1
|
Matsushima K, Yang D, Oppenheim JJ. Interleukin-8: An evolving chemokine. Cytokine 2022; 153:155828. [PMID: 35247648 DOI: 10.1016/j.cyto.2022.155828] [Citation(s) in RCA: 185] [Impact Index Per Article: 61.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 12/12/2022]
Abstract
Early in the 1980s several laboratories mistakenly reported that partially purified interleukin-1 (IL-1) was chemotactic for neutrophils. However, further investigations by us, revealed that our purified IL-1 did not have neutrophil chemotactic activity and this activity in the LPS-stimulated human monocyte conditioned media could clearly be separated from IL-1 activity on HPLC gel filtration. This motivated Teizo Yoshimura and Kouji Matsushima to purify the monocyte-derived neutrophil chemotactic factor (MDNCF), present in LPS conditioned media and molecularly clone the cDNA for MDNCF. They found that MDNCF protein (later renamed IL-8, and finally termed CXCL8) is first translated as a precursor form consisting of 99 amino acid residues and the signal peptide is then removed, leading to the secretion and processing of biologically active IL-8 of 72 amino acid form (residues 28-99). There are four cysteine residues forming two disulfide linkage and 14 basic amino acid residues which result in a very basic property for the binding of IL-8 to heparan sulfate-proteoglycan. The IL-8 gene consists of 4 exons and 3 introns. IL-8 is produced by various types of cells in inflammation. The 5'-flanking region of IL-8 gene contains several nuclear factor binding sites, and NF-κB in combination with AP-1 or C/EBP synergistically activates IL-8 gene in response to IL-1 and TNFα. Two receptors exist for IL-8, CXCR1 and CXCR2 in humans, which belong to γ subfamily of GTP binding protein (G-protein) coupled rhodopsin-like 7 transmembrane domain receptors. Rodents express CXCR2 and do not produce IL-8, but produce numerous homologues instead. Once IL-8 binds to the receptor, β and γ subunits of G-protein are released from Gα (Gαi2 in neutrophils) and activate PI3Kγ, PLCβ2/β3, PLA2 and PLD. Gαi2 inhibits adenyl cyclase to decrease cAMP levels. Small GTPases Ras/Rac/Rho/cdc42/Rap1, PKC and AKT (PKB) exist down-stream of β and γ subunits and regulate cell adhesion, actin polymerization, membrane protrusion, and eventually cell migration. PLCβ activation generates IP3 and induces Ca++ mobilization, DAG generation to activate protein kinase C to lead granule exocytosis and respiratory burst. MDNCF was renamed interleukin 8 (IL-8) at the International Symposium on Novel Neutrophil Chemotactic Activating Polypeptides, London, UK in 1989. The discovery of IL-8 prompted us to also purify and molecularly clone the cDNA of MCAF/MCP-1 responsible for monocyte chemotaxis, and other groups to identify a large family of chemotactic cytokines capable of attracting other types of leukocytes. In 1992, most of the investigators contributing to the discovery of this new family of chemotactic cytokines gathered in Baden, Austria and agreed to name this family "chemokines" and subsequently established the CXCL/CCL and CXCR/CCR nomenclature. The discovery of chemokines resulted in solving the long-time enigma concerning the mechanism of cell type specific leukocyte infiltration into inflamed tissues and provided a molecular basis for immune and hematopoietic cell migration and interactions under physiological as well as pathological conditions. To our surprise based on its recently identified multifunctional activities, IL-8 has evolved from a neutrophil chemoattractant to a promising therapeutic target for a wide range of inflammatory and neoplastic diseases. IL-8 was initially characterized as a chemoattractant of neutrophils engaged in acute inflammation and then discovered to also be chemotactic for endothelial cells with a major role in angiogenesis. These two activities of IL-8 foster its stimulatory effect on tumor growth. This is abetted by recent additional discoveries showing that IL-8 has stimulatory effects on stem cells and can therefore directly promote the growth of receptor expressing cancer stem cells. IL-8 by interacting with bone marrow stem/progenitor cells has also the capacity to mobilize and release hematopoietic cells into the peripheral circulation. This includes the mobilization of neutrophilic myeloid-derived suppressor cells (N-MDSC) to infiltrate into tumors and thus further promotes the immune escape of tumors. Finally, the capacity of IL-8 to induce trans-differentiation of epithelial cancer cells into mesenchymal phenotype (EMT) increases the malignancy of tumors by promoting their metastatic spread and resistance to chemotherapeutics and cytotoxic immune cells. These observations have stimulated considerable current efforts to develop receptor antagonists for IL-8 and humanized anti-IL-8 antibody for the therapy of cancer, particularly in combination with immune checkpoint inhibitors, such as anti-PD-1/PD-L1 antibodies.
Collapse
Affiliation(s)
- Kouji Matsushima
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Institute for Biomedical Sciences, Tokyo University of Science, Noda, Chiba, Japan
| | - De Yang
- Laboratory of Cancer Immunometabolism, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Joost J Oppenheim
- Laboratory of Cancer Immunometabolism, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| |
Collapse
|
2
|
Rink I, Rink J, Helmer D, Sachs D, Schmitz K. A Haptotaxis Assay for Leukocytes Based on Surface-Bound Chemokine Gradients. THE JOURNAL OF IMMUNOLOGY 2015; 194:5549-58. [DOI: 10.4049/jimmunol.1500148] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 03/31/2015] [Indexed: 11/19/2022]
|
3
|
Admyre C, Axelsson LG, von Stein O, Zargari A. Immunomodulatory oligonucleotides inhibit neutrophil migration by decreasing the surface expression of interleukin-8 and leukotriene B4 receptors. Immunology 2015; 144:206-17. [PMID: 25100544 DOI: 10.1111/imm.12368] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 06/24/2014] [Accepted: 07/15/2014] [Indexed: 12/27/2022] Open
Abstract
Neutrophils play important roles in many inflammatory diseases. The migration of neutrophils to the inflammatory site is tightly regulated by specific chemokines, of which interleukin-8 (IL-8) and leukotriene B4 (LTB4 ) constitute key mediators by binding to the surface receptors CXCR1/2 and BLT1, respectively. Oligonucleotides (ODN) containing CpG motifs mediate potent immunomodulatory effects through binding to Toll-like receptor 9. So far, knowledge on how ODN can affect neutrophil migration during inflammation is lacking. This study demonstrates that several novel CpG ODN significantly down-regulate the surface expression of CXCR1/2 and BLT1. In addition, the ODN significantly blocked IL-8-induced and LTB4 -induced neutrophil migration in vitro, as well as leucocyte migration in vivo demonstrated in mice by intravital microscopy and in a model of airway inflammation. The down-regulation of CXCR1 is rapid, occurring 15 min after ODN stimulation, and can be mediated through an endosomally independent mechanism. Inhibition of the IL-8 and LTB4 pathways may provide new opportunities of therapeutic intervention using ODN to reduce neutrophil infiltration during inflammation.
Collapse
|
4
|
Andrews RK, Gardiner EE. Editorial: ADAMs control inflammation from afar. J Leukoc Biol 2015; 97:437-8. [DOI: 10.1189/jlb.3ce1114-528r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
5
|
Roberts HM, Ling MR, Insall R, Kalna G, Spengler J, Grant MM, Chapple ILC. Impaired neutrophil directional chemotactic accuracy in chronic periodontitis patients. J Clin Periodontol 2015; 42:1-11. [PMID: 25360483 PMCID: PMC4340045 DOI: 10.1111/jcpe.12326] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2014] [Indexed: 12/13/2022]
Abstract
AIM To investigate the chemotactic accuracy of peripheral blood neutrophils from patients with chronic periodontitis compared with matched healthy controls, before and after non-surgical periodontal therapy. MATERIAL & METHODS Neutrophils were isolated from patients and controls (n = 18) by density centrifugation. Using the Insall chamber and video microscopy, neutrophils were analysed for directional chemotaxis towards N-formyl-methionyl-leucyl-phenylalanine [fMLP (10 nM), or CXCL8 (200 ng/ml)]. Circular statistics were utilized for the analysis of cell movement. RESULTS Prior to treatment, neutrophils from patients with chronic periodontitis had significantly reduced speed, velocity and chemotactic accuracy compared to healthy controls for both chemoattractants. Following periodontal treatment, patient neutrophils continued to display reduced speed in response to both chemoattractants. However, velocity and accuracy were normalized for the weak chemoattractant CXCL8 while they remained significantly reduced for fMLP. CONCLUSIONS Chronic periodontitis is associated with reduced neutrophil chemotaxis, and this is only partially restored by successful treatment. Dysfunctional neutrophil chemotaxis may predispose patients with periodontitis to their disease by increasing tissue transit times, thus exacerbating neutrophil-mediated collateral host tissue damage.
Collapse
Affiliation(s)
- Helen M Roberts
- Periodontal Research Group and MRC Centre for Immune Regulation, University of Birmingham, Birmingham, UK
| | | | | | | | | | | | | |
Collapse
|
6
|
Mishra HK, Long C, Bahaie NS, Walcheck B. Regulation of CXCR2 expression and function by a disintegrin and metalloprotease-17 (ADAM17). J Leukoc Biol 2014; 97:447-54. [PMID: 25412626 DOI: 10.1189/jlb.3hi0714-340r] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The chemokine receptor CXCR2 is expressed at high levels on circulating neutrophils and is critical for directing their migration to sites of inflammation. CXCR2 surface levels are rapidly modulated by 2 mechanisms-cell internalization and recycling upon ligand binding-and by a metalloprotease activity following overt neutrophil activation by nonligand stimuli. The latter process has only been described in human neutrophils, and essentially, nothing is known about its functional relevance and the specific protease involved. We show that targeting ADAM17 in mouse and human neutrophils blocks CXCR2 down-regulation induced by nonligand stimuli but not by chemokine ligands. This was determined by use of a selective ADAM17 inhibitor, an ADAM17 function-blocking antibody, and ADAM17 gene-targeted mice. CXCR2 is known to undergo a marked down-regulation during various inflammatory disorders, and this is associated with impaired neutrophil recruitment. We show that blocking ADAM17 activity reduced CXCR2 down-regulation on circulating neutrophils and enhanced their recruitment during acute inflammation, which was reversed by a CXCR2 inhibitor. Taken together, our findings demonstrate that unlike CXCR2 internalization, ADAM17 induction down-regulates the receptor in an irreversible manner and may serve as a master switch in controlling CXCR2 function, but may also contribute to neutrophil dysfunction during excessive inflammation.
