1
|
Fruergaard MU, Dach I, Andersen JL, Ozol M, Shasavar A, Quistgaard EM, Poulsen H, Fedosova NU, Nissen P. The Na,K-ATPase in complex with beryllium fluoride mimics an ATPase phosphorylated state. J Biol Chem 2022; 298:102317. [PMID: 35926706 PMCID: PMC9485054 DOI: 10.1016/j.jbc.2022.102317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 07/23/2022] [Accepted: 07/25/2022] [Indexed: 10/29/2022] Open
Abstract
The Na+,K+-ATPase generates electrochemical gradients of Na+ and K+ across the plasma membrane via a functional cycle that includes various phosphoenzyme intermediates. However, the structure and function of these intermediates and how metal fluorides mimick them require further investigation. Here, we describe a 4.0 Å resolution crystal structure and functional properties of the pig kidney Na+,K+-ATPase stabilized by the inhibitor beryllium fluoride (denoted E2-BeFx). E2-BeFx is expected to mimic properties of the E2P phosphoenzyme, yet with unknown characteristics of ion and ligand binding. The structure resembles the E2P form obtained by phosphorylation from inorganic phosphate (Pi) and stabilized by cardiotonic steroids, including a low-affinity Mg2+ site near ion binding site II. Our anomalous Fourier analysis of the crystals soaked in Rb+ (a K+ congener) followed by a low-resolution rigid-body refinement (6.9-7.5 Å) revealed pre-occlusion transitions leading to activation of the dephosphorylation reaction. We show that the Mg2+ location indicates a site of initial K+ recognition and acceptance upon binding to the outward-open E2P state after Na+ release. Furthermore, using binding and activity studies, we find that the BeFx-inhibited enzyme is also able to bind ADP/ATP and Na+. These results relate the E2-BeFx complex to a transient K+- and ADP-sensitive E*P intermediate of the functional cycle of the Na+,K+-ATPase, prior to E2P.
Collapse
Affiliation(s)
- Marlene U Fruergaard
- DANDRITE - Nordic EMBL Partnership for Molecular Medicine, Aarhus University, Dept. Molecular Biology and Genetics, DK - 8000 Aarhus C, Denmark
| | - Ingrid Dach
- DANDRITE - Nordic EMBL Partnership for Molecular Medicine, Aarhus University, Dept. Molecular Biology and Genetics, DK - 8000 Aarhus C, Denmark
| | - Jacob L Andersen
- DANDRITE - Nordic EMBL Partnership for Molecular Medicine, Aarhus University, Dept. Molecular Biology and Genetics, DK - 8000 Aarhus C, Denmark; Department of Biomedicine, Aarhus University, DK - 8000 Aarhus C, Denmark
| | - Mette Ozol
- DANDRITE - Nordic EMBL Partnership for Molecular Medicine, Aarhus University, Dept. Molecular Biology and Genetics, DK - 8000 Aarhus C, Denmark
| | - Azadeh Shasavar
- DANDRITE - Nordic EMBL Partnership for Molecular Medicine, Aarhus University, Dept. Molecular Biology and Genetics, DK - 8000 Aarhus C, Denmark
| | - Esben M Quistgaard
- DANDRITE - Nordic EMBL Partnership for Molecular Medicine, Aarhus University, Dept. Molecular Biology and Genetics, DK - 8000 Aarhus C, Denmark
| | - Hanne Poulsen
- DANDRITE - Nordic EMBL Partnership for Molecular Medicine, Aarhus University, Dept. Molecular Biology and Genetics, DK - 8000 Aarhus C, Denmark
| | - Natalya U Fedosova
- Department of Biomedicine, Aarhus University, DK - 8000 Aarhus C, Denmark.
| | - Poul Nissen
- DANDRITE - Nordic EMBL Partnership for Molecular Medicine, Aarhus University, Dept. Molecular Biology and Genetics, DK - 8000 Aarhus C, Denmark.
| |
Collapse
|
2
|
Cryoelectron microscopy of Na +,K +-ATPase in the two E2P states with and without cardiotonic steroids. Proc Natl Acad Sci U S A 2022; 119:e2123226119. [PMID: 35380894 PMCID: PMC9169807 DOI: 10.1073/pnas.2123226119] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The E2P state of Na+,K+-ATPase, in which the ATPase is phosphorylated and of low affinity to Na+ with the extracellular gate opened, shows different biochemical properties depending on whether the phosphate is transferred from ATP in the forward reaction or from inorganic phosphate (Pi) in the backward reaction. We present here cryoelectron microscopy structures of Na+,K+-ATPase in the two E2P states, explaining their different biochemical properties established a half century ago. The new electron microscopy maps show previously unseen structural features, including unexpected binding modes of cardiotonic steroids, specific and medically important inhibitors of the ATPase, and stabilization by ATP of the E2P state. Cryoelectron microscopy (cryo-EM) was applied to Na+,K+-ATPase (NKA) to determine the structures of two E2P states, one (E2PATP) formed by ATP and Mg2+ in the forward reaction, and the other (E2PPi) formed by inorganic phosphate (Pi) and Mg2+ in the backward reaction, with and without ouabain or istaroxime, representatives of classical and new-generation cardiotonic steroids (CTSs). These two E2P states exhibit different biochemical properties. In particular, K+-sensitive acceleration of the dephosphorylation reaction is not observed with E2PPi, attributed to the presence of a Mg2+ ion in the transmembrane cation binding sites. The cryo-EM structures of NKA demonstrate that the two E2P structures are nearly identical but Mg2+ in the transmembrane binding cavity is identified only in E2PPi, corroborating the idea that it should be denoted as E2PPi·Mg2+. We can now explain why the absence of transmembrane Mg2+ in E2PATP confers the K+ sensitivity in dephosphorylation. In addition, we show that ATP bridges the actuator (A) and nucleotide binding (N) domains, stabilizing the E2PATP state; CTS binding causes hardly any changes in the structure of NKA, both in E2PATP and E2PPi·Mg2+, indicating that the binding mechanism is conformational selection; and istaroxime binds to NKA, extending its aminoalkyloxime group deep into the cation binding site. This orientation is upside down compared to that of classical CTSs with respect to the steroid ring. Notably, mobile parts of NKA are resolved substantially better in the electron microscopy (EM) maps than in previous X-ray structures, including sugars sticking out from the β-subunit and many phospholipid molecules.
Collapse
|
3
|
Tan LR, Cao YQ, Li JW, Xia PF, Wang SG. Transcriptomics and metabolomics of engineered Synechococcus elongatus during photomixotrophic growth. Microb Cell Fact 2022; 21:31. [PMID: 35248031 PMCID: PMC8897908 DOI: 10.1186/s12934-022-01760-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 02/22/2022] [Indexed: 12/18/2022] Open
Abstract
Background Converting carbon dioxide (CO2) into value-added chemicals using engineered cyanobacteria is a promising strategy to tackle the global warming and energy shortage issues. However, most cyanobacteria are autotrophic and use CO2 as a sole carbon source, which makes it hard to compete with heterotrophic hosts in either growth or productivity. One strategy to overcome this bottleneck is to introduce sugar utilization pathways to enable photomixotrophic growth with CO2 and sugar (e.g., glucose and xylose). Advances in engineering mixotrophic cyanobacteria have been obtained, while a systematic interrogation of these engineered strains is missing. This work aimed to fill the gap at omics level. Results We first constructed two engineered Synechococcus elongatus YQ2-gal and YQ3-xyl capable of utilizing glucose and xylose, respectively. To investigate the metabolic mechanism, transcriptomic and metabolomic analysis were then performed in the engineered photomixotrophic strains YQ2-gal and YQ3-xyl. Transcriptome and metabolome of wild-type S. elongatus were set as baselines. Increased abundance of metabolites in glycolysis or pentose phosphate pathway indicated that efficient sugar utilization significantly enhanced carbon flux in S. elongatus as expected. However, carbon flux was redirected in strain YQ2-gal as more flowed into fatty acids biosynthesis but less into amino acids. In strain YQ3-xyl, more carbon flux was directed into synthesis of sucrose, glucosamine and acetaldehyde, while less into fatty acids and amino acids. Moreover, photosynthesis and bicarbonate transport could be affected by upregulated genes, while nitrogen transport and assimilation were regulated by less transcript abundance of related genes in strain YQ3-xyl with utilization of xylose. Conclusions Our work identified metabolic mechanism in engineered S. elongatus during photomixotrophic growth, where regulations of fatty acids metabolism, photosynthesis, bicarbonate transport, nitrogen assimilation and transport are dependent on different sugar utilization. Since photomixotrophic cyanobacteria is regarded as a promising cell factory for bioproduction, this comprehensive understanding of metabolic mechanism of engineered S. elongatus during photomixotrophic growth would shed light on the engineering of more efficient and controllable bioproduction systems based on this potential chassis. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-022-01760-1.
Collapse
|
4
|
Fedosova NU, Habeck M, Nissen P. Structure and Function of Na,K-ATPase-The Sodium-Potassium Pump. Compr Physiol 2021; 12:2659-2679. [PMID: 34964112 DOI: 10.1002/cphy.c200018] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Na,K-ATPase is an ubiquitous enzyme actively transporting Na-ions out of the cell in exchange for K-ions, thereby maintaining their concentration gradients across the cell membrane. Since its discovery more than six decades ago the Na-pump has been studied extensively and its vital physiological role in essentially every cell has been established. This article aims at providing an overview of well-established biochemical properties with a focus on Na,K-ATPase isoforms, its transport mechanism and principle conformations, inhibitors, and insights gained from crystal structures. © 2021 American Physiological Society. Compr Physiol 11:1-21, 2021.
