1
|
Medhi R, Handlin AD, Leonardi AK, Galli G, Guazzelli E, Finlay JA, Clare AS, Oliva M, Pretti C, Martinelli E, Ober CK. Interrupting marine fouling with active buffered coatings. BIOFOULING 2024; 40:377-389. [PMID: 38955544 DOI: 10.1080/08927014.2024.2367491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 06/09/2024] [Indexed: 07/04/2024]
Abstract
Biofouling on marine surfaces causes immense material and financial harm for maritime vessels and related marine industries. Previous reports have shown the effectiveness of amphiphilic coating systems based on poly(dimethylsiloxane) (PDMS) against such marine foulers. Recent studies on biofouling mechanisms have also demonstrated acidic microenvironments in biofilms and stronger adhesion at low-pH conditions. This report presents the design and utilization of amphiphilic polymer coatings with buffer functionalities as an active disruptor against four different marine foulers. Specifically, this study explores both neutral and zwitterionic buffer systems for marine coatings, offering insights into coating design. Overall, these buffer systems were found to improve foulant removal, and unexpectedly were the most effective against the diatom Navicula incerta.
Collapse
Affiliation(s)
- Riddhiman Medhi
- Department of Chemistry, University of Scranton, Scranton, PA, USA
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, USA
| | - Alexandra D Handlin
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, USA
| | - Amanda K Leonardi
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, USA
| | - Giancarlo Galli
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Pisa, Italy
| | - Elisa Guazzelli
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Pisa, Italy
| | - John A Finlay
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Anthony S Clare
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Matteo Oliva
- Consorzio Interuniversitario di Biologia Marina e Ecologia Applicata "G.Bacci", Livorno, Italy
| | - Carlo Pretti
- Consorzio Interuniversitario di Biologia Marina e Ecologia Applicata "G.Bacci", Livorno, Italy
- Dipartimento di Scienze Veterinarie, Università di Pisa, Pisa, Italy
| | - Elisa Martinelli
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Pisa, Italy
| | - Christopher K Ober
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, USA
| |
Collapse
|
2
|
Satheesh S, Al Solami L. Antifouling activities of proteinase K and α-amylase enzymes: Laboratory bioassays and in silico analysis. Heliyon 2024; 10:e31683. [PMID: 38828329 PMCID: PMC11140711 DOI: 10.1016/j.heliyon.2024.e31683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 05/02/2024] [Accepted: 05/20/2024] [Indexed: 06/05/2024] Open
Abstract
The application of enzymes as antifoulants is one of the environment-friendly strategies in biofouling management. In this study, antifouling activities of commercially available proteinase K and α-amylase enzymes were evaluated using barnacle larva and biofilm-forming bacteria as test organisms. The enzymes were also tested against barnacle cement protein through in silico analysis. The results showed that both enzymes inhibited the attachment of bacteria and settlement of barnacle larvae on the test surface. The lowest minimum inhibitory concentration of 0.312 mg ml-1 was exhibited by proteinase K against biofilm-forming bacteria. The calculated LC50 values for proteinase K and α-amylase against the barnacle nauplii were 91.8 and 230.96 mg ml-1 respectively. While α-amylase showed higher antibiofilm activity, proteinase K exhibited higher anti-larval settlement activity. Similarly, in silico analysis of the enzymes revealed promising anti-settlement activity, as the enzymes showed good binding scores with barnacle cement protein. Overall, the results suggested that the enzymes proteinase K and α-amylase could be used in antifouling coatings to reduce the settlement of biofouling on artificial materials in the marine environment.
Collapse
Affiliation(s)
- Sathianeson Satheesh
- Department of Marine Biology, Faculty of Marine Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Lafi Al Solami
- Department of Marine Biology, Faculty of Marine Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
3
|
Schultzhaus J, Hervey J, Fears K, Spillmann C. Proteomic comparison of the organic matrices from parietal and base plates of the acorn barnacle Amphibalanus amphitrite. Open Biol 2024; 14:230246. [PMID: 38806147 PMCID: PMC11293433 DOI: 10.1098/rsob.230246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 12/13/2023] [Accepted: 02/29/2024] [Indexed: 05/30/2024] Open
Abstract
Acorn barnacles are efficient colonizers on a wide variety of marine surfaces. As they proliferate on critical infrastructure, their settlement and growth have deleterious effects on performance. To address acorn barnacle biofouling, research has focused on the settlement and adhesion processes with the goal of informing the development of novel coatings. This effort has resulted in the discovery and characterization of several proteins found at the adhesive substrate interface, i.e. cement proteins, and a deepened understanding of the function and composition of the biomaterials within this region. While the adhesive properties at the interface are affected by the interaction between the proteins, substrate and mechanics of the calcified base plate, little attention has been given to the interaction between the proteins and the cuticular material present at the substrate interface. Here, the proteome of the organic matrix isolated from the base plate of the acorn barnacle Amphibalanus amphitrite is compared with the chitinous and proteinaceous matrix embedded within A. amphitrite parietal plates. The objective was to gain an understanding of how the basal organic matrix may be specialized for adhesion via an in-depth comparative proteome analysis. In general, the majority of proteins identified in the parietal matrix were also found in the basal organic matrix, including nearly all those grouped in classes of cement proteins, enzymes and pheromones. However, the parietal organic matrix was enriched with cuticle-associated proteins, of which ca 30% of those identified were unique to the parietal region. In contrast, ca 30-40% of the protease inhibitors, enzymes and pheromones identified in the basal organic matrix were unique to this region. Not unexpectedly, nearly 50% of the cement proteins identified in the basal region were significantly distinct from those found in the parietal region. The wider variety of identified proteins in the basal organic matrix indicates a greater diversity of biological function in the vicinity of the substrate interface where several processes related to adhesion, cuticle formation and expansion of the base synchronize to play a key role in organism survival.
Collapse
Affiliation(s)
- Janna Schultzhaus
- Center for Bio/Molecular Science & Engineering, Naval Research Laboratory, Washington, DC, USA
| | - Judson Hervey
- Center for Bio/Molecular Science & Engineering, Naval Research Laboratory, Washington, DC, USA
| | - Kenan Fears
- Center for Bio/Molecular Science & Engineering, Naval Research Laboratory, Washington, DC, USA
| | - Christopher Spillmann
- Center for Bio/Molecular Science & Engineering, Naval Research Laboratory, Washington, DC, USA
| |
Collapse
|
4
|
Fu C, Wang Z, Zhou X, Hu B, Li C, Yang P. Protein-based bioactive coatings: from nanoarchitectonics to applications. Chem Soc Rev 2024; 53:1514-1551. [PMID: 38167899 DOI: 10.1039/d3cs00786c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Protein-based bioactive coatings have emerged as a versatile and promising strategy for enhancing the performance and biocompatibility of diverse biomedical materials and devices. Through surface modification, these coatings confer novel biofunctional attributes, rendering the material highly bioactive. Their widespread adoption across various domains in recent years underscores their importance. This review systematically elucidates the behavior of protein-based bioactive coatings in organisms and expounds on their underlying mechanisms. Furthermore, it highlights notable advancements in artificial synthesis methodologies and their functional applications in vitro. A focal point is the delineation of assembly strategies employed in crafting protein-based bioactive coatings, which provides a guide for their expansion and sustained implementation. Finally, the current trends, challenges, and future directions of protein-based bioactive coatings are discussed.
Collapse
Affiliation(s)
- Chengyu Fu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
- Xi'an Key Laboratory of Polymeric Soft Matter, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
- International Joint Research Center on Functional Fiber and Soft Smart Textile, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Zhengge Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
- Xi'an Key Laboratory of Polymeric Soft Matter, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
- International Joint Research Center on Functional Fiber and Soft Smart Textile, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Xingyu Zhou
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
- Xi'an Key Laboratory of Polymeric Soft Matter, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
- International Joint Research Center on Functional Fiber and Soft Smart Textile, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Bowen Hu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
- Xi'an Key Laboratory of Polymeric Soft Matter, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
- International Joint Research Center on Functional Fiber and Soft Smart Textile, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Chen Li
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Eastern HuaLan Avenue, Xinxiang, Henan 453003, China
| | - Peng Yang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
- Xi'an Key Laboratory of Polymeric Soft Matter, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
- International Joint Research Center on Functional Fiber and Soft Smart Textile, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| |
Collapse
|
5
|
Hur S, Méthivier C, Wilson A, Salmain M, Boujday S, Miserez A. Biomineralization in Barnacle Base Plate in Association with Adhesive Cement Protein. ACS APPLIED BIO MATERIALS 2023; 6:3423-3432. [PMID: 37078387 DOI: 10.1021/acsabm.3c00117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2023]
Abstract
Barnacles strongly attach to various underwater substrates by depositing and curing a proteinaceous cement that forms a permanent adhesive layer. The protein MrCP20 present within the calcareous base plate of the acorn barnacle Megabalanus rosa (M. rosa) was investigated for its role in regulating biomineralization and growth of the barnacle base plate, as well as the influence of the mineral on the protein structure and corresponding functional role. Calcium carbonate (CaCO3) growth on gold surfaces modified by 11-mercaptoundecanoic acid (MUA/Au) with or without the protein was followed using quartz crystal microbalance with dissipation monitoring (QCM-D), and the grown crystal polymorph was identified by Raman spectroscopy. It is found that MrCP20 either in solution or on the surface affects the kinetics of nucleation and growth of crystals and stabilizes the metastable vaterite polymorph of CaCO3. A comparative study of mass uptake calculated by applying the Sauerbrey equation to the QCM-D data and quantitative X-ray photoelectron spectroscopy determined that the final surface density of the crystals as well as the crystallization kinetics are influenced by MrCP20. In addition, polarization modulation infrared reflection-absorption spectroscopy of MrCP20 established that, during crystal growth, the content of β-sheet structures in MrCP20 increases, in line with the formation of amyloid-like fibrils. The results provide insights into the molecular mechanisms by which MrCP20 regulates the biomineralization of the barnacle base plate, while favoring fibril formation, which is advantageous for other functional roles such as adhesion and cohesion.
Collapse
Affiliation(s)
- Sunyoung Hur
- Sorbonne Université, CNRS, Laboratoire de Réactivité de Surface, LRS, 4 place Jussieu, 75005 Paris, France
- Biological and Biomimetic Material Laboratory (BBML), Center for Sustainable Materials (SusMat), School of Materials Science and Engineering, Nanyang Technological University (NTU), 50 Nanyang Avenue, Singapore, 637553
| | - Christophe Méthivier
- Sorbonne Université, CNRS, Laboratoire de Réactivité de Surface, LRS, 4 place Jussieu, 75005 Paris, France
| | - Axel Wilson
- Sorbonne Université, CNRS, Laboratoire de Réactivité de Surface, LRS, 4 place Jussieu, 75005 Paris, France
| | - Michèle Salmain
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, IPCM, 4 Place Jussieu, 75005 Paris, France
| | - Souhir Boujday
- Sorbonne Université, CNRS, Laboratoire de Réactivité de Surface, LRS, 4 place Jussieu, 75005 Paris, France
| | - Ali Miserez
- Biological and Biomimetic Material Laboratory (BBML), Center for Sustainable Materials (SusMat), School of Materials Science and Engineering, Nanyang Technological University (NTU), 50 Nanyang Avenue, Singapore, 637553
- School of Biological Sciences, NTU, 60 Nanyang Drive, Singapore, 637551
| |
Collapse
|
6
|
Tilbury MA, Tran TQ, Shingare D, Lefevre M, Power AM, Leclère P, Wall JG. Self-assembly of a barnacle cement protein into intertwined amyloid fibres and determination of their adhesive and viscoelastic properties. J R Soc Interface 2023; 20:20230332. [PMID: 37553991 PMCID: PMC10410215 DOI: 10.1098/rsif.2023.0332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 07/18/2023] [Indexed: 08/10/2023] Open
Abstract
The stalked barnacle Pollicipes pollicipes uses a multi-protein cement to adhere to highly varied substrates in marine environments. We investigated the morphology and adhesiveness of a component 19 kDa protein in barnacle cement gland- and seawater-like conditions, using transmission electron microscopy and state-of-the art scanning probe techniques. The protein formed amyloid fibres after 5 days in gland-like but not seawater conditions. After 7-11 days, the fibres self-assembled under gland-like conditions into large intertwined fibrils of up to 10 µm in length and 200 nm in height, with a distinctive twisting of fibrils evident after 11 days. Atomic force microscopy (AFM)-nanodynamic mechanical analysis of the protein in wet conditions determined E' (elasticity), E'' (viscosity) and tan δ values of 2.8 MPa, 1.2 MPa and 0.37, respectively, indicating that the protein is a soft and viscoelastic material, while the adhesiveness of the unassembled protein and assembled fibres, measured using peak force quantitative nanomechanical mapping, was comparable to that of the commercial adhesive Cell-Tak™. The study provides a comprehensive insight into the nanomechanical and viscoelastic properties of the barnacle cement protein and its self-assembled fibres under native-like conditions and may have application in the design of amyloid fibril-based biomaterials or bioadhesives.
