1
|
Simonetti SO, Kaufman TS, Larghi EL. Conjugation of Carbohydrates with Quinolines: A Powerful Synthetic Tool. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Sebastián O. Simonetti
- Instituto de Química Rosario: Instituto de Quimica Rosario Química Orgánica Suipacha 531 S2002LRK Rosario ARGENTINA
| | - Teodoro S. Kaufman
- Instituto de Química Rosario: Instituto de Quimica Rosario Química Orgánica Suipacha 531 S2002LRK Rosario ARGENTINA
| | | |
Collapse
|
2
|
Ahn SJ, Marygold SJ. The UDP-Glycosyltransferase Family in Drosophila melanogaster: Nomenclature Update, Gene Expression and Phylogenetic Analysis. Front Physiol 2021; 12:648481. [PMID: 33815151 PMCID: PMC8010143 DOI: 10.3389/fphys.2021.648481] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 02/22/2021] [Indexed: 12/15/2022] Open
Abstract
UDP-glycosyltransferases (UGTs) are important conjugation enzymes found in all kingdoms of life, catalyzing a sugar conjugation with small lipophilic compounds and playing a crucial role in detoxification and homeostasis. The UGT gene family is defined by a signature motif in the C-terminal domain where the uridine diphosphate (UDP)-sugar donor binds. UGTs have been identified in a number of insect genomes over the last decade and much progress has been achieved in characterizing their expression patterns and molecular functions. Here, we present an update of the complete repertoire of UGT genes in Drosophila melanogaster and provide a brief overview of the latest research in this model insect. A total of 35 UGT genes are found in the D. melanogaster genome, localized to chromosomes 2 and 3 with a high degree of gene duplications on the chromosome arm 3R. All D. melanogaster UGT genes have now been named in FlyBase according to the unified UGT nomenclature guidelines. A phylogenetic analysis of UGT genes shows lineage-specific gene duplications. Analysis of anatomical and induced gene expression patterns demonstrate that some UGT genes are differentially expressed in various tissues or after environmental treatments. Extended searches of UGT orthologs from 18 additional Drosophila species reveal a diversity of UGT gene numbers and composition. The roles of Drosophila UGTs identified to date are briefly reviewed, and include xenobiotic metabolism, nicotine resistance, olfaction, cold tolerance, sclerotization, pigmentation, and immunity. Together, the updated genomic information and research overview provided herein will aid further research in this developing field.
Collapse
Affiliation(s)
- Seung-Joon Ahn
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Starkville, MS, United States
| | - Steven J Marygold
- FlyBase, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
3
|
Watkins OC, Sharpe ML, Perry NB, Krause KL. New Zealand glowworm (Arachnocampa luminosa) bioluminescence is produced by a firefly-like luciferase but an entirely new luciferin. Sci Rep 2018; 8:3278. [PMID: 29459729 PMCID: PMC5818473 DOI: 10.1038/s41598-018-21298-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 02/01/2018] [Indexed: 01/07/2023] Open
Abstract
The New Zealand glowworm, Arachnocampa luminosa, is well-known for displays of blue-green bioluminescence, but details of its bioluminescent chemistry have been elusive. The glowworm is evolutionarily distant from other bioluminescent creatures studied in detail, including the firefly. We have isolated and characterised the molecular components of the glowworm luciferase-luciferin system using chromatography, mass spectrometry and 1H NMR spectroscopy. The purified luciferase enzyme is in the same protein family as firefly luciferase (31% sequence identity). However, the luciferin substrate of this enzyme is produced from xanthurenic acid and tyrosine, and is entirely different to that of the firefly and known luciferins of other glowing creatures. A candidate luciferin structure is proposed, which needs to be confirmed by chemical synthesis and bioluminescence assays. These findings show that luciferases can evolve independently from the same family of enzymes to produce light using structurally different luciferins.