Collapse
Affiliation(s)
| | - Michael Habeck
- Department of Molecular Biology and Genetics, Danish Research Institute of Translational Neuroscience - DANDRITE, Nordic EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus, Denmark
| | - Poul Nissen
- Department of Molecular Biology and Genetics, Danish Research Institute of Translational Neuroscience - DANDRITE, Nordic EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
5
|
Abstract
The sodium pump (Na+, K+-ATPase, NKA) is vital for animal cells, as it actively maintains Na+ and K+ electrochemical gradients across the cell membrane. It is a target of cardiotonic steroids (CTSs) such as ouabain and digoxin. As CTSs are almost unique strong inhibitors specific to NKA, a wide range of derivatives has been developed for potential therapeutic use. Several crystal structures have been published for NKA-CTS complexes, but they fail to explain the largely different inhibitory properties of the various CTSs. For instance, although CTSs are thought to inhibit ATPase activity by binding to NKA in the E2P state, we do not know if large conformational changes accompany binding, as no crystal structure is available for the E2P state free of CTS. Here, we describe crystal structures of the BeF3 - complex of NKA representing the E2P ground state and then eight crystal structures of seven CTSs, including rostafuroxin and istaroxime, two new members under clinical trials, in complex with NKA in the E2P state. The conformations of NKA are virtually identical in all complexes with and without CTSs, showing that CTSs bind to a preformed cavity in NKA. By comparing the inhibitory potency of the CTSs measured under four different conditions, we elucidate how different structural features of the CTSs result in different inhibitory properties. The crystal structures also explain K+-antagonism and suggest a route to isoform specific CTSs.
Collapse
|
6
|
Faraj SE, Centeno M, Rossi RC, Montes MR. A kinetic comparison between E2P and the E2P-like state induced by a beryllium fluoride complex in the Na,K-ATPase. Interactions with Rb+. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:355-365. [DOI: 10.1016/j.bbamem.2018.10.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 10/24/2018] [Accepted: 10/30/2018] [Indexed: 10/27/2022]
|
7
|
The Inner Workings of Proton Slippage through the Sodium Pump. Biophys J 2016; 111:2342-2344. [PMID: 27926835 DOI: 10.1016/j.bpj.2016.10.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 10/20/2016] [Indexed: 11/21/2022] Open
|
8
|
Abstract
When the Na,K-ATPase pumps at each turnover two K(+) ions into the cytoplasm, this translocation consists of several reaction steps. First, the ions diffuse consecutively from the extracellular phase through an access pathway to the binding sites where they are coordinated. In the next step, the enzyme is dephosphorylated and the ions are occluded inside the membrane domain. The subsequent transition to the E1 conformation produces a deocclusion of the binding sites to the cytoplasmic side of the membrane and allows in the last steps ion dissociation and diffusion to the aqueous phase. The interaction and competition of K(+) with various quaternary organic ammonium ions have been used to gain insight into the molecular mechanism of the ion binding process from the extracellular side in the P-E2 conformation of the enzyme. Using the electrochromic styryl dye RH421, evidence has been obtained that the access pathway consists of a wide and water-filled funnel-like part that is accessible also for bulky cations such as the benzyltriethylammonium ion, and a narrow part that permits passage only of small cations such as K(+) and NH4(+) in a distinct electrogenic way. Benzyltriethylammonium ions inhibit K(+) binding in a competitive manner that can be explained by a stopper-like function at the interface between the wide and narrow parts of the access pathway. In contrast to other quaternary organic ammonium ions, benzyltriethylammonium ions show a specific binding to the ion pump in a position inside the access pathway where it blocks effectively the access to the binding sites.
Collapse
Affiliation(s)
| | - Hans-Jürgen Apell
- Department of Biology, University of Konstanz, 78464 Konstanz, Germany
| |
Collapse
|
9
|
Abstract
The gastric H(+),K(+)-ATPase is responsible for gastric acid secretion. This ATPase is composed of two subunits, the catalytic α subunit and the structural β subunit. The α subunit with molecular mass of about 100 kDa has 10 transmembrane domains and is strongly associated with the β subunit with a single transmembrane segment and a peptide mass of 35 kDa. Its three-dimensional structure is based on homology modeling and site-directed mutagenesis resulting in a proton extrusion and K(+) reabsorption model. There are three conserved H3O(+)-binding sites in the middle of the membrane domain and H3O(+) secretion depends on a conformational change involving Lys(791) insertion into the second H3O(+) site enclosed by E795, E820, and D824 that allows export of protons at a concentration of 160 mM. K(+) countertransport involves binding to this site after the release of protons with retrograde displacement of Lys(791) and then K(+) transfer to E343 and exit to the cytoplasm. This ATPase is the major therapeutic target in treatment of acid-related diseases and there are several known luminal inhibitors allowing analysis of the luminal vestibule. One class contains the acid-activated covalent, thiophilic proton pump inhibitors, the most effective of current acid-suppressive drugs. Their binding sites and trypsinolysis allowed identification of all ten transmembrane segments of the ATPase. In addition, various K(+)-competitive inhibitors of the ATPase are being developed, with the advantage of complete and rapid inhibition of acid secretion independent of pump activity and allowing further refinement of the structure of the luminal vestibule of the E2 form of this ATPase.
Collapse
Affiliation(s)
- Jai Moo Shin
- Department of Physiology and Medicine, University of California at Los Angeles, and VA Greater Los Angeles Healthcare System, Los Angeles, California, USA.
| | | | | |
Collapse
|
10
|
Crystal structure of the high-affinity Na+K+-ATPase-ouabain complex with Mg2+ bound in the cation binding site. Proc Natl Acad Sci U S A 2013; 110:10958-63. [PMID: 23776223 DOI: 10.1073/pnas.1222308110] [Citation(s) in RCA: 194] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The Na(+),K(+)-ATPase maintains electrochemical gradients for Na(+) and K(+) that are critical for animal cells. Cardiotonic steroids (CTSs), widely used in the clinic and recently assigned a role as endogenous regulators of intracellular processes, are highly specific inhibitors of the Na(+),K(+)-ATPase. Here we describe a crystal structure of the phosphorylated pig kidney Na(+),K(+)-ATPase in complex with the CTS representative ouabain, extending to 3.4 Å resolution. The structure provides key details on CTS binding, revealing an extensive hydrogen bonding network formed by the β-surface of the steroid core of ouabain and the side chains of αM1, αM2, and αM6. Furthermore, the structure reveals that cation transport site II is occupied by Mg(2+), and crystallographic studies indicate that Rb(+) and Mn(2+), but not Na(+), bind to this site. Comparison with the low-affinity [K2]E2-MgF(x)-ouabain structure [Ogawa et al. (2009) Proc Natl Acad Sci USA 106(33):13742-13747) shows that the CTS binding pocket of [Mg]E2P allows deep ouabain binding with possible long-range interactions between its polarized five-membered lactone ring and the Mg(2+). K(+) binding at the same site unwinds a turn of αM4, dragging residues Ile318-Val325 toward the cation site and thereby hindering deep ouabain binding. Thus, the structural data establish a basis for the interpretation of the biochemical evidence pointing at direct K(+)-Mg(2+) competition and explain the well-known antagonistic effect of K(+) on CTS binding.
Collapse
|
11
|
Shin JM, Kim N. Pharmacokinetics and pharmacodynamics of the proton pump inhibitors. J Neurogastroenterol Motil 2013; 19:25-35. [PMID: 23350044 PMCID: PMC3548122 DOI: 10.5056/jnm.2013.19.1.25] [Citation(s) in RCA: 251] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 12/20/2012] [Accepted: 12/21/2012] [Indexed: 12/13/2022] Open
Abstract
Proton pump inhibitor (PPI) is a prodrug which is activated by acid. Activated PPI binds covalently to the gastric H+, K+-ATPase via disulfide bond. Cys813 is the primary site responsible for the inhibition of acid pump enzyme, where PPIs bind. Omeprazole was the first PPI introduced in market, followed by pantoprazole, lansoprazole and rabeprazole. Though these PPIs share the core structures benzimidazole and pyridine, their pharmacokinetics and pharmacodynamics are a little different. Several factors must be considered in understanding the pharmacodynamics of PPIs, including: accumulation of PPI in the parietal cell, the proportion of the pump enzyme located at the canaliculus, de novo synthesis of new pump enzyme, metabolism of PPI, amounts of covalent binding of PPI in the parietal cell, and the stability of PPI binding. PPIs have about 1hour of elimination half-life. Area under the plasmic concentration curve and the intragastric pH profile are very good indicators for evaluating PPI efficacy. Though CYP2C19 and CYP3A4 polymorphism are major components of PPI metabolism, the pharmacokinetics and pharmacodynamics of racemic mixture of PPIs depend on the CYP2C19 genotype status. S-omeprazole is relatively insensitive to CYP2C19, so better control of the intragastric pH is achieved. Similarly, R-lansoprazole was developed in order to increase the drug activity. Delayed-release formulation resulted in a longer duration of effective concentration of R-lansoprazole in blood, in addition to metabolic advantage. Thus, dexlansoprazole showed best control of the intragastric pH among the present PPIs. Overall, PPIs made significant progress in the management of acid-related diseases and improved health-related quality of life.
Collapse
|
12
|
Montes MR, Monti JLE, Rossi RC. E2→E1 transition and Rb(+) release induced by Na(+) in the Na(+)/K(+)-ATPase. Vanadate as a tool to investigate the interaction between Rb(+) and E2. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1818:2087-93. [PMID: 22521366 DOI: 10.1016/j.bbamem.2012.04.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Revised: 03/13/2012] [Accepted: 04/04/2012] [Indexed: 10/28/2022]
Abstract
This work presents a detailed kinetic study that shows the coupling between the E2→E1 transition and Rb(+) deocclusion stimulated by Na(+) in pig-kidney purified Na,K-ATPase. Using rapid mixing techniques, we measured in parallel experiments the decrease in concentration of occluded Rb(+) and the increase in eosin fluorescence (the formation of E1) as a function of time. The E2→E1 transition and Rb(+) deocclusion are described by the sum of two exponential functions with equal amplitudes, whose rate coefficients decreased with increasing [Rb(+)]. The rate coefficient values of the E2→E1 transition were very similar to those of Rb(+)-deocclusion, indicating that both processes are simultaneous. Our results suggest that, when ATP is absent, the mechanism of Na(+)-stimulated Rb(+) deocclusion would require the release of at least one Rb(+) ion through the extracellular access prior to the E2→E1 transition. Using vanadate to stabilize E2, we measured occluded Rb(+) in equilibrium conditions. Results show that, while Mg(2+) decreases the affinity for Rb(+), addition of vanadate offsets this effect, increasing the affinity for Rb(+). In transient experiments, we investigated the exchange of Rb(+) between the E2-vanadate complex and the medium. Results show that, in the absence of ATP, vanadate prevents the E2→E1 transition caused by Na(+) without significantly affecting the rate of Rb(+) deocclusion. On the other hand, we found the first evidence of a very low rate of Rb(+) occlusion in the enzyme-vanadate complex, suggesting that this complex would require a change to an open conformation in order to bind and occlude Rb(+).