Collapse
Affiliation(s)
- Hemant K Mishra
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, Minnesota, USA
| | - Chunmei Long
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, Minnesota, USA
| | - Nooshin S Bahaie
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, Minnesota, USA
| | - Bruce Walcheck
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, Minnesota, USA
| |
Collapse
|
7
|
Amsalem H, Kwan M, Hazan A, Zhang J, Jones RL, Whittle W, Kingdom JCP, Croy BA, Lye SJ, Dunk CE. Identification of a novel neutrophil population: proangiogenic granulocytes in second-trimester human decidua. THE JOURNAL OF IMMUNOLOGY 2014; 193:3070-9. [PMID: 25135830 DOI: 10.4049/jimmunol.1303117] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The maternal leukocytes of the first-trimester decidua play a fundamental role in implantation and early development of the fetus and placenta, yet little is known regarding the second-trimester decidual environment. Our multicolor flow cytometric analyses of human decidual leukocytes detected an elevation in tissue resident neutrophils in the second trimester. These cells in both human and murine samples were spatially restricted to decidua basalis. In comparison with peripheral blood neutrophils (PMNs), the decidual neutrophils expressed high levels of neutrophil activation markers and the angiogenesis-related proteins: vascular endothelial growth factor-A, Arginase-1, and CCL2, similarly shown in tumor-associated neutrophils. Functional in vitro assays showed that second-trimester human decidua conditioned medium stimulated transendothelial PMN invasion, upregulated VEGFA, ARG1, CCL2, and ICAM1 mRNA levels, and increased PMN-driven in vitro angiogenesis in a CXCL8-dependent manner. This study identified a novel neutrophil population with a physiological, angiogenic role in human decidua.
Collapse
Affiliation(s)
- Hagai Amsalem
- Research Centre for Women's and Infants' Health, Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5T 3H7, Canada; Department of Obstetrics and Gynecology, Hadassah-Hebrew University Medical Center, Mt. Scopus, Jerusalem 91120, Israel
| | - Melissa Kwan
- Research Centre for Women's and Infants' Health, Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5T 3H7, Canada; Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Aleah Hazan
- Research Centre for Women's and Infants' Health, Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5T 3H7, Canada; Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Jianhong Zhang
- Research Centre for Women's and Infants' Health, Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5T 3H7, Canada
| | - Rebecca L Jones
- Maternal and Fetal Health Research Centre, St. Mary's Hospital, The University of Manchester, Manchester M13 9WL, United Kingdom
| | - Wendy Whittle
- Department of Obstetrics and Gynaecology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5G 1E2, Canada; and
| | - John C P Kingdom
- Department of Obstetrics and Gynaecology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5G 1E2, Canada; and
| | - B Anne Croy
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Stephen J Lye
- Research Centre for Women's and Infants' Health, Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5T 3H7, Canada; Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Department of Obstetrics and Gynaecology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5G 1E2, Canada; and
| | - Caroline E Dunk
- Research Centre for Women's and Infants' Health, Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5T 3H7, Canada; Department of Obstetrics and Gynaecology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5G 1E2, Canada; and
| |
Collapse
|
8
|
Willinger T, Ferguson SM, Pereira JP, De Camilli P, Flavell RA. Dynamin 2-dependent endocytosis is required for sustained S1PR1 signaling. ACTA ACUST UNITED AC 2014; 211:685-700. [PMID: 24638168 PMCID: PMC3978280 DOI: 10.1084/jem.20131343] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The endocytosis regulator dynamin 2 is required for the regulation of S1PR1 internalization and continued S1PR1 signaling in low S1P environments. Sphingosine-1-phosphate (S1P) receptor 1 (S1PR1) is critical for lymphocyte egress from lymphoid organs. Lymphocytes encounter low S1P concentrations near exit sites before transmigration, yet S1PR1 signaling is rapidly terminated after exposure to S1P. How lymphocytes maintain S1PR1 signaling in a low S1P environment near egress sites is unknown. Here we identify dynamin 2, an essential component of endocytosis, as a novel regulator of T cell egress. Mice with T cell–specific dynamin 2 deficiency had profound lymphopenia and impaired egress from lymphoid organs. Dynamin 2 deficiency caused impaired egress through regulation of S1PR1 signaling, and transgenic S1PR1 overexpression rescued egress in dynamin 2 knockout mice. In low S1P concentrations, dynamin 2 was essential for S1PR1 internalization, which enabled continuous S1PR1 signaling and promoted egress from both thymus and lymph nodes. In contrast, dynamin 2–deficient cells were only capable of a pulse of S1PR1 signaling, which was insufficient for egress. Our results suggest a possible mechanism by which T lymphocytes positioned at exit portals sense low S1P concentrations, promoting their egress into circulatory fluids.
Collapse
Affiliation(s)
- Tim Willinger
- Department of Immunobiology, 2 Department of Cell Biology, 3 Program in Cellular Neuroscience, Neurodegeneration, and Repair, and 4 Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06520
| | | | | | | | | |
Collapse
|
9
|
Vogiatzi K, Apostolakis S, Vlata Z, Krabovitis E, Spandidos DA. Opposite effect of angiotensin receptor blockade on CXCL8 production and CXCR1/2 expression of angiotensin II-treated THP-1 monocytes. Exp Ther Med 2013; 5:987-991. [PMID: 23407636 PMCID: PMC3570251 DOI: 10.3892/etm.2013.909] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2012] [Accepted: 01/18/2013] [Indexed: 11/07/2022] Open
Abstract
Interleukin-8 (IL-8) or CXCL8 is a potent chemotactic factor that is involved in atherogenesis. IL-8 mediates its pre-inflammatory effects through interaction with CXCR1 and CXCR2. In the present study, we investigated the effects of angiotensin II (Ang II) on IL-8 synthesis and CXCR1/CXCR2 expression of THP-1 monocytes. IL-8 was measured in the culture medium using ELISA. Expression of chemokine receptors CXCR1 and CXCR2 was evaluated by flow cytometry. Results demonstrated that the addition of Ang II increased IL-8 production in the THP-1 monocytes. The Ang II type 1 receptor blocker (ARB) losartan significantly blocked Ang II-induced IL-8 production. Notably, losartan blocked LPS-induced IL-8 production by THP-1 monocytes and produced a small but statistically significant reduction of baseline IL-8 production of naïve THP-1 cells. Losartan also produced a statistically significant increase of fluorescence intensity of naïve CXCR1- and CXCR2-positive THP-1 monocytes, probably as a negative feedback effect secondary to IL-8 downregulation. In conclusion, we demonstrated that Ang II increased IL-8 production by THP-1 monocytes. Losartan significantly suppressed the latter effect, suggesting an AT-1 mediated pathway. Moreover, losartan suppressed the IL-8 production of naïve THP-1 monocytes and LPS-treated THP-1 monocytes, suggesting a broader spectrum of pleiotropic effects. Extrapolating this in vitro observation to in vivo pathways, we propose Ang II-induced IL-8 production by monocytes as another pre-atherogenic potential of Ang II that can be effectively blocked by the AT1 receptor blockade.
Collapse
Affiliation(s)
- Konstantina Vogiatzi
- Laboratory of Clinical Virology, Faculty of Medicine University of Crete; Heraklion 71003, Crete, Greece
| | | | | | | | | |
Collapse
|
10
|
Singh VK, Ducey EJ, Fatanmi OO, Singh PK, Brown DS, Purmal A, Shakhova VV, Gudkov AV, Feinstein E, Shakhov A. CBLB613: a TLR 2/6 agonist, natural lipopeptide of Mycoplasma arginini , as a novel radiation countermeasure. Radiat Res 2011; 177:628-42. [PMID: 22175300 DOI: 10.1667/rr2657.1] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
To date, there are no safe and effective drugs available for protection against ionizing radiation damage. Therefore, a great need exists to identify and develop non-toxic agents that will be useful as radioprotectors or postirradiation therapies under a variety of operational scenarios. We have developed a new pharmacological agent, CBLB613 (a naturally occurring Mycoplasma-derived lipopeptide ligand for Toll-like receptor 2/6), as a novel radiation countermeasure. Using CD2F1 mice, we investigated CBLB613 for toxicity, immunogenicity, radioprotection, radiomitigation and pharmacokinetics. We also evaluated CBLB613 for its effects on cytokine induction and radiation-induced cytopenia in unirradiated and irradiated mice. The no-observable-adverse-effect level of CBLB613 was 1.79 mg/kg and 1 mg/kg for single and repeated doses, respectively. CBLB613 significantly protected mice against a lethal dose of (60)Co γ radiation. The dose reduction factor of CBLB613 as a radioprotector was 1.25. CBLB613 also mitigated the effects of (60)Co γ radiation on survival in mice. In both irradiated and unirradiated mice, the drug stimulated induction of interleukin-1β (IL-1β), IL-6, IL-10, IL-12, keratinocyte-derived chemokine, granulocyte colony-stimulating factor, granulocyte-macrophage colony-stimulating factor, and tumor necrosis factor-1α. CBLB613 also reduced radiation-induced cytopenia and increased bone marrow cellularity in irradiated mice. Our immunogenicity study demonstrated that CBLB613 is not immunogenic in mice, indicating that it could be developed as a radioprotector and radiomitigator for humans against the potentially lethal effects of radiation exposure.
Collapse
Affiliation(s)
- Vijay K Singh
- Radiation Countermeasures Program, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20889-5603, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
Here we focus on how neutrophils have a key regulatory role in vascular inflammation. Recent studies using advanced imaging techniques have yielded new insights into the mechanisms by which neutrophils contribute to defense against bacterial infections and also against sterile injury. In these settings, neutrophils are recruited by various mechanisms depending on the situation. We also describe how these processes may be disrupted in systemic infections, with a particular emphasis on mouse models of sepsis. Neutrophils are often immobilized in the lungs and liver during systemic infections, and this immobilization may be a mechanism through which bacteria can evade the innate immune response or allow neutrophils to form neutrophil extracellular traps that trap and kill bacteria in blood. The platelet is also an important player in sepsis, and we describe how it collaborates with neutrophils in the formation of neutrophil extracellular traps.