Collapse
Affiliation(s)
- Oliver C Watkins
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
- New Zealand Institute for Plant and Food Research Ltd., Department of Chemistry, University of Otago, Dunedin, New Zealand
| | - Miriam L Sharpe
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Nigel B Perry
- New Zealand Institute for Plant and Food Research Ltd., Department of Chemistry, University of Otago, Dunedin, New Zealand.
| | - Kurt L Krause
- Department of Biochemistry, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
4
|
Kimmel R, Kafka S, Kosmrlj J. Selective formation of glycosidic linkages of N-unsubstituted 4-hydroxyquinolin-2-(1H)-ones. Carbohydr Res 2010; 345:768-79. [PMID: 20206337 DOI: 10.1016/j.carres.2010.01.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Revised: 01/25/2010] [Accepted: 01/29/2010] [Indexed: 11/16/2022]
Abstract
A comparative study for selective glucosylation of N-unsubstituted 4-hydroxyquinolin-2(1H)-ones into 4-(tetra-O-acetyl-beta-D-glucopyranosyloxy)quinolin-2(1H)-ones is reported. Four glycosyl donors including tetra-O-acetyl-alpha-D-glucopyranosyl bromide, beta-D-glucose pentaacetate, glucose tetraacetate and tetra-O-acetyl-alpha-D-glucopyranosyl trichloroacetimidate were tested, along with different promoters and reaction conditions. The best results were obtained with tetra-O-acetyl-alpha-D-glucopyranosyl bromide with Cs(2)CO(3) in CH(3)CN. In some cases the 4-O-glucosylation of the quinolinone ring was accompanied by 2-O-glucosylation yielding the corresponding 2,4-bis(tetra-O-acetyl-beta-D-glucopyranosyloxy)quinoline. Next, 4-(tetra-O-acetyl-beta-D-glucopyranosyloxy)quinolin-2(1H)-ones were deacetylated into 4-(beta-D-glucopyranosyloxy)quinolin-2(1H)-ones with Et(3)N in MeOH. In some instances the deacetylation was accompanied by the sugar-aglycone bond cleavage. Structure elucidation, complete assignment of proton and carbon resonances as well as assignment of anomeric configuration for all the products under investigation were performed by 1D and 2D NMR spectroscopy.
Collapse
Affiliation(s)
- Roman Kimmel
- Department of Chemistry, Faculty of Technology, Tomas Bata University in Zlin, Zlin, Czech Republic
| | | | | |
Collapse
|
5
|
Metabolomic signatures of inbreeding at benign and stressful temperatures in Drosophila melanogaster. Genetics 2008; 180:1233-43. [PMID: 18791253 DOI: 10.1534/genetics.108.089144] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
While the population genetics of inbreeding is fairly well understood, the effects of inbreeding on the physiological and biochemical levels are not. Here we have investigated the effects of inbreeding on the Drosophila melanogaster metabolome. Metabolite fingerprints in males from five outbred and five inbred lines were studied by nuclear magnetic resonance spectroscopy after exposure to benign temperature, heat stress, or cold stress. In both the absence and the presence of temperature stress, metabolite levels were significantly different among inbred and outbred lines. The major effect of inbreeding was increased levels of maltose and decreased levels of 3-hydroxykynurenine and a galactoside [1-O-(4-O-(2-aminoethyl phosphate)-beta-d-galactopyranosyl)-x-glycerol] synthesized exclusively in the paragonial glands of Drosophila species, including D. melanogaster. The metabolomic effect of inbreeding at the benign temperature was related to gene expression data from the same inbred and outbred lines. Both gene expression and metabolite data indicate that fundamental metabolic processes are changed or modified by inbreeding. Apart from affecting mean metabolite levels, inbreeding led to an increased between-line variation in metabolite profiles compared to outbred lines. In contrast to previous observations revealing interactions between inbreeding and environmental stress on gene expression patterns and life-history traits, the effect of inbreeding on the metabolite profile was similar across the different temperature treatments.
