1
|
Narayanasamy S, Ong HL, Ambudkar IS. A Deep Dive into the N-Terminus of STIM Proteins: Structure-Function Analysis and Evolutionary Significance of the Functional Domains. Biomolecules 2024; 14:1200. [PMID: 39456133 PMCID: PMC11506743 DOI: 10.3390/biom14101200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 10/28/2024] Open
Abstract
Calcium is an important second messenger that is involved in almost all cellular processes. Disruptions in the regulation of intracellular Ca2+ levels ([Ca2+]i) adversely impact normal physiological function and can contribute to various diseased conditions. STIM and Orai proteins play important roles in maintaining [Ca2+]i through store-operated Ca2+ entry (SOCE), with STIM being the primary regulatory protein that governs the function of Orai channels. STIM1 and STIM2 are single-pass ER-transmembrane proteins with their N- and C-termini located in the ER lumen and cytoplasm, respectively. The N-terminal EF-SAM domain of STIMs senses [Ca2+]ER changes, while the C-terminus mediates clustering in ER-PM junctions and gating of Orai1. ER-Ca2+ store depletion triggers activation of the STIM proteins, which involves their multimerization and clustering in ER-PM junctions, where they recruit and activate Orai1 channels. In this review, we will discuss the structure, organization, and function of EF-hand motifs and the SAM domain of STIM proteins in relation to those of other eukaryotic proteins.
Collapse
Affiliation(s)
| | | | - Indu S. Ambudkar
- Secretory Physiology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892-1190, USA; (S.N.); (H.L.O.)
| |
Collapse
|
2
|
Calcium modulates the domain flexibility and function of an α-actinin similar to the ancestral α-actinin. Proc Natl Acad Sci U S A 2020; 117:22101-22112. [PMID: 32848067 DOI: 10.1073/pnas.1917269117] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The actin cytoskeleton, a dynamic network of actin filaments and associated F-actin-binding proteins, is fundamentally important in eukaryotes. α-Actinins are major F-actin bundlers that are inhibited by Ca2+ in nonmuscle cells. Here we report the mechanism of Ca2+-mediated regulation of Entamoeba histolytica α-actinin-2 (EhActn2) with features expected for the common ancestor of Entamoeba and higher eukaryotic α-actinins. Crystal structures of Ca2+-free and Ca2+-bound EhActn2 reveal a calmodulin-like domain (CaMD) uniquely inserted within the rod domain. Integrative studies reveal an exceptionally high affinity of the EhActn2 CaMD for Ca2+, binding of which can only be regulated in the presence of physiological concentrations of Mg2+ Ca2+ binding triggers an increase in protein multidomain rigidity, reducing conformational flexibility of F-actin-binding domains via interdomain cross-talk and consequently inhibiting F-actin bundling. In vivo studies uncover that EhActn2 plays an important role in phagocytic cup formation and might constitute a new drug target for amoebic dysentery.
Collapse
|
3
|
Sun XR, Badura A, Pacheco DA, Lynch LA, Schneider ER, Taylor MP, Hogue IB, Enquist LW, Murthy M, Wang SSH. Fast GCaMPs for improved tracking of neuronal activity. Nat Commun 2013; 4:2170. [PMID: 23863808 PMCID: PMC3824390 DOI: 10.1038/ncomms3170] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 06/19/2013] [Indexed: 01/31/2023] Open
Abstract
The use of genetically encodable calcium indicator proteins to monitor neuronal activity is hampered by slow response times and a narrow Ca(2+)-sensitive range. Here we identify three performance-limiting features of GCaMP3, a popular genetically encodable calcium indicator protein. First, we find that affinity is regulated by the calmodulin domain's Ca(2+)-chelating residues. Second, we find that off-responses to Ca(2+) are rate-limited by dissociation of the RS20 domain from calmodulin's hydrophobic pocket. Third, we find that on-responses are limited by fast binding to the N-lobe at high Ca(2+) and by slow binding to the C-lobe at lower Ca(2+). We develop Fast-GCaMPs, which have up to 20-fold accelerated off-responses and show that they have a 200-fold range of K(D), allowing coexpression of multiple variants to span an expanded range of Ca(2+) concentrations. Finally, we show that Fast-GCaMPs track natural song in Drosophila auditory neurons and generate rapid responses in mammalian neurons, supporting the utility of our approach.
