1
|
Ibisoglu MS, Tan M, Yilmazer M, Yilmaz S, Uzuner SK, Topal-Sarikaya A, Palabiyik B. Effects of ScRgt1-Like DNA-binding transcription factor SpRgt1 (SPCC320.03) on Hexose transporters gene expression in Schizosaccharomyces pombe. Arch Microbiol 2024; 206:155. [PMID: 38480568 DOI: 10.1007/s00203-024-03901-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 02/16/2024] [Accepted: 02/17/2024] [Indexed: 03/17/2024]
Abstract
Glucose, which plays an essential role in carbon and energy metabolism in eukaryotes, is vital in directing various energy-consuming cellular processes. In S. cerevisiae, transcription factors involved in regulating hexose transporters and their mechanisms of action under different carbon sources were revealed in detail. However, there is limited information on these processes in S. pombe. In this study, the effect of SPCC320.03 (named SpRgt1), the ortholog of ScRgt1 whose molecular mechanism is known in detail in S. cerevisiae, on the transcriptional regulation of hexose transporters (ght1-8) dependent on different carbon sources was investigated. We measured the transcript levels of ght1-8 using the qPCR technique and performed relative evaluation in S. pombe strains (parental, rgt1 deleted mutant, rgt1 overexpressed, and vectoral rgt1 carrying mutant). We aimed to investigate the transcriptional changes caused by the protein product of the rgt1 (SPCC320.03) gene in terms of ght1-8 genes in strains that are grown in different carbon sources (2% glucose, 2% glycerol + 0.1% glucose, and 2% gluconate). Here, we show that SpRgt1 is involved in the regulation of the ght3, ght4, ght6, and ght7 genes but that the ght1, ght2, ght5, and ght8 gene expression vary depending on carbon sources, independently of SpRgt1.
Collapse
Affiliation(s)
- Merve Seda Ibisoglu
- Institute of Graduate Studies in Sciences, Department of Molecular Biology and Genetics, Istanbul University, Istanbul, Turkey
- Faculty of Science and Literature, Department of Molecular Biology and Genetics, Istanbul Yeni Yuzyil University, Istanbul, Turkey
| | - Medet Tan
- Institute of Graduate Studies in Sciences, Department of Molecular Biology and Genetics, Istanbul University, Istanbul, Turkey
| | - Merve Yilmazer
- Faculty of Science, Department of Molecular Biology and Genetics, Istanbul University, Istanbul, Turkey
| | - Sibel Yilmaz
- Faculty of Science and Literature, Department of Molecular Biology and Genetics, Istanbul Yeni Yuzyil University, Istanbul, Turkey
| | - Semian Karaer Uzuner
- Faculty of Science, Department of Molecular Biology and Genetics, Istanbul University, Istanbul, Turkey
| | - Ayşegül Topal-Sarikaya
- Faculty of Science and Literature, Department of Molecular Biology and Genetics, Istanbul Yeni Yuzyil University, Istanbul, Turkey
- Department of Medical Biology and Genetics, Istanbul Yeni Yuzyil University, Istanbul, Turkey
| | - Bedia Palabiyik
- Faculty of Science, Department of Molecular Biology and Genetics, Istanbul University, Istanbul, Turkey.
| |
Collapse
|
2
|
Quévillon Huberdeau M, Shah VN, Nahar S, Neumeier J, Houle F, Bruckmann A, Gypas F, Nakanishi K, Großhans H, Meister G, Simard MJ. A specific type of Argonaute phosphorylation regulates binding to microRNAs during C. elegans development. Cell Rep 2022; 41:111822. [PMID: 36516777 PMCID: PMC10436268 DOI: 10.1016/j.celrep.2022.111822] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 09/22/2022] [Accepted: 11/21/2022] [Indexed: 12/15/2022] Open
Abstract
Argonaute proteins are at the core of the microRNA-mediated gene silencing pathway essential for animals. In C. elegans, the microRNA-specific Argonautes ALG-1 and ALG-2 regulate multiple processes required for proper animal developmental timing and viability. Here we identified a phosphorylation site on ALG-1 that modulates microRNA association. Mutating ALG-1 serine 642 into a phospho-mimicking residue impairs microRNA binding and causes embryonic lethality and post-embryonic phenotypes that are consistent with alteration of microRNA functions. Monitoring microRNA levels in alg-1 phosphorylation mutant animals shows that microRNA passenger strands increase in abundance but are not preferentially loaded into ALG-1, indicating that the miRNA binding defects could lead to microRNA duplex accumulation. Our genetic and biochemical experiments support protein kinase A (PKA) KIN-1 as the putative kinase that phosphorylates ALG-1 serine 642. Our data indicate that PKA triggers ALG-1 phosphorylation to regulate its microRNA association during C. elegans development.
Collapse
Affiliation(s)
- Miguel Quévillon Huberdeau
- CHU de Québec-Université Laval Research Center (Oncology Division), Québec City, QC G1R 3S3, Canada; Université Laval Cancer Research Centre, Québec City, QC G1R 3S3, Canada
| | - Vivek Nilesh Shah
- CHU de Québec-Université Laval Research Center (Oncology Division), Québec City, QC G1R 3S3, Canada; Université Laval Cancer Research Centre, Québec City, QC G1R 3S3, Canada
| | - Smita Nahar
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Julia Neumeier
- Regensburg Center for Biochemistry (RCB), Laboratory for RNA Biology, University of Regensburg, 93053 Regensburg, Germany
| | - François Houle
- CHU de Québec-Université Laval Research Center (Oncology Division), Québec City, QC G1R 3S3, Canada; Université Laval Cancer Research Centre, Québec City, QC G1R 3S3, Canada
| | - Astrid Bruckmann
- Regensburg Center for Biochemistry (RCB), Laboratory for RNA Biology, University of Regensburg, 93053 Regensburg, Germany
| | - Foivos Gypas
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Kotaro Nakanishi
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA; Center for RNA Biology, Columbus, OH 43210, USA
| | - Helge Großhans
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland; University of Basel, 4056 Basel, Switzerland
| | - Gunter Meister
- Regensburg Center for Biochemistry (RCB), Laboratory for RNA Biology, University of Regensburg, 93053 Regensburg, Germany
| | - Martin J Simard
- CHU de Québec-Université Laval Research Center (Oncology Division), Québec City, QC G1R 3S3, Canada; Université Laval Cancer Research Centre, Québec City, QC G1R 3S3, Canada.
| |
Collapse
|
3
|
Functional Insights into Protein Kinase A (PKA) Signaling from C. elegans. LIFE (BASEL, SWITZERLAND) 2022; 12:life12111878. [PMID: 36431013 PMCID: PMC9692727 DOI: 10.3390/life12111878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/04/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022]
Abstract
Protein kinase A (PKA), which regulates a diverse set of biological functions downstream of cyclic AMP (cAMP), is a tetramer consisting of two catalytic subunits (PKA-C) and two regulatory subunits (PKA-R). When cAMP binds the PKA-R subunits, the PKA-C subunits are released and interact with downstream effectors. In Caenorhabditis elegans (C. elegans), PKA-C and PKA-R are encoded by kin-1 and kin-2, respectively. This review focuses on the contributions of work in C. elegans to our understanding of the many roles of PKA, including contractility and oocyte maturation in the reproductive system, lipid metabolism, physiology, mitochondrial function and lifespan, and a wide variety of behaviors. C. elegans provides a powerful genetic platform for understanding how this kinase can regulate an astounding variety of physiological responses.
Collapse
|
4
|
Jiang Y, Gaur U, Cao Z, Hou ST, Zheng W. Dopamine D1- and D2-like receptors oppositely regulate lifespan via a dietary restriction mechanism in Caenorhabditis elegans. BMC Biol 2022; 20:71. [PMID: 35317792 PMCID: PMC8941781 DOI: 10.1186/s12915-022-01272-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 03/04/2022] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Despite recent progress in understanding the molecular mechanisms regulating aging and lifespan, and the pathways involved being conserved in different species, a full understanding of the aging process has not been reached. In particular, increasing evidence suggests an active role for the nervous system in lifespan regulation, with sensory neurons, as well as serotonin and GABA signaling, having been shown to regulate lifespan in Caenorhabditis elegans (C. elegans). However, the contribution of additional neural factors, and a broad understanding of the role of the nervous system in regulating aging remains to be established. Here, we examine the impact of the dopamine system in regulating aging in C. elegans. RESULTS We report that mutations of DOP-4, a dopamine D1-like receptor (D1R), and DOP-2, a dopamine D2-like receptor (D2R) oppositely affected lifespan, fast body movement span, reproductive lifespan, and developmental rate in C. elegans. Activation of D2R using aripiprazole, an antipsychotic drug, robustly extended both lifespan and healthspan. Conversely, inhibition of D2R using quetiapine shortened worm lifespan, further supporting the role of dopamine receptors in lifespan regulation. Mechanistically, D2R signaling regulates lifespan through a dietary restriction mechanism mediated by the AAK-2-DAF-16 pathway. The DAG-PKC/PKD pathway links signaling between dopamine receptors and the downstream AAK-2-DAF-16 pathway to transmit longevity signals. CONCLUSIONS These data demonstrated a novel role of dopamine receptors in lifespan and dietary restriction regulation. The clinically approved antipsychotic aripiprazole holds potential as a novel anti-aging drug.