Collapse
|
6
|
Dillon J, Skonieczna M, Mandal K, Paik D. The Photochemical Attachment of the O-Glucoside of 3-Hydroxykynurenine to α-Crystallin: A Model for Lenticular Aging. Photochem Photobiol 2008. [DOI: 10.1111/j.1751-1097.1999.tb03282.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
7
|
Thiagarajan G, Shirao E, Ando K, Inoue A, Balasubramanian D. Role of Xanthurenic Acid 8-O-β-d-Glucoside, a Novel Fluorophore that Accumulates in the Brunescent Human Eye Lens¶. Photochem Photobiol 2007. [DOI: 10.1562/0031-8655(2002)0760368roxaod2.0.co2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
8
|
Luque T, O'Reilly DR. Functional and phylogenetic analyses of a putative Drosophila melanogaster UDP-glycosyltransferase gene. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2002; 32:1597-1604. [PMID: 12429111 DOI: 10.1016/s0965-1748(02)00080-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Glucosidation plays a major role in the inactivation and excretion of a great variety of both endogenous and exogenous compounds. The recent determination of the complete genome sequence of Drosophila melanogaster has revealed the presence of over 30 putative UDP-glucosyltransferase (UGT) genes in this organism. We report here the molecular cloning and functional characterisation of one of these genes, named DmUgt37a1. The predicted protein comprises 525 amino acids and has about 30% overall amino acid identity with vertebrate members of the UGT family. The phylogenetic relationships of DmUgt37a1 with other members of the UGT family from D. melanogaster are discussed. DmUgt37a1 was expressed in lepidopteran insect cells and the ability of the enzyme to conjugate 38 potential substrates belonging to diverse chemical groups was assessed using UDP-glucose as sugar-donor. However, no activity was detected with any compound under the conditions used and thus, the substrate specificity of the enzyme remains unknown.
Collapse
Affiliation(s)
- Teresa Luque
- Department of Biological Sciences, Imperial College of Science, Technology and Medicine, Imperial College Road, SW7 2AZ, London, UK.
| | | |
Collapse
|
9
|
Thiagarajan G, Shirao E, Ando K, Inoue A, Balasubramanian D. Role of xanthurenic acid 8-O-beta-D-glucoside, a novel fluorophore that accumulates in the brunescent human eye lens. Photochem Photobiol 2002; 76:368-72. [PMID: 12403460 DOI: 10.1562/0031-8655(2002)076<0368:roxaod>2.0.co;2] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We have been able to identify a blue fluorophore from the low-molecular weight soluble fraction of human adult nondiabetic brunescent cataract lenses as xanthurenic acid 8-O-beta-D-glucoside (XA8OG) (excitation = 338 nm and emission = 440 nm). To determine the role of this fluorophore in the lens, we have examined its photophysical and photodynamic properties. We found XA8OG to have a fluorescence quantum yield (phi) of 0.22 and a major emission lifetime of 12 ns. We found it to be a UVA-region sensitizer, capable of efficiently generating singlet oxygen species but little of superoxide. We also demonstrated that XA8OG oxidizes proteins when irradiated with UVA light, causing photodynamic covalent chemical damage to proteins. Its accumulation in the aging human lens (and the attendant decrease of its precursor O-beta-D-glucoside of 3-hydroxykynurenine) can, thus, add to the oxidative burden on the system. XA8OG, thus, appears to be an endogenous chromophore in the lens, which can act as a cataractogenic agent.
Collapse
Affiliation(s)
- Geetha Thiagarajan
- Hyderabad Eye Research Foundation, L. V. Prasad Eye Institute, Hyderabad, India
| | | | | | | | | |
Collapse
|
10
|
Luque T, Okano K, O'Reilly DR. Characterization of a novel silkworm (Bombyx mori) phenol UDP-glucosyltransferase. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:819-25. [PMID: 11846783 DOI: 10.1046/j.0014-2956.2001.02723.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Sugar conjugation is a major pathway for the inactivation and excretion of both endogenous and exogenous compounds. We report here the molecular cloning and functional characterization of a phenol UDP-glucosyltransferase (UGT) from the silkworm, Bombyx mori, which was named BmUGT1. The complete cDNA clone is 1.6 kb, and the gene is expressed in several tissues of fifth-instar larvae, including fat body, midgut, integument, testis, silk gland and haemocytes. The predicted protein comprises 520 amino acids and has approximately 30% overall amino-acid identity with other members of the UGT family. The most conserved region of the protein is the C-terminal half, which has been implicated in binding the UDP-sugar. BmUGT1 was expressed in insect cells using the baculovirus expression system, and a range of compounds belonging to diverse chemical groups were assessed as potential substrates for the enzyme. The expressed enzyme had a wide substrate specificity, showing activity with flavonoids, coumarins, terpenoids and simple phenols. These results support a role for the enzyme in detoxication processes, such as minimizing the harmful effects of ingested plant allelochemicals. This work represents the first instance where an insect ugt gene has been associated with a specific enzyme activity.