Collapse
Affiliation(s)
- Maura A. Tilbury
- Microbiology, School of Biological and Chemical Sciences, University of Galway, Galway, Ireland
- SFI Centre for Medical Devices (CÚRAM), University of Galway, Galway, Ireland
| | - Thi Quynh Tran
- Laboratory for Physics of Nanomaterials and Energy, Research Institute for Materials, University of Mons, 7000 Mons, Belgium
| | - Dilip Shingare
- Microbiology, School of Biological and Chemical Sciences, University of Galway, Galway, Ireland
- SFI Centre for Medical Devices (CÚRAM), University of Galway, Galway, Ireland
| | - Mathilde Lefevre
- Laboratory for Physics of Nanomaterials and Energy, Research Institute for Materials, University of Mons, 7000 Mons, Belgium
- Laboratory of Cell Biology, Research Institute for Biosciences, University of Mons, Place du Parc 23, 7000 Mons, Belgium
| | - Anne Marie Power
- Ryan Institute, School of Natural Sciences, University of Galway, Galway, Ireland
| | - Philippe Leclère
- Laboratory for Physics of Nanomaterials and Energy, Research Institute for Materials, University of Mons, 7000 Mons, Belgium
| | - J. Gerard Wall
- Microbiology, School of Biological and Chemical Sciences, University of Galway, Galway, Ireland
- SFI Centre for Medical Devices (CÚRAM), University of Galway, Galway, Ireland
| |
Collapse
|
7
|
Hao D, Li X, Yang E, Tian Y, Jiang L. Barnacle inspired high-strength hydrogel for adhesive. Front Bioeng Biotechnol 2023; 11:1183799. [PMID: 37077234 PMCID: PMC10106642 DOI: 10.3389/fbioe.2023.1183799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 03/17/2023] [Indexed: 04/05/2023] Open
Abstract
Barnacle exhibits high adhesion strength underwater for its glue with coupled adhesion mechanisms, including hydrogen bonding, electrostatic force, and hydrophobic interaction. Inspired by such adhesion mechanism, we designed and constructed a hydrophobic phase separation hydrogel induced by the electrostatic and hydrogen bond interaction assembly of PEI and PMAA. By coupling the effect of hydrogen bond, electrostatic force and hydrophobic interaction, our gel materials show an ultrahigh mechanical strength, which is up to 2.66 ± 0.18 MPa. Also, benefit from the coupled adhesion forces, as well as the ability to destroy the interface water layer, the adhesion strength on the polar materials can be up to 1.99 ± 0.11 MPa underwater, while that of the adhesion strength is about 2.70 ± 0.21 MPa under silicon oil. This work provides a deeper understanding of the underwater adhesion principle of barnacle glue. Furthermore, our bioinspired strategy would provide an inspiration for the fabrication of high mechanical gel materials, and the rapid strong adhesive used in both water and organic solvents.
Collapse
Affiliation(s)
- Dezhao Hao
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Xingchao Li
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Enfeng Yang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Ye Tian
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, China
- Beijing Institute of Future Science and Technology on Bioinspired Interface, Beijing, China
- *Correspondence: Ye Tian,
| | - Lei Jiang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
8
|
Jiao S, Zhang X, Cai H, Wu S, Ou X, Han G, Zhao J, Li Y, Guo W, Liu T, Qu W. Recent advances in biomimetic hemostatic materials. Mater Today Bio 2023; 19:100592. [PMID: 36936399 PMCID: PMC10020683 DOI: 10.1016/j.mtbio.2023.100592] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 02/26/2023] Open
Abstract
Although the past decade has witnessed unprecedented medical advances, achieving rapid and effective hemostasis remains challenging. Uncontrolled bleeding and wound infections continue to plague healthcare providers, increasing the risk of death. Various types of hemostatic materials are nowadays used during clinical practice but have many limitations, including poor biocompatibility, toxicity and biodegradability. Recently, there has been a burgeoning interest in organisms that stick to objects or produce sticky substances. Indeed, applying biological adhesion properties to hemostatic materials remains an interesting approach. This paper reviews the biological behavior, bionics, and mechanisms related to hemostasis. Furthermore, this paper covers the benefits, challenges and prospects of biomimetic hemostatic materials.
Collapse
Affiliation(s)
- Simin Jiao
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, 130041, PR China
| | - Xi Zhang
- Department of Burn Surgery, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, PR China
| | - Hang Cai
- Department of Pharmacy, The Second Hospital of Jilin University, Changchun, 130041, PR China
| | - Siyu Wu
- Department of Hand Surgery, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, 130041, PR China
| | - Xiaolan Ou
- Department of Hand Surgery, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, 130041, PR China
| | - Guangda Han
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, 130041, PR China
| | - Jie Zhao
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, 130022, PR China
| | - Yan Li
- Trauma and Reparative Medicine, Karolinska University Hospital, Stockholm, Sweden
- The Division of Orthopedics and Biotechnology, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden
| | - Wenlai Guo
- Department of Hand Surgery, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, 130041, PR China
- Corresponding author.
| | - Tianzhou Liu
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, 130041, PR China
- Corresponding author.
| | - Wenrui Qu
- Department of Hand Surgery, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, 130041, PR China
- Corresponding author.
| |
Collapse
|
9
|
Miserez A, Yu J, Mohammadi P. Protein-Based Biological Materials: Molecular Design and Artificial Production. Chem Rev 2023; 123:2049-2111. [PMID: 36692900 PMCID: PMC9999432 DOI: 10.1021/acs.chemrev.2c00621] [Citation(s) in RCA: 41] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Indexed: 01/25/2023]
Abstract
Polymeric materials produced from fossil fuels have been intimately linked to the development of industrial activities in the 20th century and, consequently, to the transformation of our way of living. While this has brought many benefits, the fabrication and disposal of these materials is bringing enormous sustainable challenges. Thus, materials that are produced in a more sustainable fashion and whose degradation products are harmless to the environment are urgently needed. Natural biopolymers─which can compete with and sometimes surpass the performance of synthetic polymers─provide a great source of inspiration. They are made of natural chemicals, under benign environmental conditions, and their degradation products are harmless. Before these materials can be synthetically replicated, it is essential to elucidate their chemical design and biofabrication. For protein-based materials, this means obtaining the complete sequences of the proteinaceous building blocks, a task that historically took decades of research. Thus, we start this review with a historical perspective on early efforts to obtain the primary sequences of load-bearing proteins, followed by the latest developments in sequencing and proteomic technologies that have greatly accelerated sequencing of extracellular proteins. Next, four main classes of protein materials are presented, namely fibrous materials, bioelastomers exhibiting high reversible deformability, hard bulk materials, and biological adhesives. In each class, we focus on the design at the primary and secondary structure levels and discuss their interplays with the mechanical response. We finally discuss earlier and the latest research to artificially produce protein-based materials using biotechnology and synthetic biology, including current developments by start-up companies to scale-up the production of proteinaceous materials in an economically viable manner.
Collapse
Affiliation(s)
- Ali Miserez
- Center
for Sustainable Materials (SusMat), School of Materials Science and
Engineering, Nanyang Technological University
(NTU), Singapore637553
- School
of Biological Sciences, NTU, Singapore637551
| | - Jing Yu
- Center
for Sustainable Materials (SusMat), School of Materials Science and
Engineering, Nanyang Technological University
(NTU), Singapore637553
- Institute
for Digital Molecular Analytics and Science (IDMxS), NTU, 50 Nanyang Avenue, Singapore637553
| | - Pezhman Mohammadi
- VTT
Technical Research Centre of Finland Ltd., Espoo, UusimaaFI-02044, Finland
| |
Collapse
|
10
|
Medhi R, Cintora A, Guazzelli E, Narayan N, Leonardi AK, Galli G, Oliva M, Pretti C, Finlay JA, Clare AS, Martinelli E, Ober CK. Nitroxide-Containing Amphiphilic Random Terpolymers for Marine Antifouling and Fouling-Release Coatings. ACS APPLIED MATERIALS & INTERFACES 2023; 15:11150-11162. [PMID: 36802475 DOI: 10.1021/acsami.2c23213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Two types of amphiphilic random terpolymers, poly(ethylene glycol methyl ether methacrylate)-ran-poly(2,2,6,6-tetramethylpiperidinyloxy methacrylate)-ran-poly(polydimethyl siloxane methacrylate) (PEGMEMA-r-PTMA-r-PDMSMA), were synthesized and evaluated for antifouling (AF) and fouling-release (FR) properties using diverse marine fouling organisms. In the first stage of production, the two respective precursor amine terpolymers containing (2,2,6,6-tetramethyl-4-piperidyl methacrylate) units (PEGMEMA-r-PTMPM-r-PDMSMA) were synthesized by atom transfer radical polymerization using various comonomer ratios and two initiators: alkyl halide and fluoroalkyl halide. In the second stage, these were selectively oxidized to introduce nitroxide radical functionalities. Finally, the terpolymers were incorporated into a PDMS host matrix to create coatings. AF and FR properties were examined using the alga Ulva linza, the barnacle Balanus improvisus, and the tubeworm Ficopomatus enigmaticus. The effects of comonomer ratios on surface properties and fouling assay results for each set of coatings are discussed in detail. There were marked differences in the effectiveness of these systems against the different fouling organisms. The terpolymers had distinct advantages over monopolymeric systems across the different organisms, and the nonfluorinated PEG and nitroxide combination was identified as the most effective formulation against B. improvisus and F. enigmaticus.
Collapse
Affiliation(s)
- Riddhiman Medhi
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Alicia Cintora
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Elisa Guazzelli
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Pisa 56124, Italy
| | - Nila Narayan
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Amanda K Leonardi
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Giancarlo Galli
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Pisa 56124, Italy
| | - Matteo Oliva
- Consorzio Interuniversitario di Biologia Marina e Ecologia Applicata "G. Bacci", Livorno 57128, Italy
| | - Carlo Pretti
- Consorzio Interuniversitario di Biologia Marina e Ecologia Applicata "G. Bacci", Livorno 57128, Italy
- Dipartimento di Scienze Veterinarie, Università di Pisa, Pisa 56124, Italy
| | - John A Finlay
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, U.K
| | - Anthony S Clare
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, U.K
| | - Elisa Martinelli
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Pisa 56124, Italy
| | - Christopher K Ober
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
11
|
Jia L, Yu Y, Zheng J, Zhou H, Liu Q, Wang W, Liu X, Zhang X, Ge D, Shi W, Sun Y. Self-assembling Bioadhesive Inspired by the Fourth Repetitive Sequence of Balanus albicostatus Cement Protein 20 kDa (Balcp-20 k). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2022; 24:1148-1157. [PMID: 36319917 DOI: 10.1007/s10126-022-10177-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
Barnacle cement proteins are multi-protein complexes composed of a series of functionally related synergistic proteins that enable barnacles to adhere strongly and consistently to various underwater substrates. There is no post-translational modification of barnacle cement proteins, which provides a possibility for the synthesis of similar adhesive materials. Balcp-20 k has four repetitive sequences with multiple conserved cysteine groups. Whether these repeats are separate functional units and the role of cysteine in adhesion is not clear. In order to investigate the adhesion properties of Balcp-20 k, we amplified and expressed R4 (DHLACNAKHPCWHKHCDCFC)4, which is a quadruple repeat of Balcp-20 k's fourth repetitive sequence, and S0R4 (DHLASNAKHPSWHKHSDSFS)4, all cysteine of R4 replaced by serine. Analysis showed that R4 had a similar structure to Balcp-20 k, and the amyloid fibrils structure formed by self-assembly of R4 played an important role in improving the adhesion strength. The absence of disulfide bonds in S0R4 prevents self-assembly, and the failure of self-assembly after the reduction of disulfide bonds of R4 by DTT indicates that disulfide bonds play an important role in self-assembly. With adhesion and coating analysis, it was found that R4 has good adhesion on different materials surfaces, which is better than Balcp-20 k, while S0R4 has weak adhesion, which is only better than BSA.