Collapse
Affiliation(s)
- Xiaonan R Sun
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
- Neuroscience Institute, Princeton University, Princeton, New Jersey 08544, USA
| | - Aleksandra Badura
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
- Neuroscience Institute, Princeton University, Princeton, New Jersey 08544, USA
| | - Diego A Pacheco
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
- Neuroscience Institute, Princeton University, Princeton, New Jersey 08544, USA
| | - Laura A Lynch
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
- Neuroscience Institute, Princeton University, Princeton, New Jersey 08544, USA
| | - Eve R Schneider
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
- Neuroscience Institute, Princeton University, Princeton, New Jersey 08544, USA
| | - Matthew P Taylor
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
- Neuroscience Institute, Princeton University, Princeton, New Jersey 08544, USA
| | - Ian B Hogue
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
- Neuroscience Institute, Princeton University, Princeton, New Jersey 08544, USA
| | - Lynn W Enquist
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
- Neuroscience Institute, Princeton University, Princeton, New Jersey 08544, USA
| | - Mala Murthy
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
- Neuroscience Institute, Princeton University, Princeton, New Jersey 08544, USA
| | - Samuel S-H Wang
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
- Neuroscience Institute, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|
4
|
|
5
|
Henzl MT, Davis ME, Tan A. Polcalcin divalent ion-binding behavior and thermal stability: comparison of Bet v 4, Bra n 1, and Bra n 2 to Phl p 7. Biochemistry 2010; 49:2256-68. [PMID: 20143814 DOI: 10.1021/bi902115v] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Polcalcins are pollen-specific proteins containing two EF-hands. Atypically, the C-terminal EF-hand binding loop in Phl p 7 (from timothy grass) harbors five, rather than four, anionic side chains, due to replacement of the consensus serine at -x by aspartate. This arrangement has been shown to heighten parvalbumin Ca(2+) affinity. To determine whether Phl p 7 likewise exhibits anomalous divalent ion affinity, we have also characterized Bra n 1 and Bra n 2 (both from rapeseed) and Bet v 4 (from birch tree). Relative to Phl p 7, they exhibit N-terminal extensions of one, five, and seven residues, respectively. Interestingly, the divalent ion affinity of Phl p 7 is unexceptional. For example, at -17.84 +/- 0.13 kcal mol(-1), the overall standard free energy for Ca(2+) binding falls within the range observed for the other three proteins (-17.30 +/- 0.10 to -18.15 +/- 0.10 kcal mol(-1)). In further contrast to parvalbumin, replacement of the -x aspartate, via the D55S mutation, actually increases the overall Ca(2+) affinity of Phl p 7, to -18.17 +/- 0.13 kcal mol(-1). Ca(2+)-free Phl p 7 exhibits uncharacteristic thermal stability. Whereas wild-type Phl p 7 and the D55S variant denature at 77.3 and 78.0 degrees C, respectively, the other three polcalcins unfold between 56.1 and 57.9 degrees C. This stability reflects a low denaturational heat capacity increment. Phl p 7 and Phl p 7 D55S exhibit DeltaC(p) values of 0.34 and 0.32 kcal mol(-1) K(-1), respectively. The corresponding values for the other three polcalcins range from 0.66 to 0.95 kcal mol(-1) K(-1).
Collapse
Affiliation(s)
- Michael T Henzl
- Department of Biochemistry, University of Missouri, Columbia, Missouri 65211, USA.
| | | | | |
Collapse
|
6
|
Henzl MT, Davis ME, Tan A. Divalent Ion Binding Properties of the Timothy Grass Allergen, Phl p 7. Biochemistry 2008; 47:7846-56. [DOI: 10.1021/bi800620g] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Michael T. Henzl
- Department of Biochemistry, University of Missouri, Columbia, Missouri 65211
| | - Meredith E. Davis
- Department of Biochemistry, University of Missouri, Columbia, Missouri 65211
| | - Anmin Tan
- Department of Biochemistry, University of Missouri, Columbia, Missouri 65211
| |
Collapse
|
7
|
Gifford JL, Walsh MP, Vogel HJ. Structures and metal-ion-binding properties of the Ca2+-binding helix–loop–helix EF-hand motifs. Biochem J 2007; 405:199-221. [PMID: 17590154 DOI: 10.1042/bj20070255] [Citation(s) in RCA: 633] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The ‘EF-hand’ Ca2+-binding motif plays an essential role in eukaryotic cellular signalling, and the proteins containing this motif constitute a large and functionally diverse family. The EF-hand is defined by its helix–loop–helix secondary structure as well as the ligands presented by the loop to bind the Ca2+ ion. The identity of these ligands is semi-conserved in the most common (the ‘canonical’) EF-hand; however, several non-canonical EF-hands exist that bind Ca2+ by a different co-ordination mechanism. EF-hands tend to occur in pairs, which form a discrete domain so that most family members have two, four or six EF-hands. This pairing also enables communication, and many EF-hands display positive co-operativity, thereby minimizing the Ca2+ signal required to reach protein saturation. The conformational effects of Ca2+ binding are varied, function-dependent and, in some cases, minimal, but can lead to the creation of a protein target interaction site or structure formation from a molten-globule apo state. EF-hand proteins exhibit various sensitivities to Ca2+, reflecting the intrinsic binding ability of the EF-hand as well as the degree of co-operativity in Ca2+ binding to paired EF-hands. Two additional factors can influence the ability of an EF-hand to bind Ca2+: selectivity over Mg2+ (a cation with very similar chemical properties to Ca2+ and with a cytoplasmic concentration several orders of magnitude higher) and interaction with a protein target. A structural approach is used in this review to examine the diversity of family members, and a biophysical perspective provides insight into the ability of the EF-hand motif to bind Ca2+ with a wide range of affinities.
