1
|
Licht-Murava A, Paz R, Vaks L, Avrahami L, Plotkin B, Eisenstein M, Eldar-Finkelman H. A unique type of GSK-3 inhibitor brings new opportunities to the clinic. Sci Signal 2016; 9. [DOI: 10.1126/scisignal.aah7102] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
A substrate peptide that the kinase GSK-3 converts into its own inhibitor improves symptoms and cognitive function in an Alzheimer’s disease model.
Collapse
Affiliation(s)
- Avital Licht-Murava
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Rom Paz
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Lilach Vaks
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Limor Avrahami
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Batya Plotkin
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Miriam Eisenstein
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Hagit Eldar-Finkelman
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
2
|
Protection of α-CaMKII from Dephosphorylation by GluN2B Subunit of NMDA Receptor Is Abolished by Mutation of Glu96 or His282 of α-CaMKII. PLoS One 2016; 11:e0162011. [PMID: 27610621 PMCID: PMC5017783 DOI: 10.1371/journal.pone.0162011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 08/16/2016] [Indexed: 02/07/2023] Open
Abstract
Interaction of CaMKII and the GluN2B subunit of NMDA receptor is essential for synaptic plasticity events such as LTP. Synaptic targeting of CaMKII and regulation of its biochemical functions result from this interaction. GluN2B binding to the T-site of CaMKII leads to changes in substrate binding and catalytic parameters and inhibition of its own dephosphorylation. We find that CaMKIINα, a natural inhibitor that binds to the T-site of CaMKII, also causes inhibition of dephosphorylation of CaMKII similar to GluN2B. Two residues on α-CaMKII, Glu96 and His282, are involved in the inhibition of CaMKII dephosphorylation exerted by binding of GluN2B. E96A-α-CaMKII is known to be defective in GluN2B-induced catalytic modulation. Data presented here show that, in both E96A and H282A mutants of α-CaMKII, GluN2B-induced inhibition of dephosphorylation is impaired.
Collapse
|
3
|
Nguyen TA, Sarkar P, Veetil JV, Davis KA, Puhl HL, Vogel SS. Covert Changes in CaMKII Holoenzyme Structure Identified for Activation and Subsequent Interactions. Biophys J 2016; 108:2158-70. [PMID: 25954874 DOI: 10.1016/j.bpj.2015.03.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 02/18/2015] [Accepted: 03/10/2015] [Indexed: 11/29/2022] Open
Abstract
Between 8 to 14 calcium-calmodulin (Ca(2+)/CaM) dependent protein kinase-II (CaMKII) subunits form a complex that modulates synaptic activity. In living cells, the autoinhibited holoenzyme is organized as catalytic-domain pairs distributed around a central oligomerization-domain core. The functional significance of catalytic-domain pairing is not known. In a provocative model, catalytic-domain pairing was hypothesized to prevent ATP access to catalytic sites. If correct, kinase-activity would require catalytic-domain pair separation. Simultaneous homo-FRET and fluorescence correlation spectroscopy was used to detect structural changes correlated with kinase activation under physiological conditions. Saturating Ca(2+)/CaM triggered Threonine-286 autophosphorylation and a large increase in CaMKII holoenzyme hydrodynamic volume without any appreciable change in catalytic-domain pair proximity or subunit stoichiometry. An alternative hypothesis is that two appropriately positioned Threonine-286 interaction-sites (T-sites), each located on the catalytic-domain of a pair, are required for holoenzyme interactions with target proteins. Addition of a T-site ligand, in the presence of Ca(2+)/CaM, elicited a large decrease in catalytic-domain homo-FRET, which was blocked by mutating the T-site (I205K). Apparently catalytic-domain pairing is altered to allow T-site interactions.
Collapse
Affiliation(s)
- Tuan A Nguyen
- Laboratory of Molecular Physiology, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland
| | - Pabak Sarkar
- Laboratory of Molecular Physiology, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland
| | - Jithesh V Veetil
- Laboratory of Molecular Physiology, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland
| | - Kaitlin A Davis
- Laboratory of Molecular Physiology, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland
| | - Henry L Puhl
- Laboratory of Molecular Physiology, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland
| | - Steven S Vogel
- Laboratory of Molecular Physiology, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland.
| |
Collapse
|
4
|
Lu W, Khatri L, Ziff EB. Trafficking of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPA) receptor subunit GluA2 from the endoplasmic reticulum is stimulated by a complex containing Ca2+/calmodulin-activated kinase II (CaMKII) and PICK1 protein and by release of Ca2+ from internal stores. J Biol Chem 2014; 289:19218-30. [PMID: 24831007 DOI: 10.1074/jbc.m113.511246] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The GluA2 subunit of the AMPA receptor (AMPAR) dominantly blocks AMPAR Ca(2+) permeability, and its trafficking to the synapse regulates AMPAR-dependent synapse Ca(2+) permeability. Here we show that GluA2 trafficking from the endoplasmic reticulum (ER) to the plasma membrane of cultured hippocampal neurons requires Ca(2+) release from internal stores, the activity of Ca(2+)/calmodulin activated kinase II (CaMKII), and GluA2 interaction with the PDZ protein, PICK1. We show that upon Ca(2+) release from the ER via the IP3 and ryanodine receptors, CaMKII that is activated enters a complex that contains PICK1, dependent upon the PICK1 BAR (Bin-amphiphysin-Rvs) domain, and that interacts with the GluA2 C-terminal domain and stimulates GluA2 ER exit and surface trafficking. This study reveals a novel mechanism of regulation of trafficking of GluA2-containing receptors to the surface under the control of intracellular Ca(2+) dynamics and CaMKII activity.
Collapse
Affiliation(s)
- Wei Lu
- From the Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York 10016
| | - Latika Khatri
- From the Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York 10016
| | - Edward B Ziff
- From the Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York 10016
| |
Collapse
|
5
|
Imami K, Sugiyama N, Imamura H, Wakabayashi M, Tomita M, Taniguchi M, Ueno T, Toi M, Ishihama Y. Temporal profiling of lapatinib-suppressed phosphorylation signals in EGFR/HER2 pathways. Mol Cell Proteomics 2012; 11:1741-57. [PMID: 22964224 DOI: 10.1074/mcp.m112.019919] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Lapatinib is a clinically potent kinase inhibitor for breast cancer patients because of its outstanding selectivity for epidermal growth factor receptor (EGFR) and EGFR2 (also known as HER2). However, there is only limited information about the in vivo effects of lapatinib on EGFR/HER2 and downstream signaling targets. Here, we profiled the lapatinib-induced time- and dose-dependent phosphorylation dynamics in SKBR3 breast cancer cells by means of quantitative phosphoproteomics. Among 4953 identified phosphopeptides from 1548 proteins, a small proportion (5-7%) was regulated at least twofold by 1-10 μm lapatinib. We obtained a comprehensive phosphorylation map of 21 sites on EGFR/HER2, including nine novel sites on HER2. Among them, serine/threonine phosphosites located in a small region of HER2 (amino acid residues 1049-1083) were up-regulated by the drug, whereas all other sites were down-regulated. We show that cAMP-dependent protein kinase is involved in phosphorylation of this particular region of HER2 and regulates HER2 tyrosine kinase activity. Computational analyses of quantitative phosphoproteome data indicated for the first time that protein-protein networks related to cytoskeletal organization and transcriptional/translational regulation, such as RNP complexes (i.e. hnRNP, snRNP, telomerase, ribosome), are linked to EGFR/HER2 signaling networks. To our knowledge, this is the first report to profile the temporal response of phosphorylation dynamics to a kinase inhibitor. The results provide new insights into EGFR/HER2 regulation through region-specific phosphorylation, as well as a global view of the cellular signaling networks associated with the anti-breast cancer action of lapatinib.
Collapse
Affiliation(s)
- Koshi Imami
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Ronkainen JJ, Hänninen SL, Korhonen T, Koivumäki JT, Skoumal R, Rautio S, Ronkainen VP, Tavi P. Ca2+-calmodulin-dependent protein kinase II represses cardiac transcription of the L-type calcium channel alpha(1C)-subunit gene (Cacna1c) by DREAM translocation. J Physiol 2011; 589:2669-86. [PMID: 21486818 DOI: 10.1113/jphysiol.2010.201400] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Recent studies have demonstrated that changes in the activity of calcium-calmodulin-dependent protein kinase II (CaMKII) induce a unique cardiomyocyte phenotype through the regulation of specific genes involved in excitation-contraction (E-C)-coupling. To explain the transcriptional effects of CaMKII we identified a novel CaMKII-dependent pathway for controlling the expression of the pore-forming α-subunit (Cav1.2) of the L-type calcium channel (LTCC) in cardiac myocytes. We show that overexpression of either cytosolic (δC) or nuclear (δB) CaMKII isoforms selectively downregulate the expression of the Cav1.2. Pharmacological inhibition of CaMKII activity induced measurable changes in LTCC current density and subsequent changes in cardiomyocyte calcium signalling in less than 24 h. The effect of CaMKII on the α1C-subunit gene (Cacna1c) promoter was abolished by deletion of the downstream regulatory element (DRE), which binds transcriptional repressor DREAM/calsenilin/KChIP3. Imaging DREAM-GFP (green fluorescent protein)-expressing cardiomyocytes showed that CaMKII potentiates the calcium-induced nuclear translocation of DREAM. Thereby CaMKII increases DREAM binding to the DRE consensus sequence of the endogenous Cacna1c gene. By mathematical modelling we demonstrate that the LTCC downregulation through the Ca2+-CaMKII-DREAM cascade constitutes a physiological feedback mechanism enabling cardiomyocytes to adjust the calcium intrusion through LTCCs to the amount of intracellular calcium detected by CaMKII.