Collapse
Affiliation(s)
- Li Jia
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province/Research Center of Biomedical Engineering of Xiamen, Xiamen Key Laboratory of Fire Retardant Materials/Fujian Provincial Key Laboratory of Fire Retardant Materials, Department of Biomaterials, College of Materials, Xiamen University, Xiamen, 361005, China
| | - Yabiao Yu
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province/Research Center of Biomedical Engineering of Xiamen, Xiamen Key Laboratory of Fire Retardant Materials/Fujian Provincial Key Laboratory of Fire Retardant Materials, Department of Biomaterials, College of Materials, Xiamen University, Xiamen, 361005, China
| | - Jinyang Zheng
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province/Research Center of Biomedical Engineering of Xiamen, Xiamen Key Laboratory of Fire Retardant Materials/Fujian Provincial Key Laboratory of Fire Retardant Materials, Department of Biomaterials, College of Materials, Xiamen University, Xiamen, 361005, China
| | - Hao Zhou
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province/Research Center of Biomedical Engineering of Xiamen, Xiamen Key Laboratory of Fire Retardant Materials/Fujian Provincial Key Laboratory of Fire Retardant Materials, Department of Biomaterials, College of Materials, Xiamen University, Xiamen, 361005, China
| | - Qiang Liu
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province/Research Center of Biomedical Engineering of Xiamen, Xiamen Key Laboratory of Fire Retardant Materials/Fujian Provincial Key Laboratory of Fire Retardant Materials, Department of Biomaterials, College of Materials, Xiamen University, Xiamen, 361005, China
| | - Wei Wang
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province/Research Center of Biomedical Engineering of Xiamen, Xiamen Key Laboratory of Fire Retardant Materials/Fujian Provincial Key Laboratory of Fire Retardant Materials, Department of Biomaterials, College of Materials, Xiamen University, Xiamen, 361005, China
| | - Xinxin Liu
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province/Research Center of Biomedical Engineering of Xiamen, Xiamen Key Laboratory of Fire Retardant Materials/Fujian Provincial Key Laboratory of Fire Retardant Materials, Department of Biomaterials, College of Materials, Xiamen University, Xiamen, 361005, China
| | - Xiuming Zhang
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province/Research Center of Biomedical Engineering of Xiamen, Xiamen Key Laboratory of Fire Retardant Materials/Fujian Provincial Key Laboratory of Fire Retardant Materials, Department of Biomaterials, College of Materials, Xiamen University, Xiamen, 361005, China
| | - Dongtao Ge
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province/Research Center of Biomedical Engineering of Xiamen, Xiamen Key Laboratory of Fire Retardant Materials/Fujian Provincial Key Laboratory of Fire Retardant Materials, Department of Biomaterials, College of Materials, Xiamen University, Xiamen, 361005, China
| | - Wei Shi
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province/Research Center of Biomedical Engineering of Xiamen, Xiamen Key Laboratory of Fire Retardant Materials/Fujian Provincial Key Laboratory of Fire Retardant Materials, Department of Biomaterials, College of Materials, Xiamen University, Xiamen, 361005, China
| | - Yanan Sun
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province/Research Center of Biomedical Engineering of Xiamen, Xiamen Key Laboratory of Fire Retardant Materials/Fujian Provincial Key Laboratory of Fire Retardant Materials, Department of Biomaterials, College of Materials, Xiamen University, Xiamen, 361005, China.
| |
Collapse
|
12
|
Yuan J, Zhang X, Li S, Liu C, Yu Y, Zhang X, Xiang J, Li F. Convergent evolution of barnacles and molluscs sheds lights in origin and diversification of calcareous shell and sessile lifestyle. Proc Biol Sci 2022; 289:20221535. [PMID: 36100022 PMCID: PMC9470267 DOI: 10.1098/rspb.2022.1535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 08/22/2022] [Indexed: 11/12/2022] Open
Abstract
The calcareous shell and sessile lifestyle are the representative phenotypes of many molluscs, which happen to be present in barnacles, a group of unique crustaceans. The origin of these phenotypes is unclear, but it may be embodied in the convergent genetics of such distant groups (interphylum). Herein, we perform comprehensive comparative genomics analysis in barnacles and molluscs, and reveal a genome-wide strong convergent molecular evolution between them, including coexpansion of biomineralization and organic matrix genes for shell formation, and origination of lineage-specific orphan genes for settlement. Notably, the expanded biomineralization gene encoding alkaline phosphatase evolves a novel, highly conserved motif that may trigger the origin of barnacle shell formation. Unlike molluscs, barnacles adopt novel organic matrices and cement proteins for shell formation and settlement, respectively, and their calcareous shells have potentially originated from the cuticle system of crustaceans. Therefore, our study corroborates the idea that selection pressures driving convergent evolution may strongly act in organisms inhabiting similar environments regardless of phylogenetic distance. The convergence signatures shed light on the origin of the shell and sessile lifestyle of barnacles and molluscs. In addition, notable non-convergence signatures are also present and may contribute to morphological and functional specificities.
Collapse
Affiliation(s)
- Jianbo Yuan
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, People's Republic of China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, People's Republic of China
| | - Xiaojun Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, People's Republic of China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, People's Republic of China
| | - Shihao Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, People's Republic of China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, People's Republic of China
| | - Chengzhang Liu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, People's Republic of China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, People's Republic of China
| | - Yang Yu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, People's Republic of China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, People's Republic of China
| | - Xiaoxi Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, People's Republic of China
| | - Jianhai Xiang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, People's Republic of China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, People's Republic of China
| | - Fuhua Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, People's Republic of China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, People's Republic of China
| |
Collapse
|
13
|
Xu Z, Liu Z, Zhang C, Xu D. Advance in barnacle cement with high underwater adhesion. J Appl Polym Sci 2022. [DOI: 10.1002/app.52894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Zhenzhen Xu
- Beijing Institute of Basic Medical Sciences Beijing China
- College of Pharmaceutical Sciences Hebei University Baoding China
| | - Zhongcheng Liu
- College of Pharmaceutical Sciences Hebei University Baoding China
| | - Chao Zhang
- Beijing Institute of Basic Medical Sciences Beijing China
| | - Donggang Xu
- Beijing Institute of Basic Medical Sciences Beijing China
| |
Collapse
|
14
|
Shokri M, Dalili F, Kharaziha M, Baghaban Eslaminejad M, Ahmadi Tafti H. Strong and bioactive bioinspired biomaterials, next generation of bone adhesives. Adv Colloid Interface Sci 2022; 305:102706. [PMID: 35623113 DOI: 10.1016/j.cis.2022.102706] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/20/2022] [Accepted: 05/15/2022] [Indexed: 12/29/2022]
Abstract
The bone adhesive is a clinical requirement for complicated bone fractures always articulated by surgeons. Applying glue is a quick and easy way to fix broken bones. Adhesives, unlike conventional fixation methods such as wires and sutures, improve healing conditions and reduce postoperative pain by creating a complete connection at the fractured joint. Despite many efforts in the field of bone adhesives, the creation of a successful adhesive with robust adhesion and appropriate bioactivity for the treatment of bone fractures is still in its infancy. Because of the resemblance of the body's humid environment to the underwater environment, in the latest decades, researchers have pursued inspiration from nature to develop strong bioactive adhesives for bone tissue. The aim of this review article is to discuss the recent state of the art in bone adhesives with a specific focus on biomimetic adhesives, their action mechanisms, and upcoming perspective. Firstly, the adhesive biomaterials with specific affinity to bone tissue are introduced and their rational design is studied. Consequently, various types of synthetic and natural bioadhesives for bone tissue are comprehensively overviewed. Then, bioinspired-adhesives are described, highlighting relevant structures and examples of biomimetic adhesives mainly made of DOPA and the complex coacervates inspired by proteins secreted in mussel and sandcastle worms, respectively. Finally, this article overviews the challenges of the current bioadhesives and the future research for the improvement of the properties of biomimetic adhesives for use as bone adhesives.
Collapse
Affiliation(s)
- Mahshid Shokri
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Faezeh Dalili
- School of Metallurgy & Materials Engineering, Faculty of Engineering, University of Tehran, Tehran, Iran
| | - Mahshid Kharaziha
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| | - Mohamadreza Baghaban Eslaminejad
- Department of Stem Cells and Developmental Biology, Cell Sciences Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| | - Hossein Ahmadi Tafti
- Tehran Heart Hospital Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Decoding the byssus fabrication by spatiotemporal secretome analysis of scallop foot. Comput Struct Biotechnol J 2022; 20:2713-2722. [PMID: 35685371 PMCID: PMC9168380 DOI: 10.1016/j.csbj.2022.05.048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/24/2022] [Accepted: 05/24/2022] [Indexed: 01/06/2023] Open
Abstract
The first secretome about scallop byssal adhesion is profiled based on a new computational strategy. Scallop byssal secretome covered almost all of the known structural elements and functional domains of aquatic adhesives. The EGF-like domain containing proteins, the Tyr-rich proteins and 4C-repeats containing proteins are the main components of scallop byssus. A novel “nearby secretion” model of scallop byssus secretion and adhesion is proposed.
Secretome is involved in almost all physiological, developmental, and pathological processes, but to date there is still a lack of highly-efficient research strategy to comprehensively study the secretome of invertebrates. Adhesive secretion is a ubiquitous and essential physiological process in aquatic invertebrates with complicated protein components and unresolved adhesion mechanisms, making it a good subject for secretome profiling studies. Here we proposed a computational pipeline for systematic profiling of byssal secretome based on spatiotemporal transcriptomes of scallop. A total of 186 byssus-related proteins (BRPs) were identified, which represented the first characterized secretome of scallop byssal adhesion. Scallop byssal secretome covered almost all of the known structural elements and functional domains of aquatic adhesives, which suggested this secretome-profiling strategy had both high efficiency and accuracy. We revealed the main components of scallop byssus (including EGF-like domain containing proteins, the Tyr-rich proteins and 4C-repeats containing proteins) and the related modification enzymes primarily contributing to the rapid byssus assembly and adhesion. Spatiotemporal expression and co-expression network analyses of BRPs suggested a simultaneous secretion pattern of scallop byssal proteins across the entire region of foot and revealed their diverse functions on byssus secretion. In contrast to the previously proposed “root-initiated secretion and extension-based assembly” model, our findings supported a novel “foot-wide simultaneous secretion and in situ assembly” model of scallop byssus secretion and adhesion. Systematic analysis of scallop byssal secretome provides important clues for understanding the aquatic adhesive secretion process, as well as a common framework for studying the secretome of non-model invertebrates.
Collapse
|
16
|
Gan K, Liang C, Bi X, Wu J, Ye Z, Wu W, Hu B. Adhesive Materials Inspired by Barnacle Underwater Adhesion: Biological Principles and Biomimetic Designs. Front Bioeng Biotechnol 2022; 10:870445. [PMID: 35573228 PMCID: PMC9097139 DOI: 10.3389/fbioe.2022.870445] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 03/22/2022] [Indexed: 01/19/2023] Open
Abstract
Wet adhesion technology has potential applications in various fields, especially in the biomedical field, yet it has not been completely mastered by humans. Many aquatic organisms (e.g., mussels, sandcastle worms, and barnacles) have evolved into wet adhesion specialists with excellent underwater adhesion abilities, and mimicking their adhesion principles to engineer artificial adhesive materials offers an important avenue to address the wet adhesion issue. The crustacean barnacle secretes a proteinaceous adhesive called barnacle cement, with which they firmly attach their bodies to almost any substrate underwater. Owing to the unique chemical composition, structural property, and adhesion mechanism, barnacle cement has attracted widespread research interest as a novel model for designing biomimetic adhesive materials, with significant progress being made. To further boost the development of barnacle cement-inspired adhesive materials (BCIAMs), it is necessary to systematically summarize their design strategies and research advances. However, no relevant reviews have been published yet. In this context, we presented a systematic review for the first time. First, we introduced the underwater adhesion principles of natural barnacle cement, which lay the basis for the design of BCIAMs. Subsequently, we classified the BCIAMs into three major categories according to the different design strategies and summarized their research advances in great detail. Finally, we discussed the research challenge and future trends of this field. We believe that this review can not only improve our understanding of the molecular mechanism of barnacle underwater adhesion but also accelerate the development of barnacle-inspired wet adhesion technology.
Collapse
Affiliation(s)
- Kesheng Gan
- College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, China
| | - Chao Liang
- College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, China
| | - Xiangyun Bi
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Jizhe Wu
- College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, China
| | - Zonghuang Ye
- College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, China
| | - Wenjian Wu
- College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, China
| | - Biru Hu
- College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, China
| |
Collapse
|
17
|
Choi J, Lee S, Ohkawa K, Hwang DS. Counterplotting the Mechanosensing-Based Fouling Mechanism of Mussels against Fouling. ACS NANO 2021; 15:18566-18579. [PMID: 34766757 DOI: 10.1021/acsnano.1c09097] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Marine organisms react to various factors when building colonies for survival; however, severe accumulation of diverse organisms on artificial structures located close to water causes large industrial losses. Herein, we identify a concept in the development of antifouling surfaces based on understanding the surface stiffness recognition procedure of mussel adhesion at the genetic level. It was found that on a soft surface the combination of decreased adhesive plaque size, adhesion force, and plaque protein downregulation synergistically weakens mussel wet adhesion and sometimes prevents mussels from anchoring, mainly due to transcriptional changes within the mechanosensing pathway and the adhesive proteins in secretory glands. In addition, the use of soft substrates or antagonists of surface mechanosensing behavior suppresses mussel fouling significantly.