Collapse
Affiliation(s)
- Jessica L Gifford
- Structural Biology Research Group, Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada T2N 1N4
| | | | | |
Collapse
|
8
|
Zhao J, Nelson DJ, Huo S. Potential influence of Asp in the Ca2+ coordination position 5 of parvalbumin on the calcium-binding affinity: A computational study. J Inorg Biochem 2006; 100:1879-87. [PMID: 16965819 DOI: 10.1016/j.jinorgbio.2006.07.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2006] [Revised: 07/17/2006] [Accepted: 07/20/2006] [Indexed: 10/24/2022]
Abstract
Parvalbumins (PV) are calcium-binding proteins, all sharing the common helix-loop-helix (EF-hand) motif. This motif contains a central twelve-residue Ca(2+)-binding loop with the flanking helices positioned roughly perpendicular to each other. The precise role of these coordination residues has been the subject of intense studies. In this work, we focus on the coordination position 5 in the CD Ca(2+)-binding site of silver hake parvalbumin isoform B (SHPV-B). The most common residue at site 5 of calcium-binding loop in canonical EF-hands is Asp [B.J. Marsden, G.S. Shaw, B.D. Sykes, Biochem. Cell Biol. 68 (1990) 587-601], but in the CD site of PV, this position is almost always serine (Ser). The substitution of Ser with Asp will add the 5th carboxylate residue in the CD coordination sphere. However, as predicted by the acid pair hypothesis, the Ca(2+)-binding affinity would be maximized in an EF-hand motif that has four carboxylate ligands paired along the +/-x, and +/-z-axes [R.E. Reid, R.S. Hodges, J. Theor. Biol. 84 (1980) 401-444]. Molecular dynamics simulations and free energy calculations were employed to investigate the influence of Ser to Asp mutation at position 5 on calcium-binding affinity. We found that the Asp variant exhibited remarkable stability during the entire molecular dynamics simulation, with not only the retention of the Ca(2+)-binding site, but also increased compactness in the coordination sphere. The S55D fragment also accommodated Ca(2+) well. We conclude that the reason why Asp which is the most common residue at site 5 of calcium-binding loop in canonical EF-hands has never been identified at this position experimentally for PVs might be related to its physiological functions.
Collapse
Affiliation(s)
- Jingyan Zhao
- Gustaf H. Carlson School of Chemistry and Biochemistry, Clark University, 950 Main Street, Worcester, MA 01610, United States
| | | | | |
Collapse
|
9
|
Muralidhar D, Kunjachen Jobby M, Jeromin A, Roder J, Thomas F, Sharma Y. Calcium and chlorpromazine binding to the EF-hand peptides of neuronal calcium sensor-1. Peptides 2004; 25:909-17. [PMID: 15203236 DOI: 10.1016/j.peptides.2004.03.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2003] [Revised: 03/24/2004] [Accepted: 03/24/2004] [Indexed: 11/21/2022]
Abstract
Neuronal calcium sensor-1, a protein of calcium sensor family, is known to have four structural EF-hands. We have synthesised peptides corresponding to all the four EF-hands and studied their conformation and calcium-binding. Our data confirm that the first putative site, a non-canonical one (EF1), does not bind calcium. We have investigated if this lack of binding is due to the presence of non-favoured residues (particularly at +x and -z co-ordinating positions) of the loop. We have mutated these residues and found that after modification the peptides bound calcium. However, these mutated peptides (EF1 and its functional mutants) do not show any Ca(2+) induced changes in far-UV CD. EF2, EF3, and EF4 peptides bind Ca(2+), EF3 being the strongest binder, followed by EF4. Our data of Ca(2+)-binding to individual EF peptides show that there are three active Ca(2+)-binding sites in NCS-1. We have also studied the binding of a neuroleptic drug, chlorpromazine, with the protein as well as with its EF-hands. CPZ binds myristoylated as well as non-myristoylated NCS-1 in Ca(2+)-dependent manner, with dynamic interaction to myristoylated protein. CPZ does not bind to EF1, but binds to functional EF-hand peptides and induces changes in far-UV CD. Our results suggest that NCS-1 could be a target of such antipsychotic and neuroleptic drugs.
