1
|
Nakamura R, Yoshikado T, Aoki Y, Sugiyama Y, Chiba K. Elucidation of DPP-4 involvement in systemic distribution and renal reabsorption of linagliptin by PBPK modeling with a cluster Gauss-Newton method. Clin Transl Sci 2024; 17:e70047. [PMID: 39435882 PMCID: PMC11494486 DOI: 10.1111/cts.70047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 09/04/2024] [Accepted: 09/27/2024] [Indexed: 10/23/2024] Open
Abstract
The dipeptidyl peptidase-4 (DPP-4) inhibitor linagliptin (LNG) exhibits target-mediated drug disposition (TMDD) in clinical settings, characterized by saturable binding to plasma soluble DPP-4 (sDPP-4) and tissue transmembrane DPP-4 (tDPP-4). Previous studies have indicated that saturable renal reabsorption of LNG contributes to its nonlinear urinary excretion observed in humans and wild-type mice, but not in Dpp-4 knockout mice. To elucidate the mechanisms underlying these complex phenomena, including DPP-4-related renal reabsorption of LNG, we employed physiologically-based pharmacokinetic (PBPK) modeling combined with a cluster Gauss-Newton method (CGNM). The CGNM facilitated the exploration of parameters in rat and human PBPK models for LNG and the determination of parameter identifiability. Through PBPK-CGNM analysis using reported autoradiography data ([14C]-LNG) in wild-type and Dpp-4-deficient rats, DPP-4-specific distributions of LNG in various tissues were clearly differentiated from nonspecific parts. By fitting to human plasma concentrations and urinary and fecal excretions of LNG after intravenous and oral administrations, multiple unknown PBPK parameters were simultaneously estimated by the CGNM. Notably, the amount of tDPP-4 and the reabsorption clearance for LNG-DPP-4 complexes were identifiable, indicating their critical role in explaining the complex nonlinear pharmacokinetics of LNG. Compared with previous PBPK analyses, the CGNM allowed us to incorporate greater model complexity (e.g., consideration of tDPP-4 expressions and in vitro binding kinetics), ultimately resulting in a more accurate reproduction of LNG's TMDD. In conclusion, by considering LNG as a high-affinity probe for DPP-4, comprehensive PBPK-CGNM analyses suggested a dynamic whole-body distribution of DPP-4, including its involvement in the renal reabsorption of LNG.
Collapse
Affiliation(s)
- Ryo Nakamura
- Laboratory of Clinical PharmacologyYokohama University of PharmacyYokohama‐shiKanagawaJapan
- Datascience DivisionA2 Healthcare CorporationTokyoJapan
| | - Takashi Yoshikado
- Laboratory of Clinical PharmacologyYokohama University of PharmacyYokohama‐shiKanagawaJapan
| | - Yasunori Aoki
- Laboratory of Quantitative System Pharmacokinetics/PharmacodynamicsJosai International UniversityTokyoJapan
| | - Yuichi Sugiyama
- Laboratory of Quantitative System Pharmacokinetics/PharmacodynamicsJosai International UniversityTokyoJapan
- iHuman InstituteShanghaiTech UniversityShanghaiChina
| | - Koji Chiba
- Laboratory of Clinical PharmacologyYokohama University of PharmacyYokohama‐shiKanagawaJapan
| |
Collapse
|
2
|
El Khoury M, Naim HY. Lipid rafts disruption by statins negatively impacts the interaction between SARS-CoV-2 S1 subunit and ACE2 in intestinal epithelial cells. Front Microbiol 2024; 14:1335458. [PMID: 38260879 PMCID: PMC10800905 DOI: 10.3389/fmicb.2023.1335458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 12/19/2023] [Indexed: 01/24/2024] Open
Abstract
The causative agent of the COVID-19 pandemic, SARS-CoV-2, is a virus that targets mainly the upper respiratory tract. However, it can affect other systems such as the gastrointestinal (GI) tract. Therapeutic strategies for this virus are still inconclusive and understanding its entry mechanism is important for finding effective treatments. Cholesterol is an important constituent in the structure of cellular membranes that plays a crucial role in a variety of cellular events. In addition, it is important for the infectivity and pathogenicity of several viruses. ACE2, the main receptor of SARS-CoV-2, is associated with lipid rafts which are microdomains composed of cholesterol and sphingolipids. In this study, we investigate the role of statins, lipid-lowering drugs, on the trafficking of ACE2 and the impact of cholesterol modulation on the interaction of this receptor with S1 in Caco-2 cells. The data show that fluvastatin and simvastatin reduce the expression of ACE2 to variable extents, impair its association with lipid rafts and sorting to the brush border membrane resulting in substantial reduction of its interaction with the S1 subunit of the spike protein. By virtue of the substantial effects of statins demonstrated in our study, these molecules, particularly fluvastatin, represent a promising therapeutic intervention that can be used off-label to treat SARS-CoV-2.
Collapse
Affiliation(s)
| | - Hassan Y. Naim
- Department of Biochemistry, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
3
|
Lefort ÉC, Diaconu B, Bentley VL, Blay J. Apigenin upregulation of CD26/DPPIV on colon epithelial cells requires inhibition of casein kinase 2. Food Sci Nutr 2020; 8:5321-5329. [PMID: 33133535 PMCID: PMC7590318 DOI: 10.1002/fsn3.1823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 06/22/2020] [Accepted: 07/26/2020] [Indexed: 01/02/2023] Open
Abstract
CD26/DPPIV is a cell surface glycoprotein found on cells of the intestinal epithelium including those of the colon. We have previously shown that the dietary flavone apigenin (4',5,7-trihydroxyflavone) upregulates CD26/DPPIV on colon cells. Flavonoids such as apigenin interfere with the action of multiple cellular protein kinases and have the capacity to modulate the cell exterior and its ability to interface with the local environment through different signaling pathways. We show here that the ability of apigenin to upregulate CD26/DPPIV is exerted through and requires the activity of casein kinase 2 (CK2). Inhibitors of CK2 that are distinct from apigenin (emodin, 6-methyl-1,3,8-trihydroxyanthraquinone; TBB, 4,5,6,7-tetrabromobenzotriazole; and DRB, 5,6-dichlorobenzimidazole 1-β-D-ribofuranoside) showed a dose-dependent ability to increase CD26/DPPIV and had the same maximal effect when combined with apigenin at submaximal concentrations. Knockdown of CK2 with siRNA abrogated the ability of apigenin to upregulate CD26/DPPIV. Apigenin treatment of cells had no effect on the levels of CK2 protein, consistent with an inhibition of activity of the enzyme. Apigenin's upregulation of CD26/DPPIV in differentiated human colon epithelial cells depends upon inhibition of CK2 activity. This is a key step in enabling apigenin's ability to regulate the functions of intestinal epithelial cells.