Collapse
Affiliation(s)
- Jimin Choi
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Sejin Lee
- Division of Environmental Science and Engineering, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
- School of Life Science, Handong Global University, Pohang, 791-708, Republic of Korea
| | - Kousaku Ohkawa
- Institute for Fiber Engineering, Shinshu University (IFES), Tokida 3-15-1, Ueda, 386-8567, Nagano, Japan
| | - Dong Soo Hwang
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
- Division of Environmental Science and Engineering, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
- Institute for Convergence Research and Education in Advanced Technology, Yonsei University, Incheon, 21983, Republic of Korea
| |
Collapse
|
18
|
Lin HC, Wong YH, Sung CH, Chan BKK. Histology and transcriptomic analyses of barnacles with different base materials and habitats shed lights on the duplication and chemical diversification of barnacle cement proteins. BMC Genomics 2021; 22:783. [PMID: 34724896 PMCID: PMC8561864 DOI: 10.1186/s12864-021-08049-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 09/14/2021] [Indexed: 11/26/2022] Open
Abstract
Background Barnacles are sessile crustaceans that attach to underwater surfaces using barnacle cement proteins. Barnacles have a calcareous or chitinous membranous base, and their substratum varies from biotic (e.g. corals/sponges) to abiotic surfaces. In this study, we tested the hypothesis that the cement protein (CP) composition and chemical properties of different species vary according to the attachment substrate and/or the basal structure. We examined the histological structure of cement glands and explored the variations in cement protein homologs of 12 barnacle species with different attachment habitats and base materials. Results Cement gland cells in the rocky shore barnacles Tetraclita japonica formosana and Amphibalanus amphitrite are eosinophilic, while others are basophilic. Transcriptome analyses recovered CP homologs from all species except the scleractinian coral barnacle Galkinia sp. A phylogenomic analysis based on sequences of CP homologs did not reflect a clear phylogenetic pattern in attachment substrates. In some species, certain CPs have a remarkable number of paralogous sequences, suggesting that major duplication events occurred in CP genes. The examined CPs across taxa show consistent bias toward particular sets of amino acid. However, the predicted isoelectric point (pI) and hydropathy are highly divergent. In some species, conserved regions are highly repetitive. Conclusions Instead of developing specific cement proteins for different attachment substrata, barnacles attached to different substrata rely on a highly duplicated cementation genetic toolkit to generate paralogous CP sequences with diverse chemical and biochemical properties. This general CP cocktail might be the key genetic feature enabling barnacles to adapt to a wide variety of substrata. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08049-4.
Collapse
Affiliation(s)
- Hsiu-Chin Lin
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, 80424, Kaohsiung, Taiwan
| | - Yue Him Wong
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Chia-Hsuan Sung
- Planning and Information Division, Fisheries Research Institute, Keelung, Taiwan
| | | |
Collapse
|
19
|
Schultzhaus JN, Hervey WJ, Taitt CR, So CR, Leary DH, Wahl KJ, Spillmann CM. Comparative analysis of stalked and acorn barnacle adhesive proteomes. Open Biol 2021; 11:210142. [PMID: 34404232 PMCID: PMC8371367 DOI: 10.1098/rsob.210142] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Barnacles interest the scientific community for multiple reasons: their unique evolutionary trajectory, vast diversity and economic impact—as a harvested food source and also as one of the most prolific macroscopic hard biofouling organisms. A common, yet novel, trait among barnacles is adhesion, which has enabled a sessile adult existence and global colonization of the oceans. Barnacle adhesive is primarily composed of proteins, but knowledge of how the adhesive proteome varies across the tree of life is unknown due to a lack of genomic information. Here, we supplement previous mass spectrometry analyses of barnacle adhesive with recently sequenced genomes to compare the adhesive proteomes of Pollicipes pollicipes (Pedunculata) and Amphibalanus amphitrite (Sessilia). Although both species contain the same broad protein categories, we detail differences that exist between these species. The barnacle-unique cement proteins show the greatest difference between species, although these differences are diminished when amino acid composition and glycosylation potential are considered. By performing an in-depth comparison of the adhesive proteomes of these distantly related barnacle species, we show their similarities and provide a roadmap for future studies examining sequence-specific differences to identify the proteins responsible for functional differences across the barnacle tree of life.
Collapse
Affiliation(s)
- Janna N Schultzhaus
- Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, Washington, DC, USA
| | - William Judson Hervey
- Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, Washington, DC, USA
| | - Chris R Taitt
- Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, Washington, DC, USA
| | - Chris R So
- Chemistry Division, Naval Research Laboratory, Washington, DC, USA
| | - Dagmar H Leary
- Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, Washington, DC, USA
| | - Kathryn J Wahl
- Chemistry Division, Naval Research Laboratory, Washington, DC, USA
| | - Christopher M Spillmann
- Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, Washington, DC, USA
| |
Collapse
|
20
|
Li X, Li S, Huang X, Chen Y, Cheng J, Zhan A. Protein-mediated bioadhesion in marine organisms: A review. MARINE ENVIRONMENTAL RESEARCH 2021; 170:105409. [PMID: 34271483 DOI: 10.1016/j.marenvres.2021.105409] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 07/01/2021] [Accepted: 07/03/2021] [Indexed: 06/13/2023]
Abstract
Protein-mediated bioadhesion is one of the crucial physiological processes in marine organisms, by which they can firmly adhere to underwater substrates. Most marine adhesive organisms are biofoulers, causing negative effects on marine ecosystems and huge economic losses to aquaculture and maritime industries. Furthermore, adhesive proteins in these organisms are promising bionic candidates for high-performance artificial materials with great application value. In-depth understanding of the bioadhesion in marine ecosystems is of dual significance for resolving biofouling issue and developing marine bionic products. Here, we review the research progress of protein-mediated bioadhesion in marine organisms. The adhesion processes such as protein biosynthesis and secretion are similar among organisms, but the detailed features such as compositions, structures, and molecular functions of adhesive proteins are distinct. Hydroxylation, glycosylation, and phosphorylation are important post-translational modifications during the processes of adhesion. The contents of some amino acids such as glycine, tyrosine and cysteine involved in underwater adhesion are significantly higher, which is a sequence feature of barnacle cement and mussel foot proteins. The amyloid structures and conserved domains/motifs such as EGF and vWFA distributed in adhesive proteins are involved in the underwater adhesion. In addition, the oxidative cross-linking also plays an important role in marine bioadhesion. Overall, the unique and common features identified for the protein-mediated bioadhesion in diverse marine organisms here provide background information and essential reference for characterizing marine adhesive proteins and associated functional domains, formulating antifouling strategies, and developing novel biomimetic adhesives.
Collapse
Affiliation(s)
- Xi Li
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing, 100085, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Shiguo Li
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing, 100085, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing, 100049, China.
| | - Xuena Huang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing, 100085, China
| | - Yiyong Chen
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing, 100085, China
| | - Jiawei Cheng
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing, 100085, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Aibin Zhan
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing, 100085, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing, 100049, China.
| |
Collapse
|
21
|
Davey PA, Power AM, Santos R, Bertemes P, Ladurner P, Palmowski P, Clarke J, Flammang P, Lengerer B, Hennebert E, Rothbächer U, Pjeta R, Wunderer J, Zurovec M, Aldred N. Omics-based molecular analyses of adhesion by aquatic invertebrates. Biol Rev Camb Philos Soc 2021; 96:1051-1075. [PMID: 33594824 DOI: 10.1111/brv.12691] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 01/22/2021] [Accepted: 01/26/2021] [Indexed: 12/15/2022]
Abstract
Many aquatic invertebrates are associated with surfaces, using adhesives to attach to the substratum for locomotion, prey capture, reproduction, building or defence. Their intriguing and sophisticated biological glues have been the focus of study for decades. In all but a couple of specific taxa, however, the precise mechanisms by which the bioadhesives stick to surfaces underwater and (in many cases) harden have proved to be elusive. Since the bulk components are known to be based on proteins in most organisms, the opportunities provided by advancing 'omics technologies have revolutionised bioadhesion research. Time-consuming isolation and analysis of single molecules has been either replaced or augmented by the generation of massive data sets that describe the organism's translated genes and proteins. While these new approaches have provided resources and opportunities that have enabled physiological insights and taxonomic comparisons that were not previously possible, they do not provide the complete picture and continued multi-disciplinarity is essential. This review covers the various ways in which 'omics have contributed to our understanding of adhesion by aquatic invertebrates, with new data to illustrate key points. The associated challenges are highlighted and priorities are suggested for future research.
Collapse
Affiliation(s)
- Peter A Davey
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, U.K
| | - Anne Marie Power
- Ryan Institute, School of Natural Sciences, National University of Ireland Galway, Room 226, Galway, H91 TK33, Ireland
| | - Romana Santos
- Departamento de Biologia Animal, Faculdade de Ciências, Centro de Ciências do Mar e do Ambiente (MARE), Universidade de Lisboa, Lisbon, 1749-016, Portugal
| | - Philip Bertemes
- Institute of Zoology and Center of Molecular Biosciences Innsbruck, University of Innsbruck, Technikerstrasse 25, Innsbruck, 6020, Austria
| | - Peter Ladurner
- Institute of Zoology and Center of Molecular Biosciences Innsbruck, University of Innsbruck, Technikerstrasse 25, Innsbruck, 6020, Austria
| | - Pawel Palmowski
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, U.K
| | - Jessica Clarke
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, U.K
| | - Patrick Flammang
- Biology of Marine Organisms and Biomimetics Unit, Research Institute for Biosciences, University of Mons, Place du Parc 23, Mons, 7000, Belgium
| | - Birgit Lengerer
- Institute of Zoology and Center of Molecular Biosciences Innsbruck, University of Innsbruck, Technikerstrasse 25, Innsbruck, 6020, Austria
| | - Elise Hennebert
- Laboratory of Cell Biology, Research Institute for Biosciences, University of Mons, Place du Parc 23, Mons, 7000, Belgium
| | - Ute Rothbächer
- Institute of Zoology and Center of Molecular Biosciences Innsbruck, University of Innsbruck, Technikerstrasse 25, Innsbruck, 6020, Austria
| | - Robert Pjeta
- Institute of Zoology and Center of Molecular Biosciences Innsbruck, University of Innsbruck, Technikerstrasse 25, Innsbruck, 6020, Austria
| | - Julia Wunderer
- Institute of Zoology and Center of Molecular Biosciences Innsbruck, University of Innsbruck, Technikerstrasse 25, Innsbruck, 6020, Austria
| | - Michal Zurovec
- Biology Centre of the Czech Academy of Sciences and Faculty of Sciences, University of South Bohemia, České Budějovice, 370 05, Czech Republic
| | - Nick Aldred
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, U.K
| |
Collapse
|
22
|
Design of RGDS Peptide-Immobilized Self-Assembling β-Strand Peptide from Barnacle Protein. Int J Mol Sci 2021; 22:ijms22031240. [PMID: 33513895 PMCID: PMC7866236 DOI: 10.3390/ijms22031240] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/22/2021] [Accepted: 01/25/2021] [Indexed: 11/17/2022] Open
Abstract
We designed three types of RGD-containing barnacle adhesive proteins using self-assembling peptides. In the present study, three types of RGD-containing peptides were synthesized by solid-phase peptide synthesis, and the secondary structures of these peptides were analyzed by CD and FT-IR spectroscopy. The mechanical properties of peptide hydrogels were characterized by a rheometer. We discuss the correlation between the peptide conformation, and cell attachment and cell spreading activity from the viewpoint of developing effective tissue engineering scaffolds. We created a peptide-coated cell culture substrate by coating peptides on a polystyrene plate. They significantly facilitated cell adhesion and spreading compared to a non-coated substrate. When the RGDS sequence was modified at N- or C-terminal of R-Y, it was found that the self-assembling ability was dependent on the strongly affects hydrogel formation and cell adhesion caused by its secondary structure.