Collapse
Affiliation(s)
- Mia Phillipson
- Department of Medical Cell Biology, Division of Integrative Physiology, Uppsala University, Uppsala, Sweden
| | | |
Collapse
|
12
|
Luteijn R, Sciaranghella G, van Lunzen J, Nolting A, Dugast AS, Ghebremichael MS, Altfeld M, Alter G. Early viral replication in lymph nodes provides HIV with a means by which to escape NK-cell-mediated control. Eur J Immunol 2011; 41:2729-40. [PMID: 21630248 DOI: 10.1002/eji.201040886] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2010] [Revised: 12/31/2010] [Accepted: 04/26/2011] [Indexed: 01/25/2023]
Abstract
Acute HIV infection is marked by dramatic viral replication associated with preferential replication within secondary lymphoid tissues, such as lymph nodes (LNs), that is rapidly but incompletely contained to a viral setpoint. Accumulating evidence supports a role for natural killer (NK) cells in the early control of HIV infection; however, little is known about the location of their antiviral control. Given that HIV replicates profusely in LNs during early infection, we sought to define whether changes occurred in the NK cell infiltrate within these sites during the first year of HIV infection. Surprisingly, NK cell numbers and distribution were unaltered during early HIV infection. LN NK cells expressed decreased inhibitory receptors, were more highly activated, and expressed elevated TRAIL, potentially conferring a superior capacity for NK cells to become activated and control infection. Most noticeably, KIR(+) NK cells were rarely detected in the LN during HIV infection, associated with diminished migratory capacity in the setting of reduced expression of CX3CR1 and CXCR1. Thus, incomplete control of HIV viral replication during early disease may be due to the inefficient recruitment of KIR(+) NK cells to this vulnerable site, providing HIV a niche where it can replicate unabated by early NK-cell-mediated innate pressure.
Collapse
Affiliation(s)
- Rutger Luteijn
- Ragon Institute of MGH, MIT and Harvard, Boston, MA 02129, USA
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Zamjahn JB, Quinton LJ, Mack JC, Frevert CW, Nelson S, Bagby GJ. Differential flux of macrophage inflammatory protein-2 and cytokine-induced neutrophil chemoattractant from the lung after intrapulmonary delivery. Am J Physiol Lung Cell Mol Physiol 2011; 301:L568-74. [PMID: 21743027 DOI: 10.1152/ajplung.00340.2010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Previously we showed that cytokine-induced neutrophil chemoattractant (CINC), but not macrophage inflammatory protein-2 (MIP-2), is detected in plasma after intratracheal challenge with LPS or the particular chemokines. To further understand the differences between CINC and MIP-2 flux from the lung, we attempted to detect the two chemokines in isolated erythrocytes and leukocytes in rats after intratracheal LPS challenge. In response to intratracheal LPS, we found both CINC and MIP-2 in isolated erythrocytes and leukocytes, suggesting that MIP-2 produced in the LPS-challenged lung entered the circulation like CINC. To assess the relative flux of CINC and MIP-2 from the intra-alveolar compartment into the blood, experiments were performed in rats implanted with vascular catheters in which both chemokines were either injected intratracheally (5 μg) or infused intravenously (20 ng/min) and subsequently measured in plasma or with the cellular elements. Both chemokines appeared in the blood following intratracheal injection, with CINC detected in plasma and cells but MIP-2 only detected in the cellular fraction of blood. Infusion of both chemokines allowed detection of MIP-2 and CINC in plasma and with the cellular elements, which allowed us to calculate clearance for each chemokine and to assess CINC and MIP-2 rates of appearance (Ra) following intratracheal injection. On the basis of plasma and whole blood clearance, CINC Ra was more than sevenfold and fourfold higher, respectively, than MIP-2 Ra. This analysis indicates that differences exist in the rate of flux of CINC and MIP-2 across the epithelial/endothelial barrier of the lung, despite similar molecular size.
Collapse
Affiliation(s)
- John B Zamjahn
- Department of Cardiopulmonary Science, Louisiana State University Health Sciences Center, New Orleans, LA 70112-2262, USA.
| | | | | | | | | | | |
Collapse
|
14
|
Dimerization drives PDGF receptor endocytosis through a C-terminal hydrophobic motif shared by EGF receptor. Exp Cell Res 2010; 316:2237-50. [DOI: 10.1016/j.yexcr.2010.05.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Revised: 05/11/2010] [Accepted: 05/11/2010] [Indexed: 11/30/2022]
|
15
|
Effect of formoterol and budesonide on chemokine release, chemokine receptor expression and chemotaxis in human neutrophils. Pulm Pharmacol Ther 2010; 23:316-23. [PMID: 20307681 DOI: 10.1016/j.pupt.2010.03.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2009] [Revised: 03/09/2010] [Accepted: 03/13/2010] [Indexed: 01/21/2023]
Abstract
Severe persistent asthma and chronic obstructive pulmonary disease (COPD) are associated with neutrophil influx into the airways. It is not clear whether neutrophil chemotaxis is influenced by beta(2)-agonists and glucocorticoids, drugs commonly used in treatment of asthma and COPD. The effect of a long-acting beta(2)-agonist (formoterol), and a glucocorticosteroid (budesonide) on chemokine/cytokine release (CXCL8, CXCL1, IL-6), regulation of chemokine receptors (CXCR1, CXCR2), and migration were assessed in neutrophils from 10 non-allergic, healthy donors. Formoterol enhanced and budesonide inhibited IL-6, CXCL8 and CXCL1 release from LPS-stimulated neutrophils. Formoterol up-regulated both CXCR1 and CXCR2 expression, whereas budesonide up-regulated the expression of CXCR2 only. Despite the effects on chemokine release and drug-induced up-regulation of CXCR1 and CXCR2, no influence on neutrophil chemotaxis could be demonstrated. We conclude that a beta(2)-agonist and a glucocorticoid, commonly used in the treatment of obstructive lung diseases, influence chemokine release and receptor sensitivity but the functional consequences of these findings remain unclear.
Collapse
|
16
|
Xu J, Chen Q, Shi C, Yin Z. Overexpression of CXCR1/CXCR2 on mesenchymal stromal cells may be an effective treatment for acute myocardial infarction. Cytotherapy 2010; 11:990-1. [PMID: 19929462 DOI: 10.3109/14653240903233099] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Bone marrow (BM)-derived mesenchymal stromal cells (MSC) participate in myocardial repair following myocardial infarction (MI). However, their reparative capability is limited, partly because of poor homing abilities. MI is associated with an inflammatory reaction. Interleukin-8 (IL-8) appears to have a fundamental role in regulating neutrophil localization in ischemic tissues through binding CXCR1/CXCR2 receptors, which show major expression on neutrophils. We hypothesize that the application of IL-8 will enhance the recruitment of overexpressing CXCR1/CXCR2 MSC to sites of degenerated tissue of myocardium, decreasing the ischemic region and improving cardiac function.
Collapse
Affiliation(s)
- Jianzhong Xu
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | | | | | | |
Collapse
|
17
|
Keenan TM, Frevert CW, Wu A, Wong V, Folch A. A new method for studying gradient-induced neutrophil desensitization based on an open microfluidic chamber. LAB ON A CHIP 2010; 10:116-22. [PMID: 20024059 PMCID: PMC3786699 DOI: 10.1039/b913494h] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
During inflammation neutrophils rapidly migrate to the site of tissue damage or infection by following complex gradients of bacterial peptides and host-derived chemokines. The efficiency and speed of neutrophil migration is critically dependent upon the ability of neutrophils to sense new gradients and utilize only those that provide the most direct path to the damaged or infected site. Receptor desensitization plays an important role in migration efficiency and is most commonly studied using bath application of chemotactic factor solutions instead of presenting cells with gradients analogous to those they would experience in vivo. Here we describe a new method for examining gradient-induced neutrophil desensitization using a previously-developed open-chamber microfluidic gradient generator.
Collapse
Affiliation(s)
- Thomas M. Keenan
- Stem Cell and Regenerative Medicine Center, 1111 Highland Ave, Madison, WI, USA. Tel: 608-262-7331
| | - Charles W. Frevert
- Department of Medicine, University of Washington, Seattle, WA 98195, USA
- Medical Research Service, Veterans Affairs Medical Center, Seattle, WA 98195, USA
| | - Aileen Wu
- Campus Box 355061, Department of Bioengineering, University of Washington, Seattle, WA 98195. Tel: 206-685-2257
| | - Venus Wong
- Department of Medicine, University of Washington, Seattle, WA 98195, USA
- Medical Research Service, Veterans Affairs Medical Center, Seattle, WA 98195, USA
| | - Albert Folch
- Campus Box 355061, Department of Bioengineering, University of Washington, Seattle, WA 98195. Tel: 206-685-2257
| |
Collapse
|
18
|
Buvanendran A, Mitchell K, Kroin JS, Iadarola MJ. Cytokine gene expression after total hip arthroplasty: surgical site versus circulating neutrophil response. Anesth Analg 2009; 109:959-64. [PMID: 19690273 PMCID: PMC3378993 DOI: 10.1213/ane.0b013e3181ac1746] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND After surgery, cytokines and chemokines are released at the surgical wound site, which can contribute to postoperative pain, local inflammation, and tissue repair. Multiple cell types are present that can release cytokines/chemokines at the wound site and, thus, the exact cellular source of these molecules is unclear. We sought to better understand the contribution of neutrophils to cytokine/chemokine gene expression at the surgical wound site during the initial postsurgery phase of total hip arthroplasty (THA). METHODS Hip drain fluid was collected at 24 h postsurgery from six patients undergoing standardized THA. In addition, venous blood was collected presurgery and 24 h postsurgery. Neutrophils were isolated, total RNA extracted, and a biotinylated cRNA probe generated. The probes were hybridized with a cDNA microarray containing approximately 100 oligonucleotide sequences representing various human cytokines/chemokines or receptor genes. Changes in gene expression seen in the microarray were verified by reverse transcription polymerase chain reaction. RESULTS In the microarray analysis of hip drain neutrophils, interleukin-1 receptor antagonist (IL1RN), interleukin-18 receptor 1 (IL18R1), macrophage migration inhibitory factor (MIF), and macrophage inflammatory protein 3alpha (CCL20) were upregulated, whereas interleukin-8 receptor beta (IL8RB/CXCR2) was consistently downregulated, compared with presurgery blood neutrophils. All of these changes were confirmed by reverse transcription polymerase chain reaction. CONCLUSION There is a distinct cytokine gene expression profile in neutrophils at the THA surgical wound site at 24 h postsurgery when compared with that found in presurgery circulating neutrophils. Understanding these changes may allow us to knowledgeably manipulate neutrophil activity to reduce postoperative pain and inflammation without impairing wound healing.