Collapse
Affiliation(s)
- Mónica R Montes
- Departamento de Quimica Biologica, Universidad de Buenos Aires, Buenos Aires, Argentina.
| | | | | |
Collapse
|
13
|
de Meis L. How enzymes handle the energy derived from the cleavage of high-energy phosphate compounds. J Biol Chem 2012; 287:16987-17005. [PMID: 22427658 PMCID: PMC3366780 DOI: 10.1074/jbc.x112.363200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Leopoldo de Meis
- Instituto de Bioquímica Médica, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil.
| |
Collapse
|
14
|
Oleic and linoleic acids are active principles in Nigella sativa and stabilize an E(2)P conformation of the Na,K-ATPase. Fatty acids differentially regulate cardiac glycoside interaction with the pump. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1808:2413-20. [PMID: 21767529 DOI: 10.1016/j.bbamem.2011.06.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Revised: 06/27/2011] [Accepted: 06/29/2011] [Indexed: 12/12/2022]
Abstract
Nigella sativa seed oil was found to contain a modulator of Na,K-ATPase. Separation analyses combined with (1)H NMR and GCMS identified the inhibitory fraction as a mixture of oleic and linoleic acids. These two fatty acids are specifically concentrated in several medicinal plant oils, and have particularly been implicated in decreasing high blood pressure. The ouabain binding site on Na,K-ATPase has also been implicated in blood pressure regulation. Thus, we aimed to determine how these two molecules modify pig kidney Na,K-ATPase. Oleic and linoleic acids did not modify reactions involving the E(1) (Na(+)) conformations of the Na,K-ATPase. In contrast, K(+) dependent reactions were strongly modified after treatment. Oleic and linoleic acids were found to stabilize a pump conformation that binds ouabain with high affinity, i.e., an ion free E(2)P form. Time-resolved binding assays using anthroylouabain, a fluorescent ouabain analog, revealed that the increased ouabain affinity is unique to oleic and linoleic acids, as compared with γ-linolenic acid, which decreased pump-mediated ATP hydrolysis but did not equally increase ouabain interaction with the pump. Thus, the dynamic changes in plasma levels of oleic and linoleic acids are important in the modulation of the sensitivity of the sodium pump to cardiac glycosides. Given the possible involvement of the cardiac glycoside binding site on Na,K-ATPase in the regulation of hypertension, we suggest oleic acid to be a specific chaperon that modulates interaction of cardiac glycosides with the sodium pump.
Collapse
|
15
|
Khalid M, Fouassier G, Apell HJ, Cornelius F, Clarke RJ. Interaction of ATP with the phosphoenzyme of the Na+,K+-ATPase. Biochemistry 2010; 49:1248-58. [PMID: 20063899 DOI: 10.1021/bi9019548] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The interaction of ATP with the phosphoenzyme of Na(+),K(+)-ATPase from pig kidney, rabbit kidney, and shark rectal gland was investigated using the voltage-sensitive fluorescent probe RH421. In each case, ATP concentrations >or=100 microM caused a drop in fluorescence intensity, which, because RH421 is sensitive to the formation of enzyme in the E2P state, can be attributed to ATP binding to the E2P phosphoenzyme. Simulations of the experimental behavior using kinetic models based on either a monomeric or a dimeric enzyme mechanism yielded a K(d) for ATP binding in the range 140-500 muM. Steady-state activity measurements and independent measurements of the phosphoenzyme level via a radioactive assay indicated that ATP binding to E2P causes a deceleration in its dephosphorylation when acting in the Na(+)-ATPase mode, i.e., in the absence of K(+) ions. Both the ATP-induced drop in RH421 fluorescence and the effect on the dephosphorylation reaction could be attributed to an inhibition of dissociation from the E2P(Na(+))(3) state of the one Na(+) ion necessary to allow dephosphorylation. Stopped-flow studies on the shark enzyme indicated that the ATP-induced inhibition of dephosphorylation is abolished in the presence of 1 mM KCl. A possible physiological role of allosteric binding of ATP to the phosphoenzyme could be to stabilize the E2P state and stop the enzyme running backward, which would cause dissipation of the Na(+) electrochemical potential gradient and the resynthesis of ATP from ADP. ATP binding to E2P could also fix ATP within the enzyme ready to phosphorylate it in the subsequent turnover.
Collapse
Affiliation(s)
- Mohammed Khalid
- School of Chemistry, University of Sydney, Sydney, New South Wales 2006, Australia
| | | | | | | | | |
Collapse
|
16
|
Hansen O. Vanadate and phosphotransferases with special emphasis on ouabain/na,k-atpase interaction. ACTA PHARMACOLOGICA ET TOXICOLOGICA 2009; 52 Suppl 1:1-19. [PMID: 6301215 DOI: 10.1111/j.1600-0773.1983.tb02475.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
17
|
Silva ECC, Masui DC, Furriel RPM, Mantelatto FLM, McNamara JC, Barrabin H, Leone FA, Scofano HM, Fontes CFL. Regulation by the exogenous polyamine spermidine of Na,K-ATPase activity from the gills of the euryhaline swimming crab Callinectes danae (Brachyura, Portunidae). Comp Biochem Physiol B Biochem Mol Biol 2008; 149:622-9. [PMID: 18272416 DOI: 10.1016/j.cbpb.2007.12.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2007] [Revised: 12/28/2007] [Accepted: 12/28/2007] [Indexed: 11/25/2022]
Abstract
Euryhaline crustaceans rarely hyporegulates and employ the driving force of the Na,K-ATPase, located at the basal surface of the gill epithelium, to maintain their hemolymph osmolality within a range compatible with cell function during hyper-regulation. Since polyamine levels increase during the adaptation of crustaceans to hyperosmotic media, we investigate the effect of exogenous polyamines on Na,K-ATPase activity in the posterior gills of Callinectes danae, a euryhaline swimming crab. Polyamine inhibition was dependent on cation concentration, charge and size in the following order: spermine>spermidine>putrescine. Spermidine affected K(0.5) values for Na(+) with minor alterations in K(0.5) values for K(+) and NH(4)(+), causing a decrease in maximal velocities under saturating Na(+), K(+) and NH(4)(+) concentrations. Phosphorylation measurements in the presence of 20 microM ATP revealed that the Na,K-ATPase possesses a high affinity site for this substrate. In the presence of 10 mM Na(+), both spermidine and spermine inhibited formation of the phosphoenzyme; however, in the presence of 100 mM Na(+), the addition of these polyamines allowed accumulation of the phosphoenzyme. The polyamines inhibited pumping activity, both by competing with Na(+) at the Na(+)-binding site, and by inhibiting enzyme dephosphorylation. These findings suggest that polyamine-induced inhibition of Na,K-ATPase activity may be physiologically relevant during migration to fully marine environments.
Collapse
Affiliation(s)
- E C C Silva
- Instituto de Bioquímica Médica, Laboratório de Estrutura e Regulação de Proteínas e ATPases, Programa de Biologia Estrutural, CCS, Bloco H, 2 andar, sala 26, 21941-590, RJ, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Homareda H, Ushimaru M. Stimulation of p-nitrophenylphosphatase activity of Na+/K+-ATPase by NaCl with oligomycin or ATP. FEBS J 2005; 272:673-84. [PMID: 15670149 DOI: 10.1111/j.1742-4658.2004.04496.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
It is known that the addition of NaCl with oligomycin or ATP stimulates ouabain-sensitive and K+-dependent p-nitrophenylphosphatase (pNPPase) activity of Na+/K+-ATPase. We investigated the mechanism of the stimulation. The combination of oligomycin and NaCl increased the affinity of pNPPase activity for K+. When the ratio of Na+ to Rb+ was 10 in the presence of oligomycin, Rb+-binding and pNPPase activity reached a maximal level and Na+ was occluded. Phosphorylation of Na+/K+-ATPase by p-nitrophenylphosphate (pNPP) was not affected by oligomycin. Because oligomycin stabilizes the Na+-occluded E1 state of Na+/K+-ATPase, it seemed that the Na+-occluded E1 state increased the affinity of the phosphoenzyme formed from pNPP for K+. On the other hand, the combination of ATP and NaCl also increased the affinity of pNPPase for K+ and activated ATPase activity. Both activities were affected by the ligand conditions. Oligomycin noncompetitively affected the activation of pNPPase by NaCl and ATP. Nonhydrolyzable ATP analogues could not substitute for ATP. As NaE1P, which is the high-energy phosphoenzyme formed from ATP with Na+, is also the Na+-occluded E1 state, it is suggested that the Na+-occluded E1 state increases the affinity of the phosphoenzyme from pNPP for K+ through the interaction between alpha subunits. Therefore, membrane-bound Na+/K+-ATPase would function as at least an (alphabeta)2-diprotomer with interacting alpha subunits at the phosphorylation step.