Collapse
|
23
|
Kang V, Lengerer B, Wattiez R, Flammang P. Molecular insights into the powerful mucus-based adhesion of limpets ( Patella vulgata L.). Open Biol 2020; 10:200019. [PMID: 32543352 PMCID: PMC7333891 DOI: 10.1098/rsob.200019] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 05/14/2020] [Indexed: 12/23/2022] Open
Abstract
Limpets (Patella vulgata L.) are renowned for their powerful attachments to rocks on wave-swept seashores. Unlike adult barnacles and mussels, limpets do not adhere permanently; instead, they repeatedly transition between long-term adhesion and locomotive adhesion depending on the tide. Recent studies on the adhesive secretions (bio-adhesives) of marine invertebrates have expanded our knowledge on the composition and function of temporary and permanent bio-adhesives. In comparison, our understanding of the limpets' transitory adhesion remains limited. In this study, we demonstrate that suction is not the primary attachment mechanism in P. vulgata; rather, they secrete specialized pedal mucus for glue-like adhesion. Through combined transcriptomics and proteomics, we identified 171 protein sequences from the pedal mucus. Several of these proteins contain conserved domains found in temporary bio-adhesives from sea stars, sea urchins, marine flatworms and sea anemones. Many of these proteins share homology with fibrous gel-forming glycoproteins, including fibrillin, hemolectin and SCO-spondin. Moreover, proteins with potential protein- and glycan-degrading domains could have an immune defence role or assist degrading adhesive mucus to facilitate the transition from stationary to locomotive states. We also discovered glycosylation patterns unique to the pedal mucus, indicating that specific sugars may be involved in transitory adhesion. Our findings elucidate the mechanisms underlying P. vulgata adhesion and provide opportunities for future studies on bio-adhesives that form strong attachments and resist degradation until necessary for locomotion.
Collapse
Affiliation(s)
- Victor Kang
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - Birgit Lengerer
- Biology of Marine Organisms and Biomimetics Unit, Research Institute for Biosciences, University of Mons, Mons 7000, Belgium
- Institute of Zoology, University of Innsbruck, 6020 Innsbruck, Austria
| | - Ruddy Wattiez
- Laboratory of Proteomics and Microbiology, Research Institute for Biosciences, University of Mons, Mons 7000, Belgium
| | - Patrick Flammang
- Biology of Marine Organisms and Biomimetics Unit, Research Institute for Biosciences, University of Mons, Mons 7000, Belgium
| |
Collapse
|
24
|
Almeida M, Reis RL, Silva TH. Marine invertebrates are a source of bioadhesives with biomimetic interest. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 108:110467. [PMID: 31924038 DOI: 10.1016/j.msec.2019.110467] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/06/2019] [Accepted: 11/18/2019] [Indexed: 12/18/2022]
Abstract
Protein-based bioadhesives are found in diverse marine invertebrates that developed attachment devices to adhere to various substrates. These adhesives are of interest to materials science to create bioinspired-adhesives that can perform in water or wet conditions and can be applied in a broad variety of biotechnological and industrial fields. Due to the high variety of invertebrates that inhabit the marine environment, an enormous diversity of structures and principles used in biological adhesives remains unexplored and a very limited number of model systems have inspired novel biomimetic adhesives, the most notable being the mussel byssus adhesive. In this review we give an overview of other marine invertebrates studied for their bioadhesive properties in view of their interest for the development of new biomimetic adhesives for application in the biomedical field but also for antifouling coatings. The molecular features are described, highlighting relevant structures, and examples of biomimetic materials are discussed and explored, opening an avenue for a new set of medical products.
Collapse
Affiliation(s)
- Mariana Almeida
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal; The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, 4805-017 Barco, Guimarães, Portugal
| | - Tiago H Silva
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal.
| |
Collapse
|
25
|
Eslami B, Irajizad P, Jafari P, Nazari M, Masoudi A, Kashyap V, Stafslien S, Ghasemi H. Stress-localized durable anti-biofouling surfaces. SOFT MATTER 2019; 15:6014-6026. [PMID: 31309202 DOI: 10.1039/c9sm00790c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Growing demands for bio-friendly antifouling surfaces have stimulated the development of new and ever-improving material paradigms. Despite notable progress in bio-friendly coatings, the biofouling problem remains a critical challenge. In addition to biofouling characteristics, mechanically stressed surfaces such as ship hulls, piping systems, and heat exchangers require long-term durability in marine environments. Here, we introduce a new generation of anti-biofouling coatings with superior characteristics and high mechanical, chemical and environmental durability. In these surfaces, we have implemented the new physics of stress localization to minimize the adhesion of bio-species on the coatings. This polymeric material contains dispersed organogels in a high shear modulus matrix. Interfacial cavitation induced at the interface of bio-species and organogel particles leads to stress localization and detachment of bio-species from these surfaces with minimal shear stress. In a comprehensive study, the performance of these surfaces is assessed for both soft and hard biofouling including Ulva, bacteria, diatoms, barnacles and mussels, and is compared with that of state-of-the-art surfaces. These surfaces show Ulva accumulation of less than 1%, minimal bacterial biofilm growth, diatom attachment of 2%, barnacle adhesion of 0.02 MPa and mussel adhesion of 7.5 N. These surfaces promise a new physics-based route to address the biofouling problem and avoid adverse effects of biofouling on the environment and relevant technologies.
Collapse
Affiliation(s)
- Bahareh Eslami
- Department of Mechanical Engineering, University of Houston, 4726 Calhoun Rd, Houston, Texas 77204-4006, USA.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Schultzhaus JN, Dean SN, Leary DH, Hervey WJ, Fears KP, Wahl KJ, Spillmann CM. Pressure cycling technology for challenging proteomic sample processing: application to barnacle adhesive. Integr Biol (Camb) 2019; 11:235-247. [DOI: 10.1093/intbio/zyz020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 05/08/2019] [Accepted: 05/29/2019] [Indexed: 12/23/2022]
Abstract
AbstractSuccessful proteomic characterization of biological material depends on the development of robust sample processing methods. The acorn barnacle Amphibalanus amphitrite is a biofouling model for adhesive processes, but the identification of causative proteins involved has been hindered by their insoluble nature. Although effective, existing sample processing methods are labor and time intensive, slowing progress in this field. Here, a more efficient sample processing method is described which exploits pressure cycling technology (PCT) in combination with protein solvents. PCT aids in protein extraction and digestion for proteomics analysis. Barnacle adhesive proteins can be extracted and digested in the same tube using PCT, minimizing sample loss, increasing throughput to 16 concurrently processed samples, and decreasing sample processing time to under 8 hours. PCT methods produced similar proteomes in comparison to previous methods. Two solvents which were ineffective at extracting proteins from the adhesive at ambient pressure (urea and methanol) produced more protein identifications under pressure than highly polar hexafluoroisopropanol, leading to the identification and description of >40 novel proteins at the interface. Some of these have homology to proteins with elastomeric properties or domains involved with protein-protein interactions, while many have no sequence similarity to proteins in publicly available databases, highlighting the unique adherent processes evolved by barnacles. The methods described here can not only be used to further characterize barnacle adhesive to combat fouling, but may also be applied to other recalcitrant biological samples, including aggregative or fibrillar protein matrices produced during disease, where a lack of efficient sample processing methods has impeded advancement. Data are available via ProteomeXchange with identifier PXD012730.
Collapse
Affiliation(s)
- Janna N Schultzhaus
- National Research Council Research Associateship Programs Fellow, Washington, D.C., USA
- Center for Bio/Molecular Science & Engineering, Naval Research Laboratory, Washington, D.C., USA
| | - Scott N Dean
- National Research Council Research Associateship Programs Fellow, Washington, D.C., USA
- Center for Bio/Molecular Science & Engineering, Naval Research Laboratory, Washington, D.C., USA
| | - Dagmar H Leary
- Center for Bio/Molecular Science & Engineering, Naval Research Laboratory, Washington, D.C., USA
| | - W Judson Hervey
- Center for Bio/Molecular Science & Engineering, Naval Research Laboratory, Washington, D.C., USA
| | - Kenan P Fears
- Chemistry Division, Naval Research Laboratory, Washington, D.C., USA
| | - Kathryn J Wahl
- Chemistry Division, Naval Research Laboratory, Washington, D.C., USA
| | - Christopher M Spillmann
- Center for Bio/Molecular Science & Engineering, Naval Research Laboratory, Washington, D.C., USA
| |
Collapse
|
27
|
Rocha M, Antas P, Castro LFC, Campos A, Vasconcelos V, Pereira F, Cunha I. Comparative Analysis of the Adhesive Proteins of the Adult Stalked Goose Barnacle Pollicipes pollicipes (Cirripedia: Pedunculata). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2019; 21:38-51. [PMID: 30413912 DOI: 10.1007/s10126-018-9856-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 10/14/2018] [Indexed: 06/08/2023]
Abstract
Adhesion in barnacles is still poorly understood. The cement gland secretes an insoluble multi-protein complex, which adheres very strongly to a variety of substrates in the presence of water. This adhesion mechanism is bioinspiring for the engineering of new adhesive materials, but to replicate this adhesive system, the genes coding for the cement constitutive proteins must be identified and elucidated, and their products characterised. Here, the complete sequences of three cement protein (CP) genes (CP-100K, CP-52K, and CP-19K) isolated from the cement gland of the stalked barnacle Pollicipes pollicipes (order Scalpelliformes) were obtained using RACE PCR. The three genes were compared to the 23 other acorn barnacle CP genes so far sequenced (order Sessilia) to determine common and differential patterns and molecular properties, since the adhesives of both orders have visibly different characteristics. A shotgun proteomic analysis was performed on the cement, excreted at the membranous base of specimens, where the products of the three genes sequenced in the gland were identified, validating their function as CPs. A principal component analysis (PCA) was performed, to cluster CPs into groups with similar amino acid composition. This analysis uncovered three CP groups, each characterised by similar residue composition, features in secondary structure, and some biochemical properties, including isoelectric point and residue accessibility to solvents. The similarity among proteins in each defined group was low despite comparable amino acid composition. PCA can identify putative adhesive proteins from NGS transcriptomic data regardless of their low homology. This analysis did not highlight significant differences in residue composition between homologous acorn and stalked barnacle CPs. The characteristics responsible for the structural differences between the cement of stalked and acorn barnacles are described, and the presence of nanostructures, such as repetitive homologous domains and low complexity regions, and repetitive β-sheets are discussed relatively to self-assembly and adhesion.
Collapse
Affiliation(s)
- Miguel Rocha
- CIIMAR/CIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208, Matosinhos, Portugal
- FCUP - Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007, Porto, Portugal
| | - Paulo Antas
- CIIMAR/CIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208, Matosinhos, Portugal
| | - L Filipe C Castro
- CIIMAR/CIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208, Matosinhos, Portugal
- FCUP - Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007, Porto, Portugal
| | - Alexandre Campos
- CIIMAR/CIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208, Matosinhos, Portugal
| | - Vítor Vasconcelos
- CIIMAR/CIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208, Matosinhos, Portugal
- FCUP - Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007, Porto, Portugal
| | - Filipe Pereira
- CIIMAR/CIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208, Matosinhos, Portugal.
| | - Isabel Cunha
- CIIMAR/CIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208, Matosinhos, Portugal.
| |
Collapse
|
28
|
Li C, Qin R, Liu R, Miao S, Yang P. Functional amyloid materials at surfaces/interfaces. Biomater Sci 2018; 6:462-472. [PMID: 29435550 DOI: 10.1039/c7bm01124e] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
With the development of nanotechnology, functional amyloid materials are drawing increasing attention, and numerous remarkable applications are emerging. Amyloids, defined as a class of supramolecular assemblies of misfolded proteins or peptides into β-sheet fibrils, have evolved in many new respects and offer abundant chemical/biological functions. These proteinaceous micro/nano-structures provide excellent biocompatibility, rich phase behaviours, strong mechanical properties, and stability at interfaces not only in nature but also in functional materials, displaying versatile interactions with surfaces/interfaces that have been widely adopted in bioadhesion, synthetic biology, and composites. Overall, functional amyloids at surfaces/interfaces have excellent potential applications in next-generation biotechnology and biomaterials.
Collapse
Affiliation(s)
- Chen Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Xi'an 710119, China.
| | | | | | | | | |
Collapse
|
29
|
Suppan J, Engel B, Marchetti-Deschmann M, Nürnberger S. Tick attachment cement - reviewing the mysteries of a biological skin plug system. Biol Rev Camb Philos Soc 2018; 93:1056-1076. [PMID: 29119723 PMCID: PMC5947171 DOI: 10.1111/brv.12384] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 10/10/2017] [Accepted: 10/12/2017] [Indexed: 11/14/2022]
Abstract
The majority of ticks in the family Ixodidae secrete a substance anchoring their mouthparts to the host skin. This substance is termed cement. It has adhesive properties and seals the lesion during feeding. The particular chemical composition and the curing process of the cement are unclear. This review summarizes the literature, starting with a historical overview, briefly introducing the different hypotheses on the origin of the adhesive and how the tick salivary glands have been identified as its source. Details on the sequence of cement deposition, the curing process and detachment are provided. Other possible functions of the cement, such as protection from the host immune system and antimicrobial properties, are presented. Histochemical and ultrastructural data of the intracellular granules in the salivary gland cells, as well as the secreted cement, suggest that proteins constitute the main material, with biochemical data revealing glycine to be the dominant amino acid. Applied methods and their restrictions are discussed. Tick cement is compared with adhesives of other animals such as barnacles, mussels and sea urchins. Finally, we address the potential of tick cement for the field of biomaterial research and in particular for medical applications in future.