Collapse
Affiliation(s)
- Dasari Muralidhar
- Centre for Cellular and Molecular Biology (CCMB), Uppal Road, Hyderabad 500007, India
| | | | | | | | | | | |
Collapse
|
10
|
Henzl MT, Larson JD, Agah S. Estimation of parvalbumin Ca(2+)- and Mg(2+)-binding constants by global least-squares analysis of isothermal titration calorimetry data. Anal Biochem 2003; 319:216-33. [PMID: 12871715 DOI: 10.1016/s0003-2697(03)00288-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The use of competitive isothermal titration calorimetry (ITC) to measure high-affinity binding constants has been largely restricted to systems with a single binding site or multiple identical sites. This study demonstrates the extension of this approach to proteins with two nonequivalent EF-hand Ca(2+)-binding sites--rat beta parvalbumin and the S55D/E59D variant of rat alpha parvalbumin. The method involves simultaneous (global) least-squares analysis of titrations with Ca(2+), with Mg(2+), with Ca(2+) in the presence of Mg(2+), and with Ca(2+) or Mg(2+) in the presence of a competitive chelator (EDTA or EGTA). The Ca(2+) and Mg(2+) binding constants obtained for rat beta agree well with estimates obtained by flow dialysis. Although the Ca(2+) affinity of alpha S55D/E59D is too high to measure by flow dialysis, it was amenable to analysis using the ITC-based approach. The combined S55D and E59D mutations increase the Ca(2+) and Mg(2+) affinities of the mutated binding site by factors of 14 and 26, respectively. This behavior is consistent with that seen previously for the rat beta S55D variant.
Collapse
Affiliation(s)
- Michael T Henzl
- Department of Biochemistry, University of Missouri-Columbia, Columbia, MO 65211, USA.
| | | | | |
Collapse
|
11
|
Julenius K, Robblee J, Thulin E, Finn BE, Fairman R, Linse S. Coupling of ligand binding and dimerization of helix-loop-helix peptides: spectroscopic and sedimentation analyses of calbindin D9k EF-hands. Proteins 2002; 47:323-33. [PMID: 11948786 DOI: 10.1002/prot.10080] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Isolated Ca2+-binding EF-hand peptides have a tendency to dimerize. This study is an attempt to account for the coupled equilibria of Ca2+-binding and peptide association for two EF-hands with strikingly different loop sequence and net charge. We have studied each of the two separate EF-hand fragments from calbindin D9k. A series of Ca2+-titrations at different peptide concentrations were monitored by CD and fluorescence spectroscopy. All data were fitted simultaneously to both a complete model of all possible equilibrium intermediates and a reduced model not including dimerization in the absence of Ca2+. Analytical ultracentrifugation shows that the peptides may occur as monomers or dimers depending on the solution conditions. Our results show strikingly different behavior for the two EF-hands. The fragment containing the N-terminal EF-hand shows a strong tendency to dimerize in the Ca2+-bound state. The average Ca2+-affinity is 3.5 orders of magnitude lower than for the intact protein. We observe a large apparent cooperativity of Ca2+ binding for the overall process from Ca2+-free monomer to fully loaded dimer, showing that a Ca2+-free EF-hand folds upon dimerization to a Ca2+-bound EF-hand, thereby presenting a preformed binding site to the second Ca2+-ion. The C-terminal EF-hand shows a much smaller tendency to dimerize, which may be related to its larger net negative charge. In spite of the differences in dimerization behavior, the Ca2+ affinities of both EF-hand fragments are similar and in the range lgK = 4.6-5.3.
