1
|
Ríos-González BB, Domán A, Ditrói T, Garai D, Crespo LD, Gerfen GJ, Furtmüller PG, Nagy P, López-Garriga J. Lactoperoxidase catalytically oxidize hydrogen sulfide via intermediate formation of sulfheme derivatives. REDOX BIOCHEMISTRY AND CHEMISTRY 2024; 8:100021. [PMID: 38993681 PMCID: PMC11238738 DOI: 10.1016/j.rbc.2024.100021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
The biological chemistry of hydrogen sulfide (H2S) with physiologically important heme proteins is in the focus of redox biology research. In this study, we investigated the interactions of lactoperoxidase (LPO) with H2S in the presence and absence of molecular dioxygen (O2) or hydrogen peroxide (H2O2). Under anaerobic conditions, native LPO forms no heme-H2S complex upon sulfide exposure. However, under aerobic conditions or in the presence of H2O2 the formation of both ferrous and ferric sulfheme (sulfLPO) derivatives was observed based on the appearances of their characteristic optical absorptions at 638 nm and 727 nm, respectively. Interestingly, we demonstrate that LPO can catalytically oxidize H2S by H2O2 via intermediate formation of relatively short-lived ferrous and ferric sulfLPO derivatives. Pilot product analyses suggested that the turnover process generates oxidized sulfide species, which include sulfateS O 4 2 - and inorganic polysulfides (H S x - ; x = 2-5). These results indicated that H2S can serve as a non-classical LPO substrate by inducing a reversible sulfheme-like modification of the heme porphyrin ring during turnover. Furthermore, electron paramagnetic resonance data suggest that H2S can act as a scavenger of H2O2 in the presence of LPO without detectable formation of any carbon-centered protein radical species, suggesting that H2S might be capable of protecting the enzyme from radical-mediated damage. We propose possible mechanisms, which explain our results as well as contrasting observations with other heme proteins, where either no sulfheme formation was observed or the generation of sulfheme derivatives provided a dead end for enzyme functions.
Collapse
Affiliation(s)
- Bessie B Ríos-González
- Department of Chemistry, University of Puerto Rico, Mayagüez Campus, P.O. Box 9019, Mayagüez, 00681-9019, Puerto Rico
| | - Andrea Domán
- Department of Molecular Immunology and Toxicology and the National Tumor Biology Laboratory, National Institute of Oncology, Ráth György street 7-9, Budapest, 1122, Hungary
| | - Tamás Ditrói
- Department of Molecular Immunology and Toxicology and the National Tumor Biology Laboratory, National Institute of Oncology, Ráth György street 7-9, Budapest, 1122, Hungary
| | - Dorottya Garai
- Department of Molecular Immunology and Toxicology and the National Tumor Biology Laboratory, National Institute of Oncology, Ráth György street 7-9, Budapest, 1122, Hungary
| | - Leishka D Crespo
- Department of Chemistry, University of Puerto Rico, Mayagüez Campus, P.O. Box 9019, Mayagüez, 00681-9019, Puerto Rico
| | - Gary J Gerfen
- Department of Physiology & Biophysics, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY, 10461, United States
| | - Paul G Furtmüller
- Institute of Biochemistry, Department of Chemistry, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, Vienna, Austria, A-1190
| | - Péter Nagy
- Department of Molecular Immunology and Toxicology and the National Tumor Biology Laboratory, National Institute of Oncology, Ráth György street 7-9, Budapest, 1122, Hungary
- Department of Anatomy and Histology, ELKH Laboratory of Redox Biology, University of Veterinary Medicine, István street 2, Budapest, 1078, Hungary
- Chemistry Institute, University of Debrecen, Egyetem square 1, Debrecen, 4032, Hungary
| | - Juan López-Garriga
- Department of Chemistry, University of Puerto Rico, Mayagüez Campus, P.O. Box 9019, Mayagüez, 00681-9019, Puerto Rico
| |
Collapse
|
2
|
Domán A, Dóka É, Garai D, Bogdándi V, Balla G, Balla J, Nagy P. Interactions of reactive sulfur species with metalloproteins. Redox Biol 2023; 60:102617. [PMID: 36738685 PMCID: PMC9926313 DOI: 10.1016/j.redox.2023.102617] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 01/28/2023] Open
Abstract
Reactive sulfur species (RSS) entail a diverse family of sulfur derivatives that have emerged as important effector molecules in H2S-mediated biological events. RSS (including H2S) can exert their biological roles via widespread interactions with metalloproteins. Metalloproteins are essential components along the metabolic route of oxygen in the body, from the transport and storage of O2, through cellular respiration, to the maintenance of redox homeostasis by elimination of reactive oxygen species (ROS). Moreover, heme peroxidases contribute to immune defense by killing pathogens using oxygen-derived H2O2 as a precursor for stronger oxidants. Coordination and redox reactions with metal centers are primary means of RSS to alter fundamental cellular functions. In addition to RSS-mediated metalloprotein functions, the reduction of high-valent metal centers by RSS results in radical formation and opens the way for subsequent per- and polysulfide formation, which may have implications in cellular protection against oxidative stress and in redox signaling. Furthermore, recent findings pointed out the potential role of RSS as substrates for mitochondrial energy production and their cytoprotective capacity, with the involvement of metalloproteins. The current review summarizes the interactions of RSS with protein metal centers and their biological implications with special emphasis on mechanistic aspects, sulfide-mediated signaling, and pathophysiological consequences. A deeper understanding of the biological actions of reactive sulfur species on a molecular level is primordial in H2S-related drug development and the advancement of redox medicine.