Collapse
Affiliation(s)
- Jarkko J Ronkainen
- Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, Neulaniementie 2, FI-70211 Kuopio, Finland
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Hsu LS, Tseng CY. Zebrafish calcium/calmodulin-dependent protein kinase II (cam-kii) inhibitors: expression patterns and their roles in zebrafish brain development. Dev Dyn 2011; 239:3098-105. [PMID: 20925123 DOI: 10.1002/dvdy.22433] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Calcium/calmodulin-dependent protein kinase II (CaM-KII) plays a critical role in neuronal functions. In this report, we demonstrate the expression patterns, functional analysis, and development role of the two zebrafish CaM-KII inhibitors, cam-kiin1 and cam-kiin2. Both of these genes were detected in the 5-somite stage and are persistently expressed thereafter. The RNA transcripts of cam-kiin1 were prominently expressed in the forebrain and hindbrain regions, especially in the telencephalon, while cam-kiin2 was detected in the anterior brain region and neurons of the hindbrain. Through GST-pull down, co-immunoprecipitation, and kinase assay, cam-kii inhibitors can bind to and reduce cam-kiiα activity. However, no overt alternation of brain marker such as ngn1, otx2, and pax2.1 was observed in morphants received each one or combined MO. Our results suggest that the two cam-kii inhibitors exhibited distinct expression pattern and may play a minor role in zebrafish brain development.
Collapse
Affiliation(s)
- Li-Sung Hsu
- Institute of Biochemistry and Biotechnology, Chung Shan Medical University, Taichung, Taiwan.
| | | |
Collapse
|
8
|
Rinschen MM, Yu MJ, Wang G, Boja ES, Hoffert JD, Pisitkun T, Knepper MA. Quantitative phosphoproteomic analysis reveals vasopressin V2-receptor-dependent signaling pathways in renal collecting duct cells. Proc Natl Acad Sci U S A 2010; 107:3882-7. [PMID: 20139300 PMCID: PMC2840509 DOI: 10.1073/pnas.0910646107] [Citation(s) in RCA: 143] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Vasopressin's action in renal cells to regulate water transport depends on protein phosphorylation. Here we used mass spectrometry-based quantitative phosphoproteomics to identify signaling pathways involved in the short-term V2-receptor-mediated response in cultured collecting duct cells (mpkCCD) from mouse. Using Stable Isotope Labeling by Amino acids in Cell culture (SILAC) with two treatment groups (0.1 nM dDAVP or vehicle for 30 min), we carried out quantification of 2884 phosphopeptides. The majority (82%) of quantified phosphopeptides did not change in abundance in response to dDAVP. Analysis of the 273 phosphopeptides increased by dDAVP showed a predominance of so-called "basophilic" motifs consistent with activation of kinases of the AGC family. Increases in phosphorylation of several known protein kinase A targets were found. In addition, increased phosphorylation of targets of the calmodulin-dependent kinase family was seen, including autophosphorylation of calmodulin-dependent kinase 2 at T286. Analysis of the 254 phosphopeptides decreased in abundance by dDAVP showed a predominance of so-called "proline-directed" motifs, consistent with down-regulation of mitogen-activated or cyclin-dependent kinases. dDAVP decreased phosphorylation of both JNK1/2 (T183/Y185) and ERK1/2 (T183/Y185; T203/Y205), consistent with a decrease in activation of these proline-directed kinases in response to dDAVP. Both ERK and JNK were able to phosphorylate residue S261of aquaporin-2 in vitro, a site showing a decrease in phosphorylation in response to dDAVP in vivo. The data support roles for multiple vasopressin V2-receptor-dependent signaling pathways in the vasopressin signaling network of collecting duct cells, involving several kinases not generally accepted to regulate collecting duct function.
Collapse
Affiliation(s)
- Markus M. Rinschen
- Epithelial Systems Biology Laboratory, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892
- Department of Internal Medicine D, University of Muenster, Muenster, Germany; and
| | - Ming-Jiun Yu
- Epithelial Systems Biology Laboratory, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Guanghui Wang
- Proteomics Core Facility, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Emily S. Boja
- Proteomics Core Facility, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Jason D. Hoffert
- Epithelial Systems Biology Laboratory, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Trairak Pisitkun
- Epithelial Systems Biology Laboratory, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Mark A. Knepper
- Epithelial Systems Biology Laboratory, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
9
|
Structural rearrangement of CaMKIIalpha catalytic domains encodes activation. Proc Natl Acad Sci U S A 2009; 106:6369-74. [PMID: 19339497 DOI: 10.1073/pnas.0901913106] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
At its fundamental level, human memory is thought to occur at individual synaptic contact sites and manifest as persistent changes in synaptic efficacy. In digital electronics, the fundamental structure for implementing memory is the flip-flop switch, a circuit that can be triggered to flip between two stable states. Recently, crystals of Ca(2+)/calmodulin-dependent protein kinase IIalpha (CaMKIIalpha) catalytic domains, the enzymatic portion of a dodecameric holoenzyme involved in memory, were found to form dimers [Rosenberg OS, Deindl S, Sung RJ, Nairn AC, Kuriyan J (2005) Structure of the autoinhibited kinase domain of CaMKII and SAXS analysis of the holoenzyme. Cell 123:849-860]. Although the formation of dimers in the intact holoenzyme has not been established, several features of the crystal structure suggest that dimers could act as a synaptic switch. ATP-binding sites were occluded, and the T286 autophosphorylation site responsible for persistent kinase activation was buried. These features would act to stabilize an autoinhibited "paired"-enzyme state. Ca(2+)-calmodulin binding was postulated to trigger the formation of an active state with unpaired catalytic domains. This conformation would allow ATP access and expose T286, autophosphorylation of which would act to maintain the "unpaired" conformation. We used fluorescence anisotropy and FRET imaging of Venus-tagged CaMKIIalpha to test the hypothesis that neuronal CaMKIIalpha can flip between two stable conformations in living cells. Our data support the existence of catalytic domain pairs, and glutamate receptor activation in neurons triggered an increase in anisotropy consistent with a structural transition from a paired to unpaired conformation.
Collapse
|
10
|
Cribbs JT, Strack S. Functional characterization of phosphorylation sites in dynamin-related protein 1. Methods Enzymol 2009; 457:231-53. [PMID: 19426871 DOI: 10.1016/s0076-6879(09)05013-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Dynamin-related protein 1 is member of the dynamin-family of large GTPases. Similar to the endocytosis motor dynamin, Drp1 uses GTP hydrolysis to power constriction of the outer mitochondrial membrane and ultimately mitochondrial division. Dynamin phosphorylation in its unique C-terminal proline-rich domain interferes with binding of accessory proteins that induce membrane curvature and inhibits clathrin-mediated endocytosis. Evidence within the last few years indicates that Drp1 is also regulated by the phosphorylation/dephosphorylation cycle. Drp1 regulation is complex, in that both inhibitory and activating phosphorylations have been described that lead to, respectively, mitochondrial elongation and shortening. In this chapter, we describe methods for the identification and functional characterization of Drp1 phosphorylation sites. Among these methods is replacement of the endogenous protein by phosphorylation-site mutant Drp1 via combined shRNA and RNAi-resistant cDNA expression from the same plasmid. We also discuss primary astrocyte cultures as a model for regulation of cell death and mitochondrial morphology by Drp1 and present ImageJ macro source code for unbiased quantification of mitochondrial shape changes.
Collapse
Affiliation(s)
- J Thomas Cribbs
- Department of Pharmacology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | | |
Collapse
|
11
|
Song M, Kim HS, Park JM, Kim SH, Kim IH, Ryu SH, Suh PG. o-GlcNAc transferase is activated by CaMKIV-dependent phosphorylation under potassium chloride-induced depolarization in NG-108-15 cells. Cell Signal 2007; 20:94-104. [PMID: 18029144 DOI: 10.1016/j.cellsig.2007.09.002] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2007] [Revised: 09/17/2007] [Accepted: 09/17/2007] [Indexed: 10/22/2022]
Abstract
Post-translational modification of cellular proteins by beta-o-linked N-acetylglucosamine (o-GlcNAc) moieties plays a significant role in signal transduction by modulating protein stability, protein-protein interactions, transactivation processes, and the enzyme activities of target proteins. Though various classes of proteins are known to be regulated by o-GlcNAc modification (o-GlcNAcylation), the mechanism that regulates o-linked GlcNAc transferase (OGT) activity remains unknown. Here, we report that potassium chloride-induced depolarization provokes the activation of OGT and subsequent o-GlcNAcylation of proteins in neuroblastoma NG-108-15 cells. Moreover, such an induction of protein o-GlcNAcylation was abolished by treating cells with either a voltage-gated calcium channel inhibitor or a calcium/calmodulin-dependent protein kinase (CaMK) inhibitor. In addition, CaMKIV was found to specifically phosphorylate and activate OGT in vivo and in vitro, which implies that CaMKIV is required for depolarization-induced activation of OGT. Furthermore, we found that OGT is involved in depolarization-induced and CaMKIV-dependent activation of activator protein-1 (AP-1) and subsequent tissue inhibitor of metalloproteinase-1 (Timp-1) gene expression. Taken together, our findings suggest that CaMKIV activated OGT, and OGT has an essential role on the process of CaMKIV-dependent AP-1 activation under depolarization in neuronal cells.
Collapse
Affiliation(s)
- Minseok Song
- Department of Life Science, Division of Molecular and Life Science, Pohang University of Science and Technology, Pohang, Kyung-Buk 790-784, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
12
|
Shu X, Huang J, Dong Y, Choi J, Langenbacher A, Chen JN. Na,K-ATPase α2 and Ncx4a regulate zebrafish left-right patterning. Development 2007; 134:1921-30. [PMID: 17442698 DOI: 10.1242/dev.02851] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A conserved molecular cascade involving Nodal signaling that patterns the laterality of the lateral mesoderm in vertebrates has been extensively studied, but processes involved in the initial break of left-right (LR)symmetry are just beginning to be explored. Here we report that Na,K-ATPaseα2 and Ncx4a function upstream of Nodal signaling to regulate LR patterning in zebrafish. Knocking down Na,K-ATPase α2 and Ncx4a activity in dorsal forerunner cells (DFCs), which are precursors of Kupffer's vesicle(KV), is sufficient to disrupt asymmetric gene expression in the lateral plate mesoderm and randomize the placement of internal organs, indicating that the activity of Na,K-ATPase α2 and Ncx4a in DFCs/KV is crucial for LR patterning. High-speed videomicroscopy and bead implantation experiments show that KV cilia are immobile and the directional fluid flow in KV is abolished in Na,K-ATPase α2 and Ncx4a morphants, suggesting their essential role in KV ciliary function. Furthermore, we found that intracellular Ca2+ levels are elevated in Na,K-ATPase α2 and Ncx4a morphants and that the defects in ciliary motility, KV fluid flow and placement of internal organs induced by their knockdown could be suppressed by inhibiting the activity of Ca2+/calmodulin-dependent protein kinase II. Together, our data demonstrate that Na,K-ATPase α2 and Ncx4a regulate LR patterning by modulating intracellular calcium levels in KV and by influencing cilia function, revealing a previously unrecognized role for calcium signaling in LR patterning.