Collapse
Affiliation(s)
- Karin Julenius
- Department of Biophysical Chemistry, Lund University, Lund, Sweden
| | | | | | | | | | | |
Collapse
|
12
|
Franchini PL, Reid RE. Investigating site-specific effects of the -X glutamate in a parvalbumin CD site model peptide. Arch Biochem Biophys 1999; 372:80-8. [PMID: 10562419 DOI: 10.1006/abbi.1999.1445] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The -X glutamate in a 33-residue model peptide comprising the CD site of carp parvalbumin 4.25 (ParvCD) was replaced with aspartate (ParvCD-XD) and the effect on calcium-dependent dimerization and calcium affinity assessed. The peptide ParvCD demonstrates a 10(5)-fold lower calcium affinity than the same site in the native protein. Both the ParvCD and ParvCD-XD model peptides fail to bind magnesium. The low calcium affinity and failure of the model ParvCD site to bind magnesium may be due to higher enthalpic costs of chelation by the -X glutamate. Replacement of the -X glutamate with an aspartate resulted in a twofold increase in the calcium affinity of both the monomer and dimer forms and a twofold increase in the calcium dependent dimerization of the peptide. A -X glutamate to aspartate replacement in 33-residue model peptides corresponding to bovine brain calmodulin site 3 (R. M. Procyshyn and R. E. Reid, Arch. Biochem. Biophys. 311, 425-429, 1994) and in Escherichia coli d-galactose-binding protein (S. K. Drake, K. L. Lee, and J. J. Falke, Biochemistry 35, 6697-6705, 1996) agree with results in the ParvCD site. However, in rat oncomodulin a -X glutamate to aspartate replacement increases calcium affinity (R. C. Hapak, P. J. Lammers, W. A. Palmisano, E. R. Birnbaum, and M. T. Henzl, J. Biol. Chem. 264, 18751-18760, 1989). The different effect of a -X glutamate to aspartate substitution in the different sites suggests site-specific factors dictating the thermodynamic contribution of the -X glutamate to calcium affinity.
Collapse
Affiliation(s)
- P L Franchini
- Faculty of Pharmaceutical Sciences, University of British Columbia, 2146 East Mall, Vancouver, British Columbia, V6T 1Z3, Canada
| | | |
Collapse
|
13
|
Wang S, George SE, Davis JP, Johnson JD. Structural determinants of Ca2+ exchange and affinity in the C terminal of cardiac troponin C. Biochemistry 1998; 37:14539-44. [PMID: 9772182 DOI: 10.1021/bi9814641] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The C terminal of cardiac troponin C (TnC) has two Ca2+-Mg2+ sites which exhibit approximately 20-fold higher Ca2+ affinity than the two C-terminal Ca2+ specific sites in calmodulin (CaM). Substitution of the third EF-hand of TnC for the corresponding EF-hand of CaM produced a mutant (CaM[3TnC]) with a 10-fold higher C-terminal Ca2+ and Mg2+ affinity. Substitution of loop 3 of TnC for loop 3 of CaM produced a mutant (CaM[loop3TnC]) with a 10-fold faster Ca2+ on rate and a 5-fold faster Ca2+ off rate than CaM. A mutant CaM (CaM[loop3X, Z]) which contained the identical coordinating amino acids and X and Z acid pairs of TnC loop 3 had a 3-fold higher C-terminal Ca2+ affinity without the increased Ca2+ exchange rates exhibited by CaM[loop3TnC]. Thus, loop factors other than the acid pairs must be responsible for the rapid Ca2+ exchange rates of CaM[loop3TnC]. Helix 6 and helix 5 in the third EF-hand of TnC support the rapid Ca2+ on rate of TnC's loop 3 and produce an approximately 4-fold reduction in its Ca2+ off rate, explaining the high Ca2+ affinity of the third EF-hand of TnC. Exchanging loop 3 or helix 5 of TnC into CaM increased the Mg2+ affinity by decreasing the Mg2+ off rate. Our results are consistent with the high Ca2+ and Mg2+ affinity of the third EF-hand of TnC resulting from the two (X and Z) acid pairs in loop 3, coupled with the greater hydrophobicity of helix 6 and helix 5 compared to that of the third EF-hand of CaM.