Collapse
Affiliation(s)
- Andrea Domán
- Department of Molecular Immunology and Toxicology and the National Tumor Biology Laboratory, National Institute of Oncology, 1122, Budapest, Hungary
| | - Éva Dóka
- Department of Molecular Immunology and Toxicology and the National Tumor Biology Laboratory, National Institute of Oncology, 1122, Budapest, Hungary
| | - Dorottya Garai
- Department of Molecular Immunology and Toxicology and the National Tumor Biology Laboratory, National Institute of Oncology, 1122, Budapest, Hungary,Kálmán Laki Doctoral School, University of Debrecen, 4012, Debrecen, Hungary
| | - Virág Bogdándi
- Department of Molecular Immunology and Toxicology and the National Tumor Biology Laboratory, National Institute of Oncology, 1122, Budapest, Hungary
| | - György Balla
- Kálmán Laki Doctoral School, University of Debrecen, 4012, Debrecen, Hungary,Department of Pediatrics, Faculty of Medicine, University of Debrecen, 4032, Debrecen, Hungary,ELKH-UD Vascular Pathophysiology Research Group, 11003, University of Debrecen, 4012, Debrecen, Hungary
| | - József Balla
- Kálmán Laki Doctoral School, University of Debrecen, 4012, Debrecen, Hungary,ELKH-UD Vascular Pathophysiology Research Group, 11003, University of Debrecen, 4012, Debrecen, Hungary,Department of Nephrology, Institute of Internal Medicine, Faculty of Medicine, University of Debrecen, 4012, Debrecen, Hungary
| | - Péter Nagy
- Department of Molecular Immunology and Toxicology and the National Tumor Biology Laboratory, National Institute of Oncology, 1122, Budapest, Hungary; Department of Anatomy and Histology, ELKH Laboratory of Redox Biology, University of Veterinary Medicine, 1078, Budapest, Hungary; Chemistry Institute, University of Debrecen, 4012, Debrecen, Hungary.
| |
Collapse
|
3
|
Álvarez-Armenta A, Pacheco-Aguilar R, López-Zavala AA, Corona-Martínez DO, Sotelo-Mundo RR, García-Orozco KD, Ramírez-Suárez JC. The greening reaction of skipjack tuna ( Katsuwonus pelamis) metmyoglobin promoted by free cysteine during thermal treatment. PeerJ 2022; 10:e13923. [PMID: 35996665 PMCID: PMC9392451 DOI: 10.7717/peerj.13923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 07/29/2022] [Indexed: 01/19/2023] Open
Abstract
Background Tuna muscle greening is a problem that occurs after heating. A hypothesis has been postulated to address this problem, involving a conserved Cys residue at position 10 (Cys-10) present on tuna myoglobin (Mb) that is exposed during the thermic treatment, forming a disulfide bond with free cysteine (Cys) in the presence of trimethylamine oxide (TMAO), resulting in the greening of the tuna Mb. Methods We present a study using skipjack tuna (Katsuwonus pelamis) metmyoglobin (MbFe(III)-H2O) where the effect of free Cys (1-6 mM), TMAO (1.33 mM), and catalase on the greening reaction (GR) was monitored by UV-vis spectrometry during thermal treatment at 60 °C for 30 min. Moreover, the participation of Cys-10 on the GR was evaluated after its blocking with N-ethymaleimide. Results The GR occurred in tuna MbFe(III)-H2O after heat treatment with free Cys, forming sulfmyoglobin (MbFe(II)-S) as the responsible pigment for the tuna greening. However, the rate constants of MbFe(II)-S production depended on Cys concentration (up to 4 mM) and occurred regardless of the TMAO presence. We postulate that two consecutive reactions involve an intermediate ferrylmyoglobin (promoted by H2O2) species with a subsequent MbFe(II)-S formation since the presence of catalase fosters the reduction of the rate reaction. Moreover, GR occurred even with blocked Cys-10 residues in tuna Mb and horse Mb (without Cys in its sequence). Discussion We found that GR is not exclusive to tuna Mb´s, and it can be promoted in other muscle systems. Moreover, Cys and thermal treatment are indispensable for promoting this pigmentation anomaly.
Collapse
Affiliation(s)
- Andrés Álvarez-Armenta
- Laboratorio de Bioquímica y Calidad de Productos Pesqueros, Tecnología de Alimentos de Origen Animal, Centro de Investigación en Alimentación y Desarrollo A. C., Hermosillo, Sonora, México
| | - Ramón Pacheco-Aguilar
- Laboratorio de Bioquímica y Calidad de Productos Pesqueros, Tecnología de Alimentos de Origen Animal, Centro de Investigación en Alimentación y Desarrollo A. C., Hermosillo, Sonora, México
| | - Alonso A. López-Zavala
- Departamento de Ciencias Químico Biológicas, Universidad de Sonora, Hermosillo, Sonora, Mexico
| | | | - Rogerio R. Sotelo-Mundo
- Laboratorio de Estructura Molecular, Tecnología de Alimentos de Origen Animal, Centro de Investigación en Alimentación y Desarrollo, A. C., Hermosillo, Sonora, México
| | - Karina D. García-Orozco
- Laboratorio de Estructura Molecular, Tecnología de Alimentos de Origen Animal, Centro de Investigación en Alimentación y Desarrollo, A. C., Hermosillo, Sonora, México
| | - Juan C. Ramírez-Suárez
- Laboratorio de Bioquímica y Calidad de Productos Pesqueros, Tecnología de Alimentos de Origen Animal, Centro de Investigación en Alimentación y Desarrollo A. C., Hermosillo, Sonora, México
| |
Collapse
|
4
|
Cirino G, Szabo C, Papapetropoulos A. Physiological roles of hydrogen sulfide in mammalian cells, tissues and organs. Physiol Rev 2022; 103:31-276. [DOI: 10.1152/physrev.00028.2021] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
H2S belongs to the class of molecules known as gasotransmitters, which also includes nitric oxide (NO) and carbon monoxide (CO). Three enzymes are recognized as endogenous sources of H2S in various cells and tissues: cystathionine g-lyase (CSE), cystathionine β-synthase (CBS) and 3-mercaptopyruvate sulfurtransferase (3-MST). The current article reviews the regulation of these enzymes as well as the pathways of their enzymatic and non-enzymatic degradation and elimination. The multiple interactions of H2S with other labile endogenous molecules (e.g. NO) and reactive oxygen species are also outlined. The various biological targets and signaling pathways are discussed, with special reference to H2S and oxidative posttranscriptional modification of proteins, the effect of H2S on channels and intracellular second messenger pathways, the regulation of gene transcription and translation and the regulation of cellular bioenergetics and metabolism. The pharmacological and molecular tools currently available to study H2S physiology are also reviewed, including their utility and limitations. In subsequent sections, the role of H2S in the regulation of various physiological and cellular functions is reviewed. The physiological role of H2S in various cell types and organ systems are overviewed. Finally, the role of H2S in the regulation of various organ functions is discussed as well as the characteristic bell-shaped biphasic effects of H2S. In addition, key pathophysiological aspects, debated areas, and future research and translational areas are identified A wide array of significant roles of H2S in the physiological regulation of all organ functions emerges from this review.