Collapse
Affiliation(s)
- Johannes Suppan
- Department of Trauma Surgery, Austrian Cluster for Tissue Regeneration, Medical University of Vienna, Währinger Gürtel 18-20, A-1090, Vienna, Austria
| | - Benedikt Engel
- Institute of Chemical Technologies and Analytics, TU Wien, Getreidemarkt 9/164, A-1060, Vienna, Austria
| | | | - Sylvia Nürnberger
- Department of Trauma Surgery, Austrian Cluster for Tissue Regeneration, Medical University of Vienna, Währinger Gürtel 18-20, A-1090, Vienna, Austria
| |
Collapse
|
30
|
He LS, Zhang G, Wang Y, Yan GY, Qian PY. Toward understanding barnacle cementing by characterization of one cement protein-100kDa in Amphibalanus amphitrite. Biochem Biophys Res Commun 2018; 495:969-975. [DOI: 10.1016/j.bbrc.2017.11.101] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 11/16/2017] [Indexed: 10/18/2022]
|
31
|
von Byern J, Grunwald I, Kosok M, Saporito RA, Dicke U, Wetjen O, Thiel K, Borcherding K, Kowalik T, Marchetti-Deschmann M. Chemical characterization of the adhesive secretions of the salamander Plethodon shermani (Caudata, Plethodontidae). Sci Rep 2017; 7:6647. [PMID: 28751633 PMCID: PMC5532285 DOI: 10.1038/s41598-017-05473-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 05/26/2017] [Indexed: 11/09/2022] Open
Abstract
Salamanders have developed a wide variety of antipredator mechanisms, including tail autotomy, colour patterns, and noxious skin secretions. As an addition to these tactics, the red-legged salamander (Plethodon shermani) uses adhesive secretions as part of its defensive strategy. The high bonding strength, the fast-curing nature, and the composition of the biobased materials makes salamander adhesives interesting for practical applications in the medical sector. To understand the adhesive secretions of P. shermani, its components were chemically analysed by energy dispersive X-ray spectroscopy (EDX), inductively coupled plasma mass spectrometry (ICP-MS), amino acid analysis, and spectroscopy (ATR-IR, Raman). In addition, proteins were separated by gel-electrophoresis and selected spots were characterised by peptide mass fingerprinting. The salamander secretion contains a high amount of water and predominantly proteins (around 77% in the dry stage). The gel-electrophoresis and peptide mass fingerprint analyses revealed a de novo set of peptides/proteins, largely with a pI between 5.0 and 8.0 and a molecular mass distribution between 10 and 170 kDa. Only low homologies with other proteins present in known databases could be identified. The results indicate that the secretions of the salamander Plethodon clearly differ chemically from those shown for other glue-producing terrestrial or marine species and thus represent a unique glue system.
Collapse
Affiliation(s)
- Janek von Byern
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Austrian Cluster for Tissue Regeneration, Donaueschingenstrasse 13, 1200, Vienna, Austria
- University of Vienna, Faculty of Life Science, Core Facility Cell Imaging and Ultrastructure Research, Althanstrasse 14, 1090, Vienna, Austria
| | - Ingo Grunwald
- Fraunhofer Institute for Manufacturing Technology and Advanced Materials (IFAM), Department of Adhesive Bonding Technology and Surfaces, Adhesives and Polymer Chemistry, Wiener Straße 12, 28359, Bremen, Germany.
| | - Max Kosok
- Vienna University of Technology, Institute of Chemical Technologies and Analytics, Karlsplatz 13, 1040, Vienna, Austria
| | - Ralph A Saporito
- John Carroll University, Department of Biology, University Heights, Ohio, 44118, USA
| | - Ursula Dicke
- University of Bremen, Brain Research Institute, Department of Behavioral Physiology, Bibliothekstraße 1, 28359, Bremen, Germany
| | - Oliver Wetjen
- University of Bremen, Brain Research Institute, Department of Behavioral Physiology, Bibliothekstraße 1, 28359, Bremen, Germany
| | - Karsten Thiel
- Fraunhofer Institute for Manufacturing Technology and Advanced Materials (IFAM), Department of Adhesive Bonding Technology and Surfaces, Adhesives and Polymer Chemistry, Wiener Straße 12, 28359, Bremen, Germany
| | - Kai Borcherding
- Fraunhofer Institute for Manufacturing Technology and Advanced Materials (IFAM), Department of Adhesive Bonding Technology and Surfaces, Adhesives and Polymer Chemistry, Wiener Straße 12, 28359, Bremen, Germany
| | - Thomas Kowalik
- Fraunhofer Institute for Manufacturing Technology and Advanced Materials (IFAM), Department of Adhesive Bonding Technology and Surfaces, Adhesives and Polymer Chemistry, Wiener Straße 12, 28359, Bremen, Germany
| | - Martina Marchetti-Deschmann
- Vienna University of Technology, Institute of Chemical Technologies and Analytics, Karlsplatz 13, 1040, Vienna, Austria
| |
Collapse
|
32
|
Raman S, Malms L, Utzig T, Shrestha BR, Stock P, Krishnan S, Valtiner M. Adhesive barnacle peptides exhibit a steric-driven design rule to enhance adhesion between asymmetric surfaces. Colloids Surf B Biointerfaces 2017; 152:42-48. [DOI: 10.1016/j.colsurfb.2016.12.038] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 12/22/2016] [Accepted: 12/23/2016] [Indexed: 12/20/2022]
|
33
|
So CR, Fears KP, Leary DH, Scancella JM, Wang Z, Liu JL, Orihuela B, Rittschof D, Spillmann CM, Wahl KJ. Sequence basis of Barnacle Cement Nanostructure is Defined by Proteins with Silk Homology. Sci Rep 2016; 6:36219. [PMID: 27824121 PMCID: PMC5099703 DOI: 10.1038/srep36219] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 10/12/2016] [Indexed: 01/22/2023] Open
Abstract
Barnacles adhere by producing a mixture of cement proteins (CPs) that organize into a permanently bonded layer displayed as nanoscale fibers. These cement proteins share no homology with any other marine adhesives, and a common sequence-basis that defines how nanostructures function as adhesives remains undiscovered. Here we demonstrate that a significant unidentified portion of acorn barnacle cement is comprised of low complexity proteins; they are organized into repetitive sequence blocks and found to maintain homology to silk motifs. Proteomic analysis of aggregate bands from PAGE gels reveal an abundance of Gly/Ala/Ser/Thr repeats exemplified by a prominent, previously unidentified, 43 kDa protein in the solubilized adhesive. Low complexity regions found throughout the cement proteome, as well as multiple lysyl oxidases and peroxidases, establish homology with silk-associated materials such as fibroin, silk gum sericin, and pyriform spidroins from spider silk. Distinct primary structures defined by homologous domains shed light on how barnacles use low complexity in nanofibers to enable adhesion, and serves as a starting point for unraveling the molecular architecture of a robust and unique class of adhesive nanostructures.
Collapse
Affiliation(s)
- Christopher R So
- Chemistry Division, Code 6176, US Naval Research Laboratory, 4555 Overlook Ave, SW, Washington, DC, USA
| | - Kenan P Fears
- Chemistry Division, Code 6176, US Naval Research Laboratory, 4555 Overlook Ave, SW, Washington, DC, USA
| | - Dagmar H Leary
- Center for Biomolecular Science and Engineering, Code 6900, US Naval Research Laboratory, 4555 Overlook Ave, SW, Washington, DC, USA
| | - Jenifer M Scancella
- Chemistry Division, Code 6176, US Naval Research Laboratory, 4555 Overlook Ave, SW, Washington, DC, USA
| | - Zheng Wang
- Center for Biomolecular Science and Engineering, Code 6900, US Naval Research Laboratory, 4555 Overlook Ave, SW, Washington, DC, USA
| | - Jinny L Liu
- Center for Biomolecular Science and Engineering, Code 6900, US Naval Research Laboratory, 4555 Overlook Ave, SW, Washington, DC, USA
| | - Beatriz Orihuela
- Nicholas School of the Environment and Earth Sciences, Duke University Marine Laboratory, 135 Duke Marine Lab Rd, Beaufort, NC, USA
| | - Dan Rittschof
- Nicholas School of the Environment and Earth Sciences, Duke University Marine Laboratory, 135 Duke Marine Lab Rd, Beaufort, NC, USA
| | - Christopher M Spillmann
- Center for Biomolecular Science and Engineering, Code 6900, US Naval Research Laboratory, 4555 Overlook Ave, SW, Washington, DC, USA
| | - Kathryn J Wahl
- Chemistry Division, Code 6176, US Naval Research Laboratory, 4555 Overlook Ave, SW, Washington, DC, USA
| |
Collapse
|
34
|
Dickinson GH, Yang X, Wu F, Orihuela B, Rittschof D, Beniash E. Localization of Phosphoproteins within the Barnacle Adhesive Interface. THE BIOLOGICAL BULLETIN 2016; 230:233-42. [PMID: 27365418 PMCID: PMC6377941 DOI: 10.1086/bblv230n3p233] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Barnacles permanently adhere to nearly any inert substrate using proteinaceous glue. The glue consists of at least ten major proteins, some of which have been isolated and sequenced. Questions still remain about the chemical mechanisms involved in adhesion and the potential of the glue to serve as a platform for mineralization of the calcified base plate. We tested the hypothesis that barnacle glue contains phosphoproteins, which have the potential to play a role in both adhesion and mineralization. Using a combination of phosphoprotein-specific gel staining and Western blotting with anti-phosphoserine antibody, we identified multiple phosphorylated proteins in uncured glue secretions from the barnacle Amphibalanus amphitrite The protein composition of the glue and the quantity and abundance of phosphoproteins varied distinctly among individual barnacles, possibly due to cyclical changes in the glue secretion over time. We assessed the location of the phosphoproteins within the barnacle glue layer using decalcified barnacle base plates and residual glue deposited by reattached barnacles. Phosphoproteins were found throughout the organic matrix of the base plate and within the residual glue. Staining within the residual glue appeared most intensely in regions where capillary glue ducts, which are involved in cyclical release of glue, had been laid down. Lastly, mineralization studies of glue proteins separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) indicated that proteins identified as phosphorylated possibly induce mineralization of calcium carbonate (CaCO3). These results contribute to our understanding of the protein composition of barnacle glue, and provide new insights into the potential roles of phosphoproteins in underwater bioadhesives.
Collapse
Affiliation(s)
- Gary H Dickinson
- Department of Oral Biology, McGowan Institute for Regenerative Medicine, University of Pittsburgh, 505 SALKP, 335 Sutherland Drive, Pittsburgh, Pennsylvania 15213; Department of Biology, The College of New Jersey, 2000 Pennington Road, Ewing, New Jersey 08628; and
| | - Xu Yang
- Department of Oral Biology, McGowan Institute for Regenerative Medicine, University of Pittsburgh, 505 SALKP, 335 Sutherland Drive, Pittsburgh, Pennsylvania 15213
| | - Fanghui Wu
- Department of Oral Biology, McGowan Institute for Regenerative Medicine, University of Pittsburgh, 505 SALKP, 335 Sutherland Drive, Pittsburgh, Pennsylvania 15213
| | - Beatriz Orihuela
- Duke University Marine Laboratory, 135 Duke Marine Lab Road, Beaufort, North Carolina 28516
| | - Dan Rittschof
- Duke University Marine Laboratory, 135 Duke Marine Lab Road, Beaufort, North Carolina 28516
| | - Elia Beniash
- Department of Oral Biology, McGowan Institute for Regenerative Medicine, University of Pittsburgh, 505 SALKP, 335 Sutherland Drive, Pittsburgh, Pennsylvania 15213;
| |
Collapse
|
35
|
Synthesis, characterization and antifouling performance of ABC-type fluorinated amphiphilic triblock copolymer. Polym Bull (Berl) 2015. [DOI: 10.1007/s00289-015-1554-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
36
|
Wang Z, Leary DH, Liu J, Settlage RE, Fears KP, North SH, Mostaghim A, Essock-Burns T, Haynes SE, Wahl KJ, Spillmann CM. Molt-dependent transcriptomic analysis of cement proteins in the barnacle Amphibalanus amphitrite. BMC Genomics 2015; 16:859. [PMID: 26496984 PMCID: PMC4619306 DOI: 10.1186/s12864-015-2076-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 10/08/2015] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND A complete understanding of barnacle adhesion remains elusive as the process occurs within and beneath the confines of a rigid calcified shell. Barnacle cement is mainly proteinaceous and several individual proteins have been identified in the hardened cement at the barnacle-substrate interface. Little is known about the molt- and tissue-specific expression of cement protein genes but could offer valuable insight into the complex multi-step processes of barnacle growth and adhesion. METHODS The main body and sub-mantle tissue of the barnacle Amphibalanus amphitrite (basionym Balanus amphitrite) were collected in pre- and post-molt stages. RNA-seq technology was used to analyze the transcriptome for differential gene expression at these two stages and liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS) was used to analyze the protein content of barnacle secretions. RESULTS We report on the transcriptomic analysis of barnacle cement gland tissue in pre- and post-molt growth stages and proteomic investigation of barnacle secretions. While no significant difference was found in the expression of cement proteins genes at pre- and post-molting stages, expression levels were highly elevated in the sub-mantle tissue (where the cement glands are located) compared to the main barnacle body. We report the discovery of a novel 114kD cement protein, which is identified in material secreted onto various surfaces by adult barnacles and with the encoding gene highly expressed in the sub-mantle tissue. Further differential gene expression analysis of the sub-mantle tissue samples reveals a limited number of genes highly expressed in pre-molt samples with a range of functions including cuticular development, biominerialization, and proteolytic activity. CONCLUSIONS The expression of cement protein genes appears to remain constant through the molt cycle and is largely confined to the sub-mantle tissue. Our results reveal a novel and potentially prominent protein to the mix of cement-related components in A. amphitrite. Despite the lack of a complete genome, sample collection allowed for extended transcriptomic analysis of pre- and post-molt barnacle samples and identified a number of highly-expressed genes. Our results highlight the complexities of this sessile marine organism as it grows via molt cycles and increases the area over which it exhibits robust adhesion to its substrate.
