1
|
Bolger GB. Therapeutic Targets and Precision Medicine in COPD: Inflammation, Ion Channels, Both, or Neither? Int J Mol Sci 2023; 24:17363. [PMID: 38139192 PMCID: PMC10744217 DOI: 10.3390/ijms242417363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/04/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
The development of a wider range of therapeutic options is a key objective in drug discovery for chronic obstructive pulmonary disease (COPD). Fundamental advances in lung biology have the potential to greatly expand the number of therapeutic targets in COPD. The recently reported successful Phase 3 clinical trial of the first biologic agent for COPD, the monoclonal antibody dupilumab, adds additional support to the importance of targeting inflammatory pathways in COPD. However, numerous other cellular mechanisms are important targets in COPD therapeutics, including airway remodeling, the CFTR ion channel, and mucociliary function. Some of these emerging targets can be exploited by the expanded use of existing COPD drugs, such as roflumilast, while targeting others will require the development of novel molecular entities. The identification of additional therapeutic targets and agents has the potential to greatly expand the value of using clinical and biomarker data to classify COPD into specific subsets, each of which can be predictive of an enhanced response to specific subset(s) of targeted therapies. The author reviews established and emerging drug targets in COPD and uses this as a framework to define a novel classification of COPD based on therapeutic targets. This novel classification has the potential to enhance precision medicine in COPD patient care and to accelerate clinical trials and pre-clinical drug discovery efforts.
Collapse
Affiliation(s)
- Graeme B Bolger
- BZI Pharma LLC, 1500 1st Ave N., Unit 36, Birmingham, AL 35203-1872, USA
| |
Collapse
|
2
|
Zhang Z, Liu F, Chen J. Conformational Changes of CFTR upon Phosphorylation and ATP Binding. Cell 2017; 170:483-491.e8. [PMID: 28735752 DOI: 10.1016/j.cell.2017.06.041] [Citation(s) in RCA: 180] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 06/21/2017] [Accepted: 06/26/2017] [Indexed: 02/01/2023]
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) is an anion channel evolved from an ATP-binding cassette transporter. CFTR channel gating is strictly coupled to phosphorylation and ATP hydrolysis. Previously, we reported essentially identical structures of zebrafish and human CFTR in the dephosphorylated, ATP-free form. Here, we present the structure of zebrafish CFTR in the phosphorylated, ATP-bound conformation, determined by cryoelectron microscopy to 3.4 Å resolution. Comparison of the two conformations shows major structural rearrangements leading to channel opening. The phosphorylated regulatory domain is disengaged from its inhibitory position; the nucleotide-binding domains (NBDs) form a "head-to-tail" dimer upon binding ATP; and the cytoplasmic pathway, found closed off in other ATP-binding cassette transporters, is cracked open, consistent with CFTR's unique channel function. Unexpectedly, the extracellular mouth of the ion pore remains closed, indicating that local movements of the transmembrane helices can control ion access to the pore even in the NBD-dimerized conformation.
Collapse
Affiliation(s)
- Zhe Zhang
- Laboratory of Membrane Biophysics and Biology, The Rockefeller University, New York, NY, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Fangyu Liu
- Laboratory of Membrane Biophysics and Biology, The Rockefeller University, New York, NY, USA; Tri-Institutional Training Program in Chemical Biology, The Rockefeller University, New York, NY, USA
| | - Jue Chen
- Laboratory of Membrane Biophysics and Biology, The Rockefeller University, New York, NY, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.
| |
Collapse
|
3
|
Abstract
Proteases play an important role in health and disease of the lung. In the normal lungs, proteases maintain their homeostatic functions that regulate processes like its regeneration and repair. Dysregulation of proteases–antiproteases balance is crucial in the manifestation of different types of lung diseases. Chronic inflammatory lung pathologies are associated with a marked increase in protease activities. Thus, in addition to protease activities, inhibition of anti-proteolytic control mechanisms are also important for effective microbial infection and inflammation in the lung. Herein, we briefly summarize the role of different proteases and to some extent antiproteases in regulating a variety of lung diseases.
Collapse
|
4
|
The Role of Serine Proteases and Antiproteases in the Cystic Fibrosis Lung. Mediators Inflamm 2015; 2015:293053. [PMID: 26185359 PMCID: PMC4491392 DOI: 10.1155/2015/293053] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 01/08/2015] [Indexed: 12/05/2022] Open
Abstract
Cystic fibrosis (CF) lung disease is an inherited condition with an incidence rate of approximately 1 in 2500 new born babies. CF is characterized as chronic infection of the lung which leads to inflammation of the airway. Sputum from CF patients contains elevated levels of neutrophils and subsequently elevated levels of neutrophil serine proteases. In a healthy individual these proteases aid in the phagocytic process by degrading microbial peptides and are kept in homeostatic balance by cognate antiproteases. Due to the heavy neutrophil burden associated with CF the high concentration of neutrophil derived proteases overwhelms cognate antiproteases. The general effects of this protease/antiprotease imbalance are impaired mucus clearance, increased and self-perpetuating inflammation, and impaired immune responses and tissue. To restore this balance antiproteases have been suggested as potential therapeutics or therapeutic targets. As such a number of both endogenous and synthetic antiproteases have been trialed with mixed success as therapeutics for CF lung disease.