Collapse
Affiliation(s)
| | - Bogdan Diaconu
- School of PharmacyUniversity of WaterlooWaterlooONCanada
| | | | - Jonathan Blay
- Department of PathologyDalhousie UniversityHalifaxNSCanada
- School of PharmacyUniversity of WaterlooWaterlooONCanada
| |
Collapse
|
4
|
Sarashina A, Chiba K, Tatami S, Kato Y. Physiologically Based Pharmacokinetic Model of the DPP-4 Inhibitor Linagliptin to Describe its Nonlinear Pharmacokinetics in Humans. J Pharm Sci 2020; 109:2336-2344. [PMID: 32283067 DOI: 10.1016/j.xphs.2020.03.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/31/2020] [Accepted: 03/31/2020] [Indexed: 12/12/2022]
Abstract
Linagliptin, a dipeptidyl peptidase (DPP)-4 inhibitor, for type 2 diabetes exhibits nonlinear plasma protein binding in the therapeutic concentration range due to its high affinity binding to the pharmacological target DPP-4, and its pharmacokinetics both in plasma and urine is also nonlinear. The purpose of the present study was to explain the nonlinear pharmacokinetic profiles using a physiologically based pharmacokinetic (PBPK) model with saturable binding of linagliptin to soluble and membrane-bound DPP-4 in blood and organs including kidneys. The model was first fitted to previously reported full-scale plasma concentrations and urinary excretion data at 4 intravenous (iv) dose levels. Additional fitting to the data from 4 oral (po) dose levels was then performed to yield the final iv-po based model including gastrointestinal absorption-associated parameters. Data from [14C]linagliptin mass balance study were also used for optimizing parameters related to enterohepatic circulation. The PBPK model was thus constructed and well describes the nonlinear pharmacokinetic profiles of linagliptin in both plasma and urine, demonstrating that the nonlinear pharmacokinetics are fully explained by its specific binding to target protein. The present study thus introduces the involvement of target-mediated disposition for linagliptin in humans.
Collapse
Affiliation(s)
- Akiko Sarashina
- Clinical Pharmacokinetics and Pharmacodynamics Department, Nippon Boehringer Ingelheim, Kobe, Hyogo, Japan; Faculty of Pharmacy, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Koji Chiba
- Laboratory of Clinical Pharmacology, Yokohama University of Pharmacy, Yokohama, Kanagawa, Japan
| | - Shinji Tatami
- Clinical Pharmacokinetics and Pharmacodynamics Department, Nippon Boehringer Ingelheim, Kobe, Hyogo, Japan
| | - Yukio Kato
- Faculty of Pharmacy, Kanazawa University, Kanazawa, Ishikawa, Japan.
| |
Collapse
|
5
|
Different Trafficking Phenotypes of Niemann-Pick C1 Gene Mutations Correlate with Various Alterations in Lipid Storage, Membrane Composition and Miglustat Amenability. Int J Mol Sci 2020; 21:ijms21062101. [PMID: 32204338 PMCID: PMC7139583 DOI: 10.3390/ijms21062101] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 03/15/2020] [Accepted: 03/16/2020] [Indexed: 12/24/2022] Open
Abstract
Niemann-Pick Type C (NPC) is an autosomal recessive lysosomal storage disease leading to progressive neurodegeneration. Mutations in the NPC1 gene, which accounts for 95% of the cases, lead to a defect in intra-lysosomal trafficking of cholesterol and an accumulation of storage material including cholesterol and sphingolipids in the endo-lysosomal system. Symptoms are progressive neurological and visceral deterioration, with variable onset and severity of the disease. This study investigates the influence of two different NPC1 mutations on the biochemical phenotype in fibroblasts isolated from NPC patients in comparison to healthy, wild type (WT) cells. Skin derived fibroblasts were cultured from one patient compound-heterozygous for D874V/D948Y mutations, which presented wild-type like intracellular trafficking of NPC1, and a second patient compound- heterozygous for I1061T/P887L mutations, which exhibited a more severe biochemical phenotype as revealed in the delayed trafficking of NPC1. Biochemical analysis using HPLC and TLC indicated that lipid accumulations were mutation-dependent and correlated with the trafficking pattern of NPC1: higher levels of cholesterol and glycolipids were associated with the mutations that exhibited delayed intracellular trafficking, as compared to their WT-like trafficked or wild type (WT) counterparts. Furthermore, variations in membrane structure was confirmed in these cell lines based on alteration in lipid rafts composition as revealed by the shift in flotillin-2 (FLOT2) distribution, a typical lipid rafts marker, which again showed marked alterations only in the NPC1 mutant showing major trafficking delay. Finally, treatment with N-butyldeoxynojirimycin (NB-DNJ, Miglustat) led to a reduction of stored lipids in cells from both patients to various extents, however, no normalisation in lipid raft structure was achieved. The data presented in this study help in understanding the varying biochemical phenotypes observed in patients harbouring different mutations, which explain why the effectiveness of NB-DNJ treatment is patient specific.
Collapse
|
6
|
Measuring receptor recycling in polarized MDCK cells. Methods Cell Biol 2015. [PMID: 26360039 DOI: 10.1016/bs.mcb.2015.03.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Recycling of proteins such as channels, pumps, and receptors is critical for epithelial cell function. In this chapter we present a method to measure receptor recycling in polarized Madin-Darby canine kidney cells using an iodinated ligand. We describe a technique to iodinate transferrin (Tf), we discuss how (125)I-Tf can be used to label a cohort of endocytosed Tf receptor, and then we provide methods to measure the rate of recycling of the (125)I-Tf-receptor complex. We also show how this approach, which is easily adaptable to other proteins, can be used to simultaneously measure the normally small amount of (125)I-Tf transcytosis and degradation.
Collapse
|
7
|
Pathogenesis of human enterovirulent bacteria: lessons from cultured, fully differentiated human colon cancer cell lines. Microbiol Mol Biol Rev 2014; 77:380-439. [PMID: 24006470 DOI: 10.1128/mmbr.00064-12] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Hosts are protected from attack by potentially harmful enteric microorganisms, viruses, and parasites by the polarized fully differentiated epithelial cells that make up the epithelium, providing a physical and functional barrier. Enterovirulent bacteria interact with the epithelial polarized cells lining the intestinal barrier, and some invade the cells. A better understanding of the cross talk between enterovirulent bacteria and the polarized intestinal cells has resulted in the identification of essential enterovirulent bacterial structures and virulence gene products playing pivotal roles in pathogenesis. Cultured animal cell lines and cultured human nonintestinal, undifferentiated epithelial cells have been extensively used for understanding the mechanisms by which some human enterovirulent bacteria induce intestinal disorders. Human colon carcinoma cell lines which are able to express in culture the functional and structural characteristics of mature enterocytes and goblet cells have been established, mimicking structurally and functionally an intestinal epithelial barrier. Moreover, Caco-2-derived M-like cells have been established, mimicking the bacterial capture property of M cells of Peyer's patches. This review intends to analyze the cellular and molecular mechanisms of pathogenesis of human enterovirulent bacteria observed in infected cultured human colon carcinoma enterocyte-like HT-29 subpopulations, enterocyte-like Caco-2 and clone cells, the colonic T84 cell line, HT-29 mucus-secreting cell subpopulations, and Caco-2-derived M-like cells, including cell association, cell entry, intracellular lifestyle, structural lesions at the brush border, functional lesions in enterocytes and goblet cells, functional and structural lesions at the junctional domain, and host cellular defense responses.