Collapse
Affiliation(s)
- Giuseppe Cirino
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Csaba Szabo
- Chair of Pharmacology, Section of Medicine, University of Fribourg, Switzerland
| | - Andreas Papapetropoulos
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece & Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation of the Academy of Athens, Greece
| |
Collapse
|
5
|
Murphy B, Bhattacharya R, Mukherjee P. Hydrogen sulfide signaling in mitochondria and disease. FASEB J 2019; 33:13098-13125. [PMID: 31648556 PMCID: PMC6894098 DOI: 10.1096/fj.201901304r] [Citation(s) in RCA: 153] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 09/17/2019] [Indexed: 02/06/2023]
Abstract
Hydrogen sulfide can signal through 3 distinct mechanisms: 1) reduction and/or direct binding of metalloprotein heme centers, 2) serving as a potent antioxidant through reactive oxygen species/reactive nitrogen species scavenging, or 3) post-translational modification of proteins by addition of a thiol (-SH) group onto reactive cysteine residues: a process known as persulfidation. Below toxic levels, hydrogen sulfide promotes mitochondrial biogenesis and function, thereby conferring protection against cellular stress. For these reasons, increases in hydrogen sulfide and hydrogen sulfide-producing enzymes have been implicated in several human disease states. This review will first summarize our current understanding of hydrogen sulfide production and metabolism, as well as its signaling mechanisms; second, this work will detail the known mechanisms of hydrogen sulfide in the mitochondria and the implications of its mitochondrial-specific impacts in several pathologic conditions.-Murphy, B., Bhattacharya, R., Mukherjee, P. Hydrogen sulfide signaling in mitochondria and disease.
Collapse
Affiliation(s)
- Brennah Murphy
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Resham Bhattacharya
- Department of Obstetrics and Gynecology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
- Peggy and Charles Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Priyabrata Mukherjee
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
- Peggy and Charles Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| |
Collapse
|
6
|
Rodriguez-Mackenzie AD, Arbelo-Lopez HD, Wymore T, Lopez-Garriga J. A reaction pathway to compound 0 intermediates in oxy-myoglobin through interactions with hydrogen sulfide and His64. J Mol Graph Model 2019; 94:107465. [PMID: 31670138 DOI: 10.1016/j.jmgm.2019.107465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/25/2019] [Accepted: 10/01/2019] [Indexed: 11/18/2022]
Abstract
Myoglobin (Mb) binds oxygen with high affinity as a low spin singlet complex and thus functions as an oxygen storage protein. Yet, hybrid Density Functional Theory/Molecular Mechanical (DFT/MM) calculations of oxy-Mb models predict that the O2 bond is much less resistant to breaking in the presence of hydrogen sulfide (H2S) compared with water. Specifically, a hydrogen atom from H2S can be transferred to the distal oxygen atom through homolytic cleavage of the S-H bond to form the intermediate Compound (Cpd) 0 structure and a thiyl radical. In the presence of a neutral His64 (Nε protonation, His64-ε) and H2S, only a metastable Cpd 0 would be formed as the active site is devoid of any additional proton donor to fully break the O2 bond. In contrast, the calculations predict that the triplet state is significantly favored over the open shell singlet diradical state throughout the entire reaction coordinate in the presence of H2S and a positively charged His64. Furthermore, a positively charged His64 can readily donate a proton to Cpd 0 to fully break the O2 bond resulting in a configuration analogous to reported reaction models of a hemoglobin mutant bound to H2O2 with H2S present. Typically, exotic techniques are required to generate Cpd 0 but under the conditions just described the intermediate is readily detected in UV-Vis spectra at room temperature. The effect is observed as a 2 nm red shift of the Soret band from 414 nm to 416 nm (pH 5.0, His64-εδ) and from 416 nm to 418 nm (pH 6.6, His64-ε).
Collapse
Affiliation(s)
| | - Hector D Arbelo-Lopez
- Department of Chemistry, University of Puerto Rico Mayaguez Campus, Mayaguez, 00680, Puerto Rico
| | - Troy Wymore
- Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109-1055, United States.
| | - Juan Lopez-Garriga
- Department of Chemistry, University of Puerto Rico Mayaguez Campus, Mayaguez, 00680, Puerto Rico.
| |
Collapse
|
7
|
Arbelo-López HD, Rodriguez-Mackenzie AD, Roman-Morales EM, Wymore T, López-Garriga J. Charge Transfer and π to π* Transitions in the Visible Spectra of Sulfheme Met Isomeric Structures. J Phys Chem B 2018; 122:4947-4955. [PMID: 29689164 DOI: 10.1021/acs.jpcb.7b12393] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Since the 1863 discovery of a new green hemoglobin derivative called "sulfhemoglobin", the nature of the characteristic 618 nm absorption band has been the subject of several hypotheses. The experimental spectra are a function of the observation time and interplay between two major sulfheme isomer concentrations (a three- and five-membered ring adduct), with the latter being the dominant isomer at longer times. Thus, time-dependent density functional theory (TDDFT) was used to calculate the sulfheme excited states and visualize the highest occupied molecular orbitals (HOMOs) and lowest unoccupied MOs (LUMOs) of both isomers in order to interpret the transitions between them. These two isomers have distinguishable a1u and a2u HOMO energies. Formation of the three-membered ring SA isomeric structure decreases the energy of the HOMO a1u and a2u orbitals compared to the unmodified heme due to the electron-withdrawing, sulfur-containing, three-membered ring. Conversely, formation of the SC isomeric structure decreases the energy of the HOMO a1u and a2u orbitals due to the electron-withdrawing, sulfur-containing, five-membered ring. The calculations reveal that the absorption spectrum within the 700 nm region arises from a mixture of MOs but can be characterized as π to π* transitions, while the 600 nm region is characterized by π to dπ (d yz, d xz) transitions having components of a deoxy-like derivative.
Collapse
Affiliation(s)
- Hector D Arbelo-López
- Chemistry Department , University of Puerto Rico Mayagüez Campus , Mayagüez , Puerto Rico
| | | | - Elddie M Roman-Morales
- Chemistry Department , University of Puerto Rico Mayagüez Campus , Mayagüez , Puerto Rico
| | - Troy Wymore
- Chemistry Department , University of Michigan , Ann Arbor , Michigan , United States
| | - Juan López-Garriga
- Chemistry Department , University of Puerto Rico Mayagüez Campus , Mayagüez , Puerto Rico
| |
Collapse
|
8
|
Lin YW. Structure and function of heme proteins regulated by diverse post-translational modifications. Arch Biochem Biophys 2018; 641:1-30. [PMID: 29407792 DOI: 10.1016/j.abb.2018.01.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 01/10/2018] [Accepted: 01/13/2018] [Indexed: 01/08/2023]
|
9
|
Filipovic MR, Zivanovic J, Alvarez B, Banerjee R. Chemical Biology of H 2S Signaling through Persulfidation. Chem Rev 2018; 118:1253-1337. [PMID: 29112440 PMCID: PMC6029264 DOI: 10.1021/acs.chemrev.7b00205] [Citation(s) in RCA: 643] [Impact Index Per Article: 91.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Signaling by H2S is proposed to occur via persulfidation, a posttranslational modification of cysteine residues (RSH) to persulfides (RSSH). Persulfidation provides a framework for understanding the physiological and pharmacological effects of H2S. Due to the inherent instability of persulfides, their chemistry is understudied. In this review, we discuss the biologically relevant chemistry of H2S and the enzymatic routes for its production and oxidation. We cover the chemical biology of persulfides and the chemical probes for detecting them. We conclude by discussing the roles ascribed to protein persulfidation in cell signaling pathways.