Collapse
|
5
|
Pizzo L, Iriarte A, Alvarez-Valin F, Marín M. Conservation of CFTR codon frequency through primates suggests synonymous mutations could have a functional effect. Mutat Res 2015; 775:19-25. [PMID: 25839760 DOI: 10.1016/j.mrfmmm.2015.03.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2014] [Revised: 02/05/2015] [Accepted: 03/09/2015] [Indexed: 06/04/2023]
Abstract
Cystic fibrosis is an inherited chronic disease that affects the lungs and digestive system, with a prevalence of about 1:3000 people. Cystic fibrosis is caused by mutations in CFTR gene, which lead to a defective function of the chloride channel, the cystic fibrosis transmembrane conductance regulator (CFTR). Up-to-date, more than 1900 mutations have been reported in CFTR. However for an important proportion of them, their functional effects and the relation to disease are still not understood. Many of these mutations are silent (or synonymous), namely they do not alter the encoded amino acid. These synonymous mutations have been considered as neutral to protein function. However, more recent evidence in bacterial and human proteins has put this concept under revision. With the aim of understanding possible functional effects of synonymous mutations in CFTR, we analyzed human and primates CFTR codon usage and divergence patterns. We report the presence of regions enriched in rare and frequent codons. This spatial pattern of codon preferences is conserved in primates, but this cannot be explained by sequence conservation alone. In sum, the results presented herein suggest a functional implication of these regions of the gene that may be maintained by purifying selection acting to preserve a particular codon usage pattern along the sequence. Overall these results support the idea that several synonymous mutations in CFTR may have functional importance, and could be involved in the disease.
Collapse
Affiliation(s)
- Lucilla Pizzo
- Sección Bioquímica-Biología Molecular, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400 Montevideo, Uruguay
| | - Andrés Iriarte
- Dpto. de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay; Dpto. de Genómica, Instituto de Investigaciones Biológicas Clemente Estable, IIBCE, Montevideo, Uruguay; Dpto. de Bioquímica y Genómica Microbianas, Instituto de Investigaciones Biológicas Clemente Estable, IIBCE, Montevideo, Uruguay
| | - Fernando Alvarez-Valin
- Sección Biomatemática, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Mónica Marín
- Sección Bioquímica-Biología Molecular, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400 Montevideo, Uruguay.
| |
Collapse
|
6
|
Yue-Hong T, Xiao-Jun H, Er-Kang W. Study of the Ion Channel Behavior of Didodecyldimethylammonium Bromide Formed Bilayer Lipid Membrane Stimulated by PF6−. CHINESE J CHEM 2010. [DOI: 10.1002/cjoc.20030210115] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
7
|
Morales MM, Capella MA, Lopes AG. Structure and function of the cystic fibrosis transmembrane conductance regulator. Braz J Med Biol Res 1999; 32:1021-8. [PMID: 10454765 DOI: 10.1590/s0100-879x1999000800013] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Cystic fibrosis (CF) is a lethal autosomal recessive genetic disease caused by mutations in the CF transmembrane conductance regulator (CFTR). Mutations in the CFTR gene may result in a defective processing of its protein and alter the function and regulation of this channel. Mutations are associated with different symptoms, including pancreatic insufficiency, bile duct obstruction, infertility in males, high sweat Cl-, intestinal obstruction, nasal polyp formation, chronic sinusitis, mucus dehydration, and chronic Pseudomonas aeruginosa and Staphylococcus aureus lung infection, responsible for 90% of the mortality of CF patients. The gene responsible for the cellular defect in CF was cloned in 1989 and its protein product CFTR is activated by an increase of intracellular cAMP. The CFTR contains two membrane domains, each with six transmembrane domain segments, two nucleotide-binding domains (NBDs), and a cytoplasmic domain. In this review we discuss the studies that have correlated the role of each CFTR domain in the protein function as a chloride channel and as a regulator of the outwardly rectifying Cl- channels (ORCCs).
Collapse
Affiliation(s)
- M M Morales
- Laboratório de Fisiologia Renal, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil.
| | | | | |
Collapse
|
8
|
Kunzelmann K. The cystic fibrosis transmembrane conductance regulator and its function in epithelial transport. Rev Physiol Biochem Pharmacol 1999; 137:1-70. [PMID: 10207304 DOI: 10.1007/3-540-65362-7_4] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
CF is a well characterized disease affecting a variety of epithelial tissues. Impaired function of the cAMP activated CFTR Cl- channel appears to be the basic defect detectable in epithelial and non-epithelial cells derived from CF patients. Apart from cAMP-dependent Cl- channels also Ca2+ and volume activated Cl- currents may be changed in the presence of CFTR mutations. This is supported by recent additional findings showing that different intracellular messengers converge on the CFTR Cl- channel. Analysis of the ion transport in CF airways and intestinal epithelium identified additional defects in Na+ transport. It became clear recently that mutations of CFTR may also affect the activity of other membrane conductances including epithelial Na+ channels, KvLQT-1 K+ channels and aquaporins (Fig. 7). Several additional, initially unexpected effects of CFTR on cellular functions, such as exocytosis, mucin secretion and regulation of the intracellular pH were reported during the past. Taken together, these results clearly indicate that CFTR not only acts as a cAMP regulated Cl- channel, but may fulfill several other cellular functions, particularly by regulating other membrane conductances. Failure in CFTR dependent regulation of these membrane conductances is likely to contribute to the defects observed in CF. Currently, no general concept is available that can explain how CFTR controls this variety of cellular functions. Further studies will have to verify whether direct protein interaction, specific effects on membrane turnover, changes of the intracellular ion concentration or additional proteins are involved in these regulatory loops. At the end of this review one cannot share the provocative and reassuring title "CFTR!" of a review written a few years ago [114]. Today one might rather finish with the statement "CFTR?".