Collapse
|
8
|
Szalinski CM, Labilloy A, Bruns JR, Weisz OA. VAMP7 modulates ciliary biogenesis in kidney cells. PLoS One 2014; 9:e86425. [PMID: 24466086 PMCID: PMC3899255 DOI: 10.1371/journal.pone.0086425] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 12/12/2013] [Indexed: 12/02/2022] Open
Abstract
Epithelial cells elaborate specialized domains that have distinct protein and lipid compositions, including the apical and basolateral surfaces and primary cilia. Maintaining the identity of these domains is required for proper cell function, and requires the efficient and selective SNARE-mediated fusion of vesicles containing newly synthesized and recycling proteins with the proper target membrane. Multiple pathways exist to deliver newly synthesized proteins to the apical surface of kidney cells, and the post-Golgi SNAREs, or VAMPs, involved in these distinct pathways have not been identified. VAMP7 has been implicated in apical protein delivery in other cell types, and we hypothesized that this SNARE would have differential effects on the trafficking of apical proteins known to take distinct routes to the apical surface in kidney cells. VAMP7 expressed in polarized Madin Darby canine kidney cells colocalized primarily with LAMP2-positive compartments, and siRNA-mediated knockdown modulated lysosome size, consistent with the known function of VAMP7 in lysosomal delivery. Surprisingly, VAMP7 knockdown had no effect on apical delivery of numerous cargoes tested, but did decrease the length and frequency of primary cilia. Additionally, VAMP7 knockdown disrupted cystogenesis in cells grown in a three-dimensional basement membrane matrix. The effects of VAMP7 depletion on ciliogenesis and cystogenesis are not directly linked to the disruption of lysosomal function, as cilia lengths and cyst morphology were unaffected in an MDCK lysosomal storage disorder model. Together, our data suggest that VAMP7 plays an essential role in ciliogenesis and lumen formation. To our knowledge, this is the first study implicating an R-SNARE in ciliogenesis and cystogenesis.
Collapse
Affiliation(s)
- Christina M. Szalinski
- Renal Electrolyte Division, University of Pittsburgh Medical School, Pittsburgh, Pennsylvania, United States of America
| | - Anatália Labilloy
- Renal Electrolyte Division, University of Pittsburgh Medical School, Pittsburgh, Pennsylvania, United States of America
- Ciência sem Fronteiras, CNPq, Brasilia, Brazil
| | - Jennifer R. Bruns
- Renal Electrolyte Division, University of Pittsburgh Medical School, Pittsburgh, Pennsylvania, United States of America
| | - Ora A. Weisz
- Renal Electrolyte Division, University of Pittsburgh Medical School, Pittsburgh, Pennsylvania, United States of America
- Department of Cell Biology, University of Pittsburgh Medical School, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
9
|
Revenu C, Ubelmann F, Hurbain I, El-Marjou F, Dingli F, Loew D, Delacour D, Gilet J, Brot-Laroche E, Rivero F, Louvard D, Robine S. A new role for the architecture of microvillar actin bundles in apical retention of membrane proteins. Mol Biol Cell 2011; 23:324-36. [PMID: 22114352 PMCID: PMC3258176 DOI: 10.1091/mbc.e11-09-0765] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The bundled architecture of actin filaments is not needed for intestinal microvillar morphogenesis, as shown in knockout mice devoid of microvillar actin-bundling proteins. This architecture is essential for the apical anchorage of digestive proteins, probably via the recruitment of key players in apical retention, such as myosin-1a, and, as a result, for intestinal physiology. Actin-bundling proteins are identified as key players in the morphogenesis of thin membrane protrusions. Until now, functional redundancy among the actin-bundling proteins villin, espin, and plastin-1 has prevented definitive conclusions regarding their role in intestinal microvilli. We report that triple knockout mice lacking these microvillar actin-bundling proteins suffer from growth delay but surprisingly still develop microvilli. However, the microvillar actin filaments are sparse and lack the characteristic organization of bundles. This correlates with a highly inefficient apical retention of enzymes and transporters that accumulate in subapical endocytic compartments. Myosin-1a, a motor involved in the anchorage of membrane proteins in microvilli, is also mislocalized. These findings illustrate, in vivo, a precise role for local actin filament architecture in the stabilization of apical cargoes into microvilli. Hence, the function of actin-bundling proteins is not to enable microvillar protrusion, as has been assumed, but to confer the appropriate actin organization for the apical retention of proteins essential for normal intestinal physiology.
Collapse
Affiliation(s)
- Céline Revenu
- Unité Mixte de Recherche 144, Centre National de la Recherche Scientifique, Institut Curie, 75248 Paris, Cedex 05, France.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Adherence and viability of intestinal bacteria to differentiated Caco-2 cells quantified by flow cytometry. J Microbiol Methods 2011; 86:33-41. [DOI: 10.1016/j.mimet.2011.03.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Revised: 03/21/2011] [Accepted: 03/21/2011] [Indexed: 11/23/2022]
|
11
|
Gao N, Kaestner KH. Cdx2 regulates endo-lysosomal function and epithelial cell polarity. Genes Dev 2010; 24:1295-305. [PMID: 20551175 DOI: 10.1101/gad.1921510] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In contrast to our significant understanding of signaling cascades that determine cell polarity in lower eukaryotic or immortalized cells, little is known about the transcriptional program that governs mammalian epithelial polarization in vivo. Here we show, using conditional gene ablation and three-dimensional tissue culture, that the homeobox transcription factor Cdx2 controls apical-basolateral polarity in mouse enterocytes and human colonic epithelial cells. Cdx2 regulates a comprehensive gene network involved in endo-lysosomal maturation and protein transport. In the absence of Cdx2, defective protein trafficking impairs apical-basal transport and induces ectopic lumen formation. These defects are partially recapitulated by suppression of key apical transport components, Rab11a and Kif3b, which are regulated by Cdx2. Furthermore, Cdx2 deficiency affects components that control the organization of microvillus actin cytoskeleton, leading to severe microvillus atrophy. These results demonstrate that Cdx2 regulates epithelial cell polarity and morphogenesis through control of apical protein transport and endo-lysosomal function.