Collapse
Affiliation(s)
- S Wang
- Department of Medical Biochemistry, The Ohio State University College of Medicine, Columbus 43210-1218, USA
| | | | | | | |
Collapse
|
14
|
Revett SP, King G, Shabanowitz J, Hunt DF, Hartman KL, Laue TM, Nelson DJ. Characterization of a helix-loop-helix (EF hand) motif of silver hake parvalbumin isoform B. Protein Sci 1997; 6:2397-408. [PMID: 9385642 PMCID: PMC2143578 DOI: 10.1002/pro.5560061113] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Parvalbumins are a class of calcium-binding proteins characterized by the presence of several helix-loop-helix (EF-hand) motifs. It is suspected that these proteins evolved via intragene duplication from a single EF-hand. Silver hake parvalbumin (SHPV) consists of three EF-type helix-loop-helix regions, two of which have the ability to bind calcium. The three helix-loop-helix motifs are designated AB, CD, and EF, respectively. In this study, native silver hake parvalbumin isoform B (SHPV-B) has been sequenced by mass spectrometry. The sequence indicates that this parvalbumin is a beta-lineage parvalbumin. SHPV-B was cleaved into two major fragments, consisting of the ABCD and EF regions of the native protein. The 33-amino acid EF fragment (residues 76-108), containing one of the calcium ion binding sites in native SHPV-B, has been isolated and studied for its structural characteristics, ability to bind divalent and trivalent cations, and for its propensity to undergo metal ion-induced self-association. The presence of Ca2+ does not induce significant secondary structure in the EF fragment. However, NMR and CD results indicate significant secondary structure promotion in the EF fragment in the presence of the higher charge-density trivalent cations. Sedimentation equilibrium analysis results show that the EF fragment exists in a monomer-dimer equilibrium when complexed with La3+.
Collapse
Affiliation(s)
- S P Revett
- Gustaf H. Carlson School of Chemistry, Clark University, Worcester, Massachusetts 01610, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Sharma Y, Chandani S, Sukhaswami MB, Uma L, Balasubramanian D, Fairwell T. Modified helix-loop-helix motifs of calmodulin--The influence of the exchange of helical regions on calcium-binding affinity. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 243:42-8. [PMID: 9030720 DOI: 10.1111/j.1432-1033.1997.0042a.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The four calcium-binding sites, called the helix-loop-helix, or the EF-hand motifs, of calmodulin differ in their ion-binding affinities; this has been thought to arise due to the variations in the sequences of the loop regions where the ion binds. We focus attention here on the role of the flanking helical regions on the calcium-binding affinities. Peptides were synthesized in a manner that simulates the E and F helical flanks of site 4 (the strongest calcium-binding site of the calmodulin) to sandwich the loop sequences of sites 1, 2, 3 and 4 so as to produce peptides named 414, 424, 434 and 444, as well as using the helical flanks of site 1 (the weakest site) to produce peptides 111, 121, 131 and 141. Calcium binding was monitored using the calcium-mimic dye Stains-all (4,4,4',5'-dibenzo-3,3'-diethyl-9-methyl-thiacarbocyanine bromide). Binding abilities were seen to increase several-fold when the E and F helices of site 1 were replaced by those of site 4 (i.e., 111-414). In contrast, the intensity of circular dichroism induced in the absorption bands of the bound achiral dye decreased significantly when the helical flanks of site 4 were replaced with those of site 1 (i.e., 444-141). The helical flanks of site 4 impart greater binding ability to a given loop region, while the helical flanks of site 1 tend to weaken it.
Collapse
Affiliation(s)
- Y Sharma
- Centre for Cellular and Molecular Biology, Hyderabad, India
| | | | | | | | | | | |
Collapse
|
16
|
Grasso P. A synthetic peptide representing residues 7 to 21 of human luteinizing hormone beta-subunit binds calcium, facilitates calcium uptake by liposomes and possesses sequence similarity to calcium-binding domains of calmodulin. REGULATORY PEPTIDES 1996; 65:109-14. [PMID: 8884977 DOI: 10.1016/0167-0115(96)00079-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We have previously demonstrated that a synthetic peptide corresponding to residues 1 to 15 of hFSH-beta-subunit (hFSH-beta-(1-15)) shares sequence homology with the calcium-binding domains of calmodulin (CaM), binds calcium with an affinity similar to that of CaM-binding loop III (CaM III) and facilitates uptake of external calcium by liposomes and cultured rat Sertoli cells. We noted a sequence homologous to hFSH-beta-(1-15) between residues 7 to 21 of the beta-subunits of both hLH and hCG. A peptide amide representing this region of hLH-beta (hLH-beta-(7-21)) and an N-terminal truncated analog (hLH-beta-(10-21)) that more closely resembles the calcium-binding loops of calmodulin were synthesized and tested for their ability to bind 45Ca2+, and facilitate uptake of 45Ca2+ by liposomes. hLH-beta-(7-21) and hLH-beta-(10-21) bound significant amounts of 45Ca2+ with affinities of 1.2 +/- 0.4 and 0.7 +/- 0.3 mM, respectively, values virtually identical to that reported for a synthetic peptide corresponding to CaM III. The two peptides also facilitated specific, concentration-related and saturable uptake of 45Ca2+ by liposomes, which was sensitive to blockade by voltage-independent calcium-channel antagonists. Our data suggest that residues 7 to 21 of the beta-subunit of hLH may be associated with the previously demonstrated calcium requirement for specific binding of LH to its receptor, and that the calcium-binding property of this region is related to its ability to facilitate uptake of calcium into liposomes via the formation of calcium-conducting transmembrane channels.