Collapse
Affiliation(s)
- Milos R. Filipovic
- Univeristy of Bordeaux, IBGC, UMR 5095, F-33077 Bordeaux, France
- CNRS, IBGC, UMR 5095, F-33077 Bordeaux, France
| | - Jasmina Zivanovic
- Univeristy of Bordeaux, IBGC, UMR 5095, F-33077 Bordeaux, France
- CNRS, IBGC, UMR 5095, F-33077 Bordeaux, France
| | - Beatriz Alvarez
- Laboratorio de Enzimología, Facultad de Ciencias and Center for Free Radical and Biomedical Research, Universidad de la Republica, 11400 Montevideo, Uruguay
| | - Ruma Banerjee
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109-0600, United States
| |
Collapse
|
10
|
Meininger DJ, Arman HD, Tonzetich ZJ. Synthesis, characterization, and binding affinity of hydrosulfide complexes of synthetic iron(II) porphyrinates. J Inorg Biochem 2017; 167:142-149. [DOI: 10.1016/j.jinorgbio.2016.08.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 08/23/2016] [Accepted: 08/25/2016] [Indexed: 01/23/2023]
|
11
|
Román-Morales E, López-Alfonzo E, Pietri R, López-Garriga J. Sulfmyoglobin Conformational Change: A Role in the Decrease of Oxy-Myoglobin Functionality. Biochem Biophys Rep 2016; 7:386-393. [PMID: 28138567 PMCID: PMC5269605 DOI: 10.1016/j.bbrep.2016.07.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 06/28/2016] [Accepted: 07/01/2016] [Indexed: 12/27/2022] Open
Abstract
This work is focused at understanding the interaction of H2S with Myoglobin (Mb), in particular the Sulfmyoglobin (SMb) product, whose physiological role is controversial and not well understood. The scattering curves, Guinier, Kratky, Porod and P(r) plots were analyzed for oxy-Mb and oxy-Hemoglobin I (oxyHbI) in the absence and presence of H2S, using Small and Wide Angle X-ray Scattering (SAXS/WAXS) technique. Three dimensional models were also generated from the SAXS/WAXS data. The results show that SMb formation, produced by oxyMb and H2S interaction, induces a change in the protein conformation where its envelope has a very small cleft and the protein is more flexible, less rigid and compact. Based on the direct relationship between Mb's structural conformation and its functionality, we suggest that the conformational change observed upon SMb formation plays a contribution to the protein decrease in O2 affinity and, therefore, on its functionality.
Collapse
Affiliation(s)
| | | | | | - Juan López-Garriga
- Department of Chemistry, University of Puerto Rico, Mayagüez Campus, PO BOX 9019, Mayagüez, Puerto Rico 00681‐9019
| |
Collapse
|
12
|
Arbelo-Lopez HD, Simakov NA, Smith JC, Lopez-Garriga J, Wymore T. Homolytic Cleavage of Both Heme-Bound Hydrogen Peroxide and Hydrogen Sulfide Leads to the Formation of Sulfheme. J Phys Chem B 2016; 120:7319-31. [DOI: 10.1021/acs.jpcb.6b02839] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Hector D. Arbelo-Lopez
- Chemistry
Department, University of Puerto Rico, Mayagüez Campus, Mayagüez 00681, Puerto Rico
| | - Nikolay A. Simakov
- Center
for Computational Research, University of Buffalo, Buffalo, New York 14203, United States
| | - Jeremy C. Smith
- UT/ORNL
Center for Molecular Biophysics, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6309, United States
- Department
of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Juan Lopez-Garriga
- Chemistry
Department, University of Puerto Rico, Mayagüez Campus, Mayagüez 00681, Puerto Rico
| | - Troy Wymore
- Department
of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996, United States
| |
Collapse
|
13
|
Spolitak T, Hollenberg PF, Ballou DP. Oxidative hemoglobin reactions: Applications to drug metabolism. Arch Biochem Biophys 2016; 600:33-46. [DOI: 10.1016/j.abb.2016.04.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 04/05/2016] [Accepted: 04/14/2016] [Indexed: 01/27/2023]
|
14
|
Hartle MD, Prell JS, Pluth MD. Spectroscopic investigations into the binding of hydrogen sulfide to synthetic picket-fence porphyrins. Dalton Trans 2016; 45:4843-53. [DOI: 10.1039/c5dt04563k] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The picket-fence porphyrin system is used a model for a sterically-constrained, protected binding environment to study H2S and HS−ligation.
Collapse
Affiliation(s)
- Matthew D. Hartle
- Department of Chemistry and Biochemistry
- Materials Science Institute
- Institute of Molecular Biology
- University of Oregon
- Eugene
| | - James S. Prell
- Department of Chemistry and Biochemistry
- Materials Science Institute
- Institute of Molecular Biology
- University of Oregon
- Eugene
| | - Michael D. Pluth
- Department of Chemistry and Biochemistry
- Materials Science Institute
- Institute of Molecular Biology
- University of Oregon
- Eugene
| |
Collapse
|
15
|
Ríos-González BB, Román-Morales EM, Pietri R, López-Garriga J. Hydrogen sulfide activation in hemeproteins: the sulfheme scenario. J Inorg Biochem 2014; 133:78-86. [PMID: 24513534 DOI: 10.1016/j.jinorgbio.2014.01.013] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 01/14/2014] [Accepted: 01/14/2014] [Indexed: 12/24/2022]
Abstract
Traditionally known as a toxic gas, hydrogen sulfide (H2S) is now recognized as an important biological molecule involved in numerous physiological functions. Like nitric oxide (NO) and carbon monoxide (CO), H2S is produced endogenously in tissues and cells and can modulate biological processes by acting on target proteins. For example, interaction of H2S with the oxygenated form of human hemoglobin and myoglobin produces a sulfheme protein complex that has been implicated in H2S degradation. The presence of this sulfheme derivative has also been used as a marker for endogenous H2S synthesis and metabolism. Remarkably, human catalases and peroxidases also generate this sulfheme product. In this review, we describe the structural and functional aspects of the sulfheme derivative in these proteins and postulate a generalized mechanism for sulfheme protein formation. We also evaluate the possible physiological function of this complex and highlight the issues that remain to be assessed to determine the role of sulfheme proteins in H2S metabolism, detection and physiology.