Collapse
Affiliation(s)
- Nan Gao
- Department of Genetics and Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | |
Collapse
|
12
|
Affiliation(s)
- Stefan Balaz
- Department of Pharmaceutical Sciences, College of Pharmacy, North Dakota State University, Fargo, North Dakota 58105, USA.
| |
Collapse
|
13
|
Kitt KN, Hernández-Deviez D, Ballantyne SD, Spiliotis ET, Casanova JE, Wilson JM. Rab14 regulates apical targeting in polarized epithelial cells. Traffic 2008; 9:1218-31. [PMID: 18429929 DOI: 10.1111/j.1600-0854.2008.00752.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Epithelial cells display distinct apical and basolateral membrane domains, and maintenance of this asymmetry is essential to the function of epithelial tissues. Polarized delivery of apical and basolateral membrane proteins from the trans Golgi network (TGN) and/or endosomes to the correct domain requires specific cytoplasmic machinery to control the sorting, budding and fission of vesicles. However, the molecular machinery that regulates polarized delivery of apical proteins remains poorly understood. In this study, we show that the small guanosine triphosphatase Rab14 is involved in the apical targeting pathway. Using yeast two-hybrid analysis and glutathione S-transferase pull down, we show that Rab14 interacts with apical membrane proteins and localizes to the TGN and apical endosomes. Overexpression of the GDP mutant form of Rab14 (S25N) induces an enlargement of the TGN and vesicle accumulation around Golgi membranes. Moreover, expression of Rab14-S25N results in mislocalization of the apical raft-associated protein vasoactive intestinal peptide/MAL to the basolateral domain but does not disrupt basolateral targeting or recycling. These data suggest that Rab14 specifically regulates delivery of cargo from the TGN to the apical domain.
Collapse
Affiliation(s)
- Khameeka N Kitt
- Department of Cell Biology and Anatomy, Arizona Health Sciences Center, University of Arizona, PO Box 245044, Tucson, AZ 85724, USA
| | | | | | | | | | | |
Collapse
|
14
|
Pocard T, Le Bivic A, Galli T, Zurzolo C. Distinct v-SNAREs regulate direct and indirect apical delivery in polarized epithelial cells. J Cell Sci 2007; 120:3309-20. [PMID: 17878240 DOI: 10.1242/jcs.007948] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
SNARE [soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein (SNAP) receptor] proteins control the membrane-fusion events of eukaryotic membrane-trafficking pathways. Specific vesicular and target SNAREs operate in specific trafficking routes, but the degree of specificity of SNARE functions is still elusive. Apical fusion requires the polarized distribution at the apical surface of the t-SNARE syntaxin 3, and several v-SNAREs including TI-VAMP and VAMP8 operate at the apical plasma membrane in polarized epithelial cells. It is not known, however, whether specific v-SNAREs are involved in direct and indirect routes to the apical surface. Here, we used RNAi to assess the role of two tetanus-neurotoxin-insensitive v-SNAREs, TI-VAMP/VAMP7 and VAMP8, in the sorting of raft- and non-raft-associated apical markers that follow either a direct or a transcytotic delivery, respectively, in FRT or Caco2 cells. We show that TI-VAMP mediates the direct apical delivery of both raft- and non-raft-associated proteins. By contrast, sorting by means of the transcytotic pathway is not affected by TI-VAMP knockdown but does appear to be regulated by VAMP8. Together with the specific role of VAMP3 in basolateral transport, our results demonstrate a high degree of specificity in v-SNARE function in polarized cells.
Collapse
Affiliation(s)
- Thomas Pocard
- Unité de Trafic Membranaire et Pathogenèse, Institut Pasteur, 75724, Paris CEDEX 15, France
| | | | | | | |
Collapse
|
15
|
Halbleib JM, Sääf AM, Brown PO, Nelson WJ. Transcriptional modulation of genes encoding structural characteristics of differentiating enterocytes during development of a polarized epithelium in vitro. Mol Biol Cell 2007; 18:4261-78. [PMID: 17699590 PMCID: PMC2043570 DOI: 10.1091/mbc.e07-04-0308] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Although there is considerable evidence implicating posttranslational mechanisms in the development of epithelial cell polarity, little is known about the patterns of gene expression and transcriptional regulation during this process. We characterized the temporal program of gene expression during cell-cell adhesion-initiated polarization of human Caco-2 cells in tissue culture, which develop structural and functional polarity similar to that of enterocytes in vivo. A distinctive switch in gene expression patterns occurred upon formation of cell-cell contacts between neighboring cells. Expression of genes involved in cell proliferation was down-regulated concomitant with induction of genes necessary for functional specialization of polarized epithelial cells. Transcriptional up-regulation of these latter genes correlated with formation of important structural and functional features in enterocyte differentiation and establishment of structural and functional cell polarity; components of the apical microvilli were induced as the brush border formed during polarization; as barrier function was established, expression of tight junction transmembrane proteins peaked; transcripts encoding components of the apical, but not the basal-lateral trafficking machinery were increased during polarization. Coordinated expression of genes encoding components of functional cell structures were often observed indicating temporal control of expression and assembly of multiprotein complexes.
Collapse
Affiliation(s)
| | | | - Patrick O. Brown
- Biochemistry, and
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305
| | - W. James Nelson
- Departments of *Molecular and Cellular Physiology
- Biological Sciences and
| |
Collapse
|
16
|
Bose S, Kalra S, Yammani RR, Ahuja R, Seetharam B. Plasma membrane delivery, endocytosis and turnover of transcobalamin receptor in polarized human intestinal epithelial cells. J Physiol 2007; 581:457-66. [PMID: 17347267 PMCID: PMC2075189 DOI: 10.1113/jphysiol.2007.129171] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Cells that are metabolically active and in a high degree of differentiation and proliferation require cobalamin (Cbl: vitamin B(12)) and they obtain it from the circulation bound to transcobalamin (TC) via the transcobalamin receptor (TC-R). This study has investigated the plasma membrane dynamics of TC-R expression in polarized human intestinal epithelial Caco-2 cells using techniques of pulse-chase labelling, domain-specific biotinylation and cell fractionation. Endogenously synthesized TC-R turned over with a half-life (T(1/2)) of 8 h following its delivery to the basolateral plasma membrane (BLM). The T(1/2) of BLM delivery was 15 min and TC-R delivered to the BLM was endocytosed and subsequently degraded by leupeptin-sensitive proteases. However, about 15% of TC-R endocytosed from the BLM was transcytosed (T(1/2), 45 min) to the apical membranes (BBM) where it underwent endocytosis and was degraded. TC-R delivery to both BLM and BBM was inhibited by Brefeldin A and tunicamycin, but not by wortmannin or leupeptin. Colchicine inhibited TC-R delivery to BBM, but not BLM. At steady state, apical TC-R was associated with megalin and both these proteins were enriched in an intracellular compartment which also contained Rab5 and transferrin receptor. These results indicate that following rapid delivery to both plasma membrane domains of Caco-2 cells, TC-R undergoes constitutive endocytosis and degradation by leupeptin-sensitive proteases. TC-R expressed in apical BBM complexes with megalin during its transcytosis from the BLM.