Collapse
Affiliation(s)
- Xiaodong Shu
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA 90095, USA
| | | | | | | | | | | |
Collapse
|
13
|
Robison AJ, Winder DG, Colbran RJ, Bartlett RK. Oxidation of calmodulin alters activation and regulation of CaMKII. Biochem Biophys Res Commun 2007; 356:97-101. [PMID: 17343827 PMCID: PMC1899527 DOI: 10.1016/j.bbrc.2007.02.087] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2007] [Accepted: 02/20/2007] [Indexed: 10/23/2022]
Abstract
Increases in reactive oxygen species and mis-regulation of calcium homeostasis are associated with various physiological conditions and disease states including aging, ischemia, exposure to drugs of abuse, and neurodegenerative diseases. In aged animals, this is accompanied by a reduction in oxidative repair mechanisms resulting in increased methionine oxidation of the calcium signaling protein calmodulin in the brain. Here, we show that oxidation of calmodulin results in an inability to: (1) activate CaMKII; (2) support Thr(286) autophosphorylation of CaMKII; (3) prevent Thr(305/6) autophosphorylation of CaMKII; (4) support binding of CaMKII to the NR2B subunit of the NMDA receptor; and (5) compete with alpha-actinin for binding to CaMKII. Moreover, oxidized calmodulin does not efficiently bind calcium/calmodulin-dependent protein kinase II (CaMKII) in rat brain lysates or in vitro. These observations contrast from past experiments performed with oxidized calmodulin and the plasma membrane calcium ATPase, where oxidized calmodulin binds to, and partially activates the PMCA. When taken together, these data suggest that oxidative stress may perturb neuronal and cardiac function via a decreased ability of oxidized calmodulin to bind, activate, and regulate the interactions of CaMKII.
Collapse
Affiliation(s)
- AJ Robison
- Vanderbilt University Medical Center, Department of Molecular Physiology and Biophysics, Nashville, TN 37232, USA
| | - Danny G. Winder
- Vanderbilt University Medical Center, Department of Molecular Physiology and Biophysics, Nashville, TN 37232, USA
| | - Roger J. Colbran
- Vanderbilt University Medical Center, Department of Molecular Physiology and Biophysics, Nashville, TN 37232, USA
| | - Ryan K. Bartlett
- Vanderbilt University Medical Center, Department of Molecular Physiology and Biophysics, Nashville, TN 37232, USA
- Author to whom correspondence should be addressed: , Vanderbilt University Medical Center, 724 RRB, Nashville, TN 37232, Ph: +1 615-322-4389
| |
Collapse
|
14
|
Kaidanovich-Beilin O, Eldar-Finkelman H. Peptides targeting protein kinases: strategies and implications. Physiology (Bethesda) 2007; 21:411-8. [PMID: 17119154 DOI: 10.1152/physiol.00022.2006] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Protein kinases are important key regulators in most, if not all, biological processes and are linked with many human diseases. Protein kinases thus became attractive targets for drug design. Intracellularly active peptides that selectively interfere with kinase function and or kinase-mediated signaling pathways are potential drug compounds with therapeutic implications.
Collapse
Affiliation(s)
- Oksana Kaidanovich-Beilin
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Ramat Aviv, Israel
| | | |
Collapse
|
15
|
Rosenberg OS, Deindl S, Sung RJ, Nairn AC, Kuriyan J. Structure of the Autoinhibited Kinase Domain of CaMKII and SAXS Analysis of the Holoenzyme. Cell 2005; 123:849-60. [PMID: 16325579 DOI: 10.1016/j.cell.2005.10.029] [Citation(s) in RCA: 255] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2005] [Revised: 10/02/2005] [Accepted: 10/19/2005] [Indexed: 11/25/2022]
Abstract
Ca2+/calmodulin-dependent protein kinase-II (CaMKII) is unique among protein kinases for its dodecameric assembly and its complex response to Ca2+. The crystal structure of the autoinhibited kinase domain of CaMKII, determined at 1.8 A resolution, reveals an unexpected dimeric organization in which the calmodulin-responsive regulatory segments form a coiled-coil strut that blocks peptide and ATP binding to the otherwise intrinsically active kinase domains. A threonine residue in the regulatory segment, which when phosphorylated renders CaMKII calmodulin independent, is held apart from the catalytic sites by the organization of the dimer. This ensures a strict Ca2+ dependence for initial activation. The structure of the kinase dimer, when combined with small-angle X-ray scattering data for the holoenzyme, suggests that inactive CaMKII forms tightly packed autoinhibited assemblies that convert upon activation into clusters of loosely tethered and independent kinase domains.
Collapse
Affiliation(s)
- Oren S Rosenberg
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | | | | | | | | |
Collapse
|
16
|
Xiao W, Liu Y, Templeton DM. Ca(2+)/calmodulin-dependent protein kinase II inhibition by heparin in mesangial cells. Am J Physiol Renal Physiol 2004; 288:F142-9. [PMID: 15383398 DOI: 10.1152/ajprenal.00145.2004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Heparin exerts an antiproliferative effect in smooth muscle cells, and the Ca(2+)/calmodulin-dependent protein kinase (CaMK) signaling pathway is heparin sensitive. Here, we report that transfection with a truncated 326-amino acid fragment of CaMK-IIalpha increases basal activity of CaMK-II in mesangial cells. Ionomycin increased CaMK-II activity in both transfected and untransfected cells, with a concomitant increase in activated Ca(2+)/calmodulin. Heparin (1 microg/ml), but not chondroitin or dermatan sulfate, significantly attenuated both serum- or ionomycin-induced CaMK-II activity, and attendant c-fos mRNA expression, but did not affect upstream Ca(2+)/calmodulin. Autophosphorylation of Thr286 generates an autonomously active CaMK-II. Both serum and ionomycin increased phosphorylation at this site and increased CaMK-II activity in antiphosphothreonine immunoprecipitates. Heparin (1 microg/ml) did not inhibit phosphorylation of Thr286 (although much higher concentrations did). Replacement of Thr286 with Asp produces a constitutively active mutant that was insensitive to ionomycin but was inhibited by heparin maximally at 1 microg/ml. These results suggest that heparin at physiological concentrations acts at or downstream of CaMK-II to suppress its activity independent of an effect on autophosphorylation.
Collapse
Affiliation(s)
- Weiqun Xiao
- Department of Laboratory Medicine and Pathobiology, Medical Sciences Bldg. Rm. 6302, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8
| | | | | |
Collapse
|
17
|
Tzortzopoulos A, Török K. Mechanism of the T286A-mutant alphaCaMKII interactions with Ca2+/calmodulin and ATP. Biochemistry 2004; 43:6404-14. [PMID: 15157074 DOI: 10.1021/bi036224m] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The role of adenosine 5'-triphosphate (ATP) in the activation mechanism of alpha-Ca(2+)/calmodulin-dependent protein kinase II (alphaCaMKII) was investigated using the T286A non-autophosphorylatable mutant of alphaCaMKII. Characterization of the T286A-alphaCaMKII mutant revealed k(cat) = 0.06 +/- 0.02 s(-1) for the T286A mutant, a 6 (+/- 2)-fold lower value compared to wild-type alphaCaMKII with 100 microM smooth muscle myosin light chain (MLC) as substrate. MLC phosphorylation by the T286A mutant and wild-type alphaCaMKII was cooperative, with Hill coefficients 2.3 +/- 0.1 and 2.4 +/- 0.3, respectively. K(m) values for MLC were 96 +/- 28 microM with T286A-alphaCaMKII and 49 +/- 29 microM for wild-type alphaCaMKII. Thus, while the activity of alphaCaMKII was sensitive to mutation of the Thr(286) residue to Ala, the mechanisms of the wild-type and T286A mutant enzyme appeared similar. K(d) for Ca(2+)/calmodulin was 2-fold reduced to 40 nM compared to that of wild-type alphaCaMKII (75 nM). ATP induced a 9-fold stabilization of Ca(2+)/calmodulin binding to the T286A mutant enzyme. Fluorescence stopped-flow kinetic experiments revealed that two Ca(2+)/calmodulin-enzyme complexes were formed, the first, unaffected by ATP, with association and dissociation rate constants of 2 x 10(7) M(-1) s(-1) and 5 s(-1), respectively, containing calmodulin in extended conformation. The second complex, in which calmodulin adopted a compact conformation, was formed with association rate constant 3 x 10(6) M(-1) s(-1) and dissociation at 0.15 s(-1) in the absence and 0.015 s(-1) in the presence of ATP. These data show that ATP is involved in the activation mechanism by forming two classes of Ca(2+)/calmodulin.alphaCaMKII.ATP complex. It is likely that only one of the complexes is on the activation pathway.
Collapse
|
18
|
Harvey BP, Banga SS, Ozer HL. Regulation of the Multifunctional Ca2+/Calmodulin-dependent Protein Kinase II by the PP2C Phosphatase PPM1F in Fibroblasts. J Biol Chem 2004; 279:24889-98. [PMID: 15140879 DOI: 10.1074/jbc.m400656200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The regulation of the multifunctional calcium/calmodulin dependent protein kinase II (CaMKII) by serine/threonine protein phosphatases has been extensively studied in neuronal cells; however, this regulation has not been investigated previously in fibroblasts. We cloned a cDNA from SV40-transformed human fibroblasts that shares 80% homology to a rat calcium/calmodulin-dependent protein kinase phosphatase that encodes a PPM1F protein. By using extracts from transfected cells, PPM1F, but not a mutant (R326A) in the conserved catalytic domain, was found to dephosphorylate in vitro a peptide corresponding to the auto-inhibitory region of CaMKII. Further analyses demonstrated that PPM1F specifically dephosphorylates the phospho-Thr-286 in autophosphorylated CaMKII substrate and thus deactivates the CaMKII in vitro. Coimmunoprecipitation of CaMKII with PPM1F indicates that the two proteins can interact intracellularly. Binding of PPM1F to CaMKII involves multiple regions and is not dependent on intact phosphatase activity. Furthermore, overexpression of PPM1F in fibroblasts caused a reduction in the CaMKII-specific phosphorylation of the known substrate vimentin(Ser-82) following induction of the endogenous CaM kinase. These results identify PPM1F as a CaM kinase phosphatase within fibroblasts, although it may have additional functions intracellularly since it has been presented elsewhere as POPX2 and hFEM-2. We conclude that PPM1F, possibly together with the other previously described protein phosphatases PP1 and PP2A, can regulate the activity of CaMKII. Moreover, because PPM1F dephosphorylates the critical autophosphorylation site of CaMKII, we propose that this phosphatase plays a key role in the regulation of the kinase intracellularly.