Collapse
Affiliation(s)
- Zheng Wang
- Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, Washington, DC, 20375, USA.
| | - Dagmar H Leary
- Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, Washington, DC, 20375, USA.
| | - Jinny Liu
- Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, Washington, DC, 20375, USA.
| | - Robert E Settlage
- Virginia Bioinformatics Institute, 1015 Life Science Circle, Blacksburg, VA, 24061, USA.
| | - Kenan P Fears
- Chemistry Division, Naval Research Laboratory, Washington, DC, 20375, USA.
| | - Stella H North
- Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, Washington, DC, 20375, USA.
| | - Anahita Mostaghim
- Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, Washington, DC, 20375, USA.
- Present address: Eastern Virginia Medical School, 700 West Olney Road, Norfolk, VA, 23507, USA.
| | - Tara Essock-Burns
- Chemistry Division, Naval Research Laboratory, Washington, DC, 20375, USA.
- Present address: Duke University Marine Laboratory, 135 Duke Marine Lab Rd. Beaufort, North Carolina, 28516, USA.
| | - Sarah E Haynes
- Chemistry Division, Naval Research Laboratory, Washington, DC, 20375, USA.
- Present address: Department of Chemistry, University of Michigan, 930 N. University Avenue, Ann Arbor, MI, 48109, USA.
| | - Kathryn J Wahl
- Chemistry Division, Naval Research Laboratory, Washington, DC, 20375, USA.
| | - Christopher M Spillmann
- Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, Washington, DC, 20375, USA.
| |
Collapse
|
37
|
Fernández MS, Arias JI, Neira-Carrillo A, Arias JL. Austromegabalanus psittacus barnacle shell structure and proteoglycan localization and functionality. J Struct Biol 2015; 191:263-71. [PMID: 26276577 DOI: 10.1016/j.jsb.2015.08.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 08/10/2015] [Accepted: 08/11/2015] [Indexed: 11/19/2022]
Abstract
Comparative analyzes of biomineralization models have being crucial for the understanding of the functional properties of biominerals and the elucidation of the processes through which biomacromolecules control the synthesis and structural organization of inorganic mineral-based biomaterials. Among calcium carbonate-containing bioceramics, egg, mollusk and echinoderm shells, and crustacean carapaces, have being fairly well characterized. However, Thoraceca barnacles, although being crustacea, showing molting cycle, build a quite stable and heavily mineralized shell that completely surround the animal, which is for life firmly cemented to the substratum. This makes barnacles an interesting model for studying processes of biomineralization. Here we studied the main microstructural and ultrastructural features of Austromegabalanus psittacus barnacle shell, characterize the occurrence of specific proteoglycans (keratan-, dermatan- and chondroitin-6-sulfate proteoglycans) in different soluble and insoluble organic fractions extracted from the shell, and tested them for their ability to crystallize calcium carbonate in vitro. Our results indicate that, in the barnacle model, proteoglycans are good candidates for the modification of the calcite crystal morphology, although the cooperative effect of some additional proteins in the shell could not be excluded.
Collapse
Affiliation(s)
- M S Fernández
- Faculty of Veterinary Sciences, University of Chile, Santiago, Chile.
| | - J I Arias
- Faculty of Veterinary Sciences, University of Chile, Santiago, Chile
| | - A Neira-Carrillo
- Faculty of Veterinary Sciences, University of Chile, Santiago, Chile
| | - J L Arias
- Faculty of Veterinary Sciences, University of Chile, Santiago, Chile
| |
Collapse
|
38
|
Nishida J, Higaki Y, Takahara A. Synthesis and Characterization of Barnacle Adhesive Mimetic towards Underwater Adhesion. CHEM LETT 2015. [DOI: 10.1246/cl.150311] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Jin Nishida
- JST, ERATO, Takahara Soft Interfaces Project, Kyushu University
- Institute for Materials Chemistry and Engineering, Kyushu University
| | - Yuji Higaki
- JST, ERATO, Takahara Soft Interfaces Project, Kyushu University
- Institute for Materials Chemistry and Engineering, Kyushu University
| | - Atsushi Takahara
- JST, ERATO, Takahara Soft Interfaces Project, Kyushu University
- Institute for Materials Chemistry and Engineering, Kyushu University
| |
Collapse
|
39
|
Alberts EM, Taylor SD, Edwards SL, Sherman DM, Huang CP, Kenny P, Wilker JJ. Structural and compositional characterization of the adhesive produced by reef building oysters. ACS APPLIED MATERIALS & INTERFACES 2015; 7:8533-8538. [PMID: 25843147 DOI: 10.1021/acsami.5b00287] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Oysters have an impressive ability to overcome difficulties of life within the stressful intertidal zone. These shellfish produce an adhesive for attaching to each other and building protective reef communities. With their reefs often exceeding kilometers in length, oysters play a major role in balancing the health of coastal marine ecosystems. Few details are available to describe oyster adhesive composition or structure. Here several characterization methods were applied to describe the nature of this material. Microscopy studies indicated that the glue is comprised of organic fiber-like and sheet-like structures surrounded by an inorganic matrix. Phospholipids, cross-linking chemistry, and conjugated organics were found to differentiate this adhesive from the shell. Symbiosis in material synthesis could also be present, with oysters incorporating bacterial polysaccharides into their adhesive. Oyster glue shows that an organic-inorganic composite material can provide adhesion, a property especially important when constructing a marine ecosystem.
Collapse
Affiliation(s)
- Erik M Alberts
- †Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907-2084, United States
| | - Stephen D Taylor
- †Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907-2084, United States
| | - Stephanie L Edwards
- †Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907-2084, United States
| | - Debra M Sherman
- ‡Life Science Microscopy Facility, Purdue University, 170 South University Street, West Lafayette, Indiana 47907, United States
| | - Chia-Ping Huang
- ‡Life Science Microscopy Facility, Purdue University, 170 South University Street, West Lafayette, Indiana 47907, United States
| | - Paul Kenny
- §Baruch Marine Field Laboratory, University of South Carolina, PO Box 1630, Georgetown, South Carolina 29442, United States
| | - Jonathan J Wilker
- †Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907-2084, United States
- ∥School of Materials Engineering, Purdue University, Neil Armstrong Hall of Engineering, 701 West Stadium Avenue, West Lafayette, Indiana 47907-2045, United States
| |
Collapse
|
40
|
Natural antifouling compounds: Effectiveness in preventing invertebrate settlement and adhesion. Biotechnol Adv 2015; 33:343-57. [PMID: 25749324 DOI: 10.1016/j.biotechadv.2015.01.013] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Revised: 11/17/2014] [Accepted: 01/26/2015] [Indexed: 12/13/2022]
Abstract
Biofouling represents a major economic issue regarding maritime industries and also raise important environmental concern. International legislation is restricting the use of biocidal-based antifouling (AF) coatings, and increasing efforts have been applied in the search for environmentally friendly AF agents. A wide diversity of natural AF compounds has been described for their ability to inhibit the settlement of macrofouling species. However poor information on the specific AF targets was available before the application of different molecular approaches both on invertebrate settlement strategies and bioadhesive characterization and also on the mechanistic effects of natural AF compounds. This review focuses on the relevant information about the main invertebrate macrofouler species settlement and bioadhesive mechanisms, which might help in the understanding of the reported effects, attributed to effective and non-toxic natural AF compounds towards this macrofouling species. It also aims to contribute to the elucidation of promising biotechnological strategies in the development of natural effective environmentally friendly AF paints.
Collapse
|
41
|
Nakano M, Kamino K. Amyloid-like conformation and interaction for the self-assembly in barnacle underwater cement. Biochemistry 2015; 54:826-35. [PMID: 25537316 DOI: 10.1021/bi500965f] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Barnacles are unique marine sessile crustaceans and permanently attach to various foreign surfaces during most of their lifespan. The protein complex secreted from their body and used to attach their calcareous shell to almost all surfaces in water has long fascinated us because we have limited technology with which to attach materials in water. Unraveling the mechanism of underwater attachment by barnacles is thus important for interface science, for the understanding of the biology and physiology of barnacles, and for the development of technology to prevent fouling. Previous studies have indicated that the intermolecular interactions optimized by conformations of the adhesive proteins are crucial in the self-assembly and/or curing of the adhesive. This study aimed to identify the possible structural determinants responsible for the self-assembly. Thioflavin T binding screening of peptides designed on the basis of the primary structure of a bulk 52 kDa cement protein indicated the presence of some amyloidogenic motifs in the protein. The conformation of the peptide was transformed to a β-sheet by an increase in either pH or ionic strength, resulting in its self-assembly. Thioflavin T binding was inhibited by small polyphenolic molecules, suggesting the contribution of aromatic interactions during self-assembly. The occurrence of amyloid-like units in the protein implies that the protein conformation is an important factor contributing to the self-assembly of the cement, the first event of the curing, as the adhesive material is secreted into the seawater out of the animal's body.
Collapse
Affiliation(s)
- Masahiro Nakano
- Marine Biotechnology Institute , Kamaishi, Iwate 026-0001, Japan
| | | |
Collapse
|
42
|
Jo SH, Sohn JS. Biomimetic adhesive materials containing cyanoacryl group for medical application. Molecules 2014; 19:16779-93. [PMID: 25329871 PMCID: PMC6271658 DOI: 10.3390/molecules191016779] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Revised: 09/19/2014] [Accepted: 09/25/2014] [Indexed: 12/04/2022] Open
Abstract
For underwater adhesives with biocompatible and more flexible bonds using biomimetic adhesive groups, DOPA-like adhesive molecules were modified with cyanoacrylates to obtain different repeating units and chain length copolymers. The goal of this work is to copy the mechanisms of underwater bonding to create synthetic water-borne underwater medical adhesives through blending of the modified DOPA and a triblock copolymer (PEO-PPO-PEO) for practical application to repair wet living tissues and bones, and in turn, to use the synthetic adhesives to test mechanistic hypotheses about the natural adhesive. The highest values in stress and modulus of the biomimetic adhesives prepared in wet state were 165 kPa and 33 MPa, respectively.