Collapse
Affiliation(s)
- Yizhou Jiang
- Centre of Reproduction, Development & Aging and Institute of Translation Medicine, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau, China
- Brain Research Centre and Department of Biology, Southern University of Science and Technology, 1088 Xueyuan Blvd, Nanshan District, Shenzhen, Guangdong Province, China
| | - Uma Gaur
- Centre of Reproduction, Development & Aging and Institute of Translation Medicine, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau, China
| | - Zhibai Cao
- Centre of Reproduction, Development & Aging and Institute of Translation Medicine, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau, China
| | - Sheng-Tao Hou
- Brain Research Centre and Department of Biology, Southern University of Science and Technology, 1088 Xueyuan Blvd, Nanshan District, Shenzhen, Guangdong Province, China.
| | - Wenhua Zheng
- Centre of Reproduction, Development & Aging and Institute of Translation Medicine, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau, China.
| |
Collapse
|
5
|
Rahmani A, Chew YL. Investigating the molecular mechanisms of learning and memory using Caenorhabditis elegans. J Neurochem 2021; 159:417-451. [PMID: 34528252 DOI: 10.1111/jnc.15510] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 08/15/2021] [Accepted: 09/08/2021] [Indexed: 11/30/2022]
Abstract
Learning is an essential biological process for survival since it facilitates behavioural plasticity in response to environmental changes. This process is mediated by a wide variety of genes, mostly expressed in the nervous system. Many studies have extensively explored the molecular and cellular mechanisms underlying learning and memory. This review will focus on the advances gained through the study of the nematode Caenorhabditis elegans. C. elegans provides an excellent system to study learning because of its genetic tractability, in addition to its invariant, compact nervous system (~300 neurons) that is well-characterised at the structural level. Importantly, despite its compact nature, the nematode nervous system possesses a high level of conservation with mammalian systems. These features allow the study of genes within specific sensory-, inter- and motor neurons, facilitating the interrogation of signalling pathways that mediate learning via defined neural circuits. This review will detail how learning and memory can be studied in C. elegans through behavioural paradigms that target distinct sensory modalities. We will also summarise recent studies describing mechanisms through which key molecular and cellular pathways are proposed to affect associative and non-associative forms of learning.
Collapse
Affiliation(s)
- Aelon Rahmani
- Flinders Health and Medical Research Institute, Flinders University, Adelaide, South Australia, Australia
| | - Yee Lian Chew
- Flinders Health and Medical Research Institute, Flinders University, Adelaide, South Australia, Australia
| |
Collapse
|
6
|
Schmeisser S, Li S, Bouchard B, Ruiz M, Des Rosiers C, Roy R. Muscle-Specific Lipid Hydrolysis Prolongs Lifespan through Global Lipidomic Remodeling. Cell Rep 2020; 29:4540-4552.e8. [PMID: 31875559 DOI: 10.1016/j.celrep.2019.11.090] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 09/20/2019] [Accepted: 11/21/2019] [Indexed: 12/20/2022] Open
Abstract
A growing body of evidence suggests that changes in fat metabolism may have a significant effect on lifespan. Accumulation of lipid deposits in non-adipose tissue appears to be critical for age-related pathologies and may also contribute to the aging process itself. We established a model of lipid storage in muscle cells of C. elegans to reveal a mechanism that promotes longevity non-cell-autonomously. Here, we describe how muscle-specific activation of adipose triglyceride lipase (ATGL) and the phospholipase A2 (PLA2) ortholog IPLA-7 collectively affect inter-tissular communication and systemic adaptation that requires the activity of AMP-dependent protein kinase (AMPK) and a highly conserved nuclear receptor outside of the muscle. Our data suggest that muscle-specific bioactive lipid signals, or "lipokines," are generated following triglyceride breakdown and that these signals impinge on a complex network of genes that modify the global lipidome, consequently extending the lifespan.
Collapse
Affiliation(s)
| | - Shaolin Li
- Department of Biology, McGill University, Montreal, QC H3A 1B1, Canada
| | - Bertrand Bouchard
- Montreal Heart Institute, Research Center, Montreal, QC H1T 1C8, Canada
| | - Matthieu Ruiz
- Montreal Heart Institute, Research Center, Montreal, QC H1T 1C8, Canada; Department of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Christine Des Rosiers
- Montreal Heart Institute, Research Center, Montreal, QC H1T 1C8, Canada; Department of Nutrition, University of Montreal, Montreal, QC H2T 1A8, Canada
| | - Richard Roy
- Department of Biology, McGill University, Montreal, QC H3A 1B1, Canada.
| |
Collapse
|
7
|
Lee JH, Han JS, Kong J, Ji Y, Lv X, Lee J, Li P, Kim JB. Protein Kinase A Subunit Balance Regulates Lipid Metabolism in Caenorhabditis elegans and Mammalian Adipocytes. J Biol Chem 2016; 291:20315-28. [PMID: 27496951 DOI: 10.1074/jbc.m116.740464] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Indexed: 11/06/2022] Open
Abstract
Protein kinase A (PKA) is a cyclic AMP (cAMP)-dependent protein kinase composed of catalytic and regulatory subunits and involved in various physiological phenomena, including lipid metabolism. Here we demonstrated that the stoichiometric balance between catalytic and regulatory subunits is crucial for maintaining basal PKA activity and lipid homeostasis. To uncover the potential roles of each PKA subunit, Caenorhabditis elegans was used to investigate the effects of PKA subunit deficiency. In worms, suppression of PKA via RNAi resulted in severe phenotypes, including shortened life span, decreased egg laying, reduced locomotion, and altered lipid distribution. Similarly, in mammalian adipocytes, suppression of PKA regulatory subunits RIα and RIIβ via siRNAs potently stimulated PKA activity, leading to potentiated lipolysis without increasing cAMP levels. Nevertheless, insulin exerted anti-lipolytic effects and restored lipid droplet integrity by antagonizing PKA action. Together, these data implicate the importance of subunit stoichiometry as another regulatory mechanism of PKA activity and lipid metabolism.
Collapse
Affiliation(s)
- Jung Hyun Lee
- From the Department of Biological Sciences, Institute of Molecular Biology and Genetics, Seoul National University, 08862 Seoul, Korea
| | - Ji Seul Han
- From the Department of Biological Sciences, Institute of Molecular Biology and Genetics, Seoul National University, 08862 Seoul, Korea
| | - Jinuk Kong
- From the Department of Biological Sciences, Institute of Molecular Biology and Genetics, Seoul National University, 08862 Seoul, Korea
| | - Yul Ji
- From the Department of Biological Sciences, Institute of Molecular Biology and Genetics, Seoul National University, 08862 Seoul, Korea
| | - Xuchao Lv
- the MOE Key Laboratory of Bioinformatics and Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, 100084 Beijing, China and
| | - Junho Lee
- From the Department of Biological Sciences, Institute of Molecular Biology and Genetics, Seoul National University, 08862 Seoul, Korea, the Department of Biophysics and Chemical Biology, Seoul National University, Seoul 08862, Korea
| | - Peng Li
- the MOE Key Laboratory of Bioinformatics and Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, 100084 Beijing, China and
| | - Jae Bum Kim
- From the Department of Biological Sciences, Institute of Molecular Biology and Genetics, Seoul National University, 08862 Seoul, Korea,
| |
Collapse
|
8
|
Gracida X, Norris AD, Calarco JA. Regulation of Tissue-Specific Alternative Splicing: C. elegans as a Model System. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 907:229-61. [DOI: 10.1007/978-3-319-29073-7_10] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
9
|
Costa WS, Liewald J, Gottschalk A. Photoactivated adenylyl cyclases as optogenetic modulators of neuronal activity. Methods Mol Biol 2014; 1148:161-75. [PMID: 24718801 DOI: 10.1007/978-1-4939-0470-9_11] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
In recent years, optogenetic methods became invaluable tools, particularly in neurobiological research. Most prominently, optogenetic methods utilize microbial rhodopsins to elicit neuronal de- or hyperpolarization. However, other optogenetic tools have emerged that allow influencing neuronal function by different approaches. In this chapter we describe the use of photoactivated adenylyl cyclases (PACs) as modulators of neuronal activity. Using Caenorhabditis elegans as a model organism, this chapter shows how to measure the effect of PAC photoactivation by behavioral and electrophysiological assays, as well as their significance to neurobiology.
Collapse
Affiliation(s)
- Wagner Steuer Costa
- Institute of Biochemistry and Buchmann Institute for Molecular Life Sciences, Johann Wolfgang Goethe-University, Max-von-Laue-Straße 15; room 1.652, D-60438, Frankfurt, Germany
| | | | | |
Collapse
|
10
|
Alternative Splicing Regulation of Cancer-Related Pathways in Caenorhabditis elegans: An In Vivo Model System with a Powerful Reverse Genetics Toolbox. Int J Cell Biol 2013; 2013:636050. [PMID: 24069034 PMCID: PMC3771449 DOI: 10.1155/2013/636050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 07/29/2013] [Indexed: 11/18/2022] Open
Abstract
Alternative splicing allows for the generation of protein diversity and fine-tunes gene expression. Several model systems have been used for the in vivo study of alternative splicing. Here we review the use of the nematode Caenorhabditis elegans to study splicing regulation in vivo. Recent studies have shown that close to 25% of genes in the worm genome undergo alternative splicing. A big proportion of these events are functional, conserved, and under strict regulation either across development or other conditions. Several techniques like genome-wide RNAi screens and bichromatic reporters are available for the study of alternative splicing in worms. In this review, we focus, first, on the main studies that have been performed to dissect alternative splicing in this system and later on examples from genes that have human homologs that are implicated in cancer. The significant advancement towards understanding the regulation of alternative splicing and cancer that the C. elegans system has offered is discussed.