Collapse
Affiliation(s)
- Bohdan P Harvey
- Department of Microbiology and Molecular Genetics, University of Medicine and Dentistry of New Jersey (UMDNJ)-New Jersey Medical School and UMDNJ-Graduate School of Biomedical Sciences, Newark, New Jersey 07101, USA
| | | | | |
Collapse
|
19
|
Lu CS, Hodge JJL, Mehren J, Sun XX, Griffith LC. Regulation of the Ca2+/CaM-responsive pool of CaMKII by scaffold-dependent autophosphorylation. Neuron 2004; 40:1185-97. [PMID: 14687552 DOI: 10.1016/s0896-6273(03)00786-4] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
CaMKII is critical for structural and functional plasticity. Here we show that Camguk (Cmg), the Drosophila homolog of CASK/Lin-2, associates in an ATP-regulated manner with CaMKII to catalyze formation of a pool of calcium-insensitive CaMKII. In the presence of Ca(2+)/CaM, CaMKII complexed to Cmg can autophosphorylate at T287 and become constitutively active. In the absence of Ca(2+)/CaM, ATP hydrolysis results in phosphorylation of T306 and inactivation of CaMKII. Cmg coexpression suppresses CaMKII activity in transfected cells, and the level of Cmg expression in Drosophila modulates postsynaptic T306 phosphorylation. These results suggest that Cmg, in the presence of Ca(2+)/CaM, can provide a localized source of active kinase. When Ca(2+)/CaM or synaptic activity is low, Cmg promotes inactivating autophosphorylation, producing CaMKII that requires phosphatase to reactivate. This interaction provides a mechanism by which the active postsynaptic pool of CaMKII can be controlled locally to differentiate active and inactive synapses.
Collapse
Affiliation(s)
- Cecilia S Lu
- Department of Biology and Volen Center for Complex Systems, Brandeis University, Waltham, MA 02454, USA
| | | | | | | | | |
Collapse
|
20
|
Kutcher LW, Beauman SR, Gruenstein EI, Kaetzel MA, Dedman JR. Nuclear CaMKII inhibits neuronal differentiation of PC12 cells without affecting MAPK or CREB activation. Am J Physiol Cell Physiol 2003; 284:C1334-45. [PMID: 12570987 DOI: 10.1152/ajpcell.00510.2002] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ca(2+)/calmodulin-regulated protein kinase II (CaMKII) mediates many cellular events. The four CaMKII isoforms have numerous splice variants, three of which contain nuclear localization signals. Little is known about the role of nuclear localized CaMKII in neuronal development. To study this process, PC12 cells were transfected to produce CaMKII targeted to either the cytoplasm or the nucleus and then treated with nerve growth factor (NGF). NGF triggers a signaling cascade (MAPK) that results in the differentiation of PC12 cells into a neuronal phenotype, marked by neurite outgrowth. The present study found that cells expressing nuclear targeted CaMKII failed to grow neurites, whereas cells expressing cytoplasmic CaMKII readily produced neurites. Inhibition of neuronal differentiation by nuclear CaMKII was independent of MAPK signaling, as sustained Erk phosphorylation was not affected. Phosphorylation of CREB was also unaffected. Thus nuclear CaMKII modifies neuronal differentiation by a mechanism independent of MAPK and CREB activation.
Collapse
Affiliation(s)
- Louis W Kutcher
- Department of Molecular Physiology, University of Cincinnati Medical School, Cincinnati, Ohio 45267, USA
| | | | | | | | | |
Collapse
|
21
|
Hudmon A, Schulman H. Neuronal CA2+/calmodulin-dependent protein kinase II: the role of structure and autoregulation in cellular function. Annu Rev Biochem 2002; 71:473-510. [PMID: 12045104 DOI: 10.1146/annurev.biochem.71.110601.135410] [Citation(s) in RCA: 518] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Highly enriched in brain tissue and present throughout the body, Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) is central to the coordination and execution of Ca(2+) signal transduction. The substrates phosphorylated by CaMKII are implicated in homeostatic regulation of the cell, as well as in activity-dependent changes in neuronal function that appear to underlie complex cognitive and behavioral responses, including learning and memory. The architecture of CaMKII holoenzymes is unique in nature. The kinase functional domains (12 per holoenzyme) are attached by stalklike appendages to a gear-shaped core, grouped into two clusters of six. Each subunit contains a catalytic, an autoregulatory, and an association domain. Ca(2+)/calmodulin (CaM) binding disinhibits the autoregulatory domain, allowing autophosphorylation and complex changes in the enzyme's sensitivity to Ca(2+)/CaM, including the generation of Ca(2+)/CaM-independent activity, CaM trapping, and CaM capping. These processes confer a type of molecular memory to the autoregulation and activity of CaMKII. Its function is intimately shaped by its multimeric structure, autoregulation, isozymic type, and subcellular localization; these features and processes are discussed as they relate to known and potential cellular functions of this multifunctional protein kinase.
Collapse
Affiliation(s)
- Andy Hudmon
- Department of Neurobiology, Stanford University School of Medicine, 299 Campus Drive, Stanford, California 94305, USA.
| | | |
Collapse
|
22
|
Abstract
Calcium (Ca) is the key regulator of cardiac contraction during excitation-contraction (E-C) coupling. However, differences exist between the amount of Ca being transported into the myocytes upon electrical stimulation as compared to Ca released from the sarcoplasmic reticulum (SR). Moreover, alterations in E-C coupling occur in cardiac hypertrophy and heart failure. In addition to the direct effects of Ca on the myofilaments, Ca plays a pivotal role in activation of a number of Ca-dependent proteins or second messengers, which can modulate E-C coupling. Of these proteins, calmodulin (CaM) and Ca-CaM-dependent kinase II (CaMKII) are of special interest in the heart because of their role of modulating Ca influx, SR Ca release, and SR Ca uptake during E-C coupling. Indeed, CaM and CaMKII may be associated with some ion channels and Ca transporters and both can modulate acute cellular Ca handling. In addition to the changes in Ca, CaM and CaMKII signals from beat-to-beat, changes may occur on a longer time scale. These may occur over seconds to minutes involving phosphorylation/dephosphorylation reactions, and even a longer time frame in altering gene transcription (excitation-transcription (E-T) coupling) in hypertrophic signaling and heart failure. Here we review the classical role of Ca in E-C coupling and extend this view to the role of the Ca-dependent proteins CaM and CaMKII in modulating E-C coupling and their contribution to E-T coupling.
Collapse
Affiliation(s)
- Lars S Maier
- Department of Physiology, Stritch School of Medicine, Loyola University-Chicago, 2160 South First Avenue, Chicago, IL 60153, USA
| | | |
Collapse
|
23
|
Soderling TR, Chang B, Brickey D. Cellular signaling through multifunctional Ca2+/calmodulin-dependent protein kinase II. J Biol Chem 2001; 276:3719-22. [PMID: 11096120 DOI: 10.1074/jbc.r000013200] [Citation(s) in RCA: 200] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- T R Soderling
- Vollum Institute, Oregon Health Sciences University, Portland, Oregon 97201, USA.
| | | | | |
Collapse
|
24
|
Lengyel I, Nairn A, McCluskey A, Tóth G, Penke B, Rostas J. Auto-inhibition of Ca(2+)/calmodulin-dependent protein kinase II by its ATP-binding domain. J Neurochem 2001; 76:1066-72. [PMID: 11181826 DOI: 10.1046/j.1471-4159.2001.00139.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Ca(2+)/calmodulin dependent protein kinase (CaMPK) II is a key enzyme in many physiological processes. The enzyme is inactive unless Ca(2+)/CaM binds to it. In this inactive form CaMPK-II does not bind ATP suggesting that the ATP-binding domain is involved in an intramolecular interaction. We show here that F12, a 12 amino acid long peptide fragment of the ATP-binding domain (CaMPK-II(23-34), GAFSVVRRCVKV) can inhibit the Ca(2+)/CaM-dependent activity (IC(50) of 3 microM) but has no effect on the Ca(2+)/CaM-independent activity of CaMPK-II. Kinetic analysis exhibited mixed inhibition with respect to autocamtide-2 and ATP. The inhibition by F12 showed specificity towards CaMPK-II, but also inhibited CaMPK-I (IC(50) = 12.5 microM), while CaMPK-IV (IC(50) = 85 microM) was inhibited poorly and cAMP-dependent protein kinase (PKA) was not inhibited. Substitution of phenylalanine at position 25 to alanine (A12), had little effect on the inhibition of different Ca(2+)/CaM-dependent protein kinases, suggesting that phenylalanine 25 does not play a crucial role in the interactions involving F12. Thus the molecular interactions involving the ATP-binding domain appears to play a role in the regulation of nonphosphorylated CaMPK-II activity.