Collapse
Affiliation(s)
- K Kunzelmann
- Physiologisches Institut, Albert-Ludwigs-Universität Freiburg, Germany
| |
Collapse
|
9
|
Abstract
Structure and Function of the CFTR Chloride Channel. Physiol. Rev. 79, Suppl.: S23-S45, 1999. - The cystic fibrosis transmembrane conductance regulator (CFTR) is a unique member of the ABC transporter family that forms a novel Cl- channel. It is located predominantly in the apical membrane of epithelia where it mediates transepithelial salt and liquid movement. Dysfunction of CFTR causes the genetic disease cystic fibrosis. The CFTR is composed of five domains: two membrane-spanning domains (MSDs), two nucleotide-binding domains (NBDs), and a regulatory (R) domain. Here we review the structure and function of this unique channel, with a focus on how the various domains contribute to channel function. The MSDs form the channel pore, phosphorylation of the R domain determines channel activity, and ATP hydrolysis by the NBDs controls channel gating. Current knowledge of CFTR structure and function may help us understand better its mechanism of action, its role in electrolyte transport, its dysfunction in cystic fibrosis, and its relationship to other ABC transporters.
Collapse
Affiliation(s)
- D N Sheppard
- Human Genetics Unit, Department of Medicine, University of Edinburgh, Molecular Medicine Centre, Western General Hospital, Edinburgh, United Kingdom
| | | |
Collapse
|
10
|
Schwiebert EM, Benos DJ, Egan ME, Stutts MJ, Guggino WB. CFTR is a conductance regulator as well as a chloride channel. Physiol Rev 1999; 79:S145-66. [PMID: 9922379 DOI: 10.1152/physrev.1999.79.1.s145] [Citation(s) in RCA: 334] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
CFTR Is a Conductance Regulator as well as a Chloride Channel. Physiol. Rev. 79, Suppl.: S145-S166, 1999. - Cystic fibrosis transmembrane conductance regulator (CFTR) is a member of the ATP-binding cassette (ABC) transporter gene family. Although CFTR has the structure of a transporter that transports substrates across the membrane in a nonconductive manner, CFTR also has the intrinsic ability to conduct Cl- at much higher rates, a function unique to CFTR among this family of ABC transporters. Because Cl- transport was shown to be lost in cystic fibrosis (CF) epithelia long before the cloning of the CF gene and CFTR, CFTR Cl- channel function was considered to be paramount. Another equally valid perspective of CFTR, however, derives from its membership in a family of transporters that transports a multitude of different substances from chemotherapeutic drugs, to amino acids, to glutathione conjugates, to small peptides in a nonconductive manner. Moreover, at least two members of this ABC transporter family (mdr-1, SUR) can regulate other ion channels in the membrane. More simply, ABC transporters can regulate somehow the function of other cellular proteins or cellular functions. This review focuses on a plethora of studies showing that CFTR also regulates other ion channel proteins. It is the hope of the authors that the reader will take with him or her the message that CFTR is a conductance regulator as well as a Cl- channel.
Collapse
Affiliation(s)
- E M Schwiebert
- Department of Physiology and Biophysics, Gregory Fleming James CF Research Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | | | | | | |
Collapse
|
11
|
Ma J, Davis PB. What we know and what we do not know about cystic fibrosis transmembrane conductance regulator. Clin Chest Med 1998; 19:459-71, v-vi. [PMID: 9759549 DOI: 10.1016/s0272-5231(05)70093-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) is a cAMP-regulated chloride channel that resides in the apical membrane of many epithelial cells. Channel opening requires phosophorylation of serine residues in an intracellular regulatory domain by protein kinase A and as the binding and hydrolysis of ATP by intracellular nucleotide binding domains. Besides conducting the chloride ion, CFTR also regulates the function of other membrane proteins, directly or indirectly, notably the outwardly rectifying chloride channel and the epithelial sodium channel. The disease cystic fibrosis is caused by mutations in CFTR, which can result in defective protein production, defective processing and degradation in the endoplasmic reticulum, or defective channel pore properties or gating properties.
Collapse
Affiliation(s)
- J Ma
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | | |
Collapse
|
12
|
Ko YH, Pedersen PL. Overexpression, purification, and function of first nucleotide-binding fold of cystic fibrosis transmembrane conductance regulator. Methods Enzymol 1998; 292:675-86. [PMID: 9711591 DOI: 10.1016/s0076-6879(98)92052-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Y H Ko
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | |
Collapse
|
13
|
Moyer BD, Loffing J, Schwiebert EM, Loffing-Cueni D, Halpin PA, Karlson KH, Ismailov II, Guggino WB, Langford GM, Stanton BA. Membrane trafficking of the cystic fibrosis gene product, cystic fibrosis transmembrane conductance regulator, tagged with green fluorescent protein in madin-darby canine kidney cells. J Biol Chem 1998; 273:21759-68. [PMID: 9705313 DOI: 10.1074/jbc.273.34.21759] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The mechanism by which cAMP stimulates cystic fibrosis transmembrane conductance regulator (CFTR)-mediated chloride (Cl-) secretion is cell type-specific. By using Madin-Darby canine kidney (MDCK) type I epithelial cells as a model, we tested the hypothesis that cAMP stimulates Cl- secretion by stimulating CFTR Cl- channel trafficking from an intracellular pool to the apical plasma membrane. To this end, we generated a green fluorescent protein (GFP)-CFTR expression vector in which GFP was linked to the N terminus of CFTR. GFP did not alter CFTR function in whole cell patch-clamp or planar lipid bilayer experiments. In stably transfected MDCK type I cells, GFP-CFTR localization was substratum-dependent. In cells grown on glass coverslips, GFP-CFTR was polarized to the basolateral membrane, whereas in cells grown on permeable supports, GFP-CFTR was polarized to the apical membrane. Quantitative confocal fluorescence microscopy and surface biotinylation experiments demonstrated that cAMP did not stimulate detectable GFP-CFTR translocation from an intracellular pool to the apical membrane or regulate GFP-CFTR endocytosis. Disruption of the microtubular cytoskeleton with colchicine did not affect cAMP-stimulated Cl- secretion or GFP-CFTR expression in the apical membrane. We conclude that cAMP stimulates CFTR-mediated Cl- secretion in MDCK type I cells by activating channels resident in the apical plasma membrane.