Collapse
|
11
|
Structural diversity of the cAMP-dependent protein kinase regulatory subunit in Caenorhabditis elegans. Cell Signal 2012; 25:168-77. [PMID: 22975687 DOI: 10.1016/j.cellsig.2012.09.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Accepted: 09/05/2012] [Indexed: 11/23/2022]
Abstract
The cAMP-dependent protein kinase (protein kinase A, PK-A) plays a key role in the control of eukaryotic cellular activity. The enzymology of PK-A in the free-living nematode, Caenorhabditis elegans is deceptively simple. Single genes encode the catalytic (C) subunit (kin-1), the regulatory (R) subunit (kin-2) and an A-kinase anchor protein (AKAP) (aka-1); nonetheless, PK-A is able to facilitate a comprehensive array of cAMP-mediated processes in this model multicellular organism. We have previously demonstrated that, in C. elegans, as many as 12 different isoforms of the C-subunit arise as a consequence of alternative splicing strategies. Here, we report the occurrence of transcripts encoding novel isoforms of the PK-A R-subunit in C. elegans. In place of exons 1 and 2, these transcripts include coding sequences from novel B or Q exons directly linked to exon 3, thereby generating isoforms with novel N-termini. R-subunits containing an exon B-encoded N-terminal polypeptide sequence were detected in extracts prepared from mixed populations of C. elegans. Of note is the observation that R-subunit isoforms containing exon B- or exon Q-encoded polypeptide sequences lack the dimerisation/docking domains conventionally seen in R-subunits. This means that they are unlikely to participate in the formation of tetrameric PK-A holoenzymes and, additionally, they are unlikely to interact with AKAP(s). It is therefore possible that, in C. elegans, in addition to tetrameric (R(2)C(2)) PK-A holoenzymes, there is also a sub-population of dimeric (RC) PK-A enzymes that are not tethered by AKAPs. Furthermore, inspection of the N-terminal sequence encoded by exon B suggests that this isoform is a likely target for N-myristoylation. Although unusual, a number of similarly N-myristoylatable R-subunits, from a range of different species, are present in the databases, suggesting that this may be a more generally observed feature of R-subunit structure. The occurrence of R-subunit isoforms, without dimerisation/docking domains (with or without N-myristoylatable N-termini) in other species would suggest that the control of PK-A activity may be more complex than hitherto thought.
Collapse
|
12
|
SACY-1 DEAD-Box helicase links the somatic control of oocyte meiotic maturation to the sperm-to-oocyte switch and gamete maintenance in Caenorhabditis elegans. Genetics 2012; 192:905-28. [PMID: 22887816 PMCID: PMC3522166 DOI: 10.1534/genetics.112.143271] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In sexually reproducing animals, oocytes arrest at diplotene or diakinesis and resume meiosis (meiotic maturation) in response to hormones. In Caenorhabditis elegans, major sperm protein triggers meiotic resumption through a mechanism involving somatic Gαs–adenylate cyclase signaling and soma-to-germline gap-junctional communication. Using genetic mosaic analysis, we show that the major effector of Gαs–adenylate cyclase signaling, protein kinase A (PKA), is required in gonadal sheath cells for oocyte meiotic maturation and dispensable in the germ line. This result rules out a model in which cyclic nucleotides must transit through sheath-oocyte gap junctions to activate PKA in the germ line, as proposed in vertebrate systems. We conducted a genetic screen to identify regulators of oocyte meiotic maturation functioning downstream of Gαs–adenylate cyclase–PKA signaling. We molecularly identified 10 regulatory loci, which include essential and nonessential factors. sacy-1, which encodes a highly conserved DEAD-box helicase, is an essential germline factor that negatively regulates meiotic maturation. SACY-1 is a multifunctional protein that establishes a mechanistic link connecting the somatic control of meiotic maturation to germline sex determination and gamete maintenance. Modulatory factors include multiple subunits of a CoREST-like complex and the TWK-1 two-pore potassium channel. These factors are not absolutely required for meiotic maturation or its negative regulation in the absence of sperm, but function cumulatively to enable somatic control of meiotic maturation. This work provides insights into the genetic control of meiotic maturation signaling in C. elegans, and the conserved factors identified here might inform analysis in other systems through either homology or analogy.
Collapse
|
13
|
Characterisation of the N'1 isoform of the cyclic AMP-dependent protein kinase (PK-A) catalytic subunit in the nematode, Caenorhabditis elegans. Arch Biochem Biophys 2012; 519:38-45. [PMID: 22286028 DOI: 10.1016/j.abb.2012.01.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Revised: 01/06/2012] [Accepted: 01/10/2012] [Indexed: 01/23/2023]
Abstract
Multiple isoforms of the cyclic AMP-dependent protein kinase (PK-A) catalytic (C) subunit, arise as a consequence of the use of alternative splicing strategies during transcription of the kin-1 gene in the nematode, Caenorhabditis elegans. N-myristoylation is a common co-translational modification of mammalian PK-A C-subunits; however, the major isoform (N'3), originally characterised in C. elegans, is not N-myristoylated. Here, we show that N'1 isoforms are targets for N-myristoylation in C. elegans. We have demonstrated the in vivo incorporation of radioactivity into N'1 C-subunit isoforms, following incubation of nematodes with [(3)H]-myristic acid. HPLC and MALDI-TOF MS analysis of proteolytic digests of immunoprecipitates confirmed the presence of myristoyl-glycine in the C-subunit. In order to better understand the impact of the N'1 N-terminal sequence, and its myristoylation, on C-subunit activity, a chimerical C-subunit, consisting of the N'1 N-terminus from C. elegans and a murine core and C-terminal sequence was expressed. Myristoylation had no appreciable effect on the catalytic properties of the chimeric protein. However, the myristoylated chimeric protein did exhibit enhanced apolar targeting compared to the myristoylated wild-type murine polypeptide. This behaviour may reflect the inability of the N'1-encoded N-terminus sequence to correctly dock with a hydrophobic domain on the surface of the C-subunit.
Collapse
|
14
|
Gupta RS, Ahnn J. Cadmium‐induced gene expression is regulated by MTF‐1, a key metal‐responsive transcription factor. ACTA ACUST UNITED AC 2010. [DOI: 10.1080/12265071.2003.9647702] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Ronojoy Sen Gupta
- a Department of Life Science and Biotechnology , Jadavpur University , Calcutta , 700032 , India Phone: E-mail:
| | - Joohong Ahnn
- b Department of Life Science , Kwangju Institute of Science and Technology , Gwangju , 500–712 , Korea
| |
Collapse
|
15
|
Zhang H, Rodgers EW, Krenz WDC, Clark MC, Baro DJ. Cell specific dopamine modulation of the transient potassium current in the pyloric network by the canonical D1 receptor signal transduction cascade. J Neurophysiol 2010; 104:873-84. [PMID: 20519576 DOI: 10.1152/jn.00195.2010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Dopamine (DA) modifies the motor pattern generated by the pyloric network in the stomatogastric ganglion (STG) of the spiny lobster, Panulirus interruptus, by directly acting on each of the circuit neurons. The 14 pyloric neurons fall into six cell types, and DA actions are cell type specific. The transient potassium current mediated by shal channels (I(A)) is a common target of DA modulation in most cell types. DA shifts the voltage dependence of I(A) in opposing directions in pyloric dilator (PD) versus lateral pyloric (LP) neurons. The mechanism(s) underpinning cell-type specific DA modulation of I(A) is unknown. DA receptors (DARs) can be classified as type 1 (D1R) or type 2 (D2R). D1Rs and D2Rs are known to increase and decrease intracellular cAMP concentrations, respectively. We hypothesized that the opposing DA effects on PD and LP I(A) were due to differences in DAR expression patterns. In the present study, we found that LP expressed somatodendritic D1Rs that were concentrated near synapses but did not express D2Rs. Consistently, DA modulation of LP I(A) was mediated by a Gs-adenylyl cyclase-cAMP-protein kinase A pathway. Additionally, we defined antagonists for lobster D1Rs (flupenthixol) and D2Rs (metoclopramide) in a heterologous expression system and showed that DA modulation of LP I(A) was blocked by flupenthixol but not by metoclopramide. We previously showed that PD neurons express D2Rs, but not D1Rs, thus supporting the idea that cell specific effects of DA on I(A) are due to differences in receptor expression.
Collapse
Affiliation(s)
- Hongmei Zhang
- Department of Biology, Georgia State University, Atlanta, Georgia 30302-4010, USA
| | | | | | | | | |
Collapse
|
16
|
Novel isoform of the Xenopus tropicalis PKA catalytic alpha subunit: An example of alternative splicing. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2010; 5:151-6. [PMID: 20418193 DOI: 10.1016/j.cbd.2010.03.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2010] [Revised: 03/24/2010] [Accepted: 03/27/2010] [Indexed: 11/27/2022]
Abstract
The cAMP-dependent protein kinase (PKA) plays key roles in the control of various aspects of eukaryotic cellular activities by phosphorylating several proteins and is multifunctional in nature. In the case of frog, Xenopus tropicalis, a gene encoding the PKA catalytic alpha subunit has been identified which encodes a single protein. Here we report the occurrence of N-terminal alternative splicing events in X. tropicalis tadpole that, in addition to generating a myristoylatable isoforms, also generate the non-myristoylated variant of the catalytic alpha subunit as has been reported in various other organisms. In addition to the already characterized exon 1, the 5' untranslated region and first intron actually contains one more other exon, that is alternatively spliced on to exon 2 at the 5' end of the pre-mRNA. This N-terminal alternative splicing occurs in combination with already characterized all internal exons. Thus, X. tropicalis tadpole expresses at least two different isoforms of the catalytic alpha subunit of PKA. The significance of this structural diversity in the family of PKA catalytic subunits is discussed.