Collapse
Affiliation(s)
- P Grasso
- Department of Biochemistry and Molecular Biology, Albany Medical College A-10, NY 12208, USA
| |
Collapse
|
17
|
Linse S, Forsén S. Determinants that govern high-affinity calcium binding. ADVANCES IN SECOND MESSENGER AND PHOSPHOPROTEIN RESEARCH 1995; 30:89-151. [PMID: 7695999 DOI: 10.1016/s1040-7952(05)80005-9] [Citation(s) in RCA: 106] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- S Linse
- Lund University, Chemical Centre, Sweden
| | | |
Collapse
|
18
|
Falke JJ, Drake SK, Hazard AL, Peersen OB. Molecular tuning of ion binding to calcium signaling proteins. Q Rev Biophys 1994; 27:219-90. [PMID: 7899550 DOI: 10.1017/s0033583500003012] [Citation(s) in RCA: 296] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Intracellular calcium plays an essential role in the transduction of most hormonal, neuronal, visual, and muscle stimuli. (Recent reviews include Putney, 1993; Berridge, 1993a,b; Tsunoda, 1993; Gnegy, 1993; Bachset al.1992; Hanson & Schulman, 1992; Villereal & Byron, 1992; Premack & Gardner, 1992; Meanset al.1991).
Collapse
Affiliation(s)
- J J Falke
- Department of Chemistry and Biochemistry, University of Colorado, Boulder 80309-0215
| | | | | | | |
Collapse
|
19
|
Procyshyn R, Reid R. A structure/activity study of calcium affinity and selectivity using a synthetic peptide model of the helix-loop-helix calcium-binding motif. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)42075-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
20
|
Sharma Y, Gopalakrishna A, Balasubramanian D, Fairwell T, Krishna G. Studies on the interaction of the dye, stains-all, with individual calcium-binding domains of calmodulin. FEBS Lett 1993; 326:59-64. [PMID: 8325390 DOI: 10.1016/0014-5793(93)81761-n] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We show that the calcium-mimic dye, Stains-all, is a convenient probe to study the structural features of the individual calcium-binding sites of calmodulin (CaM) and related calcium-binding proteins (CaBP). These peptides bind the dye in their calcium-binding sites, and induce a circular dichroism (CD) band in the bound dye in the 620 nm (J band) region, which is abolished upon the addition of calcium. Replacement of Asp by Asn in the + x position of the weaker calcium-binding site (site I of CaM) abolishes the dye binding, while the same change in the higher affinity site IV attenuates the binding of the dye and does not abolish it. Replacement of Tyr in site IV with Trp does not distort the geometry, although it increases the dye binding affinity.
Collapse
Affiliation(s)
- Y Sharma
- Centre for Cellular and Molecular Biology, Hyderabad, India
| | | | | | | | | |
Collapse
|
21
|
Linse S, Thulin E, Sellers P. Disulfide bonds in homo- and heterodimers of EF-hand subdomains of calbindin D9k: stability, calcium binding, and NMR studies. Protein Sci 1993; 2:985-1000. [PMID: 8318902 PMCID: PMC2142409 DOI: 10.1002/pro.5560020612] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The effect of decreased protein flexibility on the stability and calcium binding properties of calbindin D9k has been addressed in studies of a disulfide bridged calbindin D9k mutant, denoted (L39C + P43M + I73C), with substitutions Leu 39-->Cys, Ile 73-->Cys, and Pro 43-->Met. Backbone 1H NMR assignments show that the disulfide bond, which forms spontaneously under air oxidation, is well accommodated. The disulfide is inserted on the opposite end of the protein molecule with respect to the calcium sites, to avoid direct interference with these sites, as confirmed by 113Cd NMR. The effect of the disulfide bond on calcium binding was assessed by titrations in the presence of a chromophoric chelator. A small but significant effect on the cooperativity was found, as well as a very modest reduction in calcium affinity. The disulfide bond increases Tm, the transition midpoint of thermal denaturation, of calcium free calbindin D9k from 85 to 95 degrees C and Cm, the urea concentration of half denaturation, from 5.3 to 8.0 M. Calbindins with one covalent bond linking the two EF-hand subdomains are equally stable regardless if the covalent link is the 43-44 peptide bond or the disulfide bond. Kinetic remixing experiments show that separated CNBr fragments of (L39C + P43M + I73C), each comprising one EF-hand, form disulfide linked homodimers. Each homodimer binds two calcium ions with positive co-operativity, and an average affinity of 10(6) M-1. Disulfide linkage dramatically increases the stability of each homodimer. For the homodimer of the C-terminal fragment Tm increases from 59 +/- 2 without covalent linkage to 91 +/- 2 degrees C with disulfide, and Cm from approximately 1.5 to 7.5 M. The overall topology of this homodimer is derived from 1H NMR assignments and a few key NOEs.