Collapse
Affiliation(s)
- Santanu Bose
- Division of Gastroenterology and Hepatology, Department of Medicine, Medical College of Wisconsin and Veterans Administration Medical Center, Milwaukee, Wisconsin 53295, USA
| | | | | | | | | |
Collapse
|
17
|
Abstract
CD26/DPPIV can be considered a moonlighting protein because it is a multifunctional protein that exerts its different functions depending on cell type and intra- or extracellular conditions in which it is expressed. In the present review, we summarize all its known functions in relation to physiological and pathophysiological conditions. The protein is a proteolytic enzyme, receptor, costimulatory protein, and is involved in adhesion and apoptosis. The CD26/DPPIV protein plays a major role in immune response. Abnormal expression is found in the case of autoimmune diseases, HIV-related diseases and cancer. Natural substrates for CD26/DPPIV are involved in immunomodulation, psycho/neuronal modulation and physiological processes in general. Therefore, targeting of CD26/ DPPIV and especially its proteolytic activity has many therapeutic potentials. On the other hand, there are homologous proteins with overlapping proteolytic activity, which thus may prevent specific modulation of CD26/DPPIV. In conclusion, CD26/DPPIV is a protein present both in various cellular compartments and extracellularly where it exerts different functions and thus is a true moonlighting protein.
Collapse
Affiliation(s)
- Emil Boonacker
- Academic Medical Center, University of Amsterdam, Department of Cell Biology and Histology, Amsterdam, The Netherlands
| | | |
Collapse
|
18
|
Török NJ, Larusso EM, McNiven MA. Alterations in vesicle transport and cell polarity in rat hepatocytes subjected to mechanical or chemical cholestasis. Gastroenterology 2001; 121:1176-84. [PMID: 11677210 DOI: 10.1053/gast.2001.28652] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS The molecular mechanisms that contribute to the cholestatic condition in hepatocytes are poorly defined. It has been postulated that a disruption of normal vesicle-based protein trafficking may lead to alterations in hepatocyte polarity. METHODS To determine if vesicle motility is reduced by cholestasis, hepatocytes cultured from livers of bile duct ligation (BDL)- or ethinyl estradiol (EE)-injected rats, were viewed and recorded by high-resolution video microscopy. Cholestatic hepatocytes were analyzed by phalloidin staining and electron microscopy. Functional analysis was done by the sodium fluorescein sequestration assay. RESULTS In cholestatic hepatocytes, there was a significant decrease in the number of motile cytoplasmic vesicles observed compared with control cells. Further examination of cells from BDL- or EE-treated livers revealed the presence of numerous large intracellular lumina. More than 24% of cells in BDL-treated livers and 19% of cells in EE-treated livers displayed these structures, compared with 1.1% found in control hepatocytes. Phalloidin staining of hepatocytes showed a prominent sheath of actin surrounding the lumina, reminiscent of those seen about bile canaliculi. Electron microscopy revealed that these structures were lined by actin-filled microvilli. Further, these pseudocanaliculi perform many of the functions exhibited by bona fide canaliculi, such as sequestering sodium fluorescein. CONCLUSIONS Both mechanically and chemically induced cholestasis have substantial effects on vesicle-based transport, leading to marked disruption of hepatocellular polarity.
Collapse
Affiliation(s)
- N J Török
- Center for Basic Research in Digestive Diseases, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | | |
Collapse
|
19
|
Lewis CM, Latham K, Roth MG. A screen of random sequences for those that alter the trafficking of the influenza virus hemagglutinin in vivo. Traffic 2000; 1:282-90. [PMID: 11208111 DOI: 10.1034/j.1600-0854.2000.010310.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In order to determine if the sequence patterns known to specify internalization represent the majority of possible internalization signals, we identified random sequences capable of causing a reporter protein to be internalized at least several-fold faster than the rate of non-selective internalization of membrane by clathrin-coated pits. A library of influenza hemagglutinin (HA) proteins, bearing short random sequences in place of the wild-type cytoplasmic domain, was prepared in recombinant SV40 virus. The library was expressed and screened for HAs that could internalize anti-HA antibody from the medium. The cytoplasmic sequences of the selected proteins were determined. From a small sample of sequences we detected several that did not resemble those previously identified. The known internalization signals must represent only a subset of the sequences that can serve as internalization signals.
Collapse
Affiliation(s)
- C M Lewis
- Department of Biochemistry, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75235-9038, USA
| | | | | |
Collapse
|
20
|
Tuma PL, Finnegan CM, Yi JH, Hubbard AL. Evidence for apical endocytosis in polarized hepatic cells: phosphoinositide 3-kinase inhibitors lead to the lysosomal accumulation of resident apical plasma membrane proteins. J Cell Biol 1999; 145:1089-102. [PMID: 10352024 PMCID: PMC2133136 DOI: 10.1083/jcb.145.5.1089] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/1999] [Revised: 04/15/1999] [Indexed: 12/18/2022] Open
Abstract
The architectural complexity of the hepatocyte canalicular surface has prevented examination of apical membrane dynamics with methods used for other epithelial cells. By adopting a pharmacological approach, we have documented for the first time the internalization of membrane proteins from the hepatic apical surface. Treatment of hepatocytes or WIF-B cells with phosphoinositide 3-kinase inhibitors, wortmannin or LY294002, led to accumulation of the apical plasma membrane proteins, 5'-nucleotidase and aminopeptidase N in lysosomal vacuoles. By monitoring the trafficking of antibody-labeled molecules, we determined that the apical proteins in vacuoles came from the apical plasma membrane. Neither newly synthesized nor transcytosing apical proteins accumulated in vacuoles. In wortmannin-treated cells, transcytosing apical proteins traversed the subapical compartment (SAC), suggesting that this intermediate in the basolateral-to-apical transcytotic pathway remained functional. Ultrastructural analysis confirmed these results. However, apically internalized proteins did not travel through SAC en route to lysosomal vacuoles, indicating that SAC is not an intermediate in the apical endocytic pathway. Basolateral membrane protein distributions did not change in treated cells, uncovering another difference in endocytosis from the two domains. Similar effects were observed in polarized MDCK cells, suggesting conserved patterns of phosphoinositide 3-kinase regulation among epithelial cells. These results confirm a long-held but unproven assumption that lysosomes are the final destination of apical membrane proteins in hepatocytes. Significantly, they also confirm our hypothesis that SAC is not an apical endosome.
Collapse
Affiliation(s)
- P L Tuma
- Department of Cell Biology and Anatomy, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | |
Collapse
|
21
|
Sai Y, Kajita M, Tamai I, Wakama J, Wakamiya T, Tsuji A. Adsorptive-mediated endocytosis of a basic peptide in enterocyte-like Caco-2 cells. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 275:G514-20. [PMID: 9724263 DOI: 10.1152/ajpgi.1998.275.3.g514] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The internalization of a basic peptide, 001-C8 [H-MeTyr-Arg-MeArg-D-Leu-NH(CH2)8NH2], into enterocyte-like Caco-2 cells was evaluated. Internalization of 125I-labeled 001-C8 (125I-001-C8) increased time dependently and reached steady state at 60 min. The steady-state internalization of 125I-001-C8 (7.24 +/- 0. 41 microl/mg protein) was temperature and concentration dependent and was significantly decreased by dansylcadaverine (500 microM), protamine (1 mM), poly-L-lysine (1 mM), E-2078 (1 mM), and ebiratide (1 mM), whereas poly-L-glutamic acid (1 mM), tyrosine (1 mM), and glycylglycine (25 mM) were not inhibitory. Predigestion of acid mucopolysaccharides by heparinase I, heparitinase, and chondroitinase ABC also decreased the internalization. The maximal internalization, the half-saturation constant, and the nonsaturable internalization of 125I-001-C8 were 1.13 +/- 0.23 pmol/mg protein, 0. 47 +/- 0.43 microM, and 3.13 +/- 0.19 microl/mg protein, respectively. Confocal microscopy also indicated the internalization of fluorescence-derived 001-C8 [001-C8-4-nitrobenz-2-oxa-1,3-diazole (001-C8-NBD)]. Granular staining seen within the cell, excluding nuclei, indicated the sequestration of 001-C8-NBD within endocytotic vesicles. Dansylcadaverine and protamine strongly decreased the granular distribution of 001-C8-NBD within the cell. These results demonstrate that 001-C8 is taken up by Caco-2 cells via adsorptive-mediated endocytosis.