Collapse
|
17
|
Perez-Mansilla B, Nurrish S. A network of G-protein signaling pathways control neuronal activity in C. elegans. ADVANCES IN GENETICS 2009; 65:145-192. [PMID: 19615533 DOI: 10.1016/s0065-2660(09)65004-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The Caenorhabditis elegans neuromuscular junction (NMJ) is one of the best studied synapses in any organism. A variety of genetic screens have identified genes required both for the essential steps of neurotransmitter release from motorneurons as well as the signaling pathways that regulate rates of neurotransmitter release. A number of these regulatory genes encode proteins that converge to regulate neurotransmitter release. In other cases genes are known to regulate signaling at the NMJ but how they act remains unknown. Many of the proteins that regulate activity at the NMJ participate in a network of heterotrimeric G-protein signaling pathways controlling the release of synaptic vesicles and/or dense-core vesicles (DCVs). At least four heterotrimeric G-proteins (Galphaq, Galpha12, Galphao, and Galphas) act within the motorneurons to control the activity of the NMJ. The Galphaq, Galpha12, and Galphao pathways converge to control production and destruction of the lipid-bound second messenger diacylglycerol (DAG) at sites of neurotransmitter release. DAG acts via at least two effectors, MUNC13 and PKC, to control the release of both neurotransmitters and neuropeptides from motorneurons. The Galphas pathway converges with the other three heterotrimeric G-protein pathways downstream of DAG to regulate neuropeptide release. Released neurotransmitters and neuropeptides then act to control contraction of the body-wall muscles to control locomotion. The lipids and proteins involved in these networks are conserved between C. elegans and mammals. Thus, the C. elegans NMJ acts as a model synapse to understand how neuronal activity in the human brain is regulated.
Collapse
Affiliation(s)
- Borja Perez-Mansilla
- MRC Cell Biology Unit, MRC Laboratory for Molecular Cell Biology and Department of Neurobiology, Physiology and Pharmacology, University College London, London, United Kingdom
| | - Stephen Nurrish
- MRC Cell Biology Unit, MRC Laboratory for Molecular Cell Biology and Department of Neurobiology, Physiology and Pharmacology, University College London, London, United Kingdom
| |
Collapse
|
18
|
Bardales JR, Hellman U, Villamarín JA. Identification of multiple isoforms of the cAMP-dependent protein kinase catalytic subunit in the bivalve mollusc Mytilus galloprovincialis. FEBS J 2008; 275:4479-89. [PMID: 18671732 DOI: 10.1111/j.1742-4658.2008.06591.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Several isoforms of the cAMP-dependent protein kinase catalytic subunit (C-subunit) were separated from the posterior adductor muscle and the mantle tissues of the sea mussel Mytilus galloprovincialis by cation exchange chromatography, and identified by: (a) protein kinase activity; (b) antibody recognition; and (c) peptide mass fingerprinting. Some of the isozymes seemed to be tissue-specific, and all them were phosphorylated at serine and threonine residues and showed slight but significant differences in their apparent molecular mass values, which ranged from 41.3 to 44.5 kDa. The results from the MS analysis suggest that at least some of the mussel C-subunit isoforms arise as a result of alternative splicing events. Furthermore, several peptide sequences from mussel C-subunits, determined by de novo sequencing, showed a high degree of homology with the mammalian Calpha-isoform, and contained some structural motifs that are essential for catalytic function. On the other hand, no significant differences were observed in the kinetic parameters of C-subunit isoforms, determined by using synthetic peptides as substrate and inhibitor. However, the C-subunit isoforms separated from the mantle tissue differed in their ability to phosphorylate in vitro some proteins present in a mantle extract.
Collapse
Affiliation(s)
- José R Bardales
- Departamento de Bioquímica e Bioloxía Molecular, Facultade de Veterinaria, Universidade de Santiago de Compostela, Lugo, Spain
| | | | | |
Collapse
|
19
|
Murray P, Clegg RA, Rees HH, Fisher MJ. siRNA-mediated knockdown of a splice variant of the PK-A catalytic subunit gene causes adult-onset paralysis in C. elegans. Gene 2007; 408:157-63. [PMID: 18077108 DOI: 10.1016/j.gene.2007.10.034] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2007] [Revised: 10/23/2007] [Accepted: 10/31/2007] [Indexed: 11/16/2022]
Abstract
In C. elegans, the PK-A catalytic subunit is encoded by kin-1, which has six 5' exons (N'1-N'6), any one of which may be alternatively spliced onto exon-2. Here we describe a novel siRNA-based strategy to knockdown the expression levels of the N'3 and N'4 splice variants. We show that this technique can effectively knockdown expression of the targeted isoforms without affecting expression of the other kin-1 splice variants. We suggest that this strategy could be widely used in C. elegans to investigate the function of genes with alternative first exons. Moreover, we report a novel role for the N'3 kin-1 variant. Whereas knockdown of the N'4 variant results in no obvious phenotype, loss of the N'3 variant leads to paralysis and an egg-laying defect in the adult, suggesting a deficit in the function of the neuromuscular junction. The function of the N'3 variant is discussed in relation to the known function of PK-A in regulation of the release of neurotransmitters from many presynaptic termini.
Collapse
Affiliation(s)
- Patricia Murray
- School of Biological Sciences, Biosciences Building, University of Liverpool, Liverpool, UK.
| | | | | | | |
Collapse
|
20
|
Bowen LC, Bicknell AV, Tabish M, Clegg RA, Rees HH, Fisher MJ. Expression of multiple isoforms of the cAMP-dependent protein kinase (PK-A) catalytic subunit in the nematode, Caenorhabditis elegans. Cell Signal 2006; 18:2230-7. [PMID: 16806821 DOI: 10.1016/j.cellsig.2006.05.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2006] [Accepted: 05/09/2006] [Indexed: 10/24/2022]
Abstract
The cAMP-dependent protein kinase (protein kinase A, PK-A) plays a central role in the regulation of many aspects of eukaryotic cellular activity. In the free-living nematode, Caenorhabditis elegans, two genes encode PK-A-like catalytic subunits. The kin-1 gene has the potential to generate, through alternative splicing events, a multiplicity of catalytic subunit isoforms; in contrast, the F47F2.1b gene appears to encode just a single authentic catalytic subunit-like protein. Here, we report on the occurrence of, and developmental changes in the expression of, polypeptide products of these genes in both C. elegans and the closely related nematode, C. briggsae. Polypeptides derived from the F47F2.1 gene and its orthologue were detected in mixed stage populations of C. elegans and C. briggsae, respectively. Likewise, a number of polypeptides arising as a result of alternative splicing of transcripts from kin-1, or its orthologue in C. briggsae, were identified in mixed stage populations of nematodes. These isoforms included polypeptides with N-termini encoded by exons N'1 or N'4 and C-termini encoded by exons 7 or N. The expression of isoforms with an N-terminus encoded by the N'1 exon is of significance because the amino acid sequence encoded by this exon encompasses an N-myristoylation motif. Isoform abundance appears to be related to developmental stage. Substantial differences in polypeptide expression profiles can be seen in embryonic and adult nematodes. The functional significance of this PK-A catalytic subunit isoform diversity is discussed.
Collapse
Affiliation(s)
- Laura C Bowen
- Cellular Regulation and Signalling Group, School of Biological Sciences, University of Liverpool, L69 7ZB, UK
| | | | | | | | | | | |
Collapse
|
21
|
Tabish M, Clegg RA, Turner PC, Jonczy J, Rees HH, Fisher MJ. Molecular characterisation of cAMP-dependent protein kinase (PK-A) catalytic subunit isoforms in the male tick, Amblyomma hebraeum. Mol Biochem Parasitol 2006; 150:330-9. [PMID: 17049629 DOI: 10.1016/j.molbiopara.2006.09.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2006] [Revised: 09/11/2006] [Accepted: 09/11/2006] [Indexed: 11/16/2022]
Abstract
The cAMP-dependent protein kinase (protein kinase A, PK-A) plays a central role in the regulation of diverse aspects of cellular activity. Specifically, PK-A appears to play a key controlling role in the maturation of spermatids. Using a PCR-based approach, with degenerate primers from the highly conserved regions of the PK-A catalytic (C) subunit in combination with 5' and 3' RACE, we have cloned three cDNAs for the PK-A C-subunit of the male tick, Amblyomma hebraeum. The three cDNAs have open reading frames of 1059, 1275 and 1404bp which encode proteins of 40.6, 48.2 and 52.5kDa, respectively. These transcripts appear to arise from 5' alternative splicing of RNA derived from a single gene for the PK-A C-subunit. One isoform (AH-PK-A C1), in common with PK-A C-subunits from a range of species, contains a consensus sequence for N-myristoylation. RT-PCR and Western blot experiments suggest that the three splice variants are expressed ubiquitously; however, expression of the myristoylatable AH-PK-A C1 isoform is predominant in all investigated tissues (accessory gland, midgut, Malpighian tubules, salivary gland, testis and immature spermatids). There is no evidence for a sperm-specific PK-A C-subunit (Cs) in tick sperm; however, tyrosine protein phosphorylation, previously shown to be modulated by PK-A activity during mammalian sperm maturation, was observed in tick sperm.
Collapse
Affiliation(s)
- Mohammad Tabish
- Cellular Regulation and Signalling Group, School of Biological Sciences, Biosciences Building, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK
| | | | | | | | | | | |
Collapse
|
22
|
Raizen DM, Cullison KM, Pack AI, Sundaram MV. A novel gain-of-function mutant of the cyclic GMP-dependent protein kinase egl-4 affects multiple physiological processes in Caenorhabditis elegans. Genetics 2006; 173:177-87. [PMID: 16547093 PMCID: PMC1461420 DOI: 10.1534/genetics.106.057380] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
cGMP-dependent protein kinases are key intracellular transducers of cell signaling. We identified a novel dominant mutation in the C. elegans egl-4 cGMP-dependent protein kinase (PKG) and show that this mutation causes increased normal gene activity although it is associated with a reduced EGL-4 protein level. Prior phenotypic analyses of this gain-of-function mutant demonstrated a reduced longevity and a reduced feeding behavior when the animals were left unperturbed. We characterize several additional phenotypes caused by increased gene activity of egl-4. These phenotypes include a small body size, reduced locomotion in the presence of food, a pale intestine, increased intestinal fat storage, and a decreased propensity to form dauer larvae. The multiple phenotypes of egl-4 dominant mutants are consistent with an instructive signaling role of PKG to control many aspects of animal physiology. This is among the first reported gain-of-function mutations in this enzyme of central physiological importance. In a genetic screen we have identified extragenic suppressors of this gain-of-function mutant. Thus, this mutant promises to be a useful tool for identifying downstream targets of PKG.