Collapse
Affiliation(s)
- Haruo Homareda
- Department of Biochemistry, Kyorin University School of Medicine, Mitaka, Tokyo, Japan.
| | | |
Collapse
|
19
|
Thomas LE, Burguillos L, del Castillo JR. Backdoor phosphorylation of basolateral plasma membranes of small intestinal epithelial cells: characterization of a furosemide-induced phosphoprotein related to the second sodium pump. Arch Biochem Biophys 2003; 419:190-7. [PMID: 14592462 DOI: 10.1016/j.abb.2003.08.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Enterocyte has two different Na+-stimulated ATPases, the ouabain-sensitive Na+/K+ ATPase and a furosemide-inhibitable Na+ ATPase. To identify the polypeptide associated with the Na+-ATPase, 32Pi phosphorylation into basolateral membranes of enterocyte was investigated. Both, ouabain and furosemide induced Mg2+-dependent, vanadate-sensitive 32Pi incorporation into a 100kDa polypeptide. K(m) for Pi was 17.7+/-1.82 microM and 16.8+/-0.69 microM for ouabain-induced and furosemide-induced phosphorylation, respectively. K(m) for furosemide was 1.3+/-0.21 mM. Furosemide-induced 32Pi incorporation was sensitive to alkaline pH and hydroxylamine suggesting an acyl-phosphate bond. Na+ and K+ inhibited 32Pi incorporation induced by ouabain. In contrast, Na+ stimulated furosemide-induced phosphorylation with a K(m) of 16.5+/-5.59 mM while K+ had no effect. Purified Na+/K+ ATPase only presented ouabain-induced phosphoprotein, indicating that furosemide-induced phosphorylation is not related to this enzyme and appears to correspond to a new member of P-type ATPases associated with the second Na+ pump.
Collapse
Affiliation(s)
- Luz E Thomas
- Laboratorio de Fisiología Gastrointestinal, Centro de Biofísica y Bioquímica, Instituto Venezolano de Investigaciones Científicas (IVIC), Apartado 21827, 1020-A Caracas, Venezuela
| | | | | |
Collapse
|
20
|
Villas-Boas Tribuzy A, Fontes CFL, Nørby JG, Barrabin H. Dimethyl sulfoxide-induced conformational state of Na(+)/K(+)-ATPase studied by proteolytic cleavage. Arch Biochem Biophys 2002; 399:89-95. [PMID: 11883907 DOI: 10.1006/abbi.2001.2752] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Effects of dimethyl sulfoxide (Me(2)SO) on substrate affinity for phosphorylation by inorganic phosphate, on phosphorylation by ATP in the absence of Na(+), and on ouabain binding to the free form of the Na(+)/K(+)-ATPase have been attributed to changes in solvation of the active site or Me(2)SO-induced changes in the structure of the enzyme. Here we used selective trypsin cleavage as a procedure to determine the conformations that the Na(+)/K(+)-ATPase acquires in Me(2)SO medium. In water or in Me(2)SO medium, Na(+)/K(+)-ATPase exhibited after partial proteolysis two distinct groups of fragments: (1) in the presence of 0.1 M Na(+) or 0.1 M Na(+) + 3 mM ADP (enzyme in the E1 state) cleavage produced a main fragment of about 76 kDa; and (2) in the presence of 20 mM K(+) (E2 state) a 58-kDa fragment plus two or three fragments of 39-41 kDa were obtained. Cleavage in Me(2)SO medium in the absence of Na(+) and K(+) exhibited the same breakdown pattern as that obtained in the presence of K(+), but a 43-kDa fragment was also observed. An increase in the K(+) concentration to 0.5 mM eliminated the 43-kDa fragment, while a 39- to 41-kDa doublet was accumulated. Both in water and in Me(2)SO medium, a strong enhancement of the 43-kDa band was observed in the presence of either P(i) + ouabain or vanadate, suggesting that the 43-kDa fragment is closely related to the conformation of the phosphorylated enzyme. These results indicate that Me(2)SO acts not only by promoting the release of water from the ATP site, but also by inducing a conformation closely related to the phosphorylated state, even when the enzyme is not phosphorylated.
Collapse
|
21
|
|
22
|
Beaugé L. Breakdown of Na+/K+-exchanging ATPase phosphoenzymes formed from ATP and from inorganic phosphate during Na+-ATPase activity. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:5627-32. [PMID: 11683886 DOI: 10.1046/j.1432-1033.2001.02499.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The reactivity towards Na+ and K+ of Na+/K+-ATPase phosphoenzymes formed from ATP and Pi during Na+-ATPase turnover and that obtained from Pi in the absence of ATP, Na+ and K+ was studied. The phosphoenzyme formed from Pi in the absence of cycling and with no Na+ or K+ in the medium showed a biphasic time-dependent breakdown. The fast component, 96% of the total EP, had a decay rate of about 4 s(-1) in K+-free 130 mm Na+, and was 40% inhibited by 20 mm K+. The slow component, about 0.14 s(-1), was K+ insensitive. Values for the time-dependent breakdown of the phosphoenzymes obtained from ATP and from Pi during Na+-ATPase activity were indistinguishable from each other. In K+-free medium containing 130 mm Na+, the decays followed a single exponential with a rate constant of 0.45 s(-1). The addition of 20 mm K+ markedly increased the decays and made them biphasic. The fast components had a rate of approximately 220 s-1 and accounted for 92-93% of the total phosphoenzyme. The slow components decayed at a rate of about 47-53 s(-1). A second group of experiments examined the reactivity towards Na+ of the E2P forms obtained with ATP and Pi when the enzyme was cycling. In both cases, the rate of dephosphorylation was a biphasic function of [Na+]: inhibition at low [Na+], with a minimum at about 5 mm Na+, followed by recovery at higher [Na+]. Although qualitatively similar, the phosphoenzyme formed from Pi showed slightly less inhibition and more pronounced recovery. These results indicate that forward and backward phosphorylation during Na+-ATPase turnover share the same intermediates.
Collapse
Affiliation(s)
- L Beaugé
- Laboratorio de Biofísica, Instituto de Investigación Médica 'Mercedes y Martín Ferreyra' (INIMEC-CONICET), Córdoba, Argentina.
| |
Collapse
|
23
|
Grinberg AV, Gevondyan NM, Grinberg NV, Grinberg VY. The thermal unfolding and domain structure of Na+/K+-exchanging ATPase. A scanning calorimetry study. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:5027-36. [PMID: 11589693 DOI: 10.1046/j.0014-2956.2001.02436.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The thermal unfolding and domain structure of Na+/K+-ATPase from pig kidney were studied by high-sensitivity differential scanning calorimetry (HS-DSC). The excess heat capacity function of Na+/K+-ATPase displays the unfolding of three cooperative domains with midpoint transition temperatures (Td) of 320.6, 327.5, 331.5 K, respectively. The domain with Td = 327.5 K was identified as corresponding to the beta subunit, while two other domains belong to the alpha subunit. The thermal unfolding of the low-temperature domain leads to large changes in the amplitude of the short-circuit current, but has no effect on the ATP hydrolysing activity. Furthermore, dithiothreitol or 2-mercaptoethanol treatment causes destruction of this domain, accompanied by significant disruption of the ion transporting function and a 25% loss of ATPase activity. The observed total unfolding enthalpy of the protein is rather low (approximately 12 J.g-1), suggesting that thermal denaturation of Na+/K+-ATPase does not lead to complete unfolding of the entire molecule. Presumably, transmembrane segments retain most of their secondary structure upon thermal denaturation. The binding of physiological ligands results in a pronounced increase in the conformational stability of both enzyme subunits.
Collapse
Affiliation(s)
- A V Grinberg
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Vavilov St. 28, 117813 Moscow GSP-1, Russia
| | | | | | | |
Collapse
|
24
|
Patchornik G, Goldshleger R, Karlish SJ. The complex ATP-Fe(2+) serves as a specific affinity cleavage reagent in ATP-Mg(2+) sites of Na,K-ATPase: altered ligation of Fe(2+) (Mg(2+)) ions accompanies the E(1)-->E(2) conformational change. Proc Natl Acad Sci U S A 2000; 97:11954-9. [PMID: 11035801 PMCID: PMC17276 DOI: 10.1073/pnas.220332897] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2000] [Indexed: 11/18/2022] Open
Abstract
In the presence of ascorbate/H(2)O(2), ATP-Fe(2+) or AMP-PNP-Fe(2+) complexes act as affinity cleavage reagents, mediating selective cleavage of the alpha subunit of Na,K-ATPase at high affinity ATP-Mg(2+) sites. The cleavages reveal contact points of Fe(2+) or Mg(2+) ions. In E(1) and E(1)Na conformations, two major cleavages are detected within the conserved (708)TGDGVNDSPALKK sequence (at V712 and nearby), and one (E(1)Na) or two (E(1)) minor cleavages near V440. In media containing sodium and ATP, Fe(2+) substitutes for Mg(2+) in activating phosphorylation and ATP hydrolysis. In the E(1)P conformation, cleavages are the same as in E(1). Fe(2+) is not bound tightly. By contrast, in the E(2)P conformation, the pattern is different. A major cleavage occurs near the conserved sequence (212)TGES, whereas those in TGDGVNDSPALKK are less prominent. Fe(2+) is bound very tightly. On E(2)P hydrolysis, the Fe(2+) dissociates. The results are consistent with E(1)<-->E(2) conformation-dependent movements of cytoplasmic domains and sites for P(i) and Mg(2+) ions, inferred from previous Fe-cleavage experiments. Furthermore, these concepts fit well with the crystal structure of Ca-ATPase [Toyoshima, C., Nakasako, M., Nomura, H. & Ogawa, H. (2000) Nature (London) 405, 647-655]. Altered ligation of Mg(2+) ions in E(2)P may be crucial in facilitating nucleophilic attack of water on the OP bond. Mg(2+) ions may play a similar role in all P-type pumps. As affinity cleavage reagents, ATP-Fe(2+) or other nucleotide-Fe(2+) complexes could be widely used to investigate nucleotide binding proteins.