Collapse
Affiliation(s)
- S Linse
- Lund University, Chemical Center, Sweden
| | | | | |
Collapse
|
22
|
Durussel I, Luan-Rilliet Y, Petrova T, Takagi T, Cox JA. Cation binding and conformation of tryptic fragments of Nereis sarcoplasmic calcium-binding protein: calcium-induced homo- and heterodimerization. Biochemistry 1993; 32:2394-400. [PMID: 8443179 DOI: 10.1021/bi00060a034] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Nereis sarcoplasmic calcium-binding protein (NSCP) is a compact 20-kDa protein that competitively binds three Ca2+ or Mg2+ ions and displays strong positive cooperativity. Its three-dimensional structure is known. It thus constitutes a good model for the study of intramolecular information transduction. Here we probed its domain structure and interaction between domains using fragments obtained by controlled proteolysis. The metal-free form, but not the Ca2+ or Mg2+ form, is sensitive to trypsin proteolysis and is preferentially cleaved at two peptide bonds in the middle of the protein. The N-terminal fragment 1-80 (T1-80) and the C-terminal fragment 90-174 (T90-174) were purified to electrophoretic homogeneity. T1-80, which consists of a paired EF-hand domain, binds one Ca2+ with Ka = 3.1 x 10(5) M-1; entropy increase is the main driving force of complex formation. Circular dichroism indicates that T1-80 is rich in secondary structure, irrespective of the Ca2+ saturation. Ca2+ binding provokes a difference spectrum which is similar to that observed in the intact protein. These data suggest that this N-terminal domain constitutes the stable structural nucleus in NSCP to which the first Ca2+ binds. T90-174 binds two Ca2+ ions with Ka = 3.2 x 10(4) M-1; the enthalpy change contributes predominantly to the binding process. Metal-free T90-174 is mostly in random coil but converts to an alpha-helical-rich conformation upon Ca2+ binding. Ca2+ binding to T1-80 provokes a red-shift and intensity decrease of the Trp fluorescence but a blue-shift and intensity increase in T90-174.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- I Durussel
- Department of Biochemistry, University of Geneva, Switzerland
| | | | | | | | | |
Collapse
|
23
|
Grasso P, Reichert LE. Induction of calcium transport into cultured rat Sertoli cells and liposomes by follicle-stimulating hormone. RECENT PROGRESS IN HORMONE RESEARCH 1993; 48:517-21. [PMID: 8441860 DOI: 10.1016/b978-0-12-571148-7.50028-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- P Grasso
- Department of Biochemistry and Molecular Biology, Albany Medical College, New York 12208
| | | |
Collapse
|
24
|
Oishi O, Nagatomo A, Kohzuma T, Oda N, Miyazima T, Ohno M, Sakaki Y. Validity of putative calcium binding loops of photoprotein aequorin. FEBS Lett 1992; 307:272-4. [PMID: 1644183 DOI: 10.1016/0014-5793(92)80693-b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Three peptides containing the putative Ca2+ binding loops, I, II and III, respectively, of a photoprotein, aequorin, from jellyfish Aequorea victoria were synthesized by a solid-phase procedure. The peptides bound Ca2+ with dissociation constants of 10(-3) to 10(-4) M, providing evidence for the assumption that Ca2+ binding loops are actually responsible for the binding of Ca2+. When the highly conserved 6th glycine residue in the 12-residue loops was replaced by arginine, no large effect was observed on Ca2+ binding. Exposure to a hydrophobic environment and the binding of Ca2+ brought about conformational changes to the peptides.
Collapse
Affiliation(s)
- O Oishi
- Department of Chemistry, Faculty of Science, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | | | |
Collapse
|
25
|
Andresen K, Tom T, Strand M. Characterization of cDNA clones encoding a novel calcium-activated neutral proteinase from Schistosoma mansoni. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)98590-x] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|