Collapse
Affiliation(s)
- Teresa Luque
- Department of Biology, Imperial College of Science, Technology and Medicine, London SW7 2AZ, UK
| | | | | |
Collapse
|
11
|
Heckathorn RC, Dillon J, Gaillard ER. Synthesis and purification of 3-hydroxykynurenine-O-beta-glucoside, a primate lens ultraviolet filter, and its application in a two-step assay for beta-glucosidase activity. Anal Biochem 2001; 299:78-83. [PMID: 11726187 DOI: 10.1006/abio.2001.5404] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
3-Hydroxykynurenine-3-O-beta-glucoside (3-HKG) functions in the primate lens as a filter of 295- 400-nm light, thereby protecting the retina from damaging UV radiation. Although extensive studies have been conducted to determine the functional role of 3-HKG in the primate lens, an efficient method for its synthesis and purification has yet to be developed. Several procedures have been reported for the synthesis of 3-HKG; however, these procedures either result in low yields or require numerous sequential reactions and purification steps. In this study, we report a two-step synthesis of 3-HKG with a one-step purification and a two- to eightfold increase in yield over previously reported methods. Additionally, an assay was developed to confirm the presence of a beta-glycosidic linkage in the purified reaction product and we propose a method by which 3-HKG can be used as a general probe of beta-glucosidase activity. The assay consists of adding glucose oxidase to the 3-HKG/glucosidase solution and then allowing the hydrogen peroxide, generated from the interaction of glucose with glucose oxidase, to oxidize 3-hydroxykynurenine to xanthomattin (XAN) and 4,6-dihydroxyquinolinequinone carboxylic acid (DHQCA). Both XAN and DHQCA absorb strongly between 400 and 500 nm and the color change of the solution can be seen by eye. In addition, XAN fluoresces in the visible region with lambda(max) = 527 nm.
Collapse
Affiliation(s)
- R C Heckathorn
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, Illinois 60115, USA
| | | | | |
Collapse
|
12
|
Shirao E, Ando K, Inoue A, Shirao Y, Balasubramanian D. Identification of a novel fluorophore, xanthurenic acid 8- O -beta-D-glucoside in human brunescent cataract. Exp Eye Res 2001; 73:421-31. [PMID: 11825015 DOI: 10.1006/exer.2001.1051] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have identified the chemical structure of a novel protein-unbound fluorescent glucoside (Fl-Glc), found to be far more abundant in the human brunescent cataractous lens nuclei than in non-brunescent ones. Our earlier experiments showed that long-term incubation of the protein-free filtrate of non-brunescent cataractous nuclei generated increasing amounts of a particular yet to be characterized fluorophore (Fl-X). High performance liquid chromatography (HPLC) analyses revealed Fl-X and Fl-Glc to be identical. HPLC-electrospray ionization-mass spectrometry (HPLC-ESI-MS) disclosed the molecular weights (MW) of Fl-X and its beta-glucosidase-digest (Fl-X-aglycon) to be 367 and 205, respectively. Fl-X-aglycon and authentic xanthurenic acid (MW = 205) not only eluted at exactly the same retention time on HPLC but also revealed their protonated ions at the same m/z of 206.1 by positive ion analysis on HPLC-ESI-MS. These results suggest that Fl-X ( = Fl-Glc) is a beta-glucoside of xanthurenic acid. Fl-Glc was finally identified as xanthurenic acid 8- O -beta- D -glucoside because the retention times of both completely agreed with three kinds of HPLC conditions.