Collapse
Affiliation(s)
- G Patchornik
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, 76100, Israel
| | | | | |
Collapse
|
25
|
Hu YK, Eisses JF, Kaplan JH. Expression of an active Na,K-ATPase with an alpha-subunit lacking all twenty-three native cysteine residues. J Biol Chem 2000; 275:30734-9. [PMID: 10906129 DOI: 10.1074/jbc.m003737200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have constructed a mutant Na,K-ATPase alpha1-subunit with all native cysteine residues replaced. Using the baculovirus system, this cysteine-less alpha1-subunit and wild-type beta1-subunit were expressed in High Five cells. After 3 days of infection, cells were fractionated, and endoplasmic reticulum, Golgi apparatus, and plasma membranes were isolated. The molecular activity of the cysteine-less mutant in the plasma membranes was close to the wild-type protein (8223 min(-)(1) versus 6655 min(-)(1)). Cation and ATP activation of Na,K-ATPase activities revealed that replacing all 23 cysteines resulted in only a 50% reduction of K(m) for Na(+), a 2-fold increase in K(m) for K(+), and no changes in K(m) for ATP. The distribution of alpha-subunits among the membranes showed a high percentage of cysteine-less protein in the endoplasmic reticulum and Golgi apparatus compared with the wild-type protein. Furthermore, the cellular stability of the alphabeta assembly appeared reduced in the cysteine-less mutant. Cells harvested after more than 3 days of infection showed extensive degradation of the cysteine-less alpha-subunit, which is not observed with the wild-type enzyme. Thus the Na,K-ATPase contains no cysteine residues that are critical for function, but the folding and/or assembly pathway of this enzyme is affected by total cysteine substitution.
Collapse
Affiliation(s)
- Y K Hu
- Department of Biochemistry and Molecular Biology, Oregon Health Sciences University, Portland, Oregon 97201-3098, USA
| | | | | |
Collapse
|
26
|
Rose AM, Qazzaz HM, Zolotarjova N, Mellett BJ, Martin AW, Valdes Jr R. Sodium Pump Isoforms in Xenotransplantation: Importance of Biochemical Compatibility. Clin Chem 2000. [DOI: 10.1093/clinchem/46.2.234] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractBackground: Xenotransplantation of pig hearts to humans could be hampered by the reportedly reduced affinity for digoxin of pig heart. We examined the hypothesis that expression of the individual α-subunit isoforms of the sodium pump [Na+,K+-ATPase (NKA)], the receptor for the plant-derived cardiac glycosides, may be responsible for this difference.Methods: We used a NKA-inhibition assay in combination with Western analysis, immunohistochemistry, and phosphorylation of the NKA α subunit to identify the distribution and expression of α isoforms in four chambers of porcine and human hearts.Results: We confirmed that tissue from porcine heart is less sensitive to digitalis (IC50 = 1740 nmol/L) when compared with human heart (IC50 = 840 nmol/L), whereas porcine cerebral cortex-mix had an affinity comparable to that of human heart (IC50 = 910 nmol/L). Our data show that porcine cerebral cortex-mix and human heart contain all three α isoforms, whereas porcine heart expresses only the α1 isoform.Conclusions: The different expressions of sodium pump isoforms in human vs porcine cardiac tissues suggests that porcine hearts may not be pharmacologically or endocrinologically compatible when used in humans. Studies of both pharmacologic and endocrinologic tissue compatibility are needed prior to selection of organs for xenotransplantation.
Collapse
Affiliation(s)
- Andrea M Rose
- Departments of Pathology and Laboratory Medicine and
| | | | | | | | | | - Roland Valdes Jr
- Departments of Pathology and Laboratory Medicine and
- Biochemistry and Molecular Biology, University of Louisville, School of Medicine, Louisville, KY 40292
| |
Collapse
|
27
|
Cornelius F. Rate determination in phosphorylation of shark rectal Na,K-ATPase by ATP: temperature sensitivity and effects of ADP. Biophys J 1999; 77:934-42. [PMID: 10423438 PMCID: PMC1300384 DOI: 10.1016/s0006-3495(99)76944-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Phosphorylation of shark rectal Na,K-ATPase by ATP in the presence of Na(+) was characterized by chemical quench experiments and by stopped-flow RH421 fluorescence. The appearance of acid-stable phosphoenzyme was faster than the rate of fluorescence increase, suggesting that of the two acid-stable phosphoenzymes formed, RH421 exclusively detects formation of E(2)-P, which follows formation of E(1)-P. The stopped-flow RH421 fluorescence response to ATP phosphorylation was biphasic, with a major fast phase with k(obs) approximately 90 s(-1) and a minor slow phase with a k(obs) of approximately 9 s(-1) (20 degrees C, pH 7.4). The observed rate constants for both the slow and the fast phase could be fitted with identical second-degree functions of the ATP concentration with apparent binding constants of approximately 3.1 x 10(7) M(-1) and 1. 8 x 10(5) M(-1), respectively. Increasing [ADP] decreased k(obs) for the rate of the RH421 fluorescence response to ATP phosphorylation. This could be accounted for by the reaction of ADP with the initially formed E(1)-P followed by a conformational change to E(2)-P. The biphasic stopped-flow RH421 responses to ATP phosphorylation could be simulated, assuming that in the absence of K(+) the highly fluorescent E(2)-P is slowly transformed into the "K(+)-insensitive" E'(2)-P subconformation forming a side branch of the main cycle.
Collapse
Affiliation(s)
- F Cornelius
- Department of Biophysics, University of Aarhus, DK-8000 Aarhus C, Denmark. fc.biophys.au.dk
| |
Collapse
|
28
|
Goldshleger R, Karlish SJ. The energy transduction mechanism of Na,K-ATPase studied with iron-catalyzed oxidative cleavage. J Biol Chem 1999; 274:16213-21. [PMID: 10347176 DOI: 10.1074/jbc.274.23.16213] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
This paper extends our recent report on specific iron-catalyzed oxidative cleavages of renal Na,K-ATPase and effects of E1 left arrow over right arrow E2 conformational transitions (Goldshleger, R. , and Karlish, S. J. D. (1997) Proc. Natl. Acad. Sci. U. S. A. 94, 9596-9601). The experiments indicate that only peptide bonds close to a bound Fe2+ ion are cleaved, and provide evidence on proximity of the different cleavage positions in the native enzyme. A sequence HFIH near trans-membrane segment M3 appears to be involved in Fe2+ binding. Previously we hypothesized that E2 and E1 conformations are characterized by formation or relaxation of interactions within the alpha subunit at or near highly conserved sequences, TGES in the minor cytoplasmic loop and CSDK, MVTGD, and VNDSPALKK in the major cytoplasmic loop. This concept has been tested by examining iron-catalyzed cleavage in both non-phosphorylated and phosphorylated conformations and effects of phosphate, vanadate, and ouabain. The results imply that both E1 left arrow over right arrow E2 and E1P left arrow over right arrow E2P transitions are indeed associated with formation and relaxation of interactions between cytoplasmic domains, comprising the minor loop plus N-terminal tail leading into M1 and major loop, respectively. Furthermore, it appears that either non-covalently or covalently bound phosphate bind near CSDK and MVTGD, and Mg2+ ions may bind to residues within TGES and VNDSPALKK and to bound phosphate. Thus cytoplasmic domain interactions seem to occur within or near the active site. We discuss the relationship between structural changes in the cytoplasmic domain and movements of trans-membrane segments that lead to cation transport. Presumably conformation-dependent formation and relaxation of domain interactions underlie energy transduction in all P-type pumps.
Collapse
Affiliation(s)
- R Goldshleger
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | | |
Collapse
|
29
|
Ward DG, Cavieres JD. Photoinactivation of fluorescein isothiocyanate-modified Na,K-ATPase by 2'(3')-O-(2,4,6-trinitrophenyl)8-azidoadenosine 5'-diphosphate. Abolition of E1 and E2 partial reactions by sequential block of high and low affinity nucleotide sites. J Biol Chem 1998; 273:14277-84. [PMID: 9603934 DOI: 10.1074/jbc.273.23.14277] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Na,K-ATPase activity of the sodium pump exhibits apparent multisite kinetics toward ATP, a feature that is inherent to the minimal enzyme unit, the alpha beta protomer. We have argued that this should arise from separate catalytic and noncatalytic sites on the alpha beta protomer as fluorescein isothiocyanate (FITC) blocks a high affinity ATP site on all alpha subunits and yet the modified Na, K-ATPase retains a low affinity response to nucleotides (Ward, D. G., and Cavieres, J. D. (1996) J. Biol. Chem. 271, 12317-12321). We now find that 2'(3')-O-(2,4,6-trinitrophenyl)8-azido-adenosine 5'-diphosphate (TNP-8N3-ADP), a high affinity photoactivatable analogue of ATP, can inhibit the K+-phosphatase activity of the FITC-modified enzyme during assays in dimmed light. The inhibition occurs with a Ki of 140 microM at 20 mM K+; it requires the adenine ring as 2'(3')-O-(2,4 6-trinitrophenyl) (TNP)-UDP or TNP-uridine are less potent and 2,4,6-trinitrobenzene-sulfonate is ineffective. Under irradiation with UV light, TNP-8N3-ADP inactivates the K+-phosphatase activity of the fluorescein-enzyme and also its phosphorylation by [32P]Pi. The photoinactivation process is stimulated by Na+ or Mg2+, and is inhibited by K+ or excess TNP-ADP. In the presence of 50 mM Na+ and 1 mM Mg2+, TNP-8N3-ADP photoinactivates with a K0.5 of 15 microM. Furthermore, TNP-8N3-ADP photoinactivates the FITC-modified, solubilized alpha beta protomers, even more effectively than the membrane-bound fluorescein-enzyme. These results strongly suggest that catalytic and allosteric ATP sites coexist on the alpha beta protomer of Na,K-ATPase.
