1
|
Glise L, Rutberg M, Håversen L, Levin MC, Levin M, Jeppsson A, Borén J, Fogelstrand P. pH-Dependent Protonation of Histidine Residues Is Critical for Electrostatic LDL (Low-Density Lipoprotein) Binding to Human Coronary Arteries. Arterioscler Thromb Vasc Biol 2022; 42:1037-1047. [PMID: 35652335 DOI: 10.1161/atvbaha.122.317868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND The initiating step in atherogenesis is the electrostatic binding of LDL (low-density lipoprotein) to proteoglycan glycosaminoglycans in the arterial intima. However, although proteoglycans are widespread throughout the intima of most coronary artery segments, LDL is not evenly distributed, indicating that LDL retention is not merely dependent on the presence of proteoglycans. We aim to identify factors that promote the interaction between LDL and the vessel wall of human coronary arteries. METHODS We developed an ex vivo model to investigate binding of human-labeled LDL to human coronary artery sections without the interference of cellular processes. RESULTS By staining consecutive sections of human coronary arteries, we found strong staining of sulfated glycosaminoglycans throughout the arterial intima, whereas endogenous LDL deposits were focally distributed. Ex vivo binding of LDL was uniform in all intimal areas with sulfated glycosaminoglycans. However, lowering the pH from 7.4 to 6.5 triggered a 35-fold increase in LDL binding. The pH-dependent binding was abolished by pretreating LDL with diethyl-pyrocarbonate, which blocks the protonation of histidine residues, or cyclohexanedione, which inhibits the positive charge of site B on LDL. Thus, both histidine protonation and site B are required for strong electrostatic LDL binding to the intima. CONCLUSIONS This study identifies histidine protonation as an important component for electrostatic LDL binding to human coronary arteries. Our findings show that the local pH will have a profound impact on LDL's affinity for sulfated glycosaminoglycans, which may influence the retention and accumulation pattern of LDL in the arterial vasculature.
Collapse
Affiliation(s)
- Lars Glise
- Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Sweden (L.G., M.R., L.H., M.C.L., M.L., A.J., J.B., P.F.)
| | - Mikael Rutberg
- Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Sweden (L.G., M.R., L.H., M.C.L., M.L., A.J., J.B., P.F.)
| | - Liliana Håversen
- Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Sweden (L.G., M.R., L.H., M.C.L., M.L., A.J., J.B., P.F.)
| | - Malin C Levin
- Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Sweden (L.G., M.R., L.H., M.C.L., M.L., A.J., J.B., P.F.)
| | - Max Levin
- Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Sweden (L.G., M.R., L.H., M.C.L., M.L., A.J., J.B., P.F.)
| | - Anders Jeppsson
- Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Sweden (L.G., M.R., L.H., M.C.L., M.L., A.J., J.B., P.F.).,Department of Cardiothoracic Surgery, Sahlgrenska University Hospital, Gothenburg, Sweden (A.J.)
| | - Jan Borén
- Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Sweden (L.G., M.R., L.H., M.C.L., M.L., A.J., J.B., P.F.).,Sahlgrenska University Hospital/Wallenberg Laboratory, Gothenburg, Sweden (J.B.)
| | - Per Fogelstrand
- Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Sweden (L.G., M.R., L.H., M.C.L., M.L., A.J., J.B., P.F.)
| |
Collapse
|
2
|
Cooper JM, Lathuiliere A, Migliorini M, Arai AL, Wani MM, Dujardin S, Muratoglu SC, Hyman BT, Strickland DK. Regulation of tau internalization, degradation, and seeding by LRP1 reveals multiple pathways for tau catabolism. J Biol Chem 2021; 296:100715. [PMID: 33930462 PMCID: PMC8164048 DOI: 10.1016/j.jbc.2021.100715] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/21/2021] [Accepted: 04/26/2021] [Indexed: 12/16/2022] Open
Abstract
In Alzheimer's disease (AD), pathological forms of tau are transferred from cell to cell and “seed” aggregation of cytoplasmic tau. Phosphorylation of tau plays a key role in neurodegenerative tauopathies. In addition, apolipoprotein E (apoE), a major component of lipoproteins in the brain, is a genetic risk determinant for AD. The identification of the apoE receptor, low-density lipoprotein receptor–related protein 1 (LRP1), as an endocytic receptor for tau raises several questions about the role of LRP1 in tauopathies: is internalized tau, like other LRP1 ligands, delivered to lysosomes for degradation, and does LRP1 internalize pathological tau leading to cytosolic seeding? We found that LRP1 rapidly internalizes 125I-labeled tau, which is then efficiently degraded in lysosomal compartments. Surface plasmon resonance experiments confirm high affinity binding of tau and the tau microtubule-binding domain to LRP1. Interestingly, phosphorylated forms of recombinant tau bind weakly to LRP1 and are less efficiently internalized by LRP1. LRP1-mediated uptake of tau is inhibited by apoE, with the apoE4 isoform being the most potent inhibitor, likely because of its higher affinity for LRP1. Employing post-translationally–modified tau derived from brain lysates of human AD brain tissue, we found that LRP1-expressing cells, but not LRP1-deficient cells, promote cytosolic tau seeding in a process enhanced by apoE. These studies identify LRP1 as an endocytic receptor that binds and processes monomeric forms of tau leading to its degradation and promotes seeding by pathological forms of tau. The balance of these processes may be fundamental to the spread of neuropathology across the brain in AD.