Collapse
Affiliation(s)
- Sueng Hwan Jo
- Orthopaedic Department, College of Medicine, Chosun University, Gwangju 501-759, Korea.
| | - Jeong Sun Sohn
- College of General Education, Chosun University, Gwangju 501-759, Korea.
| |
Collapse
|
43
|
Jonker JL, Abram F, Pires E, Varela Coelho A, Grunwald I, Power AM. Adhesive proteins of stalked and acorn barnacles display homology with low sequence similarities. PLoS One 2014; 9:e108902. [PMID: 25295513 PMCID: PMC4189950 DOI: 10.1371/journal.pone.0108902] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2014] [Accepted: 08/27/2014] [Indexed: 11/23/2022] Open
Abstract
Barnacle adhesion underwater is an important phenomenon to understand for the prevention of biofouling and potential biotechnological innovations, yet so far, identifying what makes barnacle glue proteins ‘sticky’ has proved elusive. Examination of a broad range of species within the barnacles may be instructive to identify conserved adhesive domains. We add to extensive information from the acorn barnacles (order Sessilia) by providing the first protein analysis of a stalked barnacle adhesive, Lepas anatifera (order Lepadiformes). It was possible to separate the L. anatifera adhesive into at least 10 protein bands using SDS-PAGE. Intense bands were present at approximately 30, 70, 90 and 110 kilodaltons (kDa). Mass spectrometry for protein identification was followed by de novo sequencing which detected 52 peptides of 7–16 amino acids in length. None of the peptides matched published or unpublished transcriptome sequences, but some amino acid sequence similarity was apparent between L. anatifera and closely-related Dosima fascicularis. Antibodies against two acorn barnacle proteins (ab-cp-52k and ab-cp-68k) showed cross-reactivity in the adhesive glands of L. anatifera. We also analysed the similarity of adhesive proteins across several barnacle taxa, including Pollicipes pollicipes (a stalked barnacle in the order Scalpelliformes). Sequence alignment of published expressed sequence tags clearly indicated that P. pollicipes possesses homologues for the 19 kDa and 100 kDa proteins in acorn barnacles. Homology aside, sequence similarity in amino acid and gene sequences tended to decline as taxonomic distance increased, with minimum similarities of 18–26%, depending on the gene. The results indicate that some adhesive proteins (e.g. 100 kDa) are more conserved within barnacles than others (20 kDa).
Collapse
Affiliation(s)
- Jaimie-Leigh Jonker
- School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Florence Abram
- School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Elisabete Pires
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Ana Varela Coelho
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Ingo Grunwald
- Department of Adhesive Bonding and Surfaces, Fraunhofer Institute for Manufacturing Technology and Advanced Materials, Bremen, Germany
| | - Anne Marie Power
- School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
- * E-mail:
| |
Collapse
|
44
|
Zheden V, Klepal W, von Byern J, Bogner FR, Thiel K, Kowalik T, Grunwald I. Biochemical analyses of the cement float of the goose barnacle Dosima fascicularis--a preliminary study. BIOFOULING 2014; 30:949-963. [PMID: 25237772 DOI: 10.1080/08927014.2014.954557] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The goose barnacle Dosima fascicularis produces an excessive amount of adhesive (cement), which has a double function, being used for attachment to various substrata and also as a float (buoy). This paper focuses on the chemical composition of the cement, which has a water content of 92%. Scanning electron microscopy with EDX was used to measure the organic elements C, O and N in the foam-like cement. Vibrational spectroscopy (FTIR, Raman) provided further information about the overall secondary structure, which tended towards a β-sheet. Disulphide bonds could not be detected by Raman spectroscopy. The cystine, methionine, histidine and tryptophan contents were each below 1% in the cement. Analyses of the cement revealed a protein content of 84% and a total carbohydrate content of 1.5% in the dry cement. The amino acid composition, 1D/2D-PAGE and MS/MS sequence analysis revealed a de novo set of peptides/proteins with low homologies with other proteins such as the barnacle cement proteins, largely with an acidic pI between 3.5 and 6.0. The biochemical composition of the cement of D. fascicularis is similar to that of other barnacles, but it shows interesting variations.
Collapse
Affiliation(s)
- Vanessa Zheden
- a University of Vienna, Faculty of Life Sciences, Core Facility Cell Imaging and Ultrastructure Research , Vienna , Austria
| | | | | | | | | | | | | |
Collapse
|
45
|
Choi BH, Cheong H, Jo YK, Bahn SY, Seo JH, Cha HJ. Highly purified mussel adhesive protein to secure biosafety for in vivo applications. Microb Cell Fact 2014; 13:52. [PMID: 24725543 PMCID: PMC3989845 DOI: 10.1186/1475-2859-13-52] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 04/07/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Unique adhesive and biocompatibility properties of mussel adhesive proteins (MAPs) are known for their great potential in many tissue engineering and biomedical applications. Previously, it was successfully demonstrated that redesigned hybrid type MAP, fp-151, mass-produced in Gram-negative bacterium Escherichia coli, could be utilized as a promising adhesive biomaterial. However, purification of recombinant fp-151 has been unsatisfactory due to its adhesive nature and polarity which make separation of contaminants (especially, lipopolysaccharide, a toxic Gram-negative cell membrane component) very difficult. RESULTS In the present work, we devised a high resolution purification approach to secure safety standards of recombinant fp-151 for the successful use in in vivo applications. Undesirable impurities were remarkably eliminated as going through sequential steps including treatment with multivalent ion and chelating agent for cell membrane washing, mechanical cell disruption, non-ionic surfactant treatment for isolated inclusion body washing, acid extraction of washed inclusion body, and ion exchange chromatography purification of acid extracted sample. Through various analyses, such as high performance liquid chromatographic purity assay, limulus amoebocyte lysate endotoxin assay, and in vitro mouse macrophage cell tests on inflammation, viability, cytotoxicity, and apoptosis, we confirmed the biological safety of bacterial-derived purified recombinant fp-151. CONCLUSIONS Through this purification design, recombinant fp-151 achieved 99.90% protein purity and 99.91% endotoxin reduction that nearly no inflammation response was observed in in vitro experiments. Thus, the highly purified recombinant MAP would be successfully used as a safety-secured in vivo bioadhesive for tissue engineering and biomedical applications.
Collapse
Affiliation(s)
| | | | | | | | | | - Hyung Joon Cha
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang 790-784, Korea.
| |
Collapse
|
46
|
Ridgley DM, Claunch EC, Lee PW, Barone JR. The Role of Protein Hydrophobicity in Conformation Change and Self-Assembly into Large Amyloid Fibers. Biomacromolecules 2014; 15:1240-7. [DOI: 10.1021/bm401815u] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Devin M. Ridgley
- Biological Systems Engineering
Department, Virginia Tech, 301D HABB1, Blacksburg, Virginia 24061, United States
| | - Elizabeth C. Claunch
- Biological Systems Engineering
Department, Virginia Tech, 301D HABB1, Blacksburg, Virginia 24061, United States
| | - Parker W. Lee
- Biological Systems Engineering
Department, Virginia Tech, 301D HABB1, Blacksburg, Virginia 24061, United States
| | - Justin R. Barone
- Biological Systems Engineering
Department, Virginia Tech, 301D HABB1, Blacksburg, Virginia 24061, United States
| |
Collapse
|
47
|
Lin HC, Wong YH, Tsang LM, Chu KH, Qian PY, Chan BKK. First study on gene expression of cement proteins and potential adhesion-related genes of a membranous-based barnacle as revealed from Next-Generation Sequencing technology. BIOFOULING 2014; 30:169-181. [PMID: 24329402 DOI: 10.1080/08927014.2013.853051] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
This is the first study applying Next-Generation Sequencing (NGS) technology to survey the kinds, expression location, and pattern of adhesion-related genes in a membranous-based barnacle. A total of 77,528,326 and 59,244,468 raw sequence reads of total RNA were generated from the prosoma and the basis of Tetraclita japonica formosana, respectively. In addition, 55,441 and 67,774 genes were further assembled and analyzed. The combined sequence data from both body parts generates a total of 79,833 genes of which 47.7% were shared. Homologues of barnacle cement proteins - CP-19K, -52K, and -100K - were found and all were dominantly expressed at the basis where the cement gland complex is located. This is the main area where transcripts of cement proteins and other potential adhesion-related genes were detected. The absence of another common barnacle cement protein, CP-20K, in the adult transcriptome suggested a possible life-stage restricted gene function and/or a different mechanism in adhesion between membranous-based and calcareous-based barnacles.
Collapse
Affiliation(s)
- Hsiu-Chin Lin
- a Biodiversity Research Center, Academia Sinica , Taipei 115 , Taiwan
| | | | | | | | | | | |
Collapse
|
48
|
Ridgley DM, Claunch EC, Barone JR. Characterization of large amyloid fibers and tapes with Fourier transform infrared (FT-IR) and Raman spectroscopy. APPLIED SPECTROSCOPY 2013; 67:1417-1426. [PMID: 24359656 DOI: 10.1366/13-07059] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Amyloids are self-assembled protein structures implicated in a host of neurodegenerative diseases. Organisms can also produce "functional amyloids" to perpetuate life, and these materials serve as models for robust biomaterials. Amyloids are typically studied using fluorescent dyes, Fourier transform infrared (FT-IR), or Raman spectroscopy analysis of the protein amide I region, and X-ray diffraction (XRD) because the self-assembled β-sheet secondary structure of the amyloid can be easily identified with these techniques. Here, FT-IR and Raman spectroscopy analyses are described to characterize amyloid structures beyond just identification of the β-sheet structure. It has been shown that peptide mixtures can self-assemble into nanometer-sized amyloid structures that then continue to self-assemble to the micrometer scale. The resulting structures are flat tapes of low rigidity or cylinders of high rigidity depending on the peptides in the mixture. By monitoring the aggregation of peptides in solution using FT-IR spectroscopy, it is possible to identify specific amino acids implicated in β-sheet formation and higher order self-assembly. It is also possible to predict the final tape or cylinder morphology and gain insight into the structure's physical properties based on observed intermolecular interactions during the self-assembly process. Tapes and cylinders are shown to both have a similar core self-assembled β-sheet structure. Soft tapes also have weak hydrophobic interactions between alanine, isoleucine, leucine, and valine that facilitate self-assembly. Rigid cylinders have similar hydrophobic interactions that facilitate self-assembly and also have extensive hydrogen bonding between glutamines. Raman spectroscopy performed on the dried tapes and fibers shows the persistence of these interactions. The spectroscopic analyses described could be generalized to other self-assembling amyloid systems to explain property and morphological differences.
Collapse
Affiliation(s)
- Devin M Ridgley
- Biological Systems Engineering Department, Virginia Tech, 303 Seitz Hall, Blacksburg, VA 24061 USA
| | - Elizabeth C Claunch
- Biological Systems Engineering Department, Virginia Tech, 303 Seitz Hall, Blacksburg, VA 24061 USA
| | - Justin R Barone
- Biological Systems Engineering Department, Virginia Tech, 303 Seitz Hall, Blacksburg, VA 24061 USA
| |
Collapse
|
49
|
Vu CHT, Won K. Bioinspired molecular adhesive for water-resistant oxygen indicator films. Biotechnol Prog 2013; 29:513-9. [DOI: 10.1002/btpr.1692] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 01/08/2013] [Indexed: 11/10/2022]
Affiliation(s)
- Chau Hai Thai Vu
- Dept. of Chemical and Biochemical Engineering; Dongguk University-Seoul; 30 Pildong-ro 1-gil Jung-gu Seoul 100-715 Republic of Korea
| | - Keehoon Won
- Dept. of Chemical and Biochemical Engineering; Dongguk University-Seoul; 30 Pildong-ro 1-gil Jung-gu Seoul 100-715 Republic of Korea
| |
Collapse
|
50
|
Ridgley DM, Barone JR. Evolution of the amyloid fiber over multiple length scales. ACS NANO 2013; 7:1006-1015. [PMID: 23268732 DOI: 10.1021/nn303489a] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The amyloid is a natural self-assembled peptide material comparable in specific stiffness to spider silk and steel. Throughout the literature there are many studies of the nanometer-sized amyloid fibril; however, peptide mixtures are capable of self-assembling beyond the nanometer scale into micrometer-sized fibers. Here, atomic force microscopy (AFM) and scanning electron microscopy (SEM) are used to observe the self-assembly of the peptide mixtures in solution for 20 days and the fibers upon drying. Beyond the nanometer scale, self-assembling fibers differentiate into two morphologies, cylindrical or rectangular cross-section, depending on peptide properties. Microscopic observations delineate a four stage self-assembly mechanism: (1) protofibril (2-4 nm high and 15-30 nm wide) formation; (2) protofibril aggregation into fibrils 6-10 nm high and 60-120 nm wide; (3) fibril aggregation into large fibrils and morphological differentiation where large fibrils begin to resemble the final fiber morphology of cylinders (WG peptides) or tapes (Gd:My peptides). WG large fibrils are 50 nm high and 480 nm wide and Gd:My large fibrils are 10 nm high and 150 nm wide; (4) micrometer-sized fiber formation upon drying at 480 h resulting in 18.0 μm diameter cylindrical fibers (WG peptides) and 14.0 μm wide and 6.0 μm thick flat tapes (Gd:My peptides). Evolution of the large fiber morphology can be rationalized on the basis of the peptide properties.
Collapse
Affiliation(s)
- Devin M Ridgley
- Biological Systems Engineering Department, Virginia Tech, 303 Seitz Hall, Blacksburg, Virginia 24061, USA
| | | |
Collapse
|