Collapse
Affiliation(s)
- I Lengyel
- Institute of Biochemistry, Biological Research Center, Szeged, Hungary.
| | | | | | | | | | | |
Collapse
|
25
|
Tokumitsu H, Muramatsu MA, Ikura M, Kobayashi R. Regulatory mechanism of Ca2+/calmodulin-dependent protein kinase kinase. J Biol Chem 2000; 275:20090-5. [PMID: 10770941 DOI: 10.1074/jbc.m002193200] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ca(2+)/calmodulin-dependent protein kinase kinase (CaM-KK) is a novel member of the CaM kinase family, which specifically phosphorylates and activates CaM kinase I and IV. In this study, we characterized the CaM-binding peptide of alphaCaM-KK (residues 438-463), which suppressed the activity of constitutively active CaM-KK (84-434) in the absence of Ca(2+)/CaM but competitively with ATP. Truncation and site-directed mutagenesis of the CaM-binding region in CaM-KK reveal that Ile(441) is essential for autoinhibition of CaM-KK. Furthermore, CaM-KK chimera mutants containing the CaM-binding sequence of either myosin light chain kinases or CaM kinase II located C-terminal of Leu(440), exhibited enhanced Ca(2+)/CaM-independent activity (60% of total activity). Although the CaM-binding domains of myosin light chain kinases and CaM kinase II bind to the N- and C-terminal domains of CaM in the opposite orientation to CaM-KK (Osawa, M., Tokumitsu, H., Swindells, M. B., Kurihara, H., Orita, M., Shibanuma, T., Furuya, T., and Ikura, M. (1999) Nat. Struct. Biol. 6, 819-824), the chimeric CaM-KKs containing Ile(441) remained Ca(2+)/CaM-dependent. This result demonstrates that the orientation of the CaM binding is not critical for relief of CaM-KK autoinhibition. However, the requirement of Ile(441) for autoinhibition, which is located at the -3 position from the N-terminal anchoring residue (Trp(444)) to CaM, accounts for the opposite orientation of CaM binding of CaM-KK compared with other CaM kinases.
Collapse
Affiliation(s)
- H Tokumitsu
- Department of Chemistry, Kagawa Medical University, 1750-1 Miki-cho, Kita-gun, Kagawa 761-93, Japan.
| | | | | | | |
Collapse
|
26
|
Yang T, Poovaiah BW. Molecular and biochemical evidence for the involvement of calcium/calmodulin in auxin action. J Biol Chem 2000; 275:3137-43. [PMID: 10652297 DOI: 10.1074/jbc.275.5.3137] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The use of (35)S-labeled calmodulin (CaM) to screen a corn root cDNA expression library has led to the isolation of a CaM-binding protein, encoded by a cDNA with sequence similarity to small auxin up RNAs (SAURs), a class of early auxin-responsive genes. The cDNA designated as ZmSAUR1 (Zea mays SAURs) was expressed in Escherichia coli, and the recombinant protein was purified by CaM affinity chromatography. The CaM binding assay revealed that the recombinant protein binds to CaM in a calcium-dependent manner. Deletion analysis revealed that the CaM binding site was located at the NH(2)-terminal domain. A synthetic peptide of amino acids 20-45, corresponding to the potential CaM binding region, was used for calcium-dependent mobility shift assays. The synthetic peptide formed a stable complex with CaM only in the presence of calcium. The CaM affinity assay indicated that ZmSAUR1 binds to CaM with high affinity (K(d) approximately 15 nM) in a calcium-dependent manner. Comparison of the NH(2)-terminal portions of all of the characterized SAURs revealed that they all contain a stretch of the basic alpha-amphiphilic helix similar to the CaM binding region of ZmSAUR1. CaM binds to the two synthetic peptides from the NH(2)-terminal regions of Arabidopsis SAUR-AC1 and soybean 10A5, suggesting that this is a general phenomenon for all SAURs. Northern analysis was carried out using the total RNA isolated from auxin-treated corn coleoptile segments. ZmSAUR1 gene expression began within 10 min, increased rapidly between 10 and 60 min, and peaked around 60 min after 10 microM alpha-naphthaleneacetic acid treatment. These results indicate that ZmSAUR1 is an early auxin-responsive gene. The CaM antagonist N-(6-aminohexyl)5-chloro-1-naphthalenesulfonamide hydrochloride inhibited the auxin-induced cell elongation but not the auxin-induced expression of ZmSAUR1. This suggests that calcium/CaM do not regulate ZmSAUR1 at the transcriptional level. CaM binding to ZmSAUR1 in a calcium-dependent manner suggests that calcium/CaM regulate ZmSAUR1 at the post-translational level. Our data provide the first direct evidence for the involvement of calcium/CaM-mediated signaling in auxin-mediated signal transduction.
Collapse
Affiliation(s)
- T Yang
- Laboratory of Plant Molecular Biology, Department of Horticulture, Washington State University, Pullman, Washington 99164-6414, USA
| | | |
Collapse
|
27
|
Lane P, Gross SS. The autoinhibitory control element and calmodulin conspire to provide physiological modulation of endothelial and neuronal nitric oxide synthase activity. ACTA PHYSIOLOGICA SCANDINAVICA 2000; 168:53-63. [PMID: 10691780 DOI: 10.1046/j.1365-201x.2000.00654.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
NO production by the endothelial and neuronal isoforms of nitric oxide synthase (cNOS) is regulated on a moment-to-moment basis by calmodulin binding, triggered by transient elevations in intracellular-free calcium levels. Nonetheless, additional modes of cNOS regulation are implicit in the discoveries of stimuli that elicit a sustained increase in cNOS activity despite undetectable or transient increases in intracellular Ca2+ in endothelial cells; such stimuli include shear-stress, oestrogen, insulin or insulin-like growth factor treatment of endothelial cells. Recently, we identified a peptide insertion within the FMN-binding domain of mammalian NOSs that is unique to calcium-dependent isoforms, and not shared with inducible NOS or ancestral flavoproteins. Evidence suggests that this insertion serves as a fundamental control element, analogous to intrinsic autoinhibitory peptides that have been demonstrated to regulate activity of other calmodulin-dependent enzymes. Thus, the peptide insertion of cNOSs appears to function as structural element that is displaced upon calmodulin binding, resulting in dysinhibition of NO synthesis. Once displaced, the peptide may also be subject to transient chemical modifications and protein-protein interactions that modulate autoinhibitory function. Herein we summarize our present knowledge and speculate on mechanisms by which calmodulin and the autoinhibitory peptide conspire to regulate cNOS activity.
Collapse
Affiliation(s)
- P Lane
- Department of Pharmacology, Cornell University Medical College, New York, NY 10021, USA
| | | |
Collapse
|
28
|
Yang E, Schulman H. Structural examination of autoregulation of multifunctional calcium/calmodulin-dependent protein kinase II. J Biol Chem 1999; 274:26199-208. [PMID: 10473573 DOI: 10.1074/jbc.274.37.26199] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Regulation of Ca(2+)/calmodulin-dependent protein kinase II is likely based on an auto-inhibitory mechanism in which a segment of the kinase occupies the catalytic site in the absence of calmodulin. We analyze potential auto-inhibitory associations by employing charge reversal and hydrophobic-to-charged residue mutagenesis. We identify interacting amino acid pairs by using double mutants to test which modification in the catalytic domain complements a given change in the auto-inhibitory domain. Our studies identify the core pseudosubstrate sequence (residues 297-300) but reveal that distinct sequences centered about the autophosphorylation site at Thr-286 are involved in the critical auto-inhibitory interactions. Individual changes in any of the residues Arg-274, His-282, Arg-283, Lys-291, Arg-297, Phe-293, and Asn-294 in the auto-inhibitory domain or their interacting partners in the catalytic domain produces an enhanced affinity for calmodulin or generates a constitutively active enzyme. A structural model of Ca(2+)/calmodulin-dependent protein kinase II that incorporates these interactions shows that Thr-286 is oriented inwardly into a hydrophobic channel. The model explains why calmodulin must bind to the auto-inhibitory domain in order for Thr-286 in that domain to be phosphorylated and why introduction of phospho-Thr-286 produces the important Ca(2+)-independent state of the enzyme.
Collapse
Affiliation(s)
- E Yang
- Department of Neurobiology, Stanford University School of Medicine, Stanford, California 94305-5125, USA
| | | |
Collapse
|
29
|
Diggle TA, Seehra CK, Hase S, Redpath NT. Analysis of the domain structure of elongation factor-2 kinase by mutagenesis. FEBS Lett 1999; 457:189-92. [PMID: 10471776 DOI: 10.1016/s0014-5793(99)01034-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
A number of elongation factor-2 kinase (eEF-2K) mutants were constructed to investigate features of this kinase that may be important in its activity. Typical protein kinases possess a highly conserved lysine residue in subdomain II which follows the GXGXXG motif of subdomain I. Mutation of two lysine residues, K340 and K346, which follow the GXGXXG motif in eEF-2K had no effect on activity, showing that such a lysine residue is not important in eEF-2K activity. Mutation of a conserved pair of cysteine residues C-terminal to the GXGXXG sequence, however, completely inactivated eEF-2K. The eEF-2K CaM binding domain was localised to residues 77-99 which reside N-terminal to the catalytic domain. Tryptophan 84 is an important residue within this domain as mutation of this residue completely abolishes CaM binding and eEF-2K activity. Removal of approximately 130 residues from the C-terminus of eEF-2K completely abolished autokinase activity; however, removal of only 19 residues inhibited eEF-2 kinase activity but not autokinase activity, suggesting that a short region at the C-terminal end may be important in interacting with eEF-2. Likewise, removal of between 75 and 100 residues from the N-terminal end completely abolished eEF-2K activity.