Collapse
Affiliation(s)
- B D Moyer
- Department of Physiology, Dartmouth Medical School, Hanover, New Hampshire 03755, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Schwiebert EM, Benos DJ, Fuller CM. Cystic fibrosis: a multiple exocrinopathy caused by dysfunctions in a multifunctional transport protein. Am J Med 1998; 104:576-90. [PMID: 9674722 DOI: 10.1016/s0002-9343(98)00119-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- E M Schwiebert
- Department of Physiology and Biophysics, University of Alabama at Birmingham, 35294, USA
| | | | | |
Collapse
|
15
|
Jiang D, Diao P, Tong R, Gu D, Zhong B. Ca2+ induced Fe(CN)63−/4− electron transfer at Pt supported BLM electrode. ACTA ACUST UNITED AC 1998. [DOI: 10.1016/s0302-4598(97)00065-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
16
|
Schultz BD, Takahashi A, Liu C, Frizzell RA, Howard M. FLAG epitope positioned in an external loop preserves normal biophysical properties of CFTR. THE AMERICAN JOURNAL OF PHYSIOLOGY 1997; 273:C2080-9. [PMID: 9435515 DOI: 10.1152/ajpcell.1997.273.6.c2080] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We asked whether inclusion of the FLAG epitope in the fourth extracellular loop of the cystic fibrosis transmembrane conductance regulator (M2-901/CFTR), which permits detection of cell surface expression, affected CFTR's biophysical properties or channel regulation by kinases, phosphatases, and nucleotides. Channel activity of M2-901/CFTR was evaluated in numerous cell types and expression systems to characterize its gating and regulation. Our results show that M2-901/CFTR required adenosine 3',5'-cyclic monophosphate-dependent protein kinase phosphorylation to initiate channel activity. Subsequently, ATP alone was sufficient to support channel gating, and ADP inhibited channel opening. Current fluctuation analysis indicated that the nucleotide-dependent gating rates were indistinguishable from those of wild-type (wt) cystic fibrosis transmembrane conductance regulator (CFTR). Channel conductance in symmetric Cl- (11.2 pS), anion permeability ratio (1.66), and block by gluconate indicate that the anion conduction pathway is indistinguishable from wtCFTR. Sulfonylureas (glibenclamide and LY-295501) inhibited M2-901/ CFTR channel activity by an identical mechanism to that described for wtCFTR. Finally, CFTR-dependent insertion and retrieval of cell membrane was unaffected by the presence of the FLAG epitope. These results indicate that this structural alteration does not affect the control mechanisms for channel gating and suggest that the fourth extracellular loop of CFTR does not contribute to the ion pore. Detection of M2-901/CFTR by a commercially available monoclonal antibody (M2), together with presentation of normal functional properties, makes M2-901/CFTR a valuable tool to evaluate CFTR protein expression and cellular location.
Collapse
Affiliation(s)
- B D Schultz
- Department of Cell Biology and Physiology, University of Pittsburgh, Pennsylvania 15261, USA
| | | | | | | | | |
Collapse
|
17
|
Huang P, Stroffekova K, Cuppoletti J, Mahanty SK, Scarborough GA. Functional expression of the cystic fibrosis transmembrane conductance regulator in yeast. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1281:80-90. [PMID: 8652609 DOI: 10.1016/0005-2736(96)00032-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Recombinant human cystic fibrosis transmembrane conductance regulator (CFTR) has been produced in a Saccharomyces cerevisiae expression system used previously to produce transport ATPases with high yields. The arrangement of the bases in the region immediately upstream from the ATG start codon of the CFTR is extremely important for high expression levels. The maximal CFTR expression level is about 5-10% of that in Sf9 insect cells as judged by comparison of immunoblots. Upon sucrose gradient centrifugation, the majority of the CFTR is found in a light vesicle fraction separated from the yeast plasma membrane in a heavier fraction. It thus appears that most of expressed CFTR is not directed to the plasma membrane in this system. CFTR expressed in yeast has the same mobility (ca. 140 kDa) as recombinant CFTR produced in Sf9 cells in a high resolution SDS-PAGE gel before and after N-glycosidase F treatment, suggesting that it is not glycosylated. The channel function of the expressed CFTR was measured by an isotope flux assay in isolated yeast membrane vesicles and single channel recording following reconstitution into planar lipid bilayers. In the isotope flux assay, protein kinase A (PKA) increased the rate of 125I- uptake by about 30% in membrane vesicles containing the CFTR, but not in control membranes. The single channel recordings showed that a PKA-activated small conductance anion channel (8 pS) with a linear I-V relationship was present in the CFTR membranes, but not in control membranes. These results show that the human CFTR has been expressed in functional form in yeast. With the reasonably high yield and the ability to grow massive quantities of yeast at low cost, this CFTR expression system may provide a valuable new source of starting material for purification of large quantities of the CFTR for biochemical studies.