Collapse
Affiliation(s)
- Bessie B Ríos-González
- Department of Chemistry, University of Puerto Rico, Mayagüez Campus, PO Box 9019, Mayagüez 00681-9019, Puerto Rico
| | - Elddie M Román-Morales
- Department of Chemistry, University of Puerto Rico, Mayagüez Campus, PO Box 9019, Mayagüez 00681-9019, Puerto Rico
| | - Ruth Pietri
- Department of Chemistry, University of Puerto Rico, Mayagüez Campus, PO Box 9019, Mayagüez 00681-9019, Puerto Rico
| | - Juan López-Garriga
- Department of Chemistry, University of Puerto Rico, Mayagüez Campus, PO Box 9019, Mayagüez 00681-9019, Puerto Rico.
| |
Collapse
|
16
|
Du Y, Liu G, Yan Y, Huang D, Luo W, Martinkova M, Man P, Shimizu T. Conversion of a heme-based oxygen sensor to a heme oxygenase by hydrogen sulfide: effects of mutations in the heme distal side of a heme-based oxygen sensor phosphodiesterase (Ec DOS). Biometals 2013; 26:839-52. [PMID: 23736976 DOI: 10.1007/s10534-013-9640-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 05/27/2013] [Indexed: 02/05/2023]
Abstract
The heme-based oxygen-sensor phosphodiesterase from Escherichia coli (Ec DOS), is composed of an N-terminal heme-bound oxygen sensing domain and a C-terminal catalytic domain. Oxygen (O2) binding to the heme Fe(II) complex in Ec DOS substantially enhances catalysis. Addition of hydrogen sulfide (H2S) to the heme Fe(III) complex in Ec DOS also remarkably stimulates catalysis in part due to the heme Fe(III)-SH and heme Fe(II)-O2 complexes formed by H2S. In this study, we examined the roles of the heme distal amino acids, M95 (the axial ligand of the heme Fe(II) complex) and R97 (the O2 binding site in the heme Fe(II)-O2 complex) of the isolated heme-binding domain of Ec DOS (Ec DOS-PAS) in the binding of H2S under aerobic conditions. Interestingly, R97A and R97I mutant proteins formed an oxygen-incorporated modified heme, verdoheme, following addition of H2S combined with H2O2 generated by the reactions. Time-dependent mass spectroscopic data corroborated the findings. In contrast, H2S did not interact with the heme Fe(III) complex of M95H and R97E mutants. Thus, M95 and/or R97 on the heme distal side in Ec DOS-PAS significantly contribute to the interaction of H2S with the Fe(III) heme complex and also to the modification of the heme Fe(III) complex with reactive oxygen species. Importantly, mutations of the O2 binding site of the heme protein converted its function from oxygen sensor to that of a heme oxygenase. This study establishes the novel role of H2S in modifying the heme iron complex to form verdoheme with the aid of reactive oxygen species.
Collapse
Affiliation(s)
- Yongming Du
- Department of Cell Biology, Shantou University Medical College, 22 Xinling Road, Shantou, 515041, Guangdong, China
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Pietri R, Román-Morales E, López-Garriga J. Hydrogen sulfide and hemeproteins: knowledge and mysteries. Antioxid Redox Signal 2011; 15:393-404. [PMID: 21050142 PMCID: PMC3118656 DOI: 10.1089/ars.2010.3698] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Historically, hydrogen sulfide (H(2)S) has been regarded as a poisonous gas, with a wide spectrum of toxic effects. However, like ·NO and CO, H(2)S is now referred to as a signaling gas involved in numerous physiological processes. The list of reports highlighting the physiological effects of H(2)S is rapidly expanding and several drug candidates are now being developed. As with ·NO and CO, not a single H(2)S target responsible for all the biological effects has been found till now. Nevertheless, it has been suggested that H(2)S can bind to hemeproteins, inducing different responses that can mediate its effects. For instance, the interaction of H(2)S with cytochrome c oxidase has been associated with the activation of the ATP-sensitive potassium channels, regulating muscle relaxation. Inhibition of cytochrome c oxidase by H(2)S has also been related to inducing a hibernation-like state. Although H(2)S might induce these effects by interacting with hemeproteins, the mechanisms underlying these interactions are obscure. Therefore, in this review we discuss the current state of knowledge about the interaction of H(2)S with vertebrate and invertebrate hemeproteins and postulate a generalized mechanism. Our goal is to stimulate further research aimed at evaluating plausible mechanisms that explain H(2)S reactivity with hemeproteins.
Collapse
Affiliation(s)
- Ruth Pietri
- Department of Chemistry, University of Puerto Rico, Mayagüez, Puerto Rico
| | | | | |
Collapse
|
18
|
Reeder BJ, Wilson MT. Desferrioxamine Inhibits Production of Cytotoxic Heme to Protein Cross-Linked Myoglobin: A Mechanism to Protect against Oxidative Stress without Iron Chelation. Chem Res Toxicol 2005; 18:1004-11. [PMID: 15962935 DOI: 10.1021/tx049660y] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The heme group of myoglobin can form a covalent bond to the protein when met (ferric) myoglobin is reacted with peroxides under acidic conditions. This heme to protein cross-linked species is highly pro-oxidant and found in the urine of patients with rhabdomyolytic-associated acute renal failure. Desferrioxamine, an iron-chelating agent used in the treatment of iron overload, is reported to be partially effective at preventing kidney failure following rhabdomyolysis. In this article, we show that in addition to its capacity as an iron chelator, desferroxamine can inhibit the peroxide-induced formation of heme to protein cross-linked myoglobin and decreases the pro-oxidant activity of both native and heme to protein cross-linked myoglobin. The mechanism of peroxidation and of heme to protein cross-linking involves the formation of ferryl intermediate (Fe(4+)=O(2-)), and it is by the reduction of this intermediate to the ferric form that desferrioxamine can exert inhibitory effects. The concentrations at which desferrioxamine inhibits the formation of heme to protein cross-linked myoglobin and prevents the pro-oxidant activity of native and oxidatively modified myoglobins are comparable to the concentrations used for in vivo studies of iron-related oxidative stress. Thus, the ameliorative effects of treatment of posthemolytic events by desferrioxamine cannot be exclusively assigned to its ability to chelate free iron.