Collapse
Affiliation(s)
- Asokumar Buvanendran
- Department of Anesthesiology, Rush University Medical Center, Chicago, IL 60612, USA.
| | | | | | | |
Collapse
|
19
|
Irimia D, Balázsi G, Agrawal N, Toner M. Adaptive-control model for neutrophil orientation in the direction of chemical gradients. Biophys J 2009; 96:3897-916. [PMID: 19450463 DOI: 10.1016/j.bpj.2008.12.3967] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2008] [Revised: 12/09/2008] [Accepted: 12/23/2008] [Indexed: 10/20/2022] Open
Abstract
Neutrophils have a remarkable ability to detect the direction of chemoattractant gradients and move directionally in response to bacterial infections and tissue injuries. For their role in health and disease, neutrophils have been extensively studied, and many of the molecules involved in the signaling mechanisms of gradient detection and chemotaxis have been identified. However, the cellular-scale mechanisms of gradient sensing and directional neutrophil migration have been more elusive, and existent models provide only limited insight into these processes. Here, we propose a what we believe is a novel adaptive-control model for the initiation of cell polarization in response to gradients. In this model, the neutrophils first sample the environment by extending protrusions in random directions and subsequently adapt their sensitivity depending on localized, temporal changes in stimulation levels. Our results suggest that microtubules may play a critical role in integrating all the sensing events from the cellular periphery through their redistribution inside the neutrophils, and may also be involved in modulating local signaling. An unexpected finding was that model neutrophils exhibit significant randomness in timing and directionality of activation, comparable to our experimental observations in microfluidic devices. Moreover, their responses are robust against alterations of the rate and amplitude of the signaling reactions, and for a broad range in chemoattractant concentrations and spatial gradients.
Collapse
Affiliation(s)
- Daniel Irimia
- BioMEMS Resource Center, Center for Engineering in Medicine and Surgical Services, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.
| | | | | | | |
Collapse
|
20
|
Roelofs JJ, Teske GJ, Bonta PI, de Vries CJ, Meijers JC, Weening JJ, van der Poll T, Florquin S. Plasminogen activator inhibitor-1 regulates neutrophil influx during acute pyelonephritis. Kidney Int 2009; 75:52-9. [DOI: 10.1038/ki.2008.454] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
21
|
Ex Vivo-Expanded Bone Marrow CD34+Derived Neutrophils Have Limited Bactericidal Ability. Stem Cells 2008; 26:2552-63. [DOI: 10.1634/stemcells.2008-0328] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
22
|
Skov L, Beurskens FJ, Zachariae COC, Reitamo S, Teeling J, Satijn D, Knudsen KM, Boot EPJ, Hudson D, Baadsgaard O, Parren PWHI, van de Winkel JGJ. IL-8 as Antibody Therapeutic Target in Inflammatory Diseases: Reduction of Clinical Activity in Palmoplantar Pustulosis. THE JOURNAL OF IMMUNOLOGY 2008; 181:669-79. [DOI: 10.4049/jimmunol.181.1.669] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
23
|
Abstract
Biomolecule gradients have been shown to play roles in a wide range of biological processes including development, inflammation, wound healing, and cancer metastasis. Elucidation of these phenomena requires the ability to expose cells to biomolecule gradients that are quantifiable, controllable, and mimic those that are present in vivo. Here we review the major biological phenomena in which biomolecule gradients are employed, traditional in vitro gradient-generating methods developed over the past 50 years, and new microfluidic devices for generating gradients. Microfluidic gradient generators offer greater levels of precision, quantitation, and spatiotemporal gradient control than traditional methods, and may greatly enhance our understanding of many biological phenomena. For each method, we outline the salient features, capabilities, and applications.
Collapse
Affiliation(s)
- Thomas M Keenan
- Department of Bioengineering, University of Washington, Washington 98195, USA
| | | |
Collapse
|
24
|
Cleavage of CXCR1 on neutrophils disables bacterial killing in cystic fibrosis lung disease. Nat Med 2007; 13:1423-30. [PMID: 18059279 DOI: 10.1038/nm1690] [Citation(s) in RCA: 237] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2007] [Accepted: 10/31/2007] [Indexed: 01/08/2023]
Abstract
Interleukin-8 (IL-8) activates neutrophils via the chemokine receptors CXCR1 and CXCR2. However, the airways of individuals with cystic fibrosis are frequently colonized by bacterial pathogens, despite the presence of large numbers of neutrophils and IL-8. Here we show that IL-8 promotes bacterial killing by neutrophils through CXCR1 but not CXCR2. Unopposed proteolytic activity in the airways of individuals with cystic fibrosis cleaved CXCR1 on neutrophils and disabled their bacterial-killing capacity. These effects were protease concentration-dependent and also occurred to a lesser extent in individuals with chronic obstructive pulmonary disease. Receptor cleavage induced the release of glycosylated CXCR1 fragments that were capable of stimulating IL-8 production in bronchial epithelial cells via Toll-like receptor 2. In vivo inhibition of proteases by inhalation of alpha1-antitrypsin restored CXCR1 expression and improved bacterial killing in individuals with cystic fibrosis. The cleavage of CXCR1, the functional consequences of its cleavage, and the identification of soluble CXCR1 fragments that behave as bioactive components represent a new pathophysiologic mechanism in cystic fibrosis and other chronic lung diseases.
Collapse
|
25
|
Fiorenza G, Farroni MA, Bogué C, Selenscig D, Lamas DM, Dlugovitzky D. Functional characteristics of neutrophils and mononuclear cells from tuberculosis patients stimulated in vitro with heat killed M. tuberculosis. Arch Med Res 2007; 38:526-33. [PMID: 17560458 DOI: 10.1016/j.arcmed.2007.01.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2006] [Accepted: 01/30/2007] [Indexed: 11/26/2022]
Abstract
BACKGROUND The major protective immune response against intracellular bacteria, such as Mycobacterium tuberculosis, is a cell-mediated immunity involving neutrophils (PMNs) and peripheral mononuclear cells (MCs), contributing to the clearance of this microorganism and the resolution of the infection. This study was addressed to evaluate PMNs and MCs for their bactericidal function. METHODS The sample comprised 14 tuberculosis (TB) inpatients (HIV-), and 10 healthy controls (HCo). Peripheral PMNs and MCs were separated by Ficoll-Hypaque and cultured in RPMI with or without heat-killed Mycobacterium tuberculosis (HK Mtb). Respiratory burst (RB), CD11b, IL-8 and TNFalpha receptor expression were assessed by flow cytometry in cells undergoing stimulation or not. Presence of IL-8 and TNFalpha in cell culture supernatants was determined by ELISA. RESULTS TB patients had a lower RB response than HCo for both cell types (MCs, p <0.05, PMNs, p <0.01) regardless of HK Mtb stimulation. Compared to HCo, PMNs and MCs from TB patients presented a reduced CD11b expression, with the two subject groups showing a decrease in this marker expression following HK. Mtb was added to both cell cultures. Whereas fewer IL-8 and TNFalpha receptors were found when studying MCs and PMNs from TB patients, antigen stimulation significantly raised the expression for both cytokine receptors. Culture supernatants from MCs and PMNs of TB patients contained increased amounts of IL-8 and TNFalpha. CONCLUSIONS The present findings may provide some explanation as to the different roles played by PMNs and MCs in TB immunopathology.
Collapse
Affiliation(s)
- Gladys Fiorenza
- Sección Inmunología, Cátedra de Microbiología. Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Santa Fe, Argentina
| | | | | | | | | | | |
Collapse
|
26
|
MacDermott RP, Sanderson IR, Reinecker HC. The central role of chemokines (chemotactic cytokines) in the immunopathogenesis of ulcerative colitis and Crohn's disease. Inflamm Bowel Dis 2007. [DOI: 10.1002/ibd.3780040110] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
|
27
|
Li WJ, Wang TK. Calcitonin gene-related peptide inhibits interleukin-1beta-induced interleukin-8 secretion in human type II alveolar epithelial cells. Acta Pharmacol Sin 2006; 27:1340-5. [PMID: 17007741 DOI: 10.1111/j.1745-7254.2006.00408.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
AIM Our previous data have shown that type II alveolar epithelial (AEII) cells express neuropeptide calcitonin gene-related peptide (CGRP), and that pro-inflammatory factor interleukin1-beta (IL-1beta) induces CGRP secretion in the A549 human AEII cell line. In the present study, we investigated the effect of endogenous and exogenous CGRP on IL-1beta-induced chemokine interleukin-8 (IL-8) secretion. METHODS We used enzyme-linked immunosorbent assay (ELISA) and RT-PCR to detect IL-8 protein and mRNA levels, respectively. siRNA and the stably transfected cell line were used to knock down and overexpress the CGRP gene, respectively, and chemiluminescence assay was used to detect reactive oxygen species (ROS) formation. RESULTS CGRP-1 receptor antagonist hCGRP8-37 (0.1-1 nmol/L) greatly amplified IL-1beta-induced IL-8 production. The inhibition of CGRP expression by siRNA significantly increased IL-8 secretion upon IL-1beta stimulation. However, cell clones stably transfected with CGRP showed significantly inhibited mRNA and protein levels of IL-8 induced by IL-1beta. CONCLUSION These data imply that AEII cell-derived CGRP suppress IL-1beta-induced IL-8 secretion in an autocrine/paracrine mode. Further investigation showed that CGRP attenuated IL-1beta-aroused ROS formation, which is an early indication of pro-inflammatory factor signaling.
Collapse
Affiliation(s)
- Wen-jing Li
- Department of Physiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing 100083, China
| | | |
Collapse
|
28
|
Sai J, Walker G, Wikswo J, Richmond A. The IL sequence in the LLKIL motif in CXCR2 is required for full ligand-induced activation of Erk, Akt, and chemotaxis in HL60 cells. J Biol Chem 2006; 281:35931-41. [PMID: 16990258 PMCID: PMC2950015 DOI: 10.1074/jbc.m605883200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The chemotaxis of differentiated HL60 cells stably expressing CXCR2 was examined in a microfluidic gradient device where the steepness of the CXCL8 chemokine gradient was varied from 2 pg/ml/mum (0-1 ng/ml over a width of 500 microm) to 50 pg/ml/microm (0-25 ng/ml over 500 microm). The differentiated HL60 cells stably expressing CXCR2 exhibited little chemotaxis in response to a 0-1 ng/ml gradient, but displayed an increasing chemotactic response as the gradient steepness increased from 0 to 5, 0 to 10, and 0 to 25 ng/ml, demonstrating that steepness of gradient is a major determinant of the relative ability of cells to persistently migrate up a chemotactic gradient. When HL60 cells expressed CXCR2 mutated in the C terminus LLKIL motif (IL to AA), ligand-induced internalization of receptors was reduced 50%, whereas cell migration along the gradient of CXCL8 was completely lost. Although both mutant and wild-type receptors could mediate Akt and Erk activation in response to CXCL8, the level of activation of these two kinases was much lower in the cell line expressing the mutant receptors. These data imply that the IL amino acid residues in the LLKIL motif are very important for activation of the signal transduction cascade, which is necessary for cells to sense the chemokine gradient and respond with chemotaxis. Moreover, because mutation of the IL residues in the LLKIL motif resulted in only 50% reduction in receptor internalization, and a 50% reduction in Akt and Erk phosphorylation, but a complete loss of chemotactic response, the data imply that IL amino acid residues in the LLKIL motif are key either for amplification or oscillation of crucial signaling events or for establishment of a threshold for signals required for chemotaxis.