Collapse
Affiliation(s)
- P Huang
- Department of Pharmacology, University of North Carolina at Chapel Hill 27599, USA
| | | | | | | | | |
Collapse
|
18
|
Ma J, Tasch JE, Tao T, Zhao J, Xie J, Drumm ML, Davis PB. Phosphorylation-dependent block of cystic fibrosis transmembrane conductance regulator chloride channel by exogenous R domain protein. J Biol Chem 1996; 271:7351-6. [PMID: 8631756 DOI: 10.1074/jbc.271.13.7351] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) constitutes a linear conductance chloride channel, which is regulated by cAMP-dependent protein kinase phosphorylation at multiple sites located in the intracellular regulatory (R) domain. Studies in a lipid bilayer system, reported here, provide evidence for the control of CFTR chloride channel by its R domain. The exogenous R domain protein (encoded by exon 13 plus 85 base pairs of exon 14) interacted specifically with the CFTR molecule and inhibited the chloride conductance in a phosphorylation-dependent manner. Only the unphosphorylated R domain protein blocked the CFTR channel. Such functional interaction suggests that the putative gating particle of the CFTR chloride channel resides in the R domain.
Collapse
Affiliation(s)
- J Ma
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Ismailov II, Jovov B, Fuller CM, Berdiev BK, Keeton DA, Benos DJ. G-protein regulation of outwardly rectified epithelial chloride channels incorporated into planar bilayer membranes. J Biol Chem 1996; 271:4776-80. [PMID: 8617745 DOI: 10.1074/jbc.271.9.4776] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Experiments were designed to test if immunopurified outwardly rectified chloride channels (ORCCs) and the cystic fibrosis transmembrane conductance regulator (CFTR) incorporated into planar lipid bilayers are regulated by G-proteins. pertussis toxin (PTX) (100 ng/ml) + NAD (1 mM) + ATP (1 mM) treatment of ORCC and CFTR in bilayers resulted in a 2-fold increase in single channel open probability (Po) of ORCC but not of CFTR. Neither PTX, NAD, nor ATP alone affected the biophysical properties of either channel. Further, PTX conferred a linearity to the ORCC current-voltage curve, with a slope conductance of 80 +/- 3 picosiemens (pS) in the +/- 100 mV range of holding potentials. PKA-mediated phosphorylation of these PTX + NAD-treated channels further increased the Po of the linear 80-pS channels from 0.66 +/- 0.05 to >0.9, and revealed the presence of a small (16 +/- 2 pS) linear channel in the membrane. PTX treatment of a CFTR-immunodepleted protein preparation incorporated into bilayer membranes resulted in a similar increase in the Po of the larger conductance channel and restored PKA-sensitivity that was lost after CFTR immunodepletion. The addition of guanosine 5'-3-O-(thio)triphosphate (100 mum) to the cytoplasmic bathing solutions decreased the activity of the ORCC and increased its rectification at both negative and positive voltages. ADP-ribosylation of immunopurified material revealed the presence of a 41-kDa protein. These results demonstrate copurification of a channel-associated G-protein that is involved in the regulation of ORCC function.
Collapse
Affiliation(s)
- I I Ismailov
- Department of Physiology and Biophysics, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | | | | | | | | | | |
Collapse
|
20
|
|
21
|
Hipper A, Mall M, Greger R, Kunzelmann K. Mutations in the putative pore-forming domain of CFTR do not change anion selectivity of the cAMP activated Cl- conductance. FEBS Lett 1995; 374:312-6. [PMID: 7589561 DOI: 10.1016/0014-5793(95)01132-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Cystic fibrosis transmembrane conductance regulator (CFTR) apparently forms Cl- channels in apical membranes of secretory epithelial cells. A detailed model describes molecular structure and biophysical properties of CFTR and the impact of various mutations as they occur in cystic fibrosis. In the present report mutations were introduced into the putative 6th alpha-helical transmembrane pore forming domain of CFTR. The mutants were subsequently expressed in Xenopus oocytes by injection of the respective cRNAs. Whole cell (wc) conductances could be reversibly activated by IBMX (1 nmol/l) only in oocytes injected with wild-type (wt) or mutant CFTR but not in oocytes injected with water or antisense CFTR. The activated conductance was partially inhibited by (each 100 mumol/l) DIDS (27%) and glibenclamide (77%), but not by 10 mumol/l NPPB. The following mutations were examined: K335E, R347E, R334E, K335H, R347H, R334H. They did not measurably change the wt-CFTR anion permeability (P) and we conductance (G) sequence of: PCl- > PBr- > P1- and GCl- > GBr- > G1-, respectively. Moreover, anomalous mole fraction behavior for the cAMP activated current could not be detected: neither in wt-CFTR nor in R347E-CFTR. Various mutants for which positively charged amino acids were replaced by histidines (K335H, R347H, R334H) did not show pH sensitivity of the IBMX activated wc conductance. We, therefore, cannot confirm previous results. CFTR might have a different molecular structure than previously suggested or it might act as a regulator of ion conductances.