Collapse
Affiliation(s)
- Brandon J Reeder
- Department of Biological Sciences, Central Campus, University of Essex, Wivenhoe Park, Colchester, Essex, CO4 3SQ, United Kingdom.
| | | |
Collapse
|
19
|
Boccini F, Herold S. Mechanistic studies of the oxidation of oxyhemoglobin by peroxynitrite. Biochemistry 2005; 43:16393-404. [PMID: 15610034 DOI: 10.1021/bi0482250] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The strong oxidizing and nitrating agent peroxynitrite has been shown to diffuse into erythrocytes and oxidize oxyhemoglobin (oxyHb) to metHb. Because the value of the second-order rate constant for this reaction is on the order of 10(4) M(-)(1) s(-)(1) and the oxyHb concentration is about 20 mM (expressed per heme), this process is rather fast and oxyHb is considered a sink for peroxynitrite. In this work, we showed that the reaction of oxyHb with peroxynitrite, both in the presence and absence of CO(2), proceeds via the formation of oxoiron(iv)hemoglobin (ferrylHb), which in a second step is reduced to metHb and nitrate by its reaction with NO(2)(*). In the presence of physiological relevant amounts of CO(2), ferrylHb is generated by the reaction of NO(2)(*) with the coordinated superoxide of oxyHb (HbFe(III)O(2)(*)(-)). This reaction proceeds via formation of a peroxynitrato-metHb complex (HbFe(III)OONO(2)), which decomposes to generate the one-electron oxidized form of ferrylHb, the oxoiron(iv) form of hemoglobin with a radical localized on the globin. CO(3)(*)(-), the second radical formed from the reaction of peroxynitrite with CO(2), is also scavenged efficiently by oxyHb, in a reaction that finally leads to metHb production. Taken together, our results indicate that oxyHb not only scavenges peroxynitrite but also the radicals produced by its decomposition.
Collapse
Affiliation(s)
- Francesca Boccini
- Laboratorium für Anorganische Chemie, Eidgenössische Technische Hochschule, ETH Hönggerberg, CH-8093 Zürich, Switzerland
| | | |
Collapse
|
20
|
Christensen AB, Colacino JM, Bonaventura C. Functional and biochemical properties of the hemoglobins of the burrowing brittle star Hemipholis elongata say (Echinodermata, Ophiuroidea). THE BIOLOGICAL BULLETIN 2003; 205:54-65. [PMID: 12917222 DOI: 10.2307/1543445] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The burrowing brittle star Hemipholis elongata (Say) possesses hemoglobin-containing coelomocytes (RBCs) in its water vascular system. The RBCs, which circulate between the arms and body, are thought to play a role in oxygen transport. The hemoglobin of adult animals has a moderate affinity for oxygen (P(50) = 11.4 mm Hg at pH 8, 20 degrees C, measured in cellulo) and exhibits cooperativity (Hill coefficient > 1.7). The hemoglobin of juveniles has a higher affinity (P(50) = 2.3 mmHg at pH 8.0, 20 degrees C) and also exhibits cooperativity. The oxygen-binding properties of the hemoglobin are relatively insensitive to pH, temperature, and hydrogen sulfide. Adult hemoglobin is a heterogeneous mixture composed of three major fractions. The combined results of electrospray mass spectrometry and oxygen-binding experiments performed on purified fractions indicate that the native hemoglobin is in the form of homopolymers. A partial amino acid sequence (about 40 amino acids) of adult hemoglobin reveals little homology with holothurian hemoglobins.
Collapse
|
21
|
Abstract
We have identified a new human hemoglobin that we call histoglobin because it is expressed in a wide array of tissues. Histoglobin shares less than 30% identity with the other human hemoglobins, and the gene contains an intron in an unprecedented location. Spectroscopic and kinetic experiments with recombinant human histoglobin indicate that it is a hexacoordinate hemoglobin with significantly different ligand binding characteristics than the other human hexacoordinate hemoglobin, neuroglobin. In contrast to the very high oxygen affinities displayed by most hexacoordinate hemoglobins, the biophysical characteristics of histoglobin indicate that it could facilitate oxygen transport. The discovery of histoglobin demonstrates that humans, like plants, differentially express multiple hexacoordinate hemoglobins.
Collapse
Affiliation(s)
- James T Trent
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa 50011, USA
| | | |
Collapse
|
22
|
Cheesman MR, Little PJ, Berks BC. Novel heme ligation in a c-type cytochrome involved in thiosulfate oxidation: EPR and MCD of SoxAX from Rhodovulum sulfidophilum. Biochemistry 2001; 40:10562-9. [PMID: 11523998 DOI: 10.1021/bi0100081] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The SoxAX complex of the bacterium Rhodovulum sulfidophilum is a heterodimeric c-type cytochrome that plays an essential role in photosynthetic thiosulfate and sulfide oxidation. The three heme sites of SoxAX have been analyzed using electronic absorption, electron paramagnetic resonance, and magnetic circular dichroism spectroscopies. Heme-3 in the ferric state is characterized by a Large g(max) EPR signal and has histidine and methionine axial heme iron ligands which are retained on reduction to the ferrous state. Hemes-1 and -2 both have thiolate plus nitrogenous ligand sets in the ferric state and give rise to rhombic EPR spectra. Heme-1, whose ligands derive from cysteinate and histidine residues, remains ferric in the presence of dithionite ion. Ferric heme-2 exists with a preparation-dependent mixture of two different ligand sets, one being cysteinate/histidine, the other an unidentified pair with a weaker crystal-field strength. Upon reduction of the SoxAX complex with dithionite, a change occurs in the ligands of heme-2 in which the thiolate is either protonated or replaced by an unidentified ligand. Sequence analysis places the histidine/methionine-coordinated heme in SoxX and the thiolate-liganded hemes in SoxA. SoxAX is the first naturally occurring c-type cytochrome in which a thiolate-coordinated heme has been identified.