Collapse
Affiliation(s)
- T A Diggle
- Department of Biochemistry, University of Leicester, University Road, Leicester, UK
| | | | | | | |
Collapse
|
30
|
Hayashi Y, Nishio M, Naito Y, Yokokura H, Nimura Y, Hidaka H, Watanabe Y. Regulation of neuronal nitric-oxide synthase by calmodulin kinases. J Biol Chem 1999; 274:20597-602. [PMID: 10400690 DOI: 10.1074/jbc.274.29.20597] [Citation(s) in RCA: 146] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phosphorylation of neuronal nitric-oxide synthase (nNOS) by Ca2+/calmodulin (CaM)-dependent protein kinases (CaM kinases) including CaM kinase Ialpha (CaM-K Ialpha), CaM kinase IIalpha (CaM-K IIalpha), and CaM kinase IV (CaM-K IV), was studied. It was found that purified recombinant nNOS was phosphorylated by CaM-K Ialpha, CaM-K IIalpha, and CaM-K IV at Ser847 in vitro. Replacement of Ser847 with Ala (S847A) prevented phosphorylation by CaM kinases. Phosphorylated recombinant wild-type nNOS at Ser847 (approximately 0.5 mol of phosphate incorporation into nNOS) exhibited a 30% decrease of Vmax with little change of both the Km for L-arginine and Kact for CaM relative to unphosphorylated enzyme. The activity of mutant S847D was decreased to a level 50-60% as much as the wild-type enzyme. The decreased NOS enzyme activity of phosphorylated nNOS at Ser847 and mutant S847D was partially due to suppression of CaM binding, but not to impairment of dimer formation which is thought to be essential for enzyme activation. Inactive nNOS lacking CaM-binding ability was generated by mutation of Lys732-Lys-Leu to Asp732-Asp-Glu (Watanabe, Y., Hu, Y., and Hidaka, H. (1997) FEBS Lett. 403, 75-78). It was phosphorylated by CaM kinases, as was the wild-type enzyme, indicating that CaM-nNOS binding was not required for the phosphorylation reaction. We developed antibody NP847, which specifically recognize nNOS in its phosphorylated state at Ser847. Using the antibody NP847, we obtained evidence that nNOS is phosphorylated at Ser847 in rat brain. Thus, our results suggest that CaM kinase-induced phosphorylation of nNOS at Ser847 alters the activity control of this enzyme.
Collapse
Affiliation(s)
- Y Hayashi
- Department of Pharmacology, Nagoya University School of Medicine, Showa-ku, Nagoya 466-8550, Japan
| | | | | | | | | | | | | |
Collapse
|
31
|
Rich RC, Schulman H. Substrate-directed function of calmodulin in autophosphorylation of Ca2+/calmodulin-dependent protein kinase II. J Biol Chem 1998; 273:28424-9. [PMID: 9774470 DOI: 10.1074/jbc.273.43.28424] [Citation(s) in RCA: 132] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Autophosphorylation of Thr286 in Ca2+/calmodulin-dependent protein kinase II occurs within each holoenzyme by an intersubunit reaction and is essential for kinase function in vivo. In addition to a kinase-directed function of calmodulin to activate the kinase, a second calmodulin is required for the autophosphorylation of each Thr286 (Hanson, P. I., Meyer, T., Stryer, L., and Schulman, H. (1994) Neuron 12, 943-956). We have engineered heteromeric holoenzymes comprising distinct "kinase" and "substrate" subunits to test for kinase- and substrate-directed functions of calmodulin. The obligate kinase subunits have aspartate residues substituted for threonine at positions 286, 305, and 306 (the autophosphorylation and calmodulin-binding sites), making it constitutively active but unable to bind calmodulin. Obligate substrate subunits are catalytically inactive (K42M mutation) but are able to bind calmodulin. Phosphorylation of substrate subunits occurs specifically at Thr286 and is completely dependent upon the presence of calmodulin. Blocking the ability of the substrate subunit to bind calmodulin, either with inhibitor KN-93 or by mutagenesis of the calmodulin-binding domain of the substrate subunit, prevents its phosphorylation, consistent with a substrate-directed function of calmodulin that requires its direct binding to the subunit being phosphorylated.
Collapse
Affiliation(s)
- R C Rich
- Department of Neurobiology, Stanford University School of Medicine, Stanford, California 94305-5125, USA
| | | |
Collapse
|
32
|
Chang BH, Mukherji S, Soderling TR. Characterization of a calmodulin kinase II inhibitor protein in brain. Proc Natl Acad Sci U S A 1998; 95:10890-5. [PMID: 9724800 PMCID: PMC27991 DOI: 10.1073/pnas.95.18.10890] [Citation(s) in RCA: 190] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Ca2+/calmodulin-dependent protein kinase II (CaM-KII) regulates numerous physiological functions, including neuronal synaptic plasticity through the phosphorylation of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-type glutamate receptors. To identify proteins that may interact with and modulate CaM-KII function, a yeast two-hybrid screen was performed by using a rat brain cDNA library. This screen identified a unique clone of 1.4 kb, which encoded a 79-aa brain-specific protein that bound the catalytic domain of CaM-KII alpha and beta and potently inhibited kinase activity with an IC50 of 50 nM. The inhibitory protein (CaM-KIIN), and a 28-residue peptide derived from it (CaM-KIINtide), was highly selective for inhibition of CaM-KII with little effect on CaM-KI, CaM-KIV, CaM-KK, protein kinase A, or protein kinase C. CaM-KIIN interacted only with activated CaM-KII (i. e., in the presence of Ca2+/CaM or after autophosphorylation) by using glutathione S-transferase/CaM-KIIN precipitations as well as coimmunoprecipitations from rat brain extracts or from HEK293 cells cotransfected with both constructs. Colocalization of CaM-KIIN with activated CaM-KII was demonstrated in COS-7 cells transfected with green fluorescent protein fused to CaM-KIIN. In COS-7 cells phosphorylation of transfected alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-type glutamate receptors by CaM-KII, but not by protein kinase C, was blocked upon cotransfection with CaM-KIIN. These results characterize a potent and specific cellular inhibitor of CaM-KII that may have an important role in the physiological regulation of this key protein kinase.
Collapse
Affiliation(s)
- B H Chang
- Vollum Institute, Oregon Health Sciences University, 3181 SW Sam Jackson Park Road, Portland, OR 97201, USA
| | | | | |
Collapse
|
33
|
Cann AD, Bishop SM, Ablooglu AJ, Kohanski RA. Partial activation of the insulin receptor kinase domain by juxtamembrane autophosphorylation. Biochemistry 1998; 37:11289-300. [PMID: 9698376 DOI: 10.1021/bi9809122] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Increased enzymatic activity of receptor tyrosine kinases occurs after trans-phosphorylation of one or two tyrosines in the activation loop, located near the catalytic cleft. Partial activation of the insulin receptor's kinase domain was observed at dilute concentrations of kinase, suggesting that cis-autophosphorylation was occurring. Autophosphorylation during partial activation mapped to the juxtamembrane (JM) tyrosines and not to activation loop tyrosines. Furthermore, a double JM Tyr-to-Phe mutant kinase (JMY2F) did not undergo partial activation but catalyzed substrate phosphorylation at a very low rate. Steady-state kinetics of peptide phosphorylation were determined with and without JM autophosphorylation. The JMY2F mutant was used to prevent concurrent cis-autophosphorylation and therefore to approximate the basal state apoenzyme in the kinetic analysis. Partial activation was dominated by a decreased Michaelis constant for peptide substrate, from KM,PEP >/= 2.5 mM in the basal state to 0.2 mM in the partially activated state; the KM,ATP remained virtually unchanged at approximately 1 mM, and kcat increased from 180 to 600 min-1. The high KM,PEP suggests weak binding of peptide substrates to the apoenzyme. This was confirmed by Ki > 1 mM for peptide substrates used as inhibitors of JM autophosphorylation. The absence of comparably large changes in kcat and KM,ATP suggests that the JM region is primarily a strong barrier to the peptide entry step of trans-phosphorylation reactions. The JM region therefore functions as an intrasteric inhibitor in the basal state of the insulin receptor's kinase domain.
Collapse
Affiliation(s)
- A D Cann
- Department of Biochemistry, The Mount Sinai School of Medicine, New York 10029, USA
| | | | | | | |
Collapse
|
34
|
Zhi G, Abdullah SM, Stull JT. Regulatory segments of Ca2+/calmodulin-dependent protein kinases. J Biol Chem 1998; 273:8951-7. [PMID: 9535879 DOI: 10.1074/jbc.273.15.8951] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Catalytic cores of skeletal and smooth muscle myosin light chain kinases and Ca2+/calmodulin-dependent protein kinase II are regulated intrasterically by different regulatory segments containing autoinhibitory and calmodulin-binding sequences. The functional properties of these regulatory segments were examined in chimeric kinases containing either the catalytic core of skeletal muscle myosin light chain kinase or Ca2+/calmodulin-dependent protein kinase II with different regulatory segments. Recognition of protein substrates by the catalytic core of skeletal muscle myosin light chain kinase was altered with the regulatory segment of protein kinase II but not with smooth muscle myosin light chain kinase. Similarly, the catalytic properties of the protein kinase II were altered with regulatory segments from either myosin light chain kinase. All chimeric kinases were dependent on Ca2+/calmodulin for activity. The apparent Ca2+/calmodulin activation constant was similarly low with all chimeras containing the skeletal muscle catalytic core. The activation constant was greater with chimeric kinases containing the catalytic core of Ca2+/calmodulin-dependent protein kinase II with its endogenous or myosin light chain kinase regulatory segments. Thus, heterologous regulatory segments affect substrate recognition and kinase activity. Furthermore, the sensitivity to calmodulin activation is determined primarily by the respective catalytic cores, not the calmodulin-binding sequences.
Collapse
Affiliation(s)
- G Zhi
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas 75235, USA
| | | | | |
Collapse
|
35
|
Barria A, Derkach V, Soderling T. Identification of the Ca2+/calmodulin-dependent protein kinase II regulatory phosphorylation site in the alpha-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate-type glutamate receptor. J Biol Chem 1997; 272:32727-30. [PMID: 9407043 DOI: 10.1074/jbc.272.52.32727] [Citation(s) in RCA: 307] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Ca2+/CaM-dependent protein kinase II (CaM-KII) can phosphorylate and potentiate responses of alpha-amino3-hydroxyl-5-methyl-4-isoxazole-propionate-type glutamate receptors in a number of systems, and recent studies implicate this mechanism in long term potentiation, a cellular model of learning and memory. In this study we have identified this CaM-KII regulatory site using deletion and site-specific mutants of glutamate receptor 1 (GluR1). Only mutations affecting Ser831 altered the 32P peptide maps of GluR1 from HEK-293 cells co-expressing an activated CaM-KII. Likewise, when CaM-KII was infused into cells expressing GluR1, the Ser831 to Ala mutant failed to show potentiation of the GluR1 current. The Ser831 site is specific to GluR1, and CaM-KII did not phosphorylate or potentiate current in cells expressing GluR2, emphasizing the importance of the GluR1 subunit in this regulatory mechanism. Because Ser831 has previously been identified as a protein kinase C phosphorylation site (Roche, K. W., O'Brien, R. J., Mammen, A. L., Bernhardt, J., and Huganir, R. L. (1996) Neuron 16, 1179-1188), this raises the possibility of synergistic interactions between CaM-KII and protein kinase C in regulating synaptic plasticity.