Collapse
Affiliation(s)
- Jiqing Sai
- Department of Veterans Affairs and the Department of Cancer Biology, Vanderbilt University, School of Medicine, Nashville, Tennessee 37232
| | - Glenn Walker
- Vanderbilt Institute for Integrative Biosystems Research and Education (VIIBRE), Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37235
| | - John Wikswo
- VIIBRE, Departments of Biomedical Engineering, Molecular Physiology & Biophysics, and Physics & Astronomy, Vanderbilt University, Nashville, Tennessee 37235
| | - Ann Richmond
- Department of Veterans Affairs and the Department of Cancer Biology, Vanderbilt University, School of Medicine, Nashville, Tennessee 37232
- To whom correspondence should be addressed: Dept. of Cancer Biology, School of Medicine, Vanderbilt University, Nashville, TN 37232. Tel.: 615-343-7777; Fax: 615-936-2911; .
| |
Collapse
|
29
|
Abrahams VM, Visintin I, Aldo PB, Guller S, Romero R, Mor G. A role for TLRs in the regulation of immune cell migration by first trimester trophoblast cells. THE JOURNAL OF IMMUNOLOGY 2006; 175:8096-104. [PMID: 16339547 DOI: 10.4049/jimmunol.175.12.8096] [Citation(s) in RCA: 164] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Normal pregnancy is characterized by the presence of innate immune cells at the maternal-fetal interface. Originally, it was postulated that the presence of these leukocytes was due to an immune response toward paternal Ags expressed by the invading trophoblasts. Instead, we and others postulate that these innate immune cells are necessary for successful implantation and pregnancy. However, elevated leukocyte infiltration may be an underlying cause of pregnancy complications, such as preterm labor or preeclampsia. Furthermore, such conditions have been attributed to an intrauterine infection. Therefore, we hypothesize that first trimester trophoblast cells, upon recognition of microbes through TLRs, may coordinate an immune response by recruiting cells of the innate immune system to the maternal-fetal interface. In this study, we have demonstrated that human first trimester trophoblast cells constitutively secrete the chemokines growth-related oncogene, growth-related oncogene alpha, IL-8, and MCP-1 and are able to recruit monocytes and NK cells, and to a lesser degree, neutrophils. Following the ligation of TLR-3 by the viral ligand, poly(I:C), or TLR-4 by bacterial LPS, trophoblast secretion of chemokines is significantly increased and this in turn results in elevated monocyte and neutrophil chemotaxis. In addition, TLR-3 stimulation also induces trophoblast cells to secrete RANTES. These results suggest a novel mechanism by which first trimester trophoblast cells may differentially modulate the maternal immune system during normal pregnancy and in the presence of an intrauterine infection. Such altered trophoblast cell responses might contribute to the pathogenesis of certain pregnancy complications.
Collapse
Affiliation(s)
- Vikki M Abrahams
- Department of Obstetrics, Gynecology & Reproductive Sciences, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | | | | | | | |
Collapse
|
30
|
Manna SK, Sarkar A, Sreenivasan Y. α-melanocyte-stimulating hormone down-regulates CXC receptors through activation of neutrophil elastase. Eur J Immunol 2006; 36:754-69. [PMID: 16479540 DOI: 10.1002/eji.200535209] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Considering the role of interleukin-8 (IL-8) in a large number of acute and chronic inflammatory diseases, the regulation of IL-8-mediated biological responses is important. Alpha-melanocyte-stimulating hormone (alpha-MSH), a tridecapeptide, inhibits most forms of inflammation by an unknown mechanism. In the present study, we have found that alpha-MSH interacts predominantly with melanocortin-1 receptors and inhibits several IL-8-induced biological responses in macrophages and neutrophils. It down-regulated receptors for IL-8 but not for TNF, IL-4, IL-13 or TNF-related apoptosis-inducing ligand (TRAIL) in neutrophils. It down-regulated CXCR type 1 and 2 but not mRNA levels. alpha-MSH did not inhibit IL-8 binding in purified cell membrane or affinity-purified CXCR. IL-8 or anti-CXCR Ab protected against alpha-MSH-mediated inhibition of IL-8 binding. The level of neutrophil elastase, a specific serine protease, but not cathepsin G or proteinase 3 increased in alpha-MSH-treated cells, and restoration of CXCR by specific neutrophil elastase or serine protease inhibitors indicates the involvement of elastase in alpha-MSH-induced down-regulation of CXCR. These studies suggest that alpha-MSH inhibits IL-8-mediated biological responses by down-regulating CXCR through induction of serine protease and that alpha-MSH acts as a potent immunomodulator in neutrophil-driven inflammatory distress.
Collapse
Affiliation(s)
- Sunil K Manna
- Laboratory of Immunology, Centre for DNA Fingerprinting & Diagnostics, Nacharam, Hyderabad, India.
| | | | | |
Collapse
|
31
|
Pease JE, Williams TJ. The attraction of chemokines as a target for specific anti-inflammatory therapy. Br J Pharmacol 2006; 147 Suppl 1:S212-21. [PMID: 16402107 PMCID: PMC1760746 DOI: 10.1038/sj.bjp.0706475] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Since the identification of the first chemotactic cytokines 20 years ago, the field has mushroomed, with the discovery of approximately 40 ligands, which interact with 20 different cell surface receptors. At the time of writing this review, a PubMed trawl using the word 'chemokine' will recover over 28,000 manuscripts. In this article, we will give a short history of the discovery of chemokines and provide examples of the potential for therapeutic targeting of the chemokine network in inflammatory disease.
Collapse
Affiliation(s)
- James E Pease
- Leukocyte Biology Section, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, South Kensington Campus, London SW7 2AZ
| | - Timothy J Williams
- Leukocyte Biology Section, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, South Kensington Campus, London SW7 2AZ
| |
Collapse
|
32
|
Manna SK, Sreenivasan Y, Sarkar A. Cardiac glycoside inhibits IL-8-induced biological responses by downregulating IL-8 receptors through altering membrane fluidity. J Cell Physiol 2006; 207:195-207. [PMID: 16331685 DOI: 10.1002/jcp.20555] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Considering the potential role of interleukin-8 (IL-8) in inflammation, angiogenesis, tumorogenesis, and metastasis, and the involvement of different cell types especially neutrophils and macrophages in those processes, the regulation of IL-8-mediated biological responses is important. In this report we provide evidences that oleandrin, a cardiac glycoside potentially inhibited IL-8-, formyl peptide (FMLP)-, EGF-, or nerve growth factor (NGF)-, but not IL-1- or TNF-induced NF-kappaB activation in macrophages. Oleandrin inhibited IL-8-, but not TNF-induced NF-kappaB-dependent genes expression. Oleandrin inhibited the binding of IL-8, EGF, or NGF, but not IL-1 or TNF. It decreased almost 79% IL-8 binding without altering affinity towards IL-8 receptors and this inhibition of IL-8 binding was observed in isolated membrane. The IL-8, anti-IL-8Rs antibodies, or protease inhibitors were unable to protect oleandrin-mediated inhibition of IL-8 binding. Phospholipids significantly protected oleandrin-mediated inhibition of IL-8 binding thereby restoring IL-8-induced NF-kappaB activation. Oleandrin altered the membrane fluidity as detected by microviscosity parameter and a decrease in diphenylhexatriene, a lipid binding fluorophore binding in a dose-dependent manner. Overall, our results suggest that oleandrin inhibits IL-8-mediated biological responses in diverse cell types by modulating IL-8Rs through altering membrane fluidity and microviscosity. The study might help to regulate IL-8-mediated biological responses involved in inflammation, metastasis, and neovascularization.
Collapse
Affiliation(s)
- Sunil K Manna
- Laboratory of Immunology, Centre for DNA Fingerprinting & Diagnostics, Nacharam, Hyderabad, India.
| | | | | |
Collapse
|
33
|
Pereira-da-Silva G, Moreno AN, Marques F, Oliver C, Jamur MC, Panunto-Castelo A, Roque-Barreira MC. Neutrophil activation induced by the lectin KM+ involves binding to CXCR2. Biochim Biophys Acta Gen Subj 2006; 1760:86-94. [PMID: 16260092 DOI: 10.1016/j.bbagen.2005.09.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2005] [Revised: 09/16/2005] [Accepted: 09/16/2005] [Indexed: 11/23/2022]
Abstract
The lectin KM+ from Artocarpus integrifolia, also known as artocarpin, induces neutrophil migration by haptotaxis. The interactions of KM+ with both neutrophils and the extracellular matrix depend on the lectin's ability to recognize mannose-containing glycans. In the present study, we characterized the binding of KM+ to human neutrophils and the responses stimulated by this binding. Exposure to KM+ results in cell polarization, formation of a lamellipodium, and induction of deep ruffles on the cell surface. By fluorescence microscopy, we observed that KM+ is distributed homogeneously over the cell surface. KM+/ligand complexes are rapidly internalized, reaching maximum intracellular concentrations at 120 min, and decreasing thereafter. Furthermore, KM+ binding to the surface of human neutrophils is inhibited by the specific sugars, d-mannose or mannotriose. KM+-induced neutrophil migration is inhibited by pertussis toxin as well as by inhibition of CXCR2 activity. These results suggest that the KM+ ligand on the neutrophil surface is a G protein-coupled receptor (GPCR). The results also suggest that neutrophil migration induced by KM+ involves binding to CXCR2.