Collapse
Affiliation(s)
- A Hipper
- Physiologisches Institut, Albert-Ludwigs-Universität Freiburg, Germany
| | | | | | | |
Collapse
|
22
|
Sanchez MA, Zeoli D, Klamo EM, Kavanaugh MP, Landfear SM. A family of putative receptor-adenylate cyclases from Leishmania donovani. J Biol Chem 1995; 270:17551-8. [PMID: 7615561 DOI: 10.1074/jbc.270.29.17551] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Leishmania parasites are exposed to pronounced changes in their environment during their life cycle as they migrate from the sandfly midgut to the insect proboscis and then into the phagolysosomes of the vertebrate macrophages. The developmental transformations that produce each life cycle stage of the parasite may be signaled in part by binding of environmental ligands to receptors which mediate transduction of extracellular signals. We have identified a family of five clustered genes in Leishmania donovani which may encode signal transduction receptors. The coding regions of two of these genes, designated rac-A and rac-B, have been sequenced and shown to code for proteins with an NH2-terminal hydrophilic domain, an intervening putative transmembrane segment, and a COOH-terminal domain that has high sequence identity to the catalytic domain from adenylate cyclases in other eukaryotes. We have expressed the receptor-adenylate cyclase protein (RAC)-A protein in Xenopus oocytes and demonstrated that it functions as an adenylate cyclase. Although RAC-B exhibits no catalytic activity when expressed in oocytes, co-expression of RAC-A and RAC-B negatively regulates the adenylate cyclase activity of RAC-A, suggesting that these two proteins interact in the membrane. Furthermore, a truncated version of RAC-A functions as a dominant negative mutant that inhibits the catalytic activity of the wild type receptor. The rac-A and rac-B genes encode developmentally regulated mRNAs which are expressed in the insect stage but not in the mammalian host stage of the parasite life cycle.
Collapse
Affiliation(s)
- M A Sanchez
- Department of Molecular Microbiology and Immunology, Oregon Health Sciences University, Portland 97201, USA
| | | | | | | | | |
Collapse
|
23
|
O'Riordan CR, Erickson A, Bear C, Li C, Manavalan P, Wang KX, Marshall J, Scheule RK, McPherson JM, Cheng SH. Purification and characterization of recombinant cystic fibrosis transmembrane conductance regulator from Chinese hamster ovary and insect cells. J Biol Chem 1995; 270:17033-43. [PMID: 7542655 DOI: 10.1074/jbc.270.28.17033] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
We have developed procedures to purify highly functional recombinant cystic fibrosis transmembrane conductance regulator (CFTR) from Chinese hamster ovary (CHO) cells to high homogeneity. Purification of CHO-CFTR was achieved using a combination of alkali stripping, alpha-lysophosphatidylcholine extraction, DEAE ion-exchange, and immunoaffinity chromatography. Insect CFTR from Sf9 cells was purified using a modification of the method of Bear et al. (Bear, C. E., Li, C., Kartner, N., Bridges, R. J., Jensen, T. J., Ramjeesingh, M. and Riordan, J. R. (1992) Cell 68, 809-818), which included extraction with sodium dodecyl sulfate, hydroxyapatite, and gel filtration chromatography. Characterization of the properties of purified CFTR from both cell sources using a variety of electrophysiological and biochemical assays indicated that they were very similar. Both the purified CHO-CFTR and Sf9-CFTR when reconstituted into planar lipid bilayers exhibited a low pS, chloride-selective ion channel activity that was protein kinase A- and ATP-dependent. Both the purified CHO-CFTR and Sf9-CFTR were able to interact specifically with the nucleotide photoanalogue 8-N3-[alpha-32P]ATP with half-maximal binding at 25 and 50 microM, respectively. These values compare well with those reported for 8-N3-[alpha-32P]ATP binding to CFTR in its native membrane form. Thus CFTR from either insect or CHO cells can be purified to high homogeneity with retention of many of the biochemical and electrophysiological characteristics of the protein associated in its native plasma membrane form. The availability of these reagents will facilitate further investigation and study of the structure and function of CFTR and its interactions with cellular proteins.
Collapse
Affiliation(s)
- C R O'Riordan
- Genzyme Corporation, Framingham, Massachusetts 01701-9322, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Smith AN, Wardle CJ, Winpenny JP, Verdon B, Gray MA, Argent BE, Harris A. cAMP-activated chloride channels in a CFTR-transfected pancreatic adenocarcinoma-derived cell line, pANS6. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1271:315-20. [PMID: 7541649 DOI: 10.1016/0925-4439(95)00047-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Pancreatic adenocarcinoma cell lines rarely express the CFTR gene, despite the high levels of CFTR protein that are present in primary pancreatic duct cells. We have attempted to generate a non-CF pancreatic adenocarcinoma cell line that stably produces high levels of CFTR mRNA and protein by transfecting a vector containing the CFTR cDNA, driven by a strong mammalian promoter, into the poorly differentiated pancreatic adenocarcinoma cell line, Panc-1. The pANS6 pancreatic duct cell line expresses substantial levels of CFTR mRNA, but little CFTR protein. Despite this we were able to detect low conductance chloride channels in 40% of patches, stimulated with cAMP, that have similar biophysical properties to CFTR.