Collapse
Affiliation(s)
- E Shirao
- Department of Ophthalmology, Kanazawa University School of Medicine, Kanazawa, Japan
| | | | | | | | | |
Collapse
|
13
|
Garner B, Vazquez S, Griffith R, Lindner RA, Carver JA, Truscott RJ. Identification of glutathionyl-3-hydroxykynurenine glucoside as a novel fluorophore associated with aging of the human lens. J Biol Chem 1999; 274:20847-54. [PMID: 10409626 DOI: 10.1074/jbc.274.30.20847] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A novel fluorophore was isolated from human lenses using high performance liquid chromatography (HPLC). The new fluorophore was well separated from 3-hydroxykynurenine glucoside (3-OHKG) and its deaminated isoform, 4-(2-amino-3-hydroxyphenyl)-4-oxobutanoic acid O-glucoside, which are known UV filter compounds. The new compound exhibited UV absorbance maxima at 260 and 365 nm, was fluorescent (Ex(360 nm)/Em(500 nm)), and increased in concentration with age. Further analysis of the purified compound by microbore HPLC with in-line electrospray ionization mass spectrometry revealed a molecular mass of 676 Da. This mass corresponds to that of an adduct of GSH with a deaminated form of 3-OHKG. This adduct was synthesized using 3-OHKG and GSH as starting materials. The synthetic glutathionyl-3-hydroxykynurenine glucoside (GSH-3-OHKG) adduct had the same HPLC elution time, thin-layer chromatography R(F) value, UV absorbance maxima, fluorescence characteristics, and mass spectrum as the lens-derived fluorophore. Furthermore, the (1)H and (13)C NMR spectra of the synthetic adduct were entirely consistent with the proposed structure of GSH-3-OHKG. These data indicate that GSH-3-OHKG is present as a novel fluorophore in aged human lenses. The GSH-3-OHKG adduct was found to be less reactive with beta-glucosidase compared with 3-OHKG, and this could be due to a folded conformation of the adduct that was suggested by molecular modeling.
Collapse
Affiliation(s)
- B Garner
- Australian Cataract Research Foundation, University of Wollongong, Wollongong, New South Wales 2522, Australia
| | | | | | | | | | | |
Collapse
|
14
|
Rausell C, Llorca J, Real MD. Separation by FPLC chromatofocusing of UDP-glucosyltransferases from three developmental stages of Drosophila melanogaster. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 1997; 34:347-358. [PMID: 9055441 DOI: 10.1002/(sici)1520-6327(1997)34:3<347::aid-arch8>3.0.co;2-r] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Variation of UDP-glucosyltransferase activity, during Drosophila melanogaster development, was analyzed. The endogenous metabolite xanthurenic acid and the xenobiotic compounds 1-naphthol and 2-naphthol were used as substrates. Developmentally regulated differences were observed for the three substrates, suggesting the presence of UDP-glucosyltransferase isoenzymes. This was further confirmed by FPLC chromatofocusing on a Mono P column: seven peaks of UDP-glucosyltransferase activity (pHs: > or = 6.3, 5.8, 5.5, 4.9, 4.5, 4.2, < or = 4.0) with either single or overlapping substrate specificity were detected. A single xanthurenic acid:UDP-glucosyltransferase activity (pl 5.8) was found throughout development. In contrast, a gradual increase in the number of 2-napthol:UDP-glucosyltransferase-isoenzymes (pl from 6.3 to 4.0) was observed during development, whereas no isoenzymes specific for 1-naphthol were resolved. Based on the distribution and substrate specificity of the eluted peaks in the three developmental stages analyzed, the presence of seven or possibly eight UDP-glucosyltransferase isoenzymes is proposed.
Collapse
Affiliation(s)
- C Rausell
- Departamento de Genética (Facultad de Ciencias Biológicas), Universidad de Valencia, Burjassot, Spain
| | | | | |
Collapse
|
15
|
Real MD, Ferré J, Chapa FJ. UDP-glucosyltransferase activity toward exogenous substrates in Drosophila melanogaster. Anal Biochem 1991; 194:349-52. [PMID: 1830726 DOI: 10.1016/0003-2697(91)90239-p] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
To investigate the capacity of Drosophila extracts to glucosylate exogenous substrates we have developed a fast and sensitive method for the detection of UDP-glucosyltransferase activity using 4-nitrophenol, 1-naphthol, or 2-naphthol as substrates. High-performance liquid chromatography was used to separate and quantitate the reaction products, allowing detection of activities that produced as little as 1 pmol of 2-naphthol glucoside (fluorescence detection) or 16 pmol of 4-nitrophenol glucoside (absorbance detection). Optimal activity was found at 43 degrees C and alkaline pH. The affinity of the Drosophila enzyme was 250-fold higher for 1-naphthol or 2-naphthol (Km approximately 4 microM) than for 4-nitrophenol and UDP-glucose (Km approximately 1 mM).
Collapse
Affiliation(s)
- M D Real
- Departamento de Genética, Universidad de Valencia, Spain
| | | | | |
Collapse
|
16
|
Dolores Real M, Ferré J. Analysis of kynurenine transaminase activity in Drosophila by high performance liquid chromatography. ACTA ACUST UNITED AC 1991. [DOI: 10.1016/0020-1790(91)90035-d] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|