Collapse
Affiliation(s)
- David M Raizen
- Department of Neurology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA.
| | | | | | | |
Collapse
|
23
|
Hotez P, Hawdon J, Schad GA. Hookworm larval infectivity, arrest and amphiparatenesis: the Caenorhabditis elegans Daf-c paradigm. ACTA ACUST UNITED AC 2005; 9:23-6. [PMID: 15463660 DOI: 10.1016/0169-4758(93)90159-d] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Arrested development dramatically alters the life history of some species of soil-transmitted nematodes and elicits profound variations in the epidemiology of the infections they cause. Here, Peter Hotez, John Hawdon and Gerhard Schad show how an understanding of the cellular and molecular bases of arrested development may lead to new approaches for the control of ancylostomiasis and related infections.
Collapse
Affiliation(s)
- P Hotez
- Medical Helminthology Laboratory (LEPH), Departments of Pediatrics and Epidemiology, Yale University School of Medicine, New Haven, CT 06510, USA
| | | | | |
Collapse
|
24
|
Liao VHC, Dong J, Freedman JH. Molecular characterization of a novel, cadmium-inducible gene from the nematode Caenorhabditis elegans. A new gene that contributes to the resistance to cadmium toxicity. J Biol Chem 2002; 277:42049-59. [PMID: 12189149 DOI: 10.1074/jbc.m206740200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cadmium is an environmental contaminant that is both a human toxicant and carcinogen. To inhibit cadmium-induced damage, cells respond by increasing the expression of genes that encode stress-response proteins. We previously reported the identification of 48 cadmium-inducible mRNAs in the nematode Caenorhabditis elegans. Here we describe a new cadmium-responsive gene, designated cdr-1, whose rate and level of inducible expression parallel those of the C. elegans metallothioneins. The CDR-1 mRNA contains an open reading frame of 831 bp and encodes a predicted 32-kDa, integral membrane protein. Following cadmium exposure, cdr-1 is transcribed exclusively in intestinal cells of post-embryonic C. elegans. In vivo, the CDR-1 protein is targeted specifically to the intestinal cell lysosomes. cdr-1 transcription is significantly induced by cadmium but not by other tested stressors. These results indicate that cdr-1 expression is regulated by cadmium and in a cell-specific fashion. Inhibition of CDR-1 expression renders C. elegans susceptible to cadmium toxicity. In conclusion, cdr-1 defines a new class of cadmium-inducible genes and encodes an integral membrane, lysosomal protein. This protein functions to protect against cadmium toxicity.
Collapse
Affiliation(s)
- Vivian Hsiu-Chuan Liao
- Nicholas School of the Environment and Earth Sciences, Duke University, Durham, North Carolina 27708, USA
| | | | | |
Collapse
|
25
|
Huang H, Werner C, Weiss LM, Wittner M, Orr GA. Molecular cloning and expression of the catalytic subunit of protein kinase A from Trypanosoma cruzi. Int J Parasitol 2002; 32:1107-15. [PMID: 12117493 DOI: 10.1016/s0020-7519(02)00085-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The activation of protein kinase A (cyclic adenosine monophosphate-dependent protein kinase) by cyclic adenosine monophosphate is believed to play an important role in regulating the growth and differentiation of Trypanosoma cruzi. A PCR using degenerate oligonucleotide primers against conserved motifs in the VIb and VIII subdomains of the ACG family of serine/threonine protein kinases was utilised to amplify regions corresponding to the parasite homologue of the protein kinase A catalytic subunit. This putative protein kinase A fragment was used to isolate the entire gene from T. cruzi genomic libraries. The deduced 329 amino acid sequence of this gene contained all of the signature motifs of known protein kinase A catalytic subunit proteins. The recombinant protein expressed in Escherichia coli was shown to phosphorylate Kemptide, a synthetic peptide substrate of protein kinase A, in a protein kinase inhibitor (PKI)-inhibitory manner. Immunoprecipitation with polyclonal antisera raised against recombinant protein of this gene was able to pull-down PKI-inhibitory phosphotransferase activity from epimastigote lysates. Immunoblot and Northern blot analyses, in combination with enzyme activity assays, revealed that this gene was a stage-regulated enzyme in T. cruzi with higher levels and activity being present in epimastigotes compared with amastigotes or trypomastigotes. Overall these studies indicate that the cloned gene encodes an authentic protein kinase A catalytic subunit from T. cruzi and are the first demonstration of PKI-inhibitory phosphotransferase activity in an expressed protozoan protein kinase A catalytic subunit.
Collapse
Affiliation(s)
- Huan Huang
- Department of Pathology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA.
| | | | | | | | | |
Collapse
|
26
|
Mashhoon N, Carmel G, Pflugrath JW, Kuret J. Structure of the unliganded cAMP-dependent protein kinase catalytic subunit from Saccharomyces cerevisiae. Arch Biochem Biophys 2001; 387:11-9. [PMID: 11368172 DOI: 10.1006/abbi.2000.2241] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The structure of TPK1delta, a truncated variant of the cAMP-dependent protein kinase catalytic subunit from Saccharomyces cerevisiae, was determined in an unliganded state at 2.8 A resolution and refined to a crystallographic R-factor of 19.4%. Comparison of this structure to that of its fully liganded mammalian homolog revealed a highly conserved protein fold comprised of two globular lobes. Within each lobe, root mean square deviations in Calpha positions averaged approximately equals 0.9 A. In addition, a phosphothreonine residue was found in the C-terminal domain of each enzyme. Further comparison of the two structures suggests that a trio of conformational changes accompanies ligand-binding. The first consists of a 14.7 degrees rigid-body rotation of one lobe relative to the other and results in closure of the active site cleft. The second affects only the glycine-rich nucleotide binding loop, which moves approximately equals 3 A to further close the active site and traps the nucleotide substrate. The third is localized to a C-terminal segment that makes direct contact with ligands and the ligand-binding cleft. In addition to resolving the conformation of unliganded enzyme, the model shows that the salient features of the cAMP-dependent protein kinase are conserved over long evolutionary distances.
Collapse
Affiliation(s)
- N Mashhoon
- Biophysics Program, Ohio State University Medical School, Columbus 43210, USA
| | | | | | | |
Collapse
|
27
|
Angelo RG, Rubin CS. Characterization of structural features that mediate the tethering of Caenorhabditis elegans protein kinase A to a novel A kinase anchor protein. Insights into the anchoring of PKAI isoforms. J Biol Chem 2000; 275:4351-62. [PMID: 10660605 DOI: 10.1074/jbc.275.6.4351] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Caenorhabditis elegans protein kinase A (PKAI(CE)) is tethered to organelles in vivo. A unique A kinase anchor protein (AKAP(CE)) avidly binds the RI-like regulatory subunits (R(CE)) of PKAI(CE) and stringently discriminates against RIIalpha and RIIbeta subunits, the preferred ligands for classical AKAPs. We elucidated structural features that stabilize AKAP(CE).R(CE) complexes and confer atypical R isoform specificity on the anchor protein. Three large aliphatic amino acids (Leu(236), Ile(248), and Leu(252)) in the tethering domain of AKAP(CE) (residues 236-255) are crucial for ligation of R(CE). Their side chains apparently generate a precisely configured hydrophobic binding pocket that accommodates an apolar surface on R(CE) dimers. Basic residues (His(254)-Arg(255)-Lys(256)) at the C terminus of the tethering site set an upper limit on affinity for R(CE.) A central dipeptide (Phe(243)-Ser(244)) contributes critical and distinctive properties of the tethering site. Ser(244) is essential for selective binding of R(CE) and exclusion of RII isoforms. The aromatic hydrophobic character of Phe(243) ensures maximal R(CE) binding activity, thereby supporting a "gatekeeper" function of Ser(244). Substitution of Phe(243)-Ser(244) with Leu-Val generated an RII-specific AKAP. R(CE) and RII subunits contain similar dimerization domains. AKAP-binding domains of R(CE) (residues 23-47) and RII differ markedly in size, amino acid sequence, and docking specificity. Four hydrophobic residues (Cys(23), Val(27), Ile(32), and Cys(44)) in R(CE) are crucial for avid binding with AKAP(CE), whereas side chains from Leu(20), Leu(35), Val(36), Ile(40), and Ile(41) have little impact on complex formation. Tyr(26) is embedded in the docking domain, but its aromatic ring is required for R(CE)-R(CE) dimerization. Residues 236-255 in AKAP(CE) also constitute a binding site for mammalian RIalpha. RIalpha (PKAIalpha) is tightly sequestered by AKAP(CE) in vitro (K(D) = approximately 10 nM) and in the environment of intact cells. The tethering domain of AKAP(CE) provides a molecular module for manipulating intracellular localization of RI and elucidating functions of anchored PKAI in eukaryotes.