Collapse
Affiliation(s)
- Gabriela Pereira-da-Silva
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, 14049-900, Ribeirão Preto, SP, Brazil
| | | | | | | | | | | | | |
Collapse
|
34
|
Arndt PG, Young SK, Worthen GS. Regulation of lipopolysaccharide-induced lung inflammation by plasminogen activator Inhibitor-1 through a JNK-mediated pathway. THE JOURNAL OF IMMUNOLOGY 2005; 175:4049-59. [PMID: 16148154 DOI: 10.4049/jimmunol.175.6.4049] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The neutrophil is of undoubted importance in lung inflammation after exposure to LPS. We have shown recently that systemic inhibition of JNK decreased neutrophil recruitment to the lung after exposure to LPS, although the mechanisms underlying this inhibition are incompletely understood. As plasminogen activator inhibitor-1 (PAI-1) accentuates cell migration, with JNK activation recently shown to up-regulate PAI-1 expression, this suggested that systemic JNK inhibition may down-regulate LPS-induced pulmonary neutrophil recruitment through a decrease in PAI-1 expression. We show in this study that exposure of mice to aerosolized LPS increased PAI-1 expression in the lung and alveolar compartment, which was decreased by pretreatment with the JNK inhibitor SP600125. Exogenous, intratracheally administered PAI-1 prevented the inhibition of pulmonary neutrophil recruitment in the setting of systemic JNK inhibition, thereby suggesting a role for PAI-1 in the JNK-mediated pathway regulating LPS-induced neutrophil recruitment. In addition, PAI-1(-/-) mice had a decrease in neutrophil recruitment to the alveolar compartment after exposure to LPS, compared with wild-type controls, further suggesting a role for PAI-1 in LPS-induced lung inflammation. An increase in the intravascular level of KC is a likely mechanism for the inhibition of pulmonary neutrophil recruitment after LPS exposure in the setting of decreased PAI-1 expression, as systemic KC levels after exposure to LPS were increased in PAI-1-deficient mice and in mice pretreated with SP600125, with augmentation of intravascular KC levels inhibiting neutrophil recruitment to the lung after exposure to LPS.
Collapse
Affiliation(s)
- Patrick G Arndt
- Division of Pulmonary and Critical Care Medicine, University of Colorado Health Sciences Center, Denver, CO 80206, USA.
| | | | | |
Collapse
|
35
|
Moreno AN, Pereira-da-Silva G, Oliver C, Jamur MC, Panunto-Castelo A, Roque-Barreira MC. The macrophage-derived lectin, MNCF, activates neutrophil migration through a pertussis toxin-sensitive pathway. J Histochem Cytochem 2005; 53:715-23. [PMID: 15928320 DOI: 10.1369/jhc.4a6562.2005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The macrophage-derived neutrophil chemotactic factor (MNCF) is a D-galactose-binding lectin that induces neutrophil migration in vitro and in vivo. Neutrophil recruitment induced by MNCF is resistant to glucocorticoid treatment and is inhibited by the lectin-specific sugar, D-galactose. In the present study, we characterized the binding of MNCF to neutrophils and the responses triggered by this binding. Exposure to MNCF resulted in cell polarization, formation of a lamellipodium, and deep ruffles on the cell surface. By confocal microscopy, we observed that MNCF was evenly distributed on the cell surface after 30 min of incubation. The labeling intensity progressively diminished with longer incubations. Internalization kinetics showed that MNCF/ligand complexes were rapidly internalized, reaching maximum intracellular concentrations at 120 min and then decreased thereafter. The binding and internalization of MNCF were selectively inhibited by D-galactose. MNCF-induced neutrophil chemotaxis was inhibited by pertussis toxin. This fact strongly suggests that the MNCF-ligand on the neutrophil surface is a G-protein-coupled receptor (GPCR), similar to receptors for well-established neutrophil attractants. Our observations on the ability of MNCF to activate neutrophils are consistent with the increasing evidence for the participation of animal lectins in the innate immune response.
Collapse
Affiliation(s)
- Andréa N Moreno
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, 3900 Ribeirão Preto, SP 14049-900 Brazil
| | | | | | | | | | | |
Collapse
|
36
|
Gessler P, Pretre R, Hohl V, Rousson V, Fischer J, Dahinden C. CXC-chemokine stimulation of neutrophils correlates with plasma levels of myeloperoxidase and lactoferrin and contributes to clinical outcome after pediatric cardiac surgery. Shock 2005; 22:513-20. [PMID: 15545821 DOI: 10.1097/01.shk.0000145939.54838.51] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Several CXC-chemokines, of which interleukin (IL)-8 is the prototype, are potent neutrophil chemotactic and activating cytokines, inducing the secretion of granule proteins and the generation of reactive oxygen intermediates that may cause tissue damage and amplify inflammatory responses. Here, we investigated whether chemokines play a key role in the inflammatory process following cardiac surgery with cardiopulmonary bypass (CPB) in children. We performed an observational prospective clinical study of 40 pediatric patients before, during, and after open heart surgery with CPB. Plasma levels of chemokines, myeloperoxidase (MPO), and lactoferrin were measured by immunoassays. Cell surface receptors were detected by flow cytometry. Plasma levels of IL-8 were increased after CPB, correlating strongly with a reduction of expression of the CXC-chemokine receptors (CXCR) 1 and 2 on neutrophils indicating in vivo activation of neutrophils by IL-8. Other CXC-chemokines with Glu-Leu-Arg motif showed no correlation with CXCR1 or CXCR2 expression. Two components of neutrophilic granules, MPO and lactoferrin, were strongly elevated postoperatively, and the levels of both were correlated with IL-8. Levels of monocyte chemoattractant protein (MCP)-1 were increased postoperatively, correlating with a reduction of CCR2 expression and an increase of CD11b expression on monocytes, suggesting monocyte activation by MCP-1. The early postoperative course was complicated in patients with an increase of these inflammatory parameters. Impaired cardiovascular function correlated with increased levels of IL-8 and activation of neutrophils and was most prominent in patients with a long time on CPB and in those with cyanotic heart lesions. In conclusion, MCP-1 is involved in the regulation of chemotaxis and function of monocytes during and early after the end of CPB. Activation of neutrophils and down-regulation of CXCR1 and CXCR2 were predominantly caused by IL-8. This activation implies release of components of neutrophilic granules and correlates with the need for inotropic support.
Collapse
Affiliation(s)
- Peter Gessler
- University Children's Hospital, Zurich, Switzerland.
| | | | | | | | | | | |
Collapse
|
37
|
Piper M, Salih S, Weinl C, Holt CE, Harris WA. Endocytosis-dependent desensitization and protein synthesis-dependent resensitization in retinal growth cone adaptation. Nat Neurosci 2005; 8:179-86. [PMID: 15643427 PMCID: PMC3682638 DOI: 10.1038/nn1380] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2004] [Accepted: 11/10/2004] [Indexed: 11/09/2022]
Abstract
It has been proposed that growth cones navigating through gradients adapt to baseline concentrations of guidance cues. This adaptation process is poorly understood. Using the collapse assay, we show that adaptation in Xenopus laevis retinal growth cones to the guidance cues Sema3A or netrin-1 involves two processes: a fast, ligand-specific desensitization that occurs within 2 min of exposure and is dependent on endocytosis, and a slower, ligand-specific resensitization, which occurs within 5 min and is dependent upon protein synthesis. These two phases of adaptation allow retinal axons to adjust their range of sensitivity to specific guidance cues.
Collapse
Affiliation(s)
- Michael Piper
- Department of Anatomy, University of Cambridge, Downing Street, Cambridge CB2 3DY, United Kingdom
| | | | | | | | | |
Collapse
|
38
|
Maus UA, Wellmann S, Hampl C, Kuziel WA, Srivastava M, Mack M, Everhart MB, Blackwell TS, Christman JW, Schlöndorff D, Bohle RM, Seeger W, Lohmeyer J. CCR2-positive monocytes recruited to inflamed lungs downregulate local CCL2 chemokine levels. Am J Physiol Lung Cell Mol Physiol 2005; 288:L350-8. [PMID: 15516494 DOI: 10.1152/ajplung.00061.2004] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The CC chemokine ligand-2 (CCL2) and its receptor CCR2 are essential for monocyte trafficking under inflammatory conditions. However, the mechanisms that determine the intensity and duration of alveolar monocyte accumulation in response to CCL2 gradients in inflamed lungs have not been resolved. To determine the potential role of CCR2-expressing monocytes in regulating alveolar CCL2 levels, we compared leukocyte recruitment kinetics and alveolar CCL2 levels in wild-type and CCR2-deficient mice in response to intratracheal LPS challenge. In wild-type mice, LPS elicited a dose- and time-dependent alveolar monocyte accumulation accompanied by low CCL2 levels in bronchoalveolar lavage fluid (BALF). In contrast, LPS-treated CCR2-deficient mice lacked alveolar monocyte accumulation, which was accompanied by relatively high CCL2 levels in BALF. Similarly, wild-type mice that were treated systemically with the blocking anti-CCR2 antibody MC21 completely lacked LPS-induced alveolar monocyte trafficking that was associated with high CCL2 levels in BALF. Intratracheal application of anti-CCR2 antibody MC21 to locally block CCR2 on both resident and recruited cells did not affect LPS-induced alveolar monocyte trafficking but led to significantly increased BALF CCL2 levels. Reciprocally bone marrow-transplanted, LPS-treated wild-type and CCR2-deficient mice showed a strict inverse relationship between alveolar monocyte recruitment and BALF CCL2 levels. In addition, freshly isolated human and mouse monocytes were capable of integrating CCL2 in vitro. LPS-induced alveolar monocyte accumulation is accompanied by monocytic CCR2-dependent consumption of CCL2 levels in the lung. This feedback loop may limit the intensity of monocyte recruitment to inflamed lungs and play a role in the maintenance of homeostasis.
Collapse
Affiliation(s)
- Ulrich A Maus
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, Justus-Liebig-University, Klinikstr. 36, Giessen 35392, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Schmausser B, Josenhans C, Endrich S, Suerbaum S, Sitaru C, Andrulis M, Brändlein S, Rieckmann P, Müller-Hermelink HK, Eck M. Downregulation of CXCR1 and CXCR2 expression on human neutrophils by Helicobacter pylori: a new pathomechanism in H. pylori infection? Infect Immun 2004; 72:6773-9. [PMID: 15557597 PMCID: PMC529101 DOI: 10.1128/iai.72.12.6773-6779.2004] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2004] [Revised: 03/31/2004] [Accepted: 08/12/2004] [Indexed: 12/14/2022] Open
Abstract
In Helicobacter pylori gastritis, neutrophil activation and migration, which play central roles in the pathogenesis of the disease, are regulated by the neutrophil attractant chemokines interleukin 8 (IL-8) and Groalpha, whose secretion is induced by H. pylori. However, the modulation of the corresponding chemokine receptors CXCR1 and CXCR2 on human neutrophils under the influence of H. pylori has not been investigated. Incubation of neutrophils with cag(+) and cag deletion H. pylori strains resulted in a complete downregulation of the CXCR1 and the CXCR2 receptors after 0.5 h, as tested by fluorescence-activated cell sorter analysis, independent of the cag status. Downregulation of CXCR1 and CXCR2 seems to occur via receptor internalization and rapid degradation, as shown by confocal microscopy and immunoblotting. Neither the proinflammatory cytokines IL-8 and tumor necrosis factor alpha produced by the neutrophils themselves nor H. pylori lipopolysaccharide, which are the known regulators of these two chemokine receptors, was responsible for the downregulation. Reverse transcription-PCR analysis showed that CXCR1 and CXCR2 mRNAs of neutrophils were reduced at a later time than the CXCR1 and CXCR2 proteins. Moreover, cag(+) H. pylori strains induced significantly stronger downregulation of CXCR1 and CXCR2 mRNAs than the cag deletion mutant. Therefore, receptor protein and mRNA downregulation seem to be mediated by two independent mechanisms. Data obtained by immunohistochemistry suggested that downmodulation of CXCR1 and CXCR2 on neutrophils may also occur in vivo in the human stomach during H. pylori infection. Downregulation of CXCR1 and CXCR2 expression on neutrophils in H. pylori infection by H. pylori itself may represent a new mechanism of modulating neutrophil migration and activation in the gastric mucosa.