Collapse
Affiliation(s)
- A N Smith
- Institute of Molecular Medicine, Oxford University, John Radcliffe Hospital, UK
| | | | | | | | | | | | | |
Collapse
|
25
|
Walker J, Watson J, Holmes C, Edelman A, Banting G. Production and characterisation of monoclonal and polyclonal antibodies to different regions of the cystic fibrosis transmembrane conductance regulator (CFTR): detection of immunologically related proteins. J Cell Sci 1995; 108 ( Pt 6):2433-44. [PMID: 7545688 DOI: 10.1242/jcs.108.6.2433] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have raised mouse monoclonal antibodies to eight synthetic peptides corresponding to different regions of the human cystic fibrosis transmembrane conductance regulator (CFTR) and rabbit polyclonal antisera to beta-galactosidase fusion proteins which encompass three different regions of CFTR. Immunoblot, immunoprecipitation, immunofluorescence and immunocytochemical experiments demonstrate that, in addition to recognising CFTR, these antibodies recognise one or more immunologically related proteins with a similar molecular mass, calcium responsiveness and tissue distribution to CFTR.
Collapse
Affiliation(s)
- J Walker
- Department of Biochemistry, and Biotechnology, University of Bristol, UK
| | | | | | | | | |
Collapse
|
26
|
Jovov B, Ismailov II, Benos DJ. Cystic fibrosis transmembrane conductance regulator is required for protein kinase A activation of an outwardly rectified anion channel purified from bovine tracheal epithelia. J Biol Chem 1995; 270:1521-8. [PMID: 7530244 DOI: 10.1074/jbc.270.4.1521] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Our laboratory has developed a protocol for the isolation of a 140-kDa protein that forms an anion-selective channel when reconstituted into planar lipid bilayers. Polyclonal antibodies have been raised against the 38-kDa component of this purified protein. This channel has a linear current-voltage relationship and is not activated by protein kinase A (PKA) plus ATP. Using the same antibody and a modified purification protocol (eliminating the ion exchange chromatography steps), we isolated and reconstituted two other anion channels from tracheal membrane vesicles. In vitro phosphorylation of these isolated proteins by PKA and ATP revealed four bands migrating at 52, 85, 120, and 174 kDa. Immunoprecipitation experiments with anti-CFTR antibodies indicate that the 174-kDa phosphoprotein was CFTR. Upon incorporation of these isolated proteins into planar bilayers, an anion channel that exhibited a marked outward rectification in symmetrical Cl- solutions with a slope conductance of 82 pS at depolarizing voltages was observed. PKA and ATP increased channel activity but only from one side of the bilayer. However, channel activity was unaffected by addition of ATP alone from either side of the membrane. DIDS (100 microM) applied to the opposite side of the bilayer to which PKA and ATP act, blocked channel activity. A linear anion-selective channel with a conductance of 16 pS could be also resolved after inhibition of the outwardly rectified anion channel by DIDS in the presence of PKA and ATP. This small conductance channel was inhibited by 300 microM diphenylamine-2-carboxylic acid. Immunodepletion of the 174-kDa phosphoprotein from the preparation prevented activation of the 82-pS outwardly rectified anion channel by PKA and ATP. However, the PKA-dependent in vitro phosphorylation of the 52-, 85-, and 120-kDa phosphoproteins was unaffected by the absence of CFTR. Our results suggest a direct regulatory relationship between an outwardly rectified anion channel and CFTR.
Collapse
Affiliation(s)
- B Jovov
- Department of Physiology and Biophysics, University of Alabama at Birmingham 35294
| | | | | |
Collapse
|
27
|
Kunzelmann K, Koslowsky T, Hug T, Gruenert DC, Greger R. cAMP-dependent activation of ion conductances in bronchial epithelial cells. Pflugers Arch 1994; 428:590-6. [PMID: 7838682 DOI: 10.1007/bf00374582] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The cAMP-dependent activation of Cl- channels was studied in a bronchial epithelial cell line (16HBE14o-) in fast and slow whole-cell, and cell-attached patch-clamp experiments. The cells are known to express high levels of cystic fibrosis transmembrane conductance regulator mRNA and protein. Isoproterenol, forskolin and histamine (all 10 mumol/l) reversibly and significantly depolarized the membrane voltage (Vm) and increased the whole-cell Cl- conductance significantly by 34.0 +/- 0.9 (n = 3), 18.1 +/- 2.7 (n = 50), and 25 +/- 4.5 (n = 37) nS respectively. The effect of histamine was blocked by cimetidine (10 mumol, n = 5) but not by diphenhydramine (10 mumol/l, n = 4), which suggests binding of histamine to H2 receptors. The forskolin-induced current was not inhibited significantly by 4,4'-diisothiocyanatostilbene-2,2'-disulphonic acid (0.5 mmol/l, n = 9) nor glibenclamide (10 mumol/l, n = 3) and had an anion-permeability sequence of Cl = Br- > I- (n = 9). In cell-attached recordings forskolin (10 mumol/l) increased the conductance of the patched membrane from 65.5 +/- 13.6 pS to 150.8 +/- 33.2 pS (n = 30). Although the conductance was increased significantly, clear ion channel events occurring in parallel with the current activation were not detected in the cell-attached membrane. In 4 out of 30 cell-attached recordings single-channel currents were observed. These channels, with a single-channel conductance of about 6 pS, were already active before forskolin was added. No effect of forskolin on the channel amplitude, open probability or kinetics of these channels was observed.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- K Kunzelmann
- Physiologisches Institut, Albert-Ludwigs-Universität Freiburg, Germany
| | | | | | | | | |
Collapse
|
28
|
Phosphorylation and activation of a bovine tracheal anion channel by Ca2+/calmodulin-dependent protein kinase II. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)47067-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
29
|
Sherry AM, Cuppoletti J, Malinowska DH. Differential acidic pH sensitivity of delta F508 CFTR Cl- channel activity in lipid bilayers. THE AMERICAN JOURNAL OF PHYSIOLOGY 1994; 266:C870-5. [PMID: 7513123 DOI: 10.1152/ajpcell.1994.266.3.c870] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Cystic fibrosis transmembrane conductance regulator (CFTR) is present in acidic intracellular vesicles. Human normal and delta F508 CFTR Cl- channel characteristics at pH 7.4 and pH 4.5 were determined by fusing Xenopus laevis oocyte plasma membranes containing the expressed channels to planar lipid bilayers. At pH 7.4, both channels exhibited linear current-voltage curves, a 10 +/- 0.3-pS conductance using 800 mM CsCl, and a 9:1 Cl-/Cs+ discrimination ratio obtained from a 32 +/- 2 mV reversal potential with a fivefold gradient. At -80 mV, the open probability (Po) of mutant CFTR was 53% that of normal CFTR. Reduction of the trans-pH from 7.4 to 4.5 had no effect on the above characteristics except for Po, where it caused a 47% reduction in normal CFTR Po (due to a 75% decrease in mean open time) and a 75% reduction in delta F508 CFTR Po (due to a 6-fold increase in mean closed time). Normal CFTR can thus function in the environment of acidic intracellular organelles, whereas activity of mutant CFTR would be greatly reduced. These results may be of significance to understanding the cystic fibrosis defect.