Collapse
Affiliation(s)
- Y Sai
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Kanazawa University, Kanazawa 920-0934, Japan
| | | | | | | | | | | |
Collapse
|
22
|
Pfister MF, Ruf I, Stange G, Ziegler U, Lederer E, Biber J, Murer H. Parathyroid hormone leads to the lysosomal degradation of the renal type II Na/Pi cotransporter. Proc Natl Acad Sci U S A 1998; 95:1909-14. [PMID: 9465116 PMCID: PMC19212 DOI: 10.1073/pnas.95.4.1909] [Citation(s) in RCA: 158] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
We have studied the involvement of proteolytic pathways in the regulation of the Na/Pi cotransporter type II by parathyroid hormone (PTH) in opossum kidney cells. Inhibition of lysosomal degradation (by leupeptin, ammonium chloride, methylamine, chloroquine, L-methionine methyl ester) prevented the PTH-mediated degradation of the transporter, whereas inhibition of the proteasomal pathway (by lactacystin) did not. Moreover it was found (i) that whereas lysosomal inhibitors prevented the PTH-mediated degradation of the transporter they did not prevent the PTH-mediated inhibition of the Na/Pi cotransport and (ii) that treating opossum kidney cells with lysosomal inhibitors led to an increased expression of the transporter without any concomitant increase in the Na/Pi cotransport. Further analysis by subcellular fractionation and morphological techniques showed (i) that the Na/Pi cotransporter is constitutively transported to and degraded within late endosomes/lysosomes and (ii) that PTH leads to the increased degradation of the transporter in late endosomes/lysosomes.
Collapse
Affiliation(s)
- M F Pfister
- Institute of, University of Zurich, CH-8057 Zurich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
23
|
Danielsen EM, Hansen GH, Niels-Christiansen LL. Localization and biosynthesis of aminopeptidase N in pig fetal small intestine. Gastroenterology 1995; 109:1039-50. [PMID: 7557068 DOI: 10.1016/0016-5085(95)90561-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
BACKGROUND & AIMS Little is known about the expression of brush border enzymes in fetal enterocytes. The aim of this study was to describe the localization and biosynthesis of porcine fetal aminopeptidase N. METHODS This study was performed using histochemistry and immunoelectron microscopy and [35S]methionine labeling of cultured mucosal explants. RESULTS Enzyme activity was present in the brush border membrane and extended into the apical cytoplasm. The protein was colocalized with cationized ferritin at the surface of endocytic structures including coated pits, vesicles, tubules, and large vacuoles in the apical cytoplasm. The transient high mannose-glycosylated form of fetal aminopeptidase N was processed to the mature complex-glycosylated form at a markedly slower rate than the enzyme in adult intestine. Likewise, dimerization occurred slowly compared with the adult form of aminopeptidase N, and it took place mainly after the Golgi-associated complex glycosylation. The enzyme had a biphasic appearance in the Mg(2+)-precipitated and microvillar fractions, indicating that the bulk of newly made aminopeptidase N is transported to the brush border membrane before appearing in the apical endocytic structures. CONCLUSIONS In comparison with the adult enzyme, fetal aminopeptidase N has a more widespread subcellular distribution with substantial amounts present in apical endocytic compartments characteristic of the fetal enterocyte.
Collapse
Affiliation(s)
- E M Danielsen
- Department of Medical Biochemistry and Genetics, Panum Institute, University of Copenhagen, Denmark
| | | | | |
Collapse
|
24
|
Zhang Y, Wick DA, Haas AL, Seetharam B, Dahms NM. Regulation of lysosomal and ubiquitin degradative pathways in differentiating human intestinal Caco-2 cells. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1267:15-24. [PMID: 7540043 DOI: 10.1016/0167-4889(95)00027-p] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The expression of various components of the lysosomal and ubiquitin-dependent degradative pathways was characterized in an in vitro model of differentiating enterocytes, the human colon adenocarcinoma Caco-2 cell line. The activities of the cell-associated lysosomal enzymes alpha-D-mannosidase, beta-hexosaminidase, beta-glucuronidase, and beta-galactosidase increased approximately 2- to 4-fold as differentiation proceeded. In contrast, the protein levels of the two mannose 6-phosphate receptors (MPRs), the insulin-like growth factor II/cation-independent MPR (IGF-II/CI-MPR) and the cation-dependent MPR (CD-MPR), did not change significantly during Caco-2 differentiation. In addition, quantitative Western blot analyses revealed that on a molar basis the CD-MPR is 3.5 times more abundant than the IGF-II/CI-MPR in Caco-2 cells. Since only limited secretion of lysosomal enzymes was observed throughout differentiation, the level of expression of the MPRs was sufficient to target the increased levels of lysosomal enzymes to the lysosome. Unlike the expression of lysosomal enzymes, Western blot analysis demonstrated an approximately 40% and approximately 30% decrease, respectively, in the steady-state levels of free and conjugated ubiquitin during Caco-2 differentiation. Taken together, these results show that the ubiquitin-dependent proteolytic pathway is regulated differently than the lysosomal degradative pathway during Caco-2 differentiation.
Collapse
Affiliation(s)
- Y Zhang
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee 53226, USA
| | | | | | | | | |
Collapse
|
25
|
Baricault L, Fransen JA, Garcia M, Sapin C, Codogno P, Ginsel LA, Trugnan G. Rapid sequestration of DPP IV/CD26 and other cell surface proteins in an autophagic-like compartment in Caco-2 cells treated with forskolin. J Cell Sci 1995; 108 ( Pt 5):2109-21. [PMID: 7657729 DOI: 10.1242/jcs.108.5.2109] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The enterocytic differentiation of Caco-2 cells, a human colon adenocarcinoma cell line, is accompanied by the transcriptionally regulated expression of a subset of proteins and their correct sorting towards the cell surface. In the present work we have explored the possibility that post-translational events may interfere with this process by investigating the short term effects of a potent adenylyl cyclase activator, forskolin, on cell surface expression of dipeptidyl peptidase IV. Previous works have shown that this protein is targeted towards the apical domain through either a direct or an indirect route. Domain specific biochemical experiments demonstrate that cell surface expression of neosynthesized dipeptidyl peptidase IV rapidly decreases after a 1 hour forskolin treatment. Both initial basolateral and apical dipeptidyl peptidase IV membrane delivery were altered by forskolin treatment. Decrease of dipeptidyl peptidase IV cell surface expression was not restricted to this protein, since membrane expression of '525' antigen, a basolateral protein and of sucrase-isomaltase, an apically targeted hydrolase, which unlike dipeptidyl peptidase IV mainly follows a direct route to the brush border membrane, also decreases. In addition endocytosis of proteins from the apical and from the basolateral domain was essentially unchanged, suggesting that forskolin's target may be located on the exocytic pathway. Confocal laser scanning microscopy and immuno-electron microscopy studies demonstrate that, within 5 minutes of forskolin treatment, the cell surface proteins studied accumulate in intracellular vesicles which were co-labeled with a polyclonal antibody raised against Lamp-1, a lysosomal membrane marker. Electron microscopy studies show that these vesicles display an autophagic-like morphology. Finally, biochemical experiments indicate that dibutyryl cAMP does not mimick the forskolin effect, thus suggesting that it is a cAMP-independent phenomenon.