Collapse
Affiliation(s)
- Bernd Schmausser
- Institut für Pathologie, Universität Würzburg, Josef-Schneider-Strasse 2, 97080 Würzburg, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Lund BT, Ashikian N, Ta HQ, Chakryan Y, Manoukian K, Groshen S, Gilmore W, Cheema GS, Stohl W, Burnett ME, Ko D, Kachuck NJ, Weiner LP. Increased CXCL8 (IL-8) expression in Multiple Sclerosis. J Neuroimmunol 2004; 155:161-71. [PMID: 15342208 DOI: 10.1016/j.jneuroim.2004.06.008] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2004] [Revised: 06/01/2004] [Accepted: 06/18/2004] [Indexed: 11/22/2022]
Abstract
Multiple Sclerosis (MS) is a chronic inflammatory disease of the CNS which is characterized by large mononuclear cell infiltration and significant demyelination. CXCL8 is a chemo-attractant for both neutrophils and monocytes and triggers their firm adhesion to endothelium. In this study, we demonstrate that serum CXCL8 and CXCL8 secretion from PBMCs are significantly higher in untreated MS patients compared to controls and are significantly reduced in MS patients receiving interferon-beta1a therapy. We suggest that CXCL8 may serve as a marker of monocyte activity in MS and may play a role in monocyte recruitment to the CNS.
Collapse
Affiliation(s)
- Brett T Lund
- Department of Neurology, Keck School of Medicine, University of Southern California, MCH-142, Los Angeles, California 90033, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Sai J, Fan GH, Wang D, Richmond A. The C-terminal domain LLKIL motif of CXCR2 is required for ligand-mediated polarization of early signals during chemotaxis. J Cell Sci 2004; 117:5489-96. [PMID: 15479720 PMCID: PMC2668248 DOI: 10.1242/jcs.01398] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
HEK293 cells expressing wild-type CXCR2 recruit PH-Akt-GFP to the leading edge of the cell in response to chemokine. However, in cells expressing mutant CXCR2 defective in AP-2 and HIP binding, i.e. with a mutation in the LLKIL motif, PH-Akt-GFP does not localize to the leading edge in response to ligand. Inhibition of Akt/PKB by transfection of HEK 293 cells with a dominant negative (kinase defective) Akt/PKB inhibits CXCR2 mediated chemotaxis. FRET analysis reveals that membrane-bound activated Cdc42 and Rac1 localize to the leading edge of cells expressing wild-type CXCR2 receptor, but not in cells expressing mutant CXCR2. By contrast, when the activation of Cdc42 and Rac1 are monitored by affinity precipitation assay, cells expressing either wild-type or LLKIL mutant receptors show equivalent ligand induction. Altogether, these data suggest that restricted localized activation of Akt/PKB, Rac1 and Cdc42 is crucial for chemotactic responses and that events mediated by the LLKIL motif are crucial for chemotaxis.
Collapse
|
42
|
Rose JJ, Foley JF, Murphy PM, Venkatesan S. On the mechanism and significance of ligand-induced internalization of human neutrophil chemokine receptors CXCR1 and CXCR2. J Biol Chem 2004; 279:24372-86. [PMID: 15028716 DOI: 10.1074/jbc.m401364200] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
It is well established that leukocyte chemotactic receptors, a subset of G protein-coupled receptors, undergo endocytosis after stimulation by ligand. However, the significance of this phenomenon to cell motility and other important leukocyte functions induced by chemoattractants has not been clearly defined. Here we show that in primary human neutrophils, the threshold levels of agonist required for endocytosis of the chemotactic receptors CXCR1 and CXCR2 were approximately 10-fold or higher than those needed for maximal chemotactic and calcium flux responses. Moreover, when stimulated by agonists at concentrations that are high enough for chemotaxis but too low for receptor endocytosis, neutrophil CXCR1 and CXCR2 could be reactivated in response to repeated application of the same agonist. Both receptors were excluded from Triton X-100-insoluble lipid rafts, and at high agonist concentrations were rapidly endocytosed by a clathrin/rab5/dynamin-dependent pathway. These data support the conclusion that neutrophil migration in response to CXCR1 or CXCR2 agonists is not dependent on endocytosis of CXCR1 or CXCR2. Rather than being integral to the process of cell migration, receptor endocytosis may be a terminal stop signal when cells reach the focus of inflammation where the chemoattractant concentrations are the highest.
Collapse
Affiliation(s)
- Jeremy J Rose
- Laboratory of Molecular Microbiology, NIAID, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
43
|
Lund T, Østerud B. The effect of TNF-α, PMA, and LPS on plasma and cell-associated IL-8 in human leukocytes. Thromb Res 2004; 113:75-83. [PMID: 15081568 DOI: 10.1016/j.thromres.2004.02.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2003] [Revised: 01/28/2004] [Accepted: 02/07/2004] [Indexed: 01/10/2023]
Abstract
INTRODUCTION/AIM This study was performed to examine the proficiency of mononuclear cells (MNC) and polymorphonuclear cells (PMN) in a whole blood model to expressing interleukin-8 (IL-8) in response to various stimuli. METHODS Isolated cells that had been recombined with heparinized plasma were incubated with lipopolysaccharide (LPS), phorbol myristate acetate (PMA) and tumor necrosis factor (TNF)-alpha. RESULTS IL-8 release by MNC was most potently induced by LPS, reaching significant levels after 2-h incubation in the presence of 0.2 ng/ml LPS. In contrast, 5.0 ng/ml LPS was required for PMN to release significant amounts of the cytokine (P<0.001). When PMN and MNC were coincubated (MNC/PMN), LPS-induced IL-8 release was reduced compared to the release from MNC alone, regardless of the concentration of LPS used. IL-8 release by PMN was much more strongly induced by TNF-alpha, increasing by 1050% in the presence of 10 ng/ml TNF-alpha (P<0.005), whereas MNC or MNC/PMN subjected to this stimulus alone did not significantly enhance their IL-8 release. PMA had no effect on IL-8 release from either cell type. Since a high portion of IL-8 in blood is associated with cells, the IL-8 levels in isolated and lysed cell suspensions were also quantified. Thus, a considerably higher level of IL-8 was found in freshly isolated PMN (0.58+/-0.09 ng/ml) than in MNC (0.010+/-0.007 ng/ml). PMN remained the main source for cell-associated IL-8 after 2-h incubation in the absence of any added stimuli, harbouring a relatively high level of the cytokine (3.37+/-1.38 ng/ml), which was significantly enhanced in the presence of TNF-alpha (8.99+/-1.46 ng/ml, P<0.001). CONCLUSION This study shows that LPS is an effective inducer of IL-8 in MNC, whereas TNF-alpha is a potent agonist for IL-8 release from PMN. The main portion of cell-associated IL-8 is present in PMN when the cells are stimulated in their normal environment of plasma.
Collapse
Affiliation(s)
- Trine Lund
- Department of Biochemistry, Institute of Medical Biology, University of Tromsø, 9037 Tromsø, Norway.
| | | |
Collapse
|
44
|
Gessler P, Pfenninger J, Pfammatter JP, Carrel T, Baenziger O, Dahinden C. Plasma levels of interleukin-8 and expression of interleukin-8 receptors on circulating neutrophils and monocytes after cardiopulmonary bypass in children. J Thorac Cardiovasc Surg 2003; 126:718-25. [PMID: 14502144 DOI: 10.1016/s0022-5223(03)00685-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
OBJECTIVE Cardiopulmonary bypass induces a systemic inflammatory response that causes substantial clinical morbidity. This study sought to determine cellular and humoral variables of inflammation. We hypothesized that chemokines are a major source of stimulation of neutrophils and monocytes in pediatric cardiac surgery. METHODS We performed an observational prospective clinical study of 20 pediatric patients before and after cardiopulmonary bypass. Plasma levels of interleukin-6, interleukin-8, myeloperoxidase, and nitric oxide were measured by immunoassays. Expression of interleukin-8 receptors (CXCR1, CXCR2) and CD14 of circulating neutrophils and monocytes was assessed by flow cytometry. Clinical evaluations included length of inotropic support and mechanical ventilation as well as oxygenation. RESULTS Two hours after cardiopulmonary bypass, plasma levels of interleukin-6 and interleukin-8 were strongly increased (P =.0001 and P =.0032, respectively). Interleukin-6 and interleukin-8 concentrations correlated with the length of inotropic support, as well as with the length of mechanical ventilation (r >.70, P </=.0006), and were inversely related to the ratio of arterial oxygen tension to fraction of inspired oxygen. There was a strong association between the postoperative levels of interleukin-6 and nitric oxide, as well as between interleukin-6 and CD14 expression on monocytes (r >.62, P </=.0031). The expression of CXCR2 but not CXCR1 on neutrophils and monocytes correlated negatively with the levels of interleukin-8 and myeloperoxidase. CONCLUSIONS After cardiopulmonary bypass, impairment of cardiovascular and respiratory function correlated with the levels of interleukin-6 and interleukin-8 as mediators of an inflammatory response. The negative correlation of CXCR2 expression with interleukin-8 and myeloperoxidase indicates that myeloid cells were stimulated by CXC chemokines with Glu-Leu-Arg (ELR) motif and thereby contributed to tissue damage, leading to impairment of cardiovascular and respiratory function.