Collapse
Affiliation(s)
- M R Cheesman
- School of Chemical Sciences, Centre for Metalloprotein Spectroscopy and Biology, University of East Anglia, Norwich NR4 7TJ, UK.
| | | | | |
Collapse
|
23
|
Kinetic study of CO and O2 binding to horse heart myoglobin reconstituted with synthetic iron chlorin green hemes. Inorganica Chim Acta 2000. [DOI: 10.1016/s0020-1693(00)00320-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
24
|
Exner M, Herold S. Kinetic and mechanistic studies of the peroxynitrite-mediated oxidation of oxymyoglobin and oxyhemoglobin. Chem Res Toxicol 2000; 13:287-93. [PMID: 10775329 DOI: 10.1021/tx990201k] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Kinetic studies of the peroxynitrite-mediated oxidations of oxymyoglobin (MbFeO(2)) and oxyhemoglobin (HbFeO(2)) showed that the mechanisms of these reactions are more complex than what had previously been reported; both reactions proceed in two steps. For myoglobin, we found that the small amount of deoxymyoglobin (MbFe(II)) which is in equilibrium with MbFeO(2) is first oxidized by peroxynitrous acid to ferryl myoglobin (MbFe(IV)=O). Then, in the second step, MbFe(IV)=O is reduced by peroxynitrous acid to metmyoglobin (metMb). The second-order rate constant values obtained at pH 7.3 and 20 degrees C for the two steps are (5.4 +/- 0.2) x 10(4) and (2.2 +/- 0.1) x 10(4) M(-)(1) s(-)(1), respectively. Analogous studies with hemoglobin suggest that its reaction with peroxynitrite follows the same mechanism. In this case, the second-order rate constant values measured at pH 7.0 and 20 degrees C for the two steps are (8.8 +/- 0.4) x 10(4) and (9.4 +/- 0.7) x 10(4) M(-)(1) s(-)(1), respectively. A possible mechanism in the absence as well as in the presence of CO(2) and the relevance of these reactions in vivo are discussed.
Collapse
Affiliation(s)
- M Exner
- Laboratorium für Anorganische Chemie, Eidgenössische Technische Hochschule, Universitätsstrasse 6, CH-8092 Zürich, Switzerland
| | | |
Collapse
|
25
|
|
26
|
Minetti M, Scorza G, Pietraforte D. Peroxynitrite induces long-lived tyrosyl radical(s) in oxyhemoglobin of red blood cells through a reaction involving CO2 and a ferryl species. Biochemistry 1999; 38:2078-87. [PMID: 10026290 DOI: 10.1021/bi982311g] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Peroxynitrite-mediated oxidative chemistry is currently the subject of intense investigation owing to the toxic side effects associated with nitric oxide overproduction. Using direct electron spin resonance spectroscopy (ESR) at 37 degrees C, we observed that in human erythrocytes peroxynitrite induced a long-lived singlet signal at g = 2.004 arising from hemoglobin. This signal was detectable in oxygenated red blood cells and in purified oxyhemoglobin but significantly decreased after deoxygenation. The formation of the g = 2.004 radical required the presence of CO2 and pH values higher than the pKa of peroxynitrous acid (pKa = 6.8), indicating the involvement of a secondary oxidant formed in the interaction of ONOO- with CO2. The g = 2.004 radical yield leveled off at a 1:1 ratio between peroxynitrite and oxyhemoglobin, while CO-hemoglobin formed less radical and methemoglobin did not form the radical at all. These results suggest that the actual oxidant is or is derived from the ONOOCO2- adduct interacting with oxygenated FeII-heme. Spin trapping with 2-methyl-2-nitrosopropane (MNP) of the g = 2.004 radical and subsequent proteolytic digestion of the MNP/hemoglobin adduct revealed the trapping of a tyrosyl-centered radical(s). A similar long-lived unresolved g = 2.004 singlet signal is a common feature of methemoglobin/H2O2 and metmyoglobin/H2O2 systems. We show by spin trapping that these g = 2.004 signals generated by H2O2 also indicated trapping of radicals centered on tyrosine residues. Analysis of visible spectra of hemoglobin treated with peroxynitrite revealed that, in the presence of CO2, oxyhemoglobin was oxidized to a ferryl species, which rapidly decayed to lower iron oxidation states. The g = 2.004 radical may be an intermediate formed during ferrylhemoglobin decay. Our results describe a new pathway of peroxynitrite-dependent hemoglobin oxidation of dominating importance in CO2-containing biological systems and identify the g = 2.004 radical(s) formed in the process as tyrosyl radical(s).
Collapse
Affiliation(s)
- M Minetti
- Membrane Unit, Department of Cell Biology, Istituto Superiore di Sanità, Roma, Italy.
| | | | | |
Collapse
|
27
|
|
28
|
Puppo A, Davies MJ. The reactivity of thiol compounds with different redox states of leghaemoglobin: evidence for competing reduction and addition pathways. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1246:74-81. [PMID: 7811734 DOI: 10.1016/0167-4838(95)00184-v] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Reaction of the ferric form of leghaemoglobin with hydrogen peroxide has been previously shown to give rise to an iron(IV)-oxo (ferryl) species, and a protein radical. Inclusion of a variety of thiol compounds in this system is shown to lead to rapid loss of the iron(IV)-oxo species and the regeneration of the ferric form and/or the formation of novel sulf species formed by nucleophilic attack of the thiol group on the tetrapyrrole ring. The reduction process also results in the generation of thiyl radicals which have been detected by EPR spin trapping. The relative yields of the products produced by these two competing pathways is shown to be highly dependent on the steric and electronic characteristics of the thiol compound. Evidence has also been obtained, in the absence of hydrogen peroxide, for both the reduction of the ferric form of the protein to the oxy-ferrous form, via a process believed to involve the deoxy-ferrous species, and the formation of sulf-leghaemoglobin species. Both of these pathways are again highly dependent on the structure of the thiol, and the former also results in the generation of thiyl radicals. Inclusion of the sulfide anion in place of the organic thiols results in somewhat different behaviour, in that this species appears to both reduce the iron centre and form a complex with the iron atom. This ligation process is reversible, and the sulfide complex is shown to react readily with both strong oxidizing and reducing agents. The behaviour of this protein, which is structurally related to myoglobin, is dramatically different to that demonstrated by myoglobin; this is rationalized in terms of the much more open heme site of leghaemoglobins, and the presence of an electronic gate which hinders access by negatively charged molecules. The contribution of these processes to the maintenance of the leghaemoglobin proteins in the oxy-ferrous form in vivo and the binding of oxygen is discussed.