Collapse
Affiliation(s)
- L Baricault
- Unité de Recherches sur la Neuroendocrinologie et la Biologie Cellulaire Digestives, INSERM U410, Paris, France
| | | | | | | | | | | | | |
Collapse
|
26
|
Jackman MR, Shurety W, Ellis JA, Luzio JP. Inhibition of apical but not basolateral endocytosis of ricin and folate in Caco-2 cells by cytochalasin D. J Cell Sci 1994; 107 ( Pt 9):2547-56. [PMID: 7844170 DOI: 10.1242/jcs.107.9.2547] [Citation(s) in RCA: 105] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Apical and basolateral endocytic pathways in polarised Caco-2 cells were investigated by following the uptake, recycling and transcytosis of the galactose-binding protein toxin ricin, as a membrane marker. Differences in the extent and kinetics of lectin uptake, recycling and transcytosis were observed at the apical and basolateral domains and altered with the age of the cell monolayer. Treatment of polarised Caco-2 cells with cytochalasin D showed a domain-specific, concentration-dependent inhibition of apical endocytosis of ricin. Inhibition of apical endocytosis by cytochalasin D was not due to a gross change in brush border morphology, although actin stress fibres within the cell body were disrupted. It is not clear whether inhibition of apical endocytosis in polarized epithelial cells by cytochalasin D is caused simply by disruption of a mechanochemical motor involving microvillar actin filaments. The cytochalasin D effect was also observed when measuring uptake of folate, suggesting apical domain-specific inhibition of caveolar, as well as clathrin-mediated, endocytic routes.
Collapse
Affiliation(s)
- M R Jackman
- Department of Clinical Biochemistry, University of Cambridge, Addenbrooke's Hospital, UK
| | | | | | | |
Collapse
|
27
|
Kappeler F, Itin C, Schindler R, Hauri H. A dual role for COOH-terminal lysine residues in pre-Golgi retention and endocytosis of ERGIC-53. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)37367-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
28
|
Matter K, Whitney JA, Yamamoto EM, Mellman I. Common signals control low density lipoprotein receptor sorting in endosomes and the Golgi complex of MDCK cells. Cell 1993; 74:1053-64. [PMID: 8402881 DOI: 10.1016/0092-8674(93)90727-8] [Citation(s) in RCA: 147] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The cytoplasmic domain of the LDL receptor bears two tyrosine-containing determinants that can independently target receptors from the Golgi to the basolateral plasma membrane of MDCK cells. We found that these determinants, localized to the membrane-proximal and -distal regions of the receptor's cytoplasmic domain, also control polarized sorting in endosomes. Inactivation of the distal determinant reduced receptors' ability to return to the basolateral domain following endocytosis, resulting instead in receptor transcytosis from basolateral endosomes to the apical plasma membrane. Similarly, receptors internalized from the apical surface were transported from apical endosomes to the basolateral surface, owing to the proximal basolateral targeting determinant. Thus, receptor recycling in endosomes is directed by the same signals as polarized sorting in the Golgi, indicating that sorting on the endocytic and biosynthetic pathways involves similar mechanisms. The observation that brefeldin A interfered with sorting but not transport in both endosomes and the Golgi further supports this.
Collapse
Affiliation(s)
- K Matter
- Department of Cell Biology, New Haven, Connecticut 06510
| | | | | | | |
Collapse
|
29
|
de Bruïne AP, de Vries JE, Dinjens WN, Moerkerk PT, van der Linden EP, Pijls MM, ten Kate J, Bosman FT. Human Caco-2 cells transfected with c-Ha-Ras as a model for endocrine differentiation in the large intestine. Differentiation 1993; 53:51-60. [PMID: 8508948 DOI: 10.1111/j.1432-0436.1993.tb00645.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Endocrine cells occur in approximately 30% of all colorectal adenocarcinomas, and this feature appears to correlate with a relatively poor prognosis. To study the factors regulating endocrine differentiation in colorectal cancer, which may bear resemblance to the regulation of endocrine differentiation in normal intestinal mucosa, models in which differentiation can be manipulated are essential. However, endocrine features in colorectal cancer cell lines are scarce and are almost exclusively observed in xenografts, presumably as a result of differentiation induction by stromal components. We attempted to demonstrate endocrine differentiation in the colonic adenocarcinoma cell line Caco-2, which is frequently used as a model for enterocytic differentiation. In vitro endocrine tumor cells were not encountered. In vivo studies were cumbersome, because of the low take rate of Caco-2 cells. We did manage to establish nude mouse xenografts of Caco-2 cells by inoculating cells in collagen gel and by suppressing natural killer cell activity. In an attempt to induce a better take rate and to investigate the effect of Ras oncoprotein overexpression on endocrine differentiation, Caco-2 cells were transfected with a point-mutated c-Ha-Ras gene. The cell line Caco-2 EJ6, generated from these experiments, could be xenografted in nude mice with a high take rate, yielding a moderately well differentiated adenocarcinoma, morphologically identical to the tumors derived from untransfected Caco-2 cells. The xenografts displayed goblet cell, enterocytic, Paneth cell and endocrine differentiation. In vitro endocrine differentiation was observed neither under standard conditions nor with extracellular matrix components as differentiation inducers. We conclude that the Caco-2 cell line and its c-Ha-Ras transfected subline Caco-2 EJ6 in vivo display endocrine differentiation. Ras overexpression does not enhance endocrine differentiation. Due to its favorable growth properties in vivo, Caco-2 EJ6 is a suitable model for studies on endocrine differentiation in colorectal cancer.