Collapse
Affiliation(s)
- A M Sherry
- Department of Physiology and Biophysics, University of Cincinnati College of Medicine, Ohio 45267-0576
| | | | | |
Collapse
|
30
|
Chapter 7 The CFTR Chloride Channel. CURRENT TOPICS IN MEMBRANES 1994. [DOI: 10.1016/s0070-2161(08)60822-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
|
31
|
Stoichiometry of recombinant cystic fibrosis transmembrane conductance regulator in epithelial cells and its functional reconstitution into cells in vitro. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)42037-0] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
32
|
A Secretory Cl Channel from Epithelial Cells Studied in Heterologous Expression Systems. ACTA ACUST UNITED AC 1994. [DOI: 10.1007/978-3-642-78261-9_11] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
33
|
Cai Y, Douglass J. In vivo and in vitro phosphorylation of the T lymphocyte type n (Kv1.3) potassium channel. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(19)49520-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
34
|
Ko Y, Thomas P, Delannoy M, Pedersen P. The cystic fibrosis transmembrane conductance regulator. Overexpression, purification, and characterization of wild type and delta F508 mutant forms of the first nucleotide binding fold in fusion with the maltose-binding protein. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(20)80530-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
35
|
Regulation of the cystic fibrosis transmembrane conductance regulator Cl- channel by negative charge in the R domain. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(20)80723-6] [Citation(s) in RCA: 106] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
36
|
Schmidt HH, Lohmann SM, Walter U. The nitric oxide and cGMP signal transduction system: regulation and mechanism of action. BIOCHIMICA ET BIOPHYSICA ACTA 1993; 1178:153-75. [PMID: 7688574 DOI: 10.1016/0167-4889(93)90006-b] [Citation(s) in RCA: 600] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- H H Schmidt
- Department of Clinical Biochemistry and Pathobiochemistry, Medical University Clinic, Würzburg, Germany
| | | | | |
Collapse
|
37
|
Hasegawa H, Skach W, Baker O, Calayag MC, Lingappa V, Verkman AS. A multifunctional aqueous channel formed by CFTR. Science 1992; 258:1477-9. [PMID: 1279809 DOI: 10.1126/science.1279809] [Citation(s) in RCA: 112] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The cystic fibrosis gene product (CFTR) is a complex protein that functions as an adenosine 3,5-monophosphate (cAMP)-stimulated ion channel and possibly as a regulator of intracellular processes. In order to determine whether the CFTR molecule contains a functional aqueous pathway, anion, water, and urea transport were measured in Xenopus oocytes expressing CFTR. Cyclic AMP agonists induced a Cl- conductance of 94 microsiemens and an increase in water permeability of 4 x 10(-4) centimeter per second that was inhibited by a Cl- channel blocker and was dependent on anion composition. CFTR has a calculated single channel water conductance of 9 x 10(-13) cubic centimeter per second, suggesting a pore-like aqueous pathway. Oocytes expressing CFTR also showed cAMP-stimulated transport of urea but not the larger solute sucrose. Thus CFTR contains a cAMP-stimulated aqueous pore that can transport anions, water, and small solutes. The results also provide functional evidence for water movement through an ion channel.
Collapse
Affiliation(s)
- H Hasegawa
- Department of Medicine, University of California, San Francisco 94143-0532
| | | | | | | | | | | |
Collapse
|
38
|
Affiliation(s)
- C R Marino
- Department of Medicine, Yale University School of Medicine, New Haven, Connecticut
| | | |
Collapse
|
39
|
Affiliation(s)
- Francis S. Collins
- Department of Internal Medicine, University of Michigan, Ann Arbor 48109-0650
| |
Collapse
|
40
|
Welsh MJ, Anderson MP, Rich DP, Berger HA, Denning GM, Ostedgaard LS, Sheppard DN, Cheng SH, Gregory RJ, Smith AE. Cystic fibrosis transmembrane conductance regulator: a chloride channel with novel regulation. Neuron 1992; 8:821-9. [PMID: 1375035 DOI: 10.1016/0896-6273(92)90196-k] [Citation(s) in RCA: 177] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- M J Welsh
- Howard Hughes Medical Institute, Department of Internal Medicine, University of Iowa College of Medicine, Iowa City 52242
| | | | | | | | | | | | | | | | | | | |
Collapse
|