Collapse
Affiliation(s)
- R G Angelo
- Department of Molecular Pharmacology, Atran Laboratories, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | |
Collapse
|
28
|
Kurkinen KM, Keinänen RA, Karhu R, Koistinaho J. Genomic structure and chromosomal localization of the rat protein kinase Cdelta-gene. Gene 2000; 242:115-23. [PMID: 10721703 DOI: 10.1016/s0378-1119(99)00539-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Protein kinase Cdelta (PKCdelta) is a widely expressed calcium-independent PKC isozyme that is induced at mRNA and protein levels upon stimulation of different cellular pathways. We found the rat PKCdelta gene to consist of 19 exons and to span approximately 29 kb. The exon-intron junctions follow the GT/AG rule. The 5' untranslated region is nearly 12 kb in length, and the transcription initiation site is surrounded by CG-rich sequences. The 5' flanking region contains putative binding sites for activator protein 1 (AP-1), nuclear factor kappa B (NFkappaB), stimulatory protein-1 (Sp-1) and nerve growth factor induced-C (NGFI-C) transcription factors. The PKCdelta gene is localized at the rat chromosome 19p14. The cloned gene will help to elucidate the role of PKCdelta in growth, differentiation and death of mammalian cells.
Collapse
Affiliation(s)
- K M Kurkinen
- A.I. Virtanen Institute for Molecular Sciences, University of Kuopio, Finland
| | | | | | | |
Collapse
|
29
|
Yan J, Kuroyanagi H, Tomemori T, Okazaki N, Asato K, Matsuda Y, Suzuki Y, Ohshima Y, Mitani S, Masuho Y, Shirasawa T, Muramatsu M. Mouse ULK2, a novel member of the UNC-51-like protein kinases: unique features of functional domains. Oncogene 1999; 18:5850-9. [PMID: 10557072 DOI: 10.1038/sj.onc.1202988] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The UNC-51 serine/threonine kinase of C. elegans plays an essential role in axonal elongation, and unc-51 mutants exhibit uncoordinated movements. We have previously identified mouse and human cDNAs encoding UNC-51-like kinase (ULK1). Here we report the identification and characterization of the second murine member of this kinase family, ULK2. Mouse ULK2 cDNA encodes a putative polypeptide of 1033 aa which has an overall 52% and 33% amino acid identity to ULK1 and UNC-51, respectively. ULKs and UNC-51 share a typical domain structure of an amino-terminal kinase domain, a central proline/serine rich (PS) domain, and a carboxy-terminal (C) domain. Northern blot analysis showed that ULK2 mRNA is widely expressed in adult tissues. In situ hybridization analysis indicated that ULK2 mRNA is ubiquitously localized in premature as well as mature neurons in developing nervous system. ULK2 gene was mapped to mouse chromosome 11B1.3 and rat chromosome 10q23 by FISH. HA-tagged ULK2 expressed in COS7 cells had an apparent molecular size of approximately 150 kDa and was autophosphorylated in vitro. Truncation mutants suggested that the autophosphorylation occurs in the PS domain. Although expression of ULK2 failed to rescue unc-51 mutant of C. elegans, a series of ULK2/UNC-51 chimeric kinases revealed that function of the kinase and PS domains are conserved among species, while the C domain acts in a species-specific manner. These results suggest that ULK2 is involved in a previously uncharacterized signaling pathway in mammalian cells.
Collapse
Affiliation(s)
- J Yan
- Helix Research Institute, 1532-3 Yana, Kisarazu, Chiba, 292-0812, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Davare MA, Dong F, Rubin CS, Hell JW. The A-kinase anchor protein MAP2B and cAMP-dependent protein kinase are associated with class C L-type calcium channels in neurons. J Biol Chem 1999; 274:30280-7. [PMID: 10514522 DOI: 10.1074/jbc.274.42.30280] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phosphorylation by cAMP-dependent protein kinase (PKA) increases the activity of class C L-type Ca(2+) channels which are clustered at postsynaptic sites and are important regulators of neuronal functions. We investigated a possible mechanism that could ensure rapid and efficient phosphorylation of these channels by PKA upon stimulation of cAMP-mediated signaling pathways. A kinase anchor proteins (AKAPs) bind to the regulatory R subunits of PKA and target the holoenzyme to defined subcellular compartments and substrates. Class C channels isolated from rat brain extracts by immunoprecipitation contain an endogenous kinase that phosphorylates kemptide, a classic PKA substrate peptide, and also the main phosphorylation site for PKA in the pore-forming alpha(1) subunit of the class C channel complex, serine 1928. The kinase activity is inhibited by the PKA inhibitory peptide PKI(5-24) and stimulated by cAMP. Physical association of the catalytic C subunit of PKA with the immunoisolated class C channel complex was confirmed by immunoblotting. A direct protein overlay binding assay performed with (32)P-labeled RIIbeta revealed a prominent AKAP with an M(r) of 280,000 in class C channel complexes. The protein was identified by immunoblotting as the microtubule-associated protein MAP2B, a well established AKAP. Class C channels did not contain tubulin and MAP2B association was not disrupted by dilution or addition of nocodazole, two treatments that cause dissociation of microtubules. In vitro experiments show that MAP2B can directly bind to the alpha(1) subunit of the class C channel. Our findings indicate that PKA is an integral part of neuronal class C L-type Ca(2+) channels and suggest that the AKAP MAP2B may mediate this interaction. Neither PKA nor MAP2B were detected in immunoprecipitates of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid-type glutamate receptors or class B N-type Ca(2+) channels. Accordingly, MAP2B docked at class C Ca(2+) channels may be important for recruiting PKA to postsynaptic sites.
Collapse
Affiliation(s)
- M A Davare
- Department of Pharmacology, University of Wisconsin, Madison, Wisconsin 53706-1532, USA
| | | | | | | |
Collapse
|
31
|
Palmer MJ, McSwain JL, Spatz MD, Tucker JS, Essenberg RC, Sauer JR. Molecular cloning of cAMP-dependent protein kinase catalytic subunit isoforms from the lone star tick, Amblyomma americanum (L.). INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 1999; 29:43-51. [PMID: 10070744 DOI: 10.1016/s0965-1748(98)00103-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The salivary glands of ixodid ticks are central to tick feeding and to survival during off-host periods. They produce and secrete a number of molecules critical to maintaining the complex host-vector interface and to maintaining osmotic balance. We have previously shown that a cyclic AMP-dependent protein kinase (cAPK) is involved in the mechanism of salivary gland secretion. We have now cloned cDNAs encoding three isoforms of the catalytic subunit (cAPK-C) of the cAPK from Amblyomma americanum, which are probably produced from alternative RNA processing of a single cAPK-C gene. The cDNAs contain unique N-termini of variable lengths that are linked to a common region containing the alpha A helix, catalytic core, and a C-terminal tail. The common region is highly similar to both insect and vertebrate cAPK-Cs. We have examined mRNA profiles in whole ticks and in isolated salivary glands throughout feeding and find that a single cAPK-C isoform is expressed in the salivary glands of both unfed and feeding females.
Collapse
Affiliation(s)
- M J Palmer
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater 74078-3033, USA
| | | | | | | | | | | |
Collapse
|
32
|
Liao VH, Freedman JH. Cadmium-regulated genes from the nematode Caenorhabditis elegans. Identification and cloning of new cadmium-responsive genes by differential display. J Biol Chem 1998; 273:31962-70. [PMID: 9822667 DOI: 10.1074/jbc.273.48.31962] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The transition metal cadmium is a pervasive and persistent environmental contaminant that has been shown to be both a human toxicant and carcinogen. To inhibit cadmium-induced damage, cells respond by increasing the expression of genes encoding stress-response proteins. In most cases, the mechanism by which cadmium affects the expression of these genes remains unknown. It has been demonstrated in several instances that cadmium activates gene transcription through signal transduction pathways, mediated by protein kinase C, cAMP-dependent protein kinase, or calmodulin. A codicil is that cadmium should influence the expression of numerous genes. To investigate the ability of cadmium to affect gene transcription, the differential display technique was used to analyze gene expression in the nematode Caenorhabditis elegans. Forty-nine cDNAs whose steady-state levels of expression change 2-6-fold in response to cadmium exposure were identified. The nucleotide sequences of the majority of the differentially expressed cDNAs are identical to those of C. elegans cosmids, yeast artificial chromosomes, expressed sequence tags, or predicted genes. The translated amino acid sequences of several clones are identical to C. elegans metallothionein-1, HSP70, collagens, and rRNAs. In addition, C. elegans homologues of pyruvate carboxylase, DNA gyrase, beta-adrenergic receptor kinase, and human hypothetical protein KIAA0174 were identified. The translated amino acid sequences of the remaining differentially expressed cDNAs encode novel proteins.
Collapse
Affiliation(s)
- V H Liao
- Nicholas School of the Environment, Duke University, Durham, North Carolina 27708, USA
| | | |
Collapse
|
33
|
Kim JM, Sato N, Yamada M, Arai K, Masai H. Growth regulation of the expression of mouse cDNA and gene encoding a serine/threonine kinase related to Saccharomyces cerevisiae CDC7 essential for G1/S transition. Structure, chromosomal localization, and expression of mouse gene for s. cerevisiae Cdc7-related kinase. J Biol Chem 1998; 273:23248-57. [PMID: 9722556 DOI: 10.1074/jbc.273.36.23248] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Saccharomyces cerevisiae CDC7 encodes a serine/threonine kinase required for G1/S transition of the yeast cells. We previously reported human and Xenopus cDNAs encoding CDC7-related kinases and suggested the possibility that chromosomal replication of higher eukaryotes may be regulated through conserved mechanisms involving Cdc7-related kinases. Here we report a murine cDNA and gene (muCdc7) encoding a serine/threonine kinase related to CDC7. The predicted coding frame for the longest cDNA for muCdc7 consists of 564 amino acids, which shares 46, 77, and 93% identity, respectively, with those of budding yeast, Xenopus, and human in kinase conserved domains. The chromosomal gene for muCdc7, located at the band 5E5 on the mouse chromosome 5, consists of 12 exons, and its exon/intron organization shares some similarity with that of other protein kinases including Cdk and cAMP-dependent kinase. Transcription of muCdc7, initiated at multiple sites over the 370-base pair promoter region, is repressed in the resting state and is induced at the G1/S boundary after growth factor stimulation in a growth factor-dependent cell line. Transient transfection assays indicated that a 231-base pair segment of the muCdc7 promoter containing three putative E2F binding sites and one Sp1 site but lacking TATA sequence is sufficient for response to growth stimulation.