Collapse
Affiliation(s)
- A Barria
- Vollum Institute, Oregon Health Sciences University, Portland, Oregon 97201, USA
| | | | | |
Collapse
|
36
|
Salerno JC, Harris DE, Irizarry K, Patel B, Morales AJ, Smith SM, Martasek P, Roman LJ, Masters BS, Jones CL, Weissman BA, Lane P, Liu Q, Gross SS. An autoinhibitory control element defines calcium-regulated isoforms of nitric oxide synthase. J Biol Chem 1997; 272:29769-77. [PMID: 9368047 DOI: 10.1074/jbc.272.47.29769] [Citation(s) in RCA: 193] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Nitric oxide synthases (NOSs) are classified functionally, based on whether calmodulin binding is Ca2+-dependent (cNOS) or Ca2+-independent (iNOS). This key dichotomy has not been defined at the molecular level. Here we show that cNOS isoforms contain a unique polypeptide insert in their FMN binding domains which is not shared with iNOS or other related flavoproteins. Previously identified autoinhibitory domains in calmodulin-regulated enzymes raise the possibility that the polypeptide insert is the autoinhibitory domain of cNOSs. Consistent with this possibility, three-dimensional molecular modeling suggested that the insert originates from a site immediately adjacent to the calmodulin binding sequence. Synthetic peptides derived from the 45-amino acid insert of endothelial NOS were found to potently inhibit binding of calmodulin and activation of cNOS isoforms. This inhibition was associated with peptide binding to NOS, rather than free calmodulin, and inhibition could be reversed by increasing calmodulin concentration. In contrast, insert-derived peptides did not interfere with the arginine site of cNOS, as assessed from [3H]NG-nitro-L-arginine binding, nor did they potently effect iNOS activity. Limited proteolysis studies showed that calmodulin's ability to gate electron flow through cNOSs is associated with displacement of the insert polypeptide; this is the first specific calmodulin-induced change in NOS conformation to be identified. Together, our findings strongly suggest that the insert is an autoinhibitory control element, docking with a site on cNOSs which impedes calmodulin binding and enzymatic activation. The autoinhibitory control element molecularly defines cNOSs and offers a unique target for developing novel NOS activators and inhibitors.
Collapse
Affiliation(s)
- J C Salerno
- Department of Biology, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Barria A, Muller D, Derkach V, Griffith LC, Soderling TR. Regulatory phosphorylation of AMPA-type glutamate receptors by CaM-KII during long-term potentiation. Science 1997; 276:2042-5. [PMID: 9197267 DOI: 10.1126/science.276.5321.2042] [Citation(s) in RCA: 830] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Long-term potentiation (LTP), a cellular model of learning and memory, requires calcium-dependent protein kinases. Induction of LTP increased the phosphorus-32 labeling of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type glutamate receptors (AMPA-Rs), which mediate rapid excitatory synaptic transmission. This AMPA-R phosphorylation appeared to be catalyzed by Ca2+- and calmodulin-dependent protein kinase II (CaM-KII): (i) it correlated with the activation and autophosphorylation of CaM-KII, (ii) it was blocked by the CaM-KII inhibitor KN-62, and (iii) its phosphorus-32 peptide map was the same as that of GluR1 coexpressed with activated CaM-KII in HEK-293 cells. This covalent modulation of AMPA-Rs in LTP provides a postsynaptic molecular mechanism for synaptic plasticity.
Collapse
Affiliation(s)
- A Barria
- Vollum Institute, Oregon Health Sciences University, Portland, OR 97201, USA
| | | | | | | | | |
Collapse
|
38
|
Li L, Satoh H, Ginsburg KS, Bers DM. The effect of Ca(2+)-calmodulin-dependent protein kinase II on cardiac excitation-contraction coupling in ferret ventricular myocytes. J Physiol 1997; 501 ( Pt 1):17-31. [PMID: 9174990 PMCID: PMC1159500 DOI: 10.1111/j.1469-7793.1997.017bo.x] [Citation(s) in RCA: 133] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
1. The effect of Ca(2+)-calmodulin-dependent protein kinase II (CaMKII) on excitation-contraction coupling (E-C coupling) was studied in intact ferret cardiac myocytes using the selective inhibitor KN-93, KN-93 decreased steady-state (SS) twitch [Ca2+]i (by 51%), resting Ca2+ spark frequency (by 88%) and SS sarcoplasmic reticulum (SR) Ca2+ content evaluated by eaffeine application (by 37.5%). 2. Increasing extracellular Ca2+ concentration ([Ca2+]o) to 5 mM in KN-93 restored SR Ca2+ load and Ca2+ spark frequency towards that in control (2 mM Ca2+o), but SS twitch [Ca2+]i was still significantly depressed by KN-93. 3. KN-93 decreased Ca2+ transient amplitude of SS twitches much more strongly than the amplitude of post-rest (PR) twitches. In the control, the time constant (Tau) of [Ca2+]i decline of SS twitches was faster than that for PR twitches. This stimulation-dependent acceleration of [Ca2+]i decline was abolished by KN-93. 4. Voltage-clamp experiments demonstrated that KN-93 significantly inhibited sarcolemmal L-type Ca2+ current (ICa) during repetitive pulses by slowing recovery from inactivation. This may explain the preferential action of KN-93 to suppress SS vs. PR twitches. 5. In KN-93, even when both ICa and SR Ca2+ load were matched to the control levels by manipulation of conditioning voltage-clamp pulses, contraction and twitch Ca2+ transients were still both significantly depressed (to 39 and 49% of control, respectively). 6. Since KN-93 reduced SR Ca2+ release channel (RyR) activity during E-C coupling, even for matched SR Ca2+ load and trigger ICa, we infer that endogenous CaMKII is an important modulator of E-C coupling in intact cardiac myocytes. Effects of KN-93 on ICa and SS twitch [Ca2+]i decline also indicate that endogenous CaMKII may have stimulatory effects on ICa and SR Ca2+ uptake.
Collapse
Affiliation(s)
- L Li
- Department of Physiology, Loyola University Chicago, Stritch School of Medicine, Maywood, IL 60153, USA
| | | | | | | |
Collapse
|
39
|
Tarkka T, Oikarinen J, Grundström T. Nucleotide and calcium-induced conformational changes in histone H1. FEBS Lett 1997; 406:56-60. [PMID: 9109385 DOI: 10.1016/s0014-5793(97)00238-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The principal constituents of chromatin, histone H1 (H1) and the nucleosome have essential roles in regulation of eukaryotic gene expression. However, mechanisms for the H1-dependent inactivation and for the ATP-dependent chromatin remodeling upon activation are largely unelucidated. Using circular dichroism (CD) analysis we show that ATP and other nucleotides and Ca2+ induce structural changes in H1. ATP and Ca2+ also induce changes when H1 is interacting with DNA, and the changes in H1 are accompanied by alterations in its DNA interaction. These results suggest that nucleotide and Ca2+ binding may be important for H1-mediated chromatin changes.
Collapse
Affiliation(s)
- T Tarkka
- Department of Applied Cell and Molecular Biology, University of Umeå, Sweden
| | | | | |
Collapse
|
40
|
Peersen OB, Madsen TS, Falke JJ. Intermolecular tuning of calmodulin by target peptides and proteins: differential effects on Ca2+ binding and implications for kinase activation. Protein Sci 1997; 6:794-807. [PMID: 9098889 PMCID: PMC2144748 DOI: 10.1002/pro.5560060406] [Citation(s) in RCA: 126] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Ca(2+)-activated calmodulin (CaM) regulates many target enzymes by docking to an amphiphilic target helix of variable sequence. This study compares the equilibrium Ca2+ binding and Ca2+ dissociation kinetics of CaM complexed to target peptides derived from five different CaM-regulated proteins: phosphorylase kinase. CaM-dependent protein kinase II, skeletal and smooth myosin light chain kinases, and the plasma membrane Ca(2+)-ATPase. The results reveal that different target peptides can tune the Ca2+ binding affinities and kinetics of the two CaM domains over a wide range of Ca2+ concentrations and time scales. The five peptides increase the Ca2+ affinity of the N-terminal regulatory domain from 14- to 350-fold and slow its Ca2+ dissociation kinetics from 60- to 140-fold. Smaller effects are observed for the C-terminal domain, where peptides increase the apparent Ca2+ affinity 8- to 100-fold and slow dissociation kinetics 13- to 132-fold. In full-length skeletal myosin light chain kinase the inter-molecular tuning provided by the isolated target peptide is further modulated by other tuning interactions, resulting in a CaM-protein complex that has a 10-fold lower Ca2+ affinity than the analogous CaM-peptide complex. Unlike the CaM-peptide complexes, Ca2+ dissociation from the protein complex follows monoexponential kinetics in which all four Ca2+ ions dissociate at a rate comparable to the slow rate observed in the peptide complex. The two Ca2+ ions bound to the CaM N-terminal domain are substantially occluded in the CaM-protein complex. Overall, the results indicate that the cellular activation of myosin light chain kinase is likely to be triggered by the binding of free Ca2(2+)-CaM or Ca4(2+)-CaM after a Ca2+ signal has begun and that inactivation of the complex is initiated by a single rate-limiting event, which is proposed to be either the direct dissociation of Ca2+ ions from the bound C-terminal domain or the dissociation of Ca2+ loaded C-terminal domain from skMLCK. The observed target-induced variations in Ca2+ affinities and dissociation rates could serve to tune CaM activation and inactivation for different cellular pathways, and also must counterbalance the variable energetic costs of driving the activating conformational change in different target enzymes.
