemH, but not hemF or the aminolevulinic acid synthase encoding hemA, modestly increased the cellular heme content, which was apparently insufficient to increase activity of endogenous peroxidase and cytochrome P450 enzyme activities. Overexpression of all three genes increased the cellular accumulation of porphyrin intermediates suggesting regulatory mechanisms operating in the final steps of the fungal heme biosynthesis pathway.
Collapse
|
49
|
Spadiut O, Herwig C. Production and purification of the multifunctional enzyme horseradish peroxidase. PHARMACEUTICAL BIOPROCESSING 2013; 1:283-295. [PMID: 24683473 PMCID: PMC3968938 DOI: 10.4155/pbp.13.23] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The oxidoreductase horseradish peroxidase (HRP) is used in numerous industrial and medical applications. In this review, we briefly describe this well-studied enzyme and focus on its promising use in targeted cancer treatment. In combination with a plant hormone, HRP can be used in specific enzyme-prodrug therapies. Despite this outstanding application, HRP has not found its way as a biopharmaceutical into targeted cancer therapy yet. The reasons therefore lie in the present low-yield production and cumbersome purification of this enzyme from its natural source. However, surface glycosylation renders the recombinant production of HRP difficult. Here, we compare different production hosts for HRP and summarize currently used production and purification strategies for this enzyme. We further present our own strategy of glycoengineering this powerful enzyme to allow recombinant high-yield production in Pichia pastoris and subsequent simple downstream processing.
Collapse
Affiliation(s)
- Oliver Spadiut
- Vienna University of Technology, Institute of Chemical Engineering, Research Area Biochemical Engineering, Gumpendorfer Strasse 1a, A-1060 Vienna, Austria
| | - Christoph Herwig
- Vienna University of Technology, Institute of Chemical Engineering, Research Area Biochemical Engineering, Gumpendorfer Strasse 1a, A-1060 Vienna, Austria
| |
Collapse
|
50
|
Li J, Zhang Y, Chen H, Liu Y, Yang Y. Purification and characterization of recombinant Bacillus subtilis 168 catalase using a basic polypeptide from ribosomal protein L2. Biochem Eng J 2013. [DOI: 10.1016/j.bej.2013.01.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|