Collapse
Affiliation(s)
- D G Ward
- Transport ATPase Laboratory, Department of Cell Physiology and Pharmacology, University of Leicester, Leicester, LE1 9HN, United Kingdom
| | | |
Collapse
|
30
|
Fedosova NU, Cornelius F, Forbush B, Klodos I. Diversity of the E2P phosphoforms of Na,K-ATPase. Ann N Y Acad Sci 1997; 834:386-9. [PMID: 9432913 DOI: 10.1111/j.1749-6632.1997.tb52278.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- N U Fedosova
- Department of Biophysics, University of Aarhus, Denmark.
| | | | | | | |
Collapse
|
31
|
Benito B, Quintero FJ, Rodríguez-Navarro A. Overexpression of the sodium ATPase of Saccharomyces cerevisiae: conditions for phosphorylation from ATP and Pi. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1328:214-26. [PMID: 9315618 DOI: 10.1016/s0005-2736(97)00098-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The ENA1 gene of Saccharomyces cerevisiae encodes a putative ATPase necessary for Na+ efflux. Plasma membranes and intracellular membranes of a yeast strain overexpressing the ENA1 gene contain significant amounts of ENA1 protein. Consequences of the overexpression with reference to the wild-type strain are: (1) a 5-fold higher content of the ENA1-protein in plasma membranes; (2) lower Na+ and Li+ effluxes; (3) slightly higher Na+ tolerance; and (4) much higher Li+ tolerance. The ENA1-specific ATPase activity in plasma membrane preparations of the overexpressing strain was low, but an ENA1 phosphoprotein was clearly detected when the plasma membranes were exposed to ATP in the presence of Na+ or to Pi in the absence of Na+. The characteristics of this phosphoprotein, which correspond to the acyl phosphate intermediaries of P-type ATPases, the absolute requirement of Na+ or other alkali cations for phosphorylation, and the Na+ and pH dependence of phosphorylation from ATP and Pi suggest that the product of the ENA1 gene may be a Na,H-ATPase, which can also pump other alkali cations. The role of the intracellular membranes structures produced with the overexpression of ENA1 in Na+ and Li+ tolerances and the existence of a beta-subunit of the ENA1 ATPase are discussed.
Collapse
Affiliation(s)
- B Benito
- Departamento de Biotecnología, Escuela Técnica Superior de Ingenieros Agrónomos, Universidad Politécnica de Madrid, Spain
| | | | | |
Collapse
|
32
|
Suzuki K, Post RL. Equilibrium of phosphointermediates of sodium and potassium ion transport adenosine triphosphatase: action of sodium ion and Hofmeister effect. J Gen Physiol 1997; 109:537-54. [PMID: 9154903 PMCID: PMC2217063 DOI: 10.1085/jgp.109.5.537] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/1997] [Accepted: 02/07/1997] [Indexed: 02/04/2023] Open
Abstract
Sodium and potassium ion transport adenosine triphosphatase accepts and donates a phosphate group in the course of its reaction sequence. The phosphorylated enzyme has two principal reactive states, E1P and E2P. E1P is formed reversibly from ATP in the presence of Na+ and is precursor to E2P, which equilibrates with P(i) in the presence of K+. We studied equilibrium between these states at 4 degrees C and the effect of Na+ on it. To optimize the reaction system we used a Hofmeister effect, replacing the usual anion, chloride, with a chaotropic anion, usually nitrate. We phosphorylated enzyme from canine kidney with [32P]ATP. We estimated interconversion rate constants for the reaction E1P <--> E2P and their ratio. To estimate rate constants we terminated phosphorylation and observed decay kinetics. We observed E1P or E2P selectively by adding K+ or ADP respectively. K+ dephosphorylates E2P leaving E1P as observable species; ADP dephosphorylates E1P leaving E2P as observable species. We fitted a 2-pool model comprising two reactive species or a twin 2-pool model, comprising a pair of independent 2-pool models, to the data and obtained interconversion and hydrolysis rate constants for each state. Replacing Na+ with Tris+ or lysine+ did not change the ratio of interconversion rate constants between E1P and E2P. Thus Na+ binds about equally strongly to E1P and E2P. This conclusion is consistent with a model of Pedemonte (1988. J. Theor. Biol. 134:165-182.). We found that Na+ affected another equilibrium, that of transphosphorylation between ATP x dephosphoenzyme and ADP x E1P. We used the reactions and model of Pickart and Jencks (1982. J. Biol. Chem. 257:5319-5322.) to generate and fit data. Decreasing the concentration of Na+ 10-fold shifted the equilibrium constant 10-fold favoring ADP x E1P over ATP x dephosphoenzyme. Thus Na+ can dissociate from E1P x Na3. Furthermore, we found two characteristics of Hofmeister effects on this enzyme.
Collapse
Affiliation(s)
- K Suzuki
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical School, Nashville, Tennessee 37232-0615, USA
| | | |
Collapse
|
33
|
Asami M, Sekihara T, Hanaoka T, Goya T, Matsui H, Hayashi Y. Quantification of the Na+/K(+)-pump in solubilized tissue by the ouabain binding method coupled with high-performance gel chromatography. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1240:55-64. [PMID: 7495849 DOI: 10.1016/0005-2736(95)00146-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Membrane-bound Na+/K(+)-ATPase purified from dog kidney outer medulla was solubilized with octaethylene glycol n-dodecyl ether (C12E8) and incubated with [3H]ouabain in the presence of NaCl. ATP and MgCl2 for 10 min at 0 degrees C. The resulting enzyme was separated, by high-performance gel chromatography executed at 0.2 degrees C. Mainly into its (alpha beta)2-diprotomer and alpha beta-protomer, which both bound stoichiometrically to [3H]ouabain. The amounts of ouabain that bound to the tissue itself and its microsomes could be estimated in the same way, as [3H]ouabain was found to bind only to the diprotomer and protomer they possessed. The amounts of ouabain that bound to them in the solubilized state were at least 5-times higher than those that did so when they were non-solubilized, suggesting that the surfactant rendered the enzyme accessible to ouabain. When the solubilized tissue (138 mg ml-1 wet tissue) was reacted with ouabain in the presence of 0.1 M NaCl and 4.8 mM MgCl2 for 10 min at 0 degrees C, maximal ouabain binding was attained in the presence of 18.3 microM [3H]ouabain, 1.2 mM ATP and 3 to 5 mg ml-1 C12E8, which was common to the outer medulla and human colon cancer cells. The present method enabled the pump number in protein and tissue samples in the range 7.2 x 10(-9) (purified pump) to 1.5 x 10(-12) (cancer tissue) mol/mg protein to be estimated within 2 h.
Collapse
Affiliation(s)
- M Asami
- Second Department of Surgery, Kyorin University School of Medicine, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
34
|
Argüello JM, Lingrel JB. Substitutions of serine 775 in the alpha subunit of the Na,K-ATPase selectively disrupt K+ high affinity activation without affecting Na+ interaction. J Biol Chem 1995; 270:22764-71. [PMID: 7559403 DOI: 10.1074/jbc.270.39.22764] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The functional role of serine 775, predicted to be located in the fifth transmembrane segment of the alpha subunit of the Na,K-ATPase (YTLTSNIPE), was studied using site-directed mutagenesis, expression, and kinetic analysis. Substitutions S775A, S775C, and S775Y were introduced into an ouabain-resistant alpha 1 sheep isoform and expressed in HeLa cells. cDNAs carrying substitutions S775C and S775A produced ouabain-resistant colonies only when extracellular K+ was increased from 5.4 mM to 10 or 20 mM, respectively. No ouabain-resistant colonies were obtained for substitutions S775Y at any tested K+ concentration. Kinetic characterization of S775C and S775A substituted enzymes showed expression levels higher than control enzyme, reduced Vmax and turnover, and normal phosphorylation and high affinity ATP binding. Dephosphorylation experiments indicated that S775A substituted enzyme is insensitive to ADP but readily dephosphorylated by K+. The K+ K1/2 values for the activation of the Na,K-ATPase were markedly altered, with S775C displaying a 13-fold increase and S775A exhibiting a 31-fold increase. These large changes in the Na,K-ATPase affinity for K+ are consistent with the participation of this amino acid in binding K+ during the translocation of this cation. Substitutions of Ser775 did not change Na+ affinity, indicating that this residue is likely not involved in Na+ binding and occlusion. These data show that the electronegative oxygen and the small side chain of Ser775 are required for efficient enzyme function. Moreover, these results suggest Ser775 plays a distinct role in K+ transport and not in Na+ interactions, revealing a possible mechanism for the enzymatic differentiation of these cations by the Na,K-ATPase.
Collapse
Affiliation(s)
- J M Argüello
- Department of Molecular Genetics, Biochemistry and Microbiology, College of Medicine, University of Cincinnati, Ohio 45267-0524, USA
| | | |
Collapse
|
35
|
Kuntzweiler TA, Wallick ET, Johnson CL, Lingrel JB. Amino acid replacement of Asp369 in the sheep alpha 1 isoform eliminates ATP and phosphate stimulation of [3H]ouabain binding to the Na+, K(+)-ATPase without altering the cation binding properties of the enzyme. J Biol Chem 1995; 270:16206-12. [PMID: 7608186 DOI: 10.1074/jbc.270.27.16206] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Modification of aspartic acid 369 in the sheep alpha 1 Na+,K(+)-ATPase to asparagine results in a membrane-associated form of Na+,K(+)-ATPase that can bind [3H]ouabain with high affinity in the presence of Mg2+ alone (KD = 20.4 +/- 2.6 nM). Ouabain binding to the D369N mutant is not stimulated by inorganic phosphate, confirming that Asp369 is both the catalytic phosphorylation site and the only Pi interaction site which stimulates ouabain binding. Cation inhibition of Mg(2+)-stimulated ouabain binding to the D369N mutant demonstrated that three Na+ and two K+ ions inhibit [3H]ouabain binding and suggests that this inhibition must occur via a cation-sensitive conformational change which does not directly involve dephosphorylation of the enzyme. In the presence of 10 mM Mg2+, ATP stimulates ouabain binding to the wild type protein, (AC50 = 21.4 +/- 2.7 microM) but inhibits the binding to the D369N mutant (IC50 = 2.52 +/- 0.17 microM) indicating that the mutation does not destroy the high affinity site for MgATP but does change the nature of the protein conformation normally induced by a nucleotide-Na+,K(+)-ATPase interaction. Increasing the Mg2+ from 1 to 10 mM did not alter the AC50 or IC50 values for ATP and reveals that the Mg2+ interaction which stimulates ouabain binding in the absence of nucleotide involves a distinct divalent cation site not associated with the binding of the magnesium-nucleotide complex. Thus, altering the catalytic phosphorylation site of Na+,K(+)-ATPase does not affect the expression of the ouabain-sensitive protein in the membrane fraction of NIH 3T3 cells and does not disrupt the binding of Na+, K+, Mg2+, ouabain, or ATP to the enzyme. However, the D369N substitution does inhibit the formation of a nucleotide-protein complex with high affinity for ouabain.