Collapse
Affiliation(s)
- J M Kim
- Department of Molecular and Developmental Biology, Institute of Medical Science, University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | | | | | | | | |
Collapse
|
34
|
Angelo R, Rubin CS. Molecular characterization of an anchor protein (AKAPCE) that binds the RI subunit (RCE) of type I protein kinase A from Caenorhabditis elegans. J Biol Chem 1998; 273:14633-43. [PMID: 9603981 DOI: 10.1074/jbc.273.23.14633] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Classical A kinase anchor proteins (AKAPs) preferentially tether type II protein kinase A (PKAII) isoforms to sites in the cytoskeleton and organelles. It is not known if distinct proteins selectively sequester regulatory (R) subunits of type I PKAs, thereby diversifying functions of these critical enzymes. In Caenorhabditis elegans, a single type I PKA mediates all aspects of cAMP signaling. We have discovered a cDNA that encodes a binding protein (AKAPCE) for the regulatory subunit (RCE) of C. elegans PKAICE. AKAPCE is a novel, highly acidic RING finger protein composed of 1,280 amino acids. It binds RI-like RCE with high affinity and neither RIIalpha nor RIIbeta competitively inhibits formation of AKAPCE.RCE complexes. The RCE-binding site was mapped to a segment of 20 amino acids in an N-terminal region of AKAPCE. Several hydrophobic residues in the binding site align with essential Leu and Ile residues in the RII-selective tethering domain of prototypic mammalian AKAPs. However, the RCE-binding region in AKAPCE diverges sharply from consensus RII-binding sites by inclusion of three aromatic amino acids, exclusion of a highly conserved Leu or Ile at position 8 and replacement of C-terminal hydrophobic amino acids with basic residues. AKAPCE.RCE complexes accumulate in intact cells.
Collapse
Affiliation(s)
- R Angelo
- Department of Molecular Pharmacology, Atran Laboratories, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | |
Collapse
|
35
|
Aspbury RA, Fisher MJ, Rees HH, Clegg RA. N-Myristoylation of the catalytic subunit of cAMP-dependent protein kinase in the free-living nematode Caenorhabditis elegans. Biochem Biophys Res Commun 1997; 238:523-7. [PMID: 9299544 DOI: 10.1006/bbrc.1997.7165] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
N-Myristoylation of the catalytic subunit (C-subunit) of cAMP-dependent protein kinase is widespread in animal cells. Some invertebrates express non-myristoylated isoforms of C-subunit but these co-exist with at least one myristoylated isoform. The generality of this observation implies an indispensable function for myristoylated C-subunit, but notwithstanding this, neither of the C-subunit isoforms hitherto described in C. elegans is apparently N-myristoylated. In light of this anomaly, the myristoylation status of the C-subunit has been examined in adult C. elegans. Evidence is presented for the presence of an N-myristoylated isoform.
Collapse
Affiliation(s)
- R A Aspbury
- Department of Biochemistry, University of Liverpool, Liverpool, L69 3BX, United Kingdom
| | | | | | | |
Collapse
|
36
|
Etchebehere LC, Van Bemmelen MX, Anjard C, Traincard F, Assemat K, Reymond C, Véron M. The catalytic subunit of Dictyostelium cAMP-dependent protein kinase -- role of the N-terminal domain and of the C-terminal residues in catalytic activity and stability. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 248:820-6. [PMID: 9342234 DOI: 10.1111/j.1432-1033.1997.t01-2-00820.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The C subunit of Dictyostelium cAMP-dependent protein kinase (PKA) is unusually large (73 kDa) due to the presence of 330 amino acids N-terminal to the conserved catalytic core. The sequence following the core, including a C-terminal -Phe-Xaa-Xaa-Phe-COOH motif, is highly conserved. We have characterized the catalytic activity and stability of C subunits mutated in sequences outside the catalytic core and we have analyzed their ability to interact with the R subunit and with the heat-stable protein-kinase inhibitor PKI. Mutants carrying deletions in the N-terminal domain displayed little difference in their kinetic properties and retained their capacity to be inhibited by R subunit and by PKI. In contrast, the mutation of one or both of the phenylalanine residues in the C-terminal motif resulted in a decrease of catalytic activity and stability of the proteins. Inhibition by the R subunit or by PKI were however unaffected. Sequence-comparison analysis of other protein kinases revealed that a -Phe-Xaa-Xaa-Phe- motif is present in many Ser/Thr protein kinases, although its location at the very end of the polypeptide is a particular feature of the PKA family. We propose that the presence of this motif may serve to identify isoforms of protein kinases.
Collapse
Affiliation(s)
- L C Etchebehere
- Unité de Régulation Enzymatique des Activités Cellulaires, CNRS UMR 321, Institut Pasteur, Paris, France
| | | | | | | | | | | | | |
Collapse
|
37
|
Morrison M, Harris KS, Roth MB. smg mutants affect the expression of alternatively spliced SR protein mRNAs in Caenorhabditis elegans. Proc Natl Acad Sci U S A 1997; 94:9782-5. [PMID: 9275202 PMCID: PMC23268 DOI: 10.1073/pnas.94.18.9782] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/1997] [Indexed: 02/05/2023] Open
Abstract
The expression of alternatively spliced mRNAs from genes is an ubiquitous phenomenon in metazoa. A screen for trans-acting factors that alter the expression of alternatively spliced mRNAs reveals that the smg genes of Caenorhabditis elegans participate in this process. smg genes have been proposed to function in degradation of nonsense mutant mRNAs. Here we show that smg genes affect normal gene expression by modulating the levels of alternatively spliced SRp20 and SRp30b mRNAs. These SR genes contain alternatively spliced exons that introduce upstream stop codons. The effect of smg genes on SR transcripts is specific, because the gene encoding the catalytic subunit of the cAMP-dependent protein kinase, which also contains an alternatively spliced exon that introduces upstream stop codon, is not effected in a smg background. These results suggest that the levels of alternatively spliced mRNAs may, in part, be regulated by alternative mRNA stability.
Collapse
Affiliation(s)
- M Morrison
- Molecular and Cellular Biology Program, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue, Seattle, WA 98105, USA
| | | | | |
Collapse
|
38
|
Bencina M, Panneman H, Ruijter GJG, Legiša M, Visser J. Characterization and overexpression of the Aspergillus niger gene encoding the cAMP-dependent protein kinase catalytic subunit. MICROBIOLOGY (READING, ENGLAND) 1997; 143 ( Pt 4):1211-1220. [PMID: 9141684 DOI: 10.1099/00221287-143-4-1211] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The gene pkaC encoding the catalytic subunit of cAMP-dependent protein kinase has been isolated from the industrially important filamentous fungus Aspergillus niger. A probe for screening A. niger phage libraries was generated by a polymerase chain reaction using degenerate primers. cDNA and genomic DNA clones were isolated and sequenced. An open reading frame of 1440 bp, interrupted by three short introns, encodes a polypeptide of 480 amino acids with a calculated molecular mass of 53813 Da. The cAMP-dependent protein kinase catalytic subunit (PKA-C) from A. niger has a 126 amino acid extension at the N-terminus compared to the PKA-C of higher eukaryotes that-except for the first 15 amino acids, which are homologous to the Magnaporthe grisea PKA-C-shows no significant similarity to the N-terminal extension of PKA-C of other lower eukaryotes. The catalytic core of PKA-C of A. niger shows extensive homology with the PKA-C isolated from all other eukaryotes. Low-stringency hybridization did not reveal any other pkaC homologue in A. niger. The cloned pkaC was used for transformation of A. niger, leading to increased levels of pkaC mRNA and PKA-C activity. Transformants overexpressing pkaC were phenotypically different with respect to growth, showing a more compact colony morphology, accompanied by a more dense sporulation, especially on media containing trehalose and glycerol. A number of transformants also showed a strongly reduced or complete absence of sporulation. This phenotype was quickly lost upon propagation of the strains.
Collapse
Affiliation(s)
- Mojca Bencina
- National Institute of Chemistry, Hajdrihova 19, SLO-61115 Ljubljana, Slovenia
- Wageningen Agricultural University, Section Molecular Genetics of Industrial Microorganisms, Dreijenlaan 2, 6703 HA Wageningen, The Netherlands
| | - Henk Panneman
- Wageningen Agricultural University, Section Molecular Genetics of Industrial Microorganisms, Dreijenlaan 2, 6703 HA Wageningen, The Netherlands
| | - George J G Ruijter
- Wageningen Agricultural University, Section Molecular Genetics of Industrial Microorganisms, Dreijenlaan 2, 6703 HA Wageningen, The Netherlands
| | - Matic Legiša
- National Institute of Chemistry, Hajdrihova 19, SLO-61115 Ljubljana, Slovenia
| | - Jaap Visser
- Wageningen Agricultural University, Section Molecular Genetics of Industrial Microorganisms, Dreijenlaan 2, 6703 HA Wageningen, The Netherlands
| |
Collapse
|
39
|
Hoshino K, Nomura K, Suzuki N. Cyclic-AMP-dependent activation of an inter-phylum hybrid histone-kinase complex reconstituted from sea urchin sperm-regulatory subunits and bovine heart catalytic subunits. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 243:612-23. [PMID: 9057823 DOI: 10.1111/j.1432-1033.1997.00612.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A cAMP-dependent histone kinase was purified and characterized from spermatozoa of the sea urchin Hemicentrotus pulcherrimus. The molecular mass of the kinase was estimated to be 178 kDa by native PAGE and 400 kDa by gel chromatography on a Superose 6 HR 10/30 column. The enzyme, composed of two 39-kDa catalytic subunits and two 48-kDa regulatory subunits, phosphorylates the lysine-rich histone subspecies (H1 and H2B) isolated from H. pulcherrimus spermatozoa. We isolated cDNA clones encoding a 39-kDa catalytic subunit and a 48-kDa regulatory subunit of the enzyme. The cDNA clone for the 39-kDa subunit was 3881 bp, and the 352-residue deduced amino acid sequence showed 78% similarity with the catalytic subunit of/mammalian cAMP-dependent protein kinase (PKA). The cDNA for the 48-kDa subunit was 4589 bp and the 368-residue deduced amino acid sequence showed 57% similarity with the regulatory subunit of mammalian PKA, although the N-terminal 77 residues showed poor similarity. The mRNAs encoding both the catalytic subunit (7.5 kb) and the regulatory subunit (4.6 kb) were expressed in testis, ovary and egg. An inter-phylum hybrid enzyme, reconstituted from the regulatory subunit of cAMP-dependent histone kinase of sea urchin sperm and the catalytic subunit of bovine heart PKA, has a cAMP-dependent histone kinase activity. Thus, we suggest that the N-terminal 77-amino-acid residues of the regulatory subunit are not essential for inhibition by the regulatory subunit of the catalytic subunit, and that cAMP-dependent inhibitory activity of the regulatory subunit resides in the sequence between the inhibitory site and the C-terminus.