Collapse
Affiliation(s)
- A Puppo
- Laboratoire de Biologie Végétale et Microbiologie, CNRS URA 1114, Université de Nice-Sophia Antipolis, France
| | | |
Collapse
|
29
|
Chatfield MJ, La Mar GN. 1H nuclear magnetic resonance study of the prosthetic group in sulfhemoglobin. Arch Biochem Biophys 1992; 295:289-96. [PMID: 1316736 DOI: 10.1016/0003-9861(92)90520-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The molecular and electronic structure of the modified prosthetic group of sulfhemoglobin (SHb) was investigated by 1H NMR for the low-spin ferric cyano-met and high-spin ferrous deoxy sulfhemoglobin complex. The 1H NMR resonances of the two subunits in the cyano-met SHb complex were differentiated on the basis of the differential stability toward regeneration of native subunits. The subunit origin for the two sets of resonances was established by formation of the sulfglobin protein for the isolated alpha-chain prior to assembling with the native beta-subunit to yield a tetramer with sulfhemin in the alpha-subunits. The subunit peak assignments establish that it is the beta-subunit of SHb which regenerates more rapidly to native protein. The hyperfine shifted sulfhemin peaks were assigned based on steady-state nuclear Overhauser effects which demonstrated that similarly hyperfine shifted peaks exhibit the same dipolar connectivities observed in the analogous sulfmyoglobin complex. Hence it is concluded that pyrrole B is the site of reaction in both hemoglobin and myoglobin. The initially formed SHb complex failed to equilibrate to yield a complex with a sulfhemin sufficiently stable to extraction as found previously for sulfmyoglobin. However, apoHb readily bound the green sulfhemin extracted from the terminal alkaline equilibration product of sulfmyoglobin. The inhibition on the equilibration to the alkaline form with the exocyclic thiolene ring is attributed to the interaction with Val FG5. The observations of the same dipolar connectivities among similarly hyperfine shifted peaks in the directly prepared and reconstituted SHb complexes further support the same structure for the sulfhemin in sulfmyoglobin and SHb. The strongly hyperfine shifted peaks in the deoxy form of both SHb complexes were found very similar to those of the analogous sulfmyoglobin complexes. The proximal His labile ring proton signal appears to experience a 5- to 10-ppm decrease upon conversion of a native globin to sulfglobin. This attenuation may provide a probe for differentiating chlorins and hemins in globin pockets.
Collapse
Affiliation(s)
- M J Chatfield
- Department of Chemistry, University of California, Davis 95616
| | | |
Collapse
|
30
|
Romero FJ, Ordoñez I, Arduini A, Cadenas E. The reactivity of thiols and disulfides with different redox states of myoglobin. Redox and addition reactions and formation of thiyl radical intermediates. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)45999-6] [Citation(s) in RCA: 90] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|
31
|
|
32
|
|
33
|
Abstract
The irreversible inactivation of bovine lactoperoxidase by thiocarbamide goitrogens was measured, and the kinetics were consistent with a mechanism-based (suicide) mode. Sulfide ion inactivated, 2-mercaptobenzimidazole-inactivated, and 1-methyl-2-mercaptoimidazole-inactivated lactoperoxidases have different visible spectra, suggesting different products were formed. The results support a mechanism in which reactive intermediates are formed by S-oxygenation reactions catalyzed by lactoperoxidase compound II. It is proposed that the reaction of electron-deficient intermediates with the heme prosthetic group is responsible for the observed spectral changes and inactivation by thiocarbamides.
Collapse
|
34
|
Chatfield MJ, La Mar GN, Balch AL, Lecomte JT. Multiple forms of sulfmyoglobin as detected by 1H nuclear magnetic resonance spectroscopy. Biochem Biophys Res Commun 1986; 135:309-15. [PMID: 3954774 DOI: 10.1016/0006-291x(86)90978-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The proton nuclear magnetic resonance spectrum of sulfmyoglobin prepared in standard fashion reveals the presence of three forms, A, B, and C, with different chemical reactivity. Conditions for some interconversions of these forms are given. The 1H NMR spectra of the different forms show similar patterns. It appears that the differences between forms involve chemical modification on the porphyrin periphery. The altered heme can be extracted from FeIII(CN) sulfmyoglobin C to give a stable green substance.
Collapse
|
35
|
Andersson LA, Loehr TM, Lim AR, Mauk AG. Sulfmyoglobin. Resonance Raman spectroscopic evidence for an iron-chlorin prosthetic group. J Biol Chem 1984. [DOI: 10.1016/s0021-9258(17)42555-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
36
|
Nakamura S, Nakamura M, Yamazaki I, Morrison M. Reactions of ferryl lactoperoxidase (compound II) with sulfide and sulfhydryl compounds. J Biol Chem 1984. [DOI: 10.1016/s0021-9258(17)39840-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
37
|
Tamura M, Oshino N, Chance B, Silver IA. Optical measurements of intracellular oxygen concentration of rat heart in vitro. Arch Biochem Biophys 1978; 191:8-22. [PMID: 736575 DOI: 10.1016/0003-9861(78)90062-0] [Citation(s) in RCA: 158] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
38
|
|
39
|
Carrico R, Peisach J, Alben J. The preparation and some physical properties of sulfhemoglobin. J Biol Chem 1978. [DOI: 10.1016/s0021-9258(17)38086-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
40
|
Dijkhuizen P, Buursma A, Gerding AM, Zijlstra WG. Sulfhaemoglobin. Absorption spectrum, millimolar extinction coefficient at lambda = 620 nm, and interference with the determination of haemoglobin and of haemiglobincy anide. Clin Chim Acta 1977; 78:479-87. [PMID: 884871 DOI: 10.1016/0009-8981(77)90081-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The spectrophotometry properties of sulfhaemoglobin (SHb) and some derivatives were investigated using an improved technique for measuring the SHb fraction induced in human blood samples. The millimolar extinction coefficient of SHb at lambda = 620 nm was found to be 20.8 (S.D. 1.48; S.E. = 0.44; n = 11). In addition it was demonstrated that the spectral changes occurring in SHb containing haemoglobin solutions upon the addition of KCN, K3Fe(CN)6 and K3Fe(CN)6 +KCN invalidate the KCN addition method for the determination of haemiglobin. The influence of clinically occurring SHb fractions on the internationally standarized total haemoglobin determination were shown to be insignificant.
Collapse
|
41
|
|
42
|
Peisach J, Blumberg WE, Adler A. Electron paramagnetic resonance studies of iron porphin and chlorin systems. Ann N Y Acad Sci 1973; 206:310-27. [PMID: 4356182 DOI: 10.1111/j.1749-6632.1973.tb43219.x] [Citation(s) in RCA: 168] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
43
|
|
44
|
|