Collapse
Affiliation(s)
- T A Kuntzweiler
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, College of Medicine, Ohio 45267-0524, USA
| | | | | | | |
Collapse
|
36
|
Fontes CF, Scofano HM, Barrabin H, Nørby JG. The effect of dimethylsulfoxide on the substrate site of Na+/K(+)-ATPase studied through phosphorylation by inorganic phosphate and ouabain binding. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1235:43-51. [PMID: 7718606 DOI: 10.1016/0005-2736(94)00276-u] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
To obtain further information on the role of H2O at the substrate site of Na+/K(+)-ATPase, we have studied the enzymes reaction with P(i) and ouabain in 40% (v/v) Me2SO (dimethylsulfoxide). When the enzyme (E) was incubated with ouabain (O) for 5 min in a 40% (v/v) Me2SO-medium with 5 mM MgCl2 and 0.5 mM KCl (but no phosphate), ouabain was bound (as EO). Subsequent incubation with P(i) showed that E, but not EO, was rapidly phosphorylated (to EP). Long-time phosphorylation revealed that EO is also phosphorylated by P(i) albeit very slowly (t1/2 about 60 min) and that binding of ouabain to EP also is very slow. The EOP complex is stable, i.e., the t1/2 for the loss of P(i) is >> 60 min in contrast to about 1 min in water. These results in 40% Me2SO are distinctly different from what would be obtained in a watery milieu: ouabain would bind slowly and inefficiently in the absence of P(i), and ouabain would catalyse phosphorylation from P(i) rather than retard it. Equilibrium binding of [3H]ouabain to E and EP in water or 40% Me2SO confirmed these observations: Kdiss in water is 11 microM and 12 nM for EO and EOP, respectively, whereas in Me2SO they are 112 nM and 48 nM. It is suggested that the primary effect of the lowered water activity in 40% Me2SO is a rearrangement of the substrate site so that it also in the absence of P(i) attains a transition state configuration corresponding to the phosphorylated conformation. This would be sensed by the ouabain binding site and lead to high affinity ouabain binding in the absence of P(i).
Collapse
Affiliation(s)
- C F Fontes
- Departamento de Bioquímica, Universidade Federal do Rio de Janeiro, Brazil
| | | | | | | |
Collapse
|
37
|
Campos M, Beaugé L. Na(+)-ATPase activity of Na(+),K(+)-ATPase. Reactivity of the E2 form during Na(+)-ATPase turnover. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)32413-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
38
|
Scheiner-Bobis G, Antonipillai J, Farley RA. Simultaneous binding of phosphate and TNP-ADP to FITC-modified NA+,K(+)-ATPase. Biochemistry 1993; 32:9592-9. [PMID: 8396968 DOI: 10.1021/bi00088a011] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Double-reciprocal plots of the rate of ATP hydrolysis by Na+,K(+)-ATPase versus ATP concentration are not linear, and may reflect either two distinct binding sites for ATP or a single ATP binding site whose affinity for the nucleotide alternates between high-affinity and low-affinity states. In order to determine whether multiple nucleotides or nucleotide analogs can bind simultaneously to Na,+,K(+)-ATPase, the effects of nucleotides on the hydrolysis of p-nitrophenyl phosphate and on the dephosphorylation rate of Na+,K(+)-ATPase modified by fluorescein 5'-isothiocyanate (FITC) were measured. FITC blocks the high-affinity binding site for ATP on the Na+K(+)-ATPase and inhibits ATP hydrolysis at ATP concentrations as high as 8.3 mM. The hydrolysis of p-nitrophenyl phosphate and phosphoenzyme formation from inorganic phosphate and Mg2+ were not affected by FITC modification. The p-nitrophenylphosphatase activity of unmodified Na+,K(+)-ATPase was stimulated by low concentrations of ATP (10-100 microM) and other nucleotides, and was inhibited at higher nucleotide concentrations. In contrast, there was no effect on p-nitrophenyl phosphate hydrolysis by FITC-modified Na,K(+)-ATPase at ATP concentrations less than 100 microM. The hydrolysis of p-nitrophenyl phosphate by FITC-modified Na+,K(+)-ATPase was inhibited at ATP concentrations greater than 100 microM. These observations demonstrate that the effects of ATP acting at high-affinity sites are absent in FITC-modified Na+,K(+)-ATPase but the effects of ATP acting at low-affinity sites are still observed. In unmodified Na+,K(+)-ATPase, the rate of dephosphorylation of the phosphoenzyme formed from inorganic phosphate and Mg2+ was inhibited by ATP.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- G Scheiner-Bobis
- Department of Physiology and Biophysics, University of Southern California, School of Medicine, Los Angeles 90033
| | | | | |
Collapse
|
39
|
Taniguchi K, Mårdh S. Reversible changes in the fluorescence energy transfer accompanying formation of reaction intermediates in probe-labeled (Na+,K+)-ATPase. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)82297-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
40
|
Robinson JD, Pratap PR. Indicators of conformational changes in the Na+/K(+)-ATPase and their interpretation. BIOCHIMICA ET BIOPHYSICA ACTA 1993; 1154:83-104. [PMID: 8389590 DOI: 10.1016/0304-4157(93)90018-j] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- J D Robinson
- Department of Pharmacology State University of New York Health Science Center, Syracuse 13210
| | | |
Collapse
|
41
|
Murphy A, Hoover J. Inhibition of the Na,K-ATPase by fluoride. Parallels with its inhibition of the sarcoplasmic reticulum CaATPase. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)41883-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
42
|
Garner MH, Bahador A, Thi Nguyen BT, Wang RR, Spector A. Na,K-ATPase of cultured bovine lens epithelial cells: H2O2 effects. Exp Eye Res 1992; 54:321-8. [PMID: 1325918 DOI: 10.1016/0014-4835(92)90044-s] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Na,K-ATPase function was studied in cultured bovine lens epithelial cells under confluent and non-confluent conditions. The affinity of the Na,K-ATPase for the cardiac glycoside, ouabain, differs between the confluent and non-confluent cultures. The confluent cells have a higher affinity for ouabain than do the non-confluent cells. The ouabain affinity of the confluent cells is similar to that for the Na,K-ATPase isolated from the bovine axolemma and the bovine lens cortex. The ouabain affinity of the non-confluent cells is similar to that for the Na,K-ATPase of the renal medulla and bovine lens epithelium. Similar results are not found with confluent and non-confluent MDCK cells. H2O2 treatment of confluent and non-confluent lens epithelial cell cultures has differing effects on the Na,K-ATPase function. In the confluent cell preparations, H2O2 affects K(+)-dependent dephosphorylation of the intermediate phosphoenzyme. In the non-confluent preparations. H2O2 appears to inhibit K(+)-occlusion.
Collapse
Affiliation(s)
- M H Garner
- Department of Ophthalmology, University of California, Irvine 92715
| | | | | | | | | |
Collapse
|
43
|
Fontes CF, Barrabin H, Scofano HM, Nørby JG. The role of Mg2+ and K+ in the phosphorylation of Na+,K(+)-ATPase by ATP in the presence of dimethylsulfoxide but in the absence of Na+. BIOCHIMICA ET BIOPHYSICA ACTA 1992; 1104:215-25. [PMID: 1312864 DOI: 10.1016/0005-2736(92)90153-d] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We have previously demonstrated that Na+,K(+)-ATPase can be phosphorylated by 100 microM ATP and 5 mM Mg2+ and in the absence of Na+, provided that 40% dimethylsulfoxide (Me2SO) is present. Phosphorylation was stimulated by K+ up to a steady-state level of about 50% of Etot (Barrabin et al. (1990) Biochim. Biophys. Acta 1023, 266-273). Here we describe the time-course of phosphointermediate (EP) formation and of dephosphorylation of EP at concentrations of Mg2+ from 0.1 to 5000 microM and of K+ from 0.01 to 100 mM. The results were simulated by a simplified version of the commonly accepted Albers-Post model, i.e. a 3-step reaction scheme with a phosphorylation, a dephosphorylation and an isomerization/deocclusion step. Furthermore it was necessary to include an a priori, Mg(2+)- and K(+)-independent, equilibration between two enzyme forms, only one of which (constituting 14% of Etot) reacted directly with ATP. The role of Mg(2+) was two-fold: At low Mg2+, phosphorylation was stimulated by Mg2+ due to formation of the substrate MgATP, whereas at higher concentrations it acted as an inhibitor at all three steps. The affinity for the inhibitory Mg(2+)-binding was increased several-fold, relative to that in aqueous media, by dimethylsulfoxide. K+ stimulated dephosphorylation at all Mg(2+)-concentrations, but at high, inhibitory [Mg2+], K+ also stimulated the phosphorylation reaction, increasing both the rate coefficient and the steady-state level of EP. Generally, the presence of Me2SO seems to inhibit the dephosphorylation step, the isomerization/deocclusion step, and to a lesser extent (if at all) the phosphorylation reaction, and we discuss whether this reflects that Me2SO stabilizes occluded conformations of the enzyme even in the absence of monovalent cations. The results confirm and elucidate the stimulating effect of K+ on EP formation from ATP in the absence of Na+, but they leave open the question of the molecular mechanism by which Me2SO, inhibitory Mg2+ and stimulating K+ interact with the Na+,K(+)-ATPase.