Collapse
Affiliation(s)
- K Hoshino
- Division of Biological Sciences, Graduate School of Science, Hokkaido University, Sapporo, Japan
| | | | | |
Collapse
|
40
|
Abstract
Hookworms cause severe anemia and malnutrition in developing countries of the tropics, with an estimated one billion people infected worldwide. An in vitro system that models the early events of infection has provided new information about the linkage between the infectious process and the parasite's developmental biology. The cloning and expression of Ancylostoma secreted protein, ASP 1 - a secreted molecule associated with these developmental processes - is an example of how this system allows us to dissect the infectious process at the molecular level.
Collapse
Affiliation(s)
- J M Hawdon
- Medical Helminthology Laboratory, Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut 06520, USA.
| | | |
Collapse
|
41
|
Saito-Ito A, He S, Kimura M, Matsumura T, Tanabe K. Cloning and structural analysis of the gene for cAMP-dependent protein kinase catalytic subunit from Plasmodium yoelii. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1269:1-5. [PMID: 7578264 DOI: 10.1016/0167-4889(95)00119-d] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We isolated the gene encoding the cAMP-dependent protein kinase catalytic subunit (cAPK[C]) from Plasmodium yoelii by screening a genomic library for the DNA fragment as produced by the polymerase chain reaction. The deduced protein of 341 amino acids conserves residues that are important for the function of serine/threonine protein kinases and shows the highest homology to cAPK[C]s of other organisms. However, P. yoelii cAPK[C] has 8 residues, which are perfectly conserved in cAPK[C]s of other organisms, radically replaced with residues having different side-chain properties. It is stressed that two radical replacements occur in regions for the binding with a regulatory subunit and/or a heat-stable inhibitor protein.
Collapse
Affiliation(s)
- A Saito-Ito
- Department of Medical Zoology, Kobe University School of Medicine, Japan
| | | | | | | | | |
Collapse
|
42
|
Jung S, Hoffmann R, Rodriguez PH, Mutzel R, Hofer HW. The catalytic subunit of cAMP-dependent protein kinase from Ascaris suum. The cloning and structure of a novel subtype of protein kinase A. EUROPEAN JOURNAL OF BIOCHEMISTRY 1995; 232:111-7. [PMID: 7556139 DOI: 10.1111/j.1432-1033.1995.tb20788.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A complete cDNA clone encoding the catalytic subunit of cAMP-dependent protein kinase of Ascaris suum was constructed from two overlapping partial clones. The encoded sequence of 337 amino acids is 48% identical with the sequence of mouse C alpha subunit. Approximately the same low similarity was found with the sequence of the C subunit from another nematode, Caenorhabditis elegans. The N-terminal 14 amino acids and the myristoylation site of the mammalian protein are not contained in the enzyme from Ascaris. Two cysteines (Cys33 and Cys319) replace a basic residue in the N-terminal region and an acidic amino acid near the C-terminus which are conserved in all known C subunits from other sources. The substitutions provide the possibility of disulfide bridge formation between the N-terminal and C-terminal parts of the protein. There is strong evidence that a single gene encodes cAMP-dependent protein kinase in Ascaris. Modelling of the sequence into the coordinates of the X-ray structure of the mammalian enzyme suggest a high degree of conservation in the three-dimensional structure. However, structural variations occur at the surface of the protein near the catalytic cleft and are likely to account for the variations in substrate specificity previously observed between the purified protein kinase from Ascaris [Thalhofer, H. P., Daum, G., Harris, B. G. & Hofer, H. W. (1988) J. Biol. Chem. 263, 952-957] and the mammalian enzyme.
Collapse
Affiliation(s)
- S Jung
- Faculty of Biology, University of Konstanz, Germany
| | | | | | | | | |
Collapse
|
43
|
Hawdon JM, Jones BF, Hotez PJ. Cloning and characterization of a cDNA encoding the catalytic subunit of a cAMP-dependent protein kinase from Ancylostoma caninum third-stage infective larvae. Mol Biochem Parasitol 1995; 69:127-30. [PMID: 7723782 DOI: 10.1016/0166-6851(94)00203-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- J M Hawdon
- Medical Helminthology Laboratory, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | |
Collapse
|
44
|
Land M, Islas-Trejo A, Rubin C. Origin, properties, and regulated expression of multiple mRNAs encoded by the protein kinase C1 gene of Caenorhabditis elegans. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)36698-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
45
|
Structure and expression of a novel, neuronal protein kinase C (PKC1B) from Caenorhabditis elegans. PKC1B is expressed selectively in neurons that receive, transmit, and process environmental signals. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)37099-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
46
|
de Oliveira JC, Borges AC, Marques MDV, Gomes SL. Cloning and characterization of the gene for the catalytic subunit of cAMP-dependent protein kinase in the aquatic fungus Blastocladiella emersonii. EUROPEAN JOURNAL OF BIOCHEMISTRY 1994; 219:555-62. [PMID: 8307021 DOI: 10.1111/j.1432-1033.1994.tb19971.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We have isolated and characterized cDNA and genomic DNA clones encoding the catalytic subunit (C) of cAMP-dependent protein kinase in the aquatic fungus Blastocladiella emersonii. The C-subunit amino acid sequence derived from the nucleotide sequence predicts a basic polypeptide of 424 residues, excluding the initiator methionine, which by amino-terminal sequence analysis has been shown to be absent from the mature protein. The Blastocladiella C presents a 70-amino-acid extension at the amino terminus, when aligned to the mouse C alpha subunit, being one of the largest C subunits already characterized. The B. emersonii C-gene-coding region is interrupted by three introns, ranging in size over 57-69 bp. The positions of the introns are quite different from those found in other species, suggesting a considerable amount of evolutionary drift in the gene structure. The 5'-flanking region lacks recognizable TATA or CCAAT sequences, is remarkably high in GC content (70%), and primer extension experiments indicate that transcription initiates from multiple sites. Several sequence motifs were identified in the promoter region which could be involved in the developmental control of this gene.
Collapse
Affiliation(s)
- J C de Oliveira
- Departamento de Bioquímica, Universidade de São Paulo, Brasil
| | | | | | | |
Collapse
|
47
|
Katsura I. In search of new mutants in cell-signaling systems of the nematode Caenorhabditis elegans. Review. Genetica 1993; 88:137-46. [PMID: 8224854 DOI: 10.1007/bf02424470] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Development of multicellular organisms is controlled mainly by cell-signaling systems. In this review I first discuss methods of genetic analysis and properties of mutants of cell-signaling systems in general and in the nematode C. elegans. Then, I describe two of our approaches to isolating new mutants in cell-signaling of C. elegans. The first approach is to select for mutants that have the same visible phenotype as those in known cell-signaling genes. In a survey of larval lethal mutations we found that there are quite a few mutants in which the inner surface of the body wall is detached from the outer surface of the intestine. Some of them map in genes that are known to act in cell-signaling systems in vulval induction or sex myoblast migration, which are not essential to the growth and survival of C. elegans. Therefore, we think many of the mutations of the above phenotype disrupt cell-signaling in an unidentified essential function, and also cell-signaling in the non-essential functions. The second approach is to isolate mutants resistant to a drug expected to disturb cell-signaling. As the drug we have chosen sodium fluoride, which depletes calcium ion, activates G-proteins and inactivates some phosphatases. The mutants are grouped into two classes (three and two genes, respectively) according to degree of fluoride-resistance and growth rate of larvae. Although there is so far no direct evidence that these mutants are related to cell-signaling, they show complex epistasis that can be explained by a model consisting of a cell-signaling pathway.
Collapse
Affiliation(s)
- I Katsura
- DNA Research Center, National Institute of Genetics, Shizuoka-ken, Japan
| |
Collapse
|
48
|
Ndubuka C, Li Y, Rubin C. Expression of a kinase anchor protein 75 depletes type II cAMP-dependent protein kinases from the cytoplasm and sequesters the kinases in a particulate pool. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)52999-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
49
|
The novel metallothionein genes of Caenorhabditis elegans. Structural organization and inducible, cell-specific expression. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)53810-2] [Citation(s) in RCA: 120] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
50
|
Cawley K, Akita C, Angelos K, Walsh D. Characterization of the gene for rat phosphorylase kinase catalytic subunit. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)54059-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
|