Collapse
Affiliation(s)
- O B Peersen
- Department of Chemistry and Biochemistry, University of Colorado, Boulder 80309-0215, USA
| | | | | |
Collapse
|
41
|
Soderling TR. Structure and regulation of calcium/calmodulin-dependent protein kinases II and IV. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1297:131-8. [PMID: 8917614 DOI: 10.1016/s0167-4838(96)00105-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- T R Soderling
- Vollum Institute, Oregon Health Sciences University, Portland 97225, USA
| |
Collapse
|
42
|
Redpath NT, Price NT, Proud CG. Cloning and Expression of cDNA Encoding Protein Synthesis Elongation Factor-2 Kinase. J Biol Chem 1996. [DOI: 10.1074/jbc.271.29.17547] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
43
|
Verma AK, Enyedi A, Filoteo AG, Strehler EE, Penniston JT. Plasma membrane calcium pump isoform 4a has a longer calmodulin-binding domain than 4b. J Biol Chem 1996; 271:3714-8. [PMID: 8631985 DOI: 10.1074/jbc.271.7.3714] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Alternate splicing of human plasma membrane calcium pump isoform 4 (hPMCA4) transcripts causes the expression of two variants, hPMCA4a and hPMCA4b, which have different downstream regulatory regions. Of the two, hPMCA4a has a lower affinity for calmodulin and a lower effective affinity for Ca2+ (Enyedi, A., Verma, A. K., Heim, R., Adamo, H. P., Filoteo, A. G., Strehler, E. E., and Penniston, J. T. (1994) J. Biol. Chem. 269, 41-43). Additional consequences of the alternate splice were studied by analyzing the characteristics of constructs (expressed in COS-1 cells) containing different portions of the carboxyl terminus of hPMCA4a. Our results show striking differences in the structure of the calmodulin-binding and autoinhibitory domains of the two variants. The calmodulin-binding region of hPMCA4b is a region of about 28 residues, whereas that of hPMCA4a is about 49 residues long and is probably interrupted by a region not involved in the binding. The autoinhibitory region of hPMCA4b (a part of the downstream region that keeps the molecule inactive in the absence of Ca2+-calmodulin) is divided between the 28-residue calmodulin-binding region and a downstream region, whereas in hPMCA4a, all of it is contained within the 49-residue calmodulin-binding region.
Collapse
Affiliation(s)
- A K Verma
- Department of Biochemistry and Molecular Biology, Mayo Clinic/Foundation, Rochester, Minnesota 55905, USA
| | | | | | | | | |
Collapse
|
44
|
Park IK, Soderling TR. Activation of Ca2+/calmodulin-dependent protein kinase (CaM-kinase) IV by CaM-kinase kinase in Jurkat T lymphocytes. J Biol Chem 1995; 270:30464-9. [PMID: 8530476 DOI: 10.1074/jbc.270.51.30464] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Ca2+/calmodulin-dependent protein kinase IV (CaM-kinase IV), a member of the CaM-kinase family involved in transcriptional regulation, is stimulated by Ca2+/CaM but also requires phosphorylation by a CaM-kinase kinase for full activation. In this study we investigated the physiological role of a CaM-kinase cascade in Jurkat T human lymphocytes through antigen receptor (CD3) signaling. Total and Ca(2+)-independent CaM-kinase IV activities were increased 8-14-fold by anti-CD3 antibody. This CD3-mediated activation involved phosphorylation since the immunoprecipitated CaM-kinase IV from stimulated Jurkat cells could be subsequently inactivated in vitro by protein phosphatase 2A. CaM-kinase IV immunoprecipitated from unstimulated Jurkat cells or CD3-negative mutant Jurkat cells could be activated in vitro 10-40-fold by CaM-kinase kinase purified from rat brain or thymus, whereas CaM-kinase IV from CD3-stimulated wild-type Jurkat cells was only activated to 2-3-fold by exogenous CaM-kinase kinase. CaM-kinase IV activation was triggered by Ca2+ acting through calmodulin since activation could also be elicited by ionomycin treatment, and CD3-mediated activation was blocked by the calmodulin antagonist calmidazolium. These data are consistent with a CaM-kinase cascade in which CaM-kinase IV is activated by a CaM-kinase kinase cascade triggered by elevated intracellular calcium in Jurkat cells.
Collapse
Affiliation(s)
- I K Park
- Vollum Institute, Oregon Health Sciences University, Portland 97201-3098, USA
| | | |
Collapse
|
45
|
Mukherji S, Soderling TR. Mutational analysis of Ca(2+)-independent autophosphorylation of calcium/calmodulin-dependent protein kinase II. J Biol Chem 1995; 270:14062-7. [PMID: 7775466 DOI: 10.1074/jbc.270.23.14062] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Previous studies with synthetic peptides indicate that residues 290-309, corresponding to the calmodulin (CaM)-binding domain of Ca2+/CaM-dependent protein kinase II interact with the catalytic core of the enzyme as a pseudosubstrate (Colbran, R. J., Smith, M. K., Schworer, C. M., Fong, Y. L., and Soderling, T. R. (1989) J. Biol. Chem. 264, 4800-4804). In the present study, we attempted to locate the pseudosubstrate motif by generation or removal of potential substrate recognition sequences (RXXS/T) at selected positions using site-directed mutagenesis. Based on previous results, Arg297, Thr305/306, and Ser314 were selected as key residues. Single mutations such as N294S, K300S, A302R, A309R, and R311A were expressed, purified, and characterized. Several of the mutants exhibited decreased binding of and activation by CaM, not surprising since the mutations were within the CaM-binding domain. None of the mutants exhibited enhanced Ca(2+)-independent kinase activity toward exogenous substrate, but the K300S and N294S mutants showed a significant enhancement in the rate and stoichiometry of 32P incorporation during Ca(2+)-independent autophosphorylation. Using two-dimensional peptide mapping and phosphoamino acid analyses, enhanced phosphorylation of the introduced Ser residue was demonstrated in the K300S mutant but not in the N294S mutant. This specific Ca(2+)-independent autophosphorylation of Ser300 is consistent with the hypothesis that Arg297 may occupy the P (-3) position in a pseudosubstrate autoinhibitory interaction with the catalytic core in the nonactivated state of the kinase.
Collapse
Affiliation(s)
- S Mukherji
- Vollum Institute, Oregon Health Sciences University, Portland 97201, USA
| | | |
Collapse
|
46
|
Gao ZH, Zhi G, Herring BP, Moomaw C, Deogny L, Slaughter CA, Stull JT. Photoaffinity labeling of a peptide substrate to myosin light chain kinase. J Biol Chem 1995; 270:10125-35. [PMID: 7730316 DOI: 10.1074/jbc.270.17.10125] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The substrate binding properties of skeletal muscle myosin light chain kinase were investigated with a synthetic peptide containing the photoreactive amino acid p-benzoylphenylalanine (Bpa) incorporated amino-terminal of the phosphoacceptor serine (BpaKKRAARATSNVFA). When photolyzed at 350 nm, the peptide was cross-linked stoichiometrically to myosin light chain kinase in a Ca2+/calmodulin-dependent manner. Peptide incorporation into kinase inhibited light chain phosphorylation, and the loss of kinase activity was proportional to the extent of peptide incorporated. After peptide I was incorporated into myosin light chain kinase, it was partially phosphorylated in the absence of Ca2+/calmodulin. The extent of phosphorylation increased in the presence of Ca2+/calmodulin. The cross-linked photoadduct was digested, labeled peptides were purified by high performance liquid chromatography, and sites of covalent modification were determined by amino acid sequencing and analysis. The covalent modification in the catalytic core occurred on Ile-373 (66%) and in a peptide containing residues Asn-422 to Met-437 (14%), respectively. Lys-572 in the autoinhibitory region accounted for 20% of the incorporated label. The coincident covalent modification of the autoinhibitory domain suggests that it is located near the catalytic site. Based upon a model of the catalytic core, the substrate peptide is predicted to bind in the cleft between the two lobes of the kinase. The orientation of the substrate peptide on myosin light chain kinase is similar to the orientation of the substrate recognition fragment, but not the high affinity binding fragment, of inhibitor peptide of cAMP-dependent protein kinase in the catalytic subunit of the cAMP-dependent protein kinase.
Collapse
Affiliation(s)
- Z H Gao
- Department of Physiology, University of Texas Southwestern Medical Center at Dallas 75235, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Perrino BA, Ng LY, Soderling TR. Calcium regulation of calcineurin phosphatase activity by its B subunit and calmodulin. Role of the autoinhibitory domain. J Biol Chem 1995; 270:340-6. [PMID: 7814394 DOI: 10.1074/jbc.270.1.340] [Citation(s) in RCA: 140] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Calcineurin (CaN) contains an autoinhibitory element (residues 457-482) 43 residues COOH-terminal of the calmodulin-binding domain (Hashimoto, Y., Perrino, B. A., and Soderling, T. R. (1990) J. Biol. Chem. 265, 1924-1927) that regulates the Ca(2+)-dependent activation of its phosphatase activity. Substitution of Arg476 and Arg477 or Asp467 to Ala in the autoinhibitory peptide 457-482 significantly decreased its inhibitory potency. CaN A subunits with these residues mutated to Ala were coexpressed with the Ca(2+)-binding B subunit using the baculovirus/Sf9 cell system. Kinetic analysis showed that although the purified mutants had no activity in the absence of calcium, they were less dependent than the wild-type enzyme on calcium and calmodulin for activity. To determine if additional autoinhibitory motifs were present in the COOH terminus of calcineurin, the A subunit was truncated at residues 457 or 420 and co-expressed with B subunit. The Vmax values of both truncation mutants with or without Ca2+ were increased relative to wild-type calcineurin. The increased Ca(2+)-independent activity of CaN420 relative to CaN457 indicates the presence of additional autoinhibitory element(s) within residues 420-457. CaN420 had similar high Vmax values with or without Ca2+, but the Km value for peptide substrate was increased 5-fold to 125 microM in the absence of Ca2+. The Km values of all the expressed calcineurin species were increased in the absence of Ca2+. The CaN A or CaN A420 subunits alone have low Vmax and high Km (115 microM) values even in the presence of Ca2+. These results indicate that 1) there are several autoinhibitory motifs between the CaM-binding domain and the COOH terminus that are relieved by Ca2+ binding to CaM and the B subunit, 2) Ca2+ binding to the B subunit also regulates enzyme activity by lowering the Km of the catalytic subunit for substrate, 3) binding of the B subunit is required for high Vmax values even after removal of the autoinhibitory domain. These results are consistent with synergistic activation of calcineurin by Ca2+ acting through both CaM and the B subunit.
Collapse
Affiliation(s)
- B A Perrino
- Vollum Institute, Oregon Health Sciences University, Portland 97201
| | | | | |
Collapse
|