Collapse
Affiliation(s)
- C F Fontes
- Departamento de Bioquímica, ICB, CCS, Universidade Federal do Rio de Janeiro, Brasil
| | | | | | | |
Collapse
|
44
|
Repke KR, Schön R. Role of protein conformation changes and transphosphorylations in the function of Na+/K(+)-transporting adenosine triphosphatase: an attempt at an integration into the Na+/K+ pump mechanism. Biol Rev Camb Philos Soc 1992; 67:31-78. [PMID: 1318758 DOI: 10.1111/j.1469-185x.1992.tb01658.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The particular aim of the review on some basic facets of the mechanism of Na+/K(+)-transporting ATPase (Na/K-ATPase) has been to integrate the experimental findings concerning the Na(+)- and K(+)-elicited protein conformation changes and transphosphorylations into the perspective of an allosterically regulated, phosphoryl energy transferring enzyme. This has led the authors to the following summarizing evaluations. 1. The currently dominating hypothesis on a link between protein conformation changes ('E1 in equilibrium with E2') and Na+/K+ transport (the 'Albers-Post scheme') has been constructed from a variety of partial reactions and elementary steps, which, however, do not all unequivocally support the hypothesis. 2. The Na(+)- and K(+)-elicited protein conformation changes are inducible by a variety of other ligands and modulatory factors and therefore cannot be accepted as evidence for their direct participation in effecting cation translocation. 3. There is no evidence that the 'E1 in equilibrium with E2' protein conformation changes are moving Na+ and K+ across the plasma membrane. 4. The allosterically caused ER in equilibrium with ET ('E1 in equilibrium with E2') conformer transitions and the associated cation 'occlusion' in equilibrium with 'de-occlusion' processes regulate the actual catalytic power of an enzyme ensemble. 5. A host of experimental variables determines the proportion of functionally competent ER enzyme conformers and incompetent ET conformers so that any enzyme population, even at the start of a reaction, consists of an unknown mixture of these conformers. These circumstances account for the occurrence of contradictory observations and apparent failures in their comparability. 6. The modelling of the mechanism of the Na/K-ATPase and Na+/K+ pump from the results of reductionistically designed experiments requires the careful consideration of the physiological boundary conditions. 7. Na+ and K+ ligandation of Na/K-ATPase controls the geometry and chemical reactivity of the catalytic centre in the cycle of E1 in equilibrium with E2 state conversions. This is possibly effected by hinge-bending, concerted motions of three adjacent, intracellularly exposed peptide sequences, which shape open and closed forms of the catalytic centre in lock-and-key responses. 8. The Na(+)-dependent enzyme phosphorylation with ATP and the K(+)-dependent hydrolysis of the phosphoenzyme formed are integral steps in the transport mechanism of Na/K-ATPase, but the translocations of Na+ and K+ do not occur via a phosphate-cation symport mechanism.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- K R Repke
- Energy Conversion Unit, Central Institute of Molecular Biology, Berlin-Buch, Germany
| | | |
Collapse
|
45
|
Berberián G, Beaugé L. Phosphatase activity and potassium transport in liposomes with Na+,K(+)-ATPase incorporated. BIOCHIMICA ET BIOPHYSICA ACTA 1992; 1103:85-93. [PMID: 1309662 DOI: 10.1016/0005-2736(92)90060-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We have used liposomes with incorporated pig kidney Na+,K(+)-ATPase to study vanadate sensitive K(+)-K+ exchange and net K+ uptake under conditions of acetyl- and p-nitrophenyl phosphatase activities. The experiments were performed at 20 degrees C. Cytoplasmic phosphate contamination was minimized with a phosphate trapping system based on glycogen, phosphorylase a and glucose-6-phosphate dehydrogenase. In the absence of Mg2+ (no phosphatase activity) 5-10 mM p-nitrophenyl phosphate slightly stimulated K(+)-K+ exchange whereas 5-10 mM acetyl phosphate did not. In the presence of 3 mM MgCl2 (high rate of phosphatase activity) acetyl phosphate did not affect K(+)-K+ exchange whereas p-nitrophenyl phosphate induced a greater stimulation than in the absence of Mg2+; a further addition of 1 mM ADP resulted in a 35-65% inhibition of phosphatase activity with an increase in K(+)-K+ exchange, which sometimes reached the levels seen with 5 mM phosphate and 1 mM ADP. The net K+ uptake in the presence of 3 mM MgCl2 was not affected by acetyl phosphate or p-nitrophenyl phosphate, whereas it was inhibited by 5 mM phosphate (with and without 1 mM ADP). The results of this work suggest that the phosphatase reaction is not by itself associated to K+ translocation. The ADP-dependent stimulation of K(+)-K+ exchange in the presence of phosphatase activity could be explained by the overlapping of one or more step/s of the reversible phosphorylation from phosphate with the phosphatase cycle.
Collapse
Affiliation(s)
- G Berberián
- División de Biofísica, Instituto de Investigación Médica Mercedes y Martín Ferreyra, Córdoba, Argentina
| | | |
Collapse
|
46
|
Guerra M, Steinberg M, Dunham PB. Orthophosphate-promoted ouabain binding to Na/K pumps of resealed red cell ghosts. Evidence for E*P preferentially binding ouabain. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)45987-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
47
|
Arguello J, Kaplan J. Evidence for essential carboxyls in the cation-binding domain of the Na,K-ATPase. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)98732-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
48
|
ATP in equilibrium with 32Pi exchange catalyzed by plasma membrane Ca(2+)-ATPase from kidney proximal tubules. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)99229-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
49
|
Berberián G, Beaugé L. Phosphorylation of Na,K-ATPase by acetyl phosphate and inorganic phosphate. Sidedness of Na+, K+ and nucleotide interactions and related enzyme conformations. BIOCHIMICA ET BIOPHYSICA ACTA 1991; 1063:217-25. [PMID: 1849429 DOI: 10.1016/0005-2736(91)90374-h] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The effects of K+, Na+ and nucleotides (ATP or ADP) on the steady-state phosphorylation from [32P]Pi (0.5 and 1 mM) and acetyl [32P]phosphate (AcP) (5 mM) were studied in membrane fragments and in proteoliposomes with partially purified pig kidney Na,K-ATPase incorporated. The experiments were carried out at 20 degrees C and pH 7.0. In broken membranes, the Pi-induced phosphoenzyme levels were reduced to 40% by 10 mM K+ and to 20% by 10 mM K+ plus 1 mM ADP (or ATP); in the presence of 50 mM Na+, no E-P formation was detected. On the other hand, with AcP, the E-P formation was reduced by 10 mM K+ but was 30% increased by 50 mM Na+. In proteoliposomes E-P formation from Pi was (i) not influenced by 5-10 mM K+cyt or 100 mM Na+ext, (ii) about 50% reduced by 5, 10 or 100 mM K+ext and (iii) completely prevented by 50 mM Na+cyt. Enzyme phosphorylation from AcP was 30% increased by 10 mM K+cyt or 50 mM Na+cyt; these E-P were 50% reduced by 10-100 mM K+ext. However, E-P formed from AcP without K+cyt or Na+cyt was not affected by extracellular K+. Fluorescence changes of fluorescein isothiocyanate labelled membrane fragments, indicated that E-P from AcP corresponded to an E2 state in the presence of 10 mM Na+ or 2 mM K+ but to an E1 state in the absence of both cations. With pNPP, the data indicated an E1 state in the absence of Na+ and K+ and also in the presence of 20 mM Na+, and an E2 form in the presence of 5 mM K+. These results suggest that, although with some similarities, the reversible Pi phosphorylation and the phosphatase activity of the Na,K-ATPase do not share the whole reaction pathway.
Collapse
Affiliation(s)
- G Berberián
- División de Biofisica, Instituto de Investigación Médica Mercedes y Martín Ferreyra, Córdoba, Argentina
| | | |
Collapse
|
50
|
Robinson JD, Pratap PR. Na+/K(+)-ATPase: modes of inhibition by Mg2+. BIOCHIMICA ET BIOPHYSICA ACTA 1991; 1061:267-78. [PMID: 1847828 DOI: 10.1016/0005-2736(91)90292-g] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Adding 15 mM free Mg2+ decreased Vmax of the Na+/K(+)-ATPase reaction. Mg2+ also decreased the K0.5 for K+ activation, as a mixed inhibitor, but the increased inhibition at higher K+ concentrations diminished as the Na+ concentration was raised. Inhibition was greater with Rb+ but less with Li+ when these cations substituted for K+ at pH 7.5, while at pH 8.5 inhibition was generally less and essentially the same with all three cations: implying an association between inhibition and ion occlusion. On the other hand, Mg2+ increased the K0.5 for Na(+)-activation of the Na+/K(+)-ATPase and Na(+)-ATPase reactions, as a mixed inhibitor. Changing incubation pH or temperature, or adding dimethylsulfoxide affected inhibition by Mg2+ and K0.5 for Na+ diversely. Presteady-state kinetic studies on enzyme phosphorylation, however, showed competition between Mg2+ and Na+. In the K(+)-phosphatase reaction catalyzed by this enzyme Mg2+ was a (near) competitor toward K+. Adding Na+ with K+ inhibited phosphatase activity, but under these conditions 15 mM Mg2+ stimulated rather than inhibited; still higher Mg2+ concentrations then inhibited with K+ plus Na+. Similar stimulation and inhibition occurred when Mn2+ was substituted for Mg2+, although the concentrations required were an order of magnitude less. In all these experiments no ionic substitutions were made to maintain ionic strength, since alternative cations, such as choline, produced various specific effects themselves. Kinetic analyses, in terms of product inhibition by Mg2+, require Mg2+ release at multiple steps. The data are accommodated by a scheme for the Na+/K(+)-ATPase with three alternative points for release: before MgATP binding, before K+ release and before Na+ binding. The latter alternatives necessitate two Mg2+ ions bound simultaneously to the enzyme, presumably to divalent cation-sites associated with the phosphate and the nucleotide domains of the active site.
Collapse
Affiliation(s)
- J D Robinson
- Department of Pharmacology, State University of New York, Syracuse 13210
| | | |
Collapse
|