Collapse
Affiliation(s)
- Peter Gessler
- University Children's Hospital, Steinweisstrasse 75, CH 8032 Zurich, Switzerland.
| | | | | | | | | | | |
Collapse
|
45
|
Marshall LJ, Ramdin LSP, Brooks T, DPhil PC, Shute JK. Plasminogen activator inhibitor-1 supports IL-8-mediated neutrophil transendothelial migration by inhibition of the constitutive shedding of endothelial IL-8/heparan sulfate/syndecan-1 complexes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 171:2057-65. [PMID: 12902511 DOI: 10.4049/jimmunol.171.4.2057] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The endothelium is the primary barrier to leukocyte recruitment at sites of inflammation. Neutrophil recruitment is directed by transendothelial gradients of IL-8 that, in vivo, are bound to the endothelial cell surface. We have investigated the identity and function of the binding site(s) in an in vitro model of neutrophil transendothelial migration. In endothelial culture supernatants, IL-8 was detected in a trimolecular complex with heparan sulfate and syndecan-1. Constitutive shedding of IL-8 in this form was increased in the presence of a neutralizing Ab to plasminogen activator inhibitor-1 (PAI-1), indicating a role for endothelial plasminogen activator in the shedding of IL-8. Increased shedding of IL-8/heparan sulfate/syndecan-1 complexes was accompanied by inhibition of neutrophil transendothelial migration, and aprotinin, a potent plasmin inhibitor, reversed this inhibition. Platelets, added as an exogenous source of PAI-1, had no effect on shedding of the complexes or neutrophil migration. Our results indicate that IL-8 is immobilized on the endothelial cell surface through binding to syndecan-1 ectodomains, and that plasmin, generated by endothelial plasminogen activator, induces the shedding of this form of IL-8. PAI-1 appears to stabilize the chemoattractant form of IL-8 at the cell surface and may represent a therapeutic target for novel anti-inflammatory strategies.
Collapse
Affiliation(s)
- Lindsay J Marshall
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, Hampshire, United Kingdom
| | | | | | | | | |
Collapse
|
46
|
Ramjeesingh R, Leung R, Siu CH. Interleukin-8 secreted by endothelial cells induces chemotaxis of melanoma cells through the chemokine receptor CXCR1. FASEB J 2003; 17:1292-4. [PMID: 12738812 DOI: 10.1096/fj.02-0560fje] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
There is increasing evidence that both cell adhesion molecules and soluble factors are involved in tumor metastasis. We have found that endothelial cells secrete chemoattractants that can induce melanoma cell chemotaxis. Protein separation on an ion-exchange column shows the association of IL-8 with fractions that contain the chemoattractant activity. This activity is completely lost from the conditioned medium after immunoprecipitation with anti-IL-8 antibodies, indicating that IL-8 is the major melanoma chemoattractant secreted by endothelial cells. IL-877, the predominant endothelial IL-8 isoform that contains 77 amino acids, is found to be twice as potent as the more common 72-amino acid isoform IL-872. Antibody inhibition studies indicate that the chemotactic response of melanoma cells is mediated by the CXC-chemokine receptor CXCR1 and not by the more promiscuous CXCR2. When stimulated by tumor necrosis factor alpha, the nonresponsive WM35 melanoma cells synthesize a higher level of CXCR1 and become chemotactic toward interleukin (IL)-8. Pretreatment of cells with pertussis toxin nullifies their chemotactic response, suggesting the involvement of G proteins. Antibodies against either IL-8 or CXCR1 inhibit melanoma transendothelial migration in a coculture assay by 30%. These results are consistent with a role for IL-8-induced chemotaxis in the transendothelial migration of melanoma cells.
Collapse
Affiliation(s)
- Ravi Ramjeesingh
- Banting and Best Department of Medical Research and Department of Biochemistry, University of Toronto, Toronto, Ontario M5G 1L6, Canada
| | | | | |
Collapse
|
47
|
Bourke E, Cassetti A, Villa A, Fadlon E, Colotta F, Mantovani A. IL-1 beta scavenging by the type II IL-1 decoy receptor in human neutrophils. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:5999-6005. [PMID: 12794127 DOI: 10.4049/jimmunol.170.12.5999] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
IL-1 elicits its cellular effects by binding a heterodimeric receptor consisting of IL-1RI and the accessory protein, IL-1RAcPr. In addition, it binds to IL-1RII, which lacking signaling function has been ascribed a decoy role. The fate of the ligand following interaction with the decoy receptor was examined in human polymorphonuclear cells (PMN), which express predominantly (>90%) IL-1RII. Incubation of PMN with IL-1beta results in a rapid decrease in cell surface-associated ligand accompanied by a concomitant increase in internalized IL-1 with 50-60% of IL-1beta located intracellularly within 1 h at 37 degrees C. The use of blocking Abs revealed that IL-1 internalization is mediated exclusively by the decoy receptor. The results of inhibitor analysis demonstrate that internalization requires ATP synthesis and involves clathrin-mediated endocytosis. Following removal of the ligand, the receptor was rapidly re-expressed on the cell surface. Cyclohexamide, a protein synthesis inhibitor, had no effect upon the process, suggesting that the re-expressed receptor was recycled. In addition, human keratinocytes stably transfected with IL-1RII (HaCAT 811) also internalized the IL-1RII with 43% cell surface receptor internalized after 90 min. Immunofluorescence microscopy revealed colocalization of the internalized receptor with wheat germ agglutinin-labeled internalized glycoproteins and early endosome Ag-1, a protein associated with the early endosome compartments, indicative of cellular uptake of IL-1RII by endocytosis. In contrast, little or no internalization was observed in other cells of immune origin. These results suggest that the decoy receptor IL-1RII can act as a scavenger of IL-1, representing a novel autoregulatory mechanism of the IL-1 system.
Collapse
Affiliation(s)
- Emer Bourke
- Istituto Ricerche Farmacologiche Mario Negri, Milan, Italy
| | | | | | | | | | | |
Collapse
|
48
|
Mukaida N. Pathophysiological roles of interleukin-8/CXCL8 in pulmonary diseases. Am J Physiol Lung Cell Mol Physiol 2003; 284:L566-77. [PMID: 12618418 DOI: 10.1152/ajplung.00233.2002] [Citation(s) in RCA: 308] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Fifteen years have passed since the first description of interleukin (IL)-8/CXCL8 as a potent neutrophil chemotactic factor. Accumulating evidence has demonstrated that various types of cells can produce a large amount of IL-8/CXCL8 in response to a wide variety of stimuli, including proinflammatory cytokines, microbes and their products, and environmental changes such as hypoxia, reperfusion, and hyperoxia. Numerous observations have established IL-8/CXCL8 as a key mediator in neutrophil-mediated acute inflammation due to its potent actions on neutrophils. However, several lines of evidence indicate that IL-8/CXCL8 has a wide range of actions on various types of cells, including lymphocytes, monocytes, endothelial cells, and fibroblasts, besides neutrophils. The discovery of these biological functions suggests that IL-8/CXCL8 has crucial roles in various pathological conditions such as chronic inflammation and cancer. Here, an overview of its protein structure, mechanisms of production, and receptor system will be discussed as well as the pathophysiological roles of IL-8/CXCL8 in various types of lung pathologies.
Collapse
Affiliation(s)
- Naofumi Mukaida
- Division of Molecular Bioregulation, Cancer Research Institute, Kanazawa University, 13-1 Takara-machi, Japan.
| |
Collapse
|
49
|
Kobayashi SD, Voyich JM, Braughton KR, DeLeo FR. Down-regulation of proinflammatory capacity during apoptosis in human polymorphonuclear leukocytes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:3357-68. [PMID: 12626596 DOI: 10.4049/jimmunol.170.6.3357] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Polymorphonuclear leukocytes (PMNs) are essential to innate immunity in humans and contribute significantly to inflammation. Although progress has been made, the molecular basis for termination of inflammation in humans is incompletely characterized. We used human oligonucleotide microarrays to identify genes encoding inflammatory mediators that were differentially regulated during the induction of apoptosis. One hundred thirty-three of 212 differentially expressed genes encoding proinflammatory factors, signal transduction mediators, adhesion molecules, and other proteins that facilitate the inflammatory response were down-regulated during the induction of apoptosis following PMN phagocytosis. Among these, 42 genes encoded proteins critical to the inflammatory response, including receptors for IL-8 beta, IL-10 alpha, IL-13 alpha 1, IL-15 alpha, IL-17, IL-18, C1q, low-density lipoprotein, IgG Fc (CD32), and formyl peptide, Toll-like receptor 6, platelet/endothelial cell adhesion molecule-1 (CD31), P-selectin (CD62), IL-1 alpha, IL-16, and granulocyte chemoattractant protein-2 were down-regulated. Many of these genes were similarly down-regulated during Fas-mediated or camptothecin-induced apoptosis. We used flow cytometry to confirm that IL-8R beta (CXCR2) and IL-1 alpha were significantly down-regulated during PMN apoptosis. We also discovered that 23 genes encoding phosphoinositide and calcium-mediated signal transduction components, which comprise complex pathways essential to the inflammatory response of host cells, were differentially regulated during PMN apoptosis. Importantly, our data demonstrate that PMNs down-regulate proinflammatory capacity at the level of gene expression during induction of apoptosis. These findings provide new insight into the molecular events that resolve inflammation following PMN activation in humans.
Collapse
Affiliation(s)
- Scott D Kobayashi
- Laboratory of Human Bacterial Pathogenesis, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | | | | | | |
Collapse
|
50
|
Matityahu E, Feniger-Barish R, Meshel T, Zaslaver A, Ben-Baruch A. Intracellular trafficking of human CXCR1 and CXCR2: regulation by receptor domains and actin-related kinases. Eur J Immunol 2002; 32:3525-35. [PMID: 12442335 DOI: 10.1002/1521-4141(200212)32:12<3525::aid-immu3525>3.0.co;2-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In this study we investigated the regulation of CXCR1 and CXCR2 intracellular trafficking. First, we produced a chimeric CXCR2 receptor that contained the internalization motifs of both CXCR2 and CXCR1 (CXCR2: LLKIL sequence; CXCR1: C-terminal phosphorylation sites). Elevated levels of internalization were induced by different ELR-expressing CXC chemokines on the chimeric receptor, as compared to wild-type CXCR2. Analysis of inter-relationships between CXCR1 and CXCR2 during internalization indicated that the exposure of cells that expressed both CXCR1 and CXCR2 to CXCL8 or CXCL6 resulted in decreased levels of CXCR1 internalization as compared to those in cells that expressed only CXCR1. To characterize the role of actin-related components in CXCR1 and CXCR2 trafficking, wortmannin, a potent inhibitor of phosphatidylinositol kinases, was used. The presence of wortmannin during receptor recycling inhibited CXCR1 and CXCR2 re-expression following CXCL8-induced internalization, and resulted in a marked disruption of the proper organization of actin filaments. The kinase-dependent recycling process required CXCR2 C-terminal phosphorylation sites. Our results suggest that actin-related kinases are required for the proper functionality of actin filaments, which are the instrumental factors needed for receptor recycling. In all, CXCR1 and CXCR2 internalization and recycling are tightly regulated by receptor domains and by actin-related kinases.
Collapse
Affiliation(s)
- Efrat Matityahu
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | | | | | | | | |
Collapse
|