Collapse
Affiliation(s)
- A P de Bruïne
- Department of Pathology, University Hospital Maastricht, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Kreisel W, Hildebrandt H, Mössner W, Tauber R, Reutter W. Oligosaccharide reprocessing and recycling of a cell surface glycoprotein in cultured rat hepatocytes. BIOLOGICAL CHEMISTRY HOPPE-SEYLER 1993; 374:255-63. [PMID: 8101088 DOI: 10.1515/bchm3.1993.374.1-6.255] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The metabolism of the cell surface glycoprotein dipeptidyl peptidase IV(DPPIV) was studied in cultured rat hepatocytes. In pulse-chase labelling experiments using L-[35S]methionine a 100-kDa high-mannose precursor polypeptide is converted into the mature complex-type 110-kDa glycoprotein. Digestion with exo- and endoglycosidases and metabolic labelling with radioactive sugars demonstrate that the 110-kDa form contains about 6 complex-type oligosaccharides which are fucosylated and sialylated. About 25 min after the beginning of the pulse-labelled glycoprotein appears in the sinusoidal membrane. Physiologically only the 110-kDa form is found in the cell surface. If cell surface DPP IV was desialylated by sialidase at 4 degrees C, it is resialylated during incubation at 37 degrees C. This oligosaccharide reprocessing indicates that the surface glycoprotein has been recycled to the cell compartment containing terminal glycosyltransferases (presumably the trans Golgi system). Two different methods demonstrate internalization of cell surface DPP IV: 1) The complex cell surface DPPIV -anti-DPP IV-antibody -L-[35S]methionine-labelled secondary goat-anti-mouse-antibody formed at 4 degrees C becomes less accessible to trypsin during incubation at 37 degrees C. 2) Part of the complex plasma membrane DPP IV-anti-DPP IV-antibody formed in the cold cannot be recognized by the radioactive secondary antibody after rewarming. Internalization is not blocked by inhibition of protein synthesis with cycloheximide. During internalization of plasma membrane DPP IV its concentration in the membrane remains constant.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- W Kreisel
- Medizinische Klinik, Klinikum der Albert-Ludwigs-Universität, Freiburg, Germany
| | | | | | | | | |
Collapse
|
31
|
Wisselaar H, Kroos M, Hermans M, van Beeumen J, Reuser A. Structural and functional changes of lysosomal acid alpha-glucosidase during intracellular transport and maturation. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)53985-5] [Citation(s) in RCA: 125] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
32
|
Weisz O, Machamer C, Hubbard A. Rat liver dipeptidylpeptidase IV contains competing apical and basolateral targeting information. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)41667-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
33
|
Seetharam S, Ramanujam K, Seetharam B. Synthesis and brush border expression of intrinsic factor-cobalamin receptor from rat renal cortex. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)42534-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
34
|
Dynamics of four rat liver plasma membrane proteins and polymeric IgA receptor. Rates of synthesis and selective loss into the bile. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)42667-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
35
|
Casanova J, Mishumi Y, Ikehara Y, Hubbard A, Mostov K. Direct apical sorting of rat liver dipeptidylpeptidase IV expressed in Madin-Darby canine kidney cells. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)54246-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
36
|
Gill SS, Ross LS. Molecular cloning and characterization of the B subunit of a vacuolar H(+)-ATPase from the midgut and Malpighian tubules of Helicoverpa virescens. Arch Biochem Biophys 1991; 291:92-9. [PMID: 1834020 DOI: 10.1016/0003-9861(91)90109-v] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Using the polymerase chain reaction (PCR) a 0.8-kb product was amplified from cDNA made from the midgut and Malpighian tubules of fifth instar larvae of Helicoverpa virescens. This 0.8-kb PCR product was then used to isolate a clone of the B subunit of the V-type ATPase from a cDNA library made from the same tissues. The cDNA clone encodes for a protein of 55 kDa which shows very high amino acid homology to other known B subunits of V-type ATPases. The transcript size of the B subunit in the midgut of H. virescens was 2.3 kb, and a transcript of identical size was also detected in the Malpighian tubules. Northern blot analysis revealed the presence of a homologous transcript of 2.6 kb in the midgut of Manduca sexta and PCR analysis also confirmed the presence of such a transcript in the Malpighian tubules and the nervous system of M. sexta, and in the midgut Malpighian tubules of Culex quinquefasciatus. The presence of the V-type ATPase in the Malpighian tubules of lepidopteran insects suggests that the transport of ions across the cell membrane in this tissue is also probably driven by a similar process as that observed in the midgut of these insects.
Collapse
Affiliation(s)
- S S Gill
- Department of Entomology, University of California, Riverside 92521
| | | |
Collapse
|
37
|
Proulx P. Structure-function relationships in intestinal brush border membranes. BIOCHIMICA ET BIOPHYSICA ACTA 1991; 1071:255-71. [PMID: 1958689 DOI: 10.1016/0304-4157(91)90016-p] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- P Proulx
- Department of Biochemistry, Faculty of Medicine, University of Ottawa, Canada
| |
Collapse
|
38
|
Neutral endopeptidase, a major brush border protein of the kidney proximal nephron, is directly targeted to the apical domain when expressed in Madin-Darby canine kidney cells. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)55066-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
39
|
Schaerer E, Neutra MR, Kraehenbuhl JP. Molecular and cellular mechanisms involved in transepithelial transport. J Membr Biol 1991; 123:93-103. [PMID: 1956074 DOI: 10.1007/bf01998081] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- E Schaerer
- Swiss Institute for Experimental Cancer Research, University of Lausanne, Epalinges
| | | | | |
Collapse
|
40
|
Eliakim R, Mahmood A, Alpers DH. Rat intestinal alkaline phosphatase secretion into lumen and serum is coordinately regulated. BIOCHIMICA ET BIOPHYSICA ACTA 1991; 1091:1-8. [PMID: 1671644 DOI: 10.1016/0167-4889(91)90213-h] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We have reported the presence of intestinal alkaline phosphatase on particles with surfactant-like properties within enterocytes, on the luminal surface (light mucosal scrapings) and in the lumen of adult fat-fed rat intestines ((1989) J. Clin. Invest. 84, 1355). To test the physiological role of these particles, we compared the effect on particle secretion of a known inducer of luminal and serum alkaline phosphatase secretion (fat), with the effect of pharmacological stimulators (cholecystokinin and bethanecol). Fat induced a 2-3-fold increase in membrane-free phosphatase activity in serum, and in particle-bound alkaline phosphatase activity in proximal luminal washings and light mucosal scrapings, reaching a peak in both compartments 7 h after a corn oil feed. Bethanecol given subcutaneously induced a quantitatively similar increase in serum alkaline phosphatase activity and in particle-bound phosphatase activity in proximal light mucosal scrapings, reaching a peak 7.5 min after injection. Cholecystokinin also had a 2-3-fold stimulatory effect, 30 min after injection, on particle-bound phosphatase activity in proximal intestinal light mucosal scrapings and distal intestinal luminal washings. The increase in alkaline phosphatase activity in serum samples reached a peak 60 min after cholecystokinin injection. Thus, three independent stimuli increase both luminal and serum appearance of intestinal alkaline phosphatase. These data support the earlier findings that intestinal alkaline phosphatase secretion into the lumen is mediated by a secreted particle, further show that secretion into serum and lumen is coordinately regulated, and are consistent with the hypothesis that the rise in serum alkaline phosphatase activity could be related to extracellular release of the enzyme from the particles.
Collapse
Affiliation(s)
- R Eliakim
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | | | | |
Collapse
|