Collapse
Affiliation(s)
- Joanna M Cooper
- The Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Aurelien Lathuiliere
- Alzheimer Research Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
| | - Mary Migliorini
- The Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Allison L Arai
- The Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Mashhood M Wani
- The Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Simon Dujardin
- Alzheimer Research Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
| | - Selen C Muratoglu
- The Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, USA; Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Bradley T Hyman
- Alzheimer Research Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA.
| | - Dudley K Strickland
- The Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, USA; Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, USA; Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA.
| |
Collapse
|
3
|
Kononoff A, Elfving P, Pussinen P, Hörkkö S, Kautiainen H, Arstila L, Laasonen L, Savolainen E, Niinisalo H, Rutanen J, Marjoniemi O, Hämäläinen M, Vuolteenaho K, Moilanen E, Kaipiainen-Seppänen O. Association of rheumatoid arthritis disease activity and antibodies to periodontal bacteria with serum lipoprotein profile in drug naive patients. Ann Med 2020; 52:32-42. [PMID: 32011179 PMCID: PMC7877970 DOI: 10.1080/07853890.2020.1724321] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Objective: We investigated lipid concentrations, particle sizes and antibodies binding to periodontal bacteria Aggregatibacter actinomycetemcomitans and Porphyromonas gingivalis and to malondialdehyde-acetaldehyde (MAA) modified low-density lipoprotein in immunoglobulin (Ig) class A, G and M among patients with newly diagnosed rheumatoid arthritis (RA) in a population-based cohort.Methods: Concentrations and sizes of lipoprotein particles analysed by proton nuclear magnetic resonance spectroscopy and antibody levels to MAA modified low-density lipoprotein were studied at baseline and after one-year of follow-up. Serum Ig A and G class antibodies to periodontal bacteria were determined at baseline.Results: Sixty-three patients were divided into tertiles according to disease activity by disease activity score with 28 joint count and erythrocyte sedimentation rate (ESR) (<3.9, 3.9-4.7, >4.7). Small low-density lipoprotein concentration was lowest in the tertile with the highest disease activity. In high-density lipoprotein, the concentrations of total, medium and small particles decreased with disease activity. The particle size in low-density lipoprotein associated with disease activity and the presence of antibodies to P. gingivalis. Ig G and M antibodies to MAA modified low-density lipoprotein correlated with disease activity. Inflammation associated changes faded by one year.Conclusions: Drug naive RA patients had proatherogenic changes in lipid profiles, but they were reversible, when inflammation diminished.Key messagesPatients with drug naive rheumatoid arthritis showed proatherogenic lipid profiles.Reversible changes in lipid profiles can be achieved as response to inflammation suppression.Active therapy aimed at remission is essential in all patients with rheumatoid arthritis.
Collapse
Affiliation(s)
- Aulikki Kononoff
- Department of Medicine, Kuopio University Hospital, Kuopio, Finland
| | - Pia Elfving
- Department of Medicine, Kuopio University Hospital, Kuopio, Finland
| | - Pirkko Pussinen
- Department of Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Finland
| | - Sohvi Hörkkö
- Institute of Diagnostics, Medical Microbiology and Immunology, Research Unit of Biomedicine, Oulu University Hospital, University of Oulu and Medical Research Center and Nordlab Oulu, Oulu, Finland
| | - Hannu Kautiainen
- Unit of Primary Health Care, Kuopio University Hospital, Kuopio, Finland.,Unit of Family Practice, Central Finland Central Hospital, Jyväskylä, Finland
| | - Leena Arstila
- Department of Medicine, Kuopio University Hospital, Kuopio, Finland.,Department of Medicine, Iisalmi Hospital
| | - Leena Laasonen
- Helsinki Medical Imaging Center, Helsinki University Hospital, Helsinki, Finland
| | - Elina Savolainen
- Department of Medicine, Kuopio University Hospital, Kuopio, Finland
| | - Helena Niinisalo
- Department of Medicine, Varkaus Hospital.,Outpatient Clinic, Suonenjoki Health Center
| | - Jarno Rutanen
- Department of Medicine, Kuopio University Hospital, Kuopio, Finland
| | - Olga Marjoniemi
- Department of Medicine, Kuopio University Hospital, Kuopio, Finland
| | - Mari Hämäläinen
- School of Medicine, The Immunopharmacology Research Group, Tampere University Hospital, University of Tampere, Tampere, Finland
| | - Katriina Vuolteenaho
- School of Medicine, The Immunopharmacology Research Group, Tampere University Hospital, University of Tampere, Tampere, Finland
| | - Eeva Moilanen
- School of Medicine, The Immunopharmacology Research Group, Tampere University Hospital, University of Tampere, Tampere, Finland
| | | |
Collapse
|
4
|
Migliorini M, Li SH, Zhou A, Emal CD, Lawrence DA, Strickland DK. High-affinity binding of plasminogen-activator inhibitor 1 complexes to LDL receptor-related protein 1 requires lysines 80, 88, and 207. J Biol Chem 2020; 295:212-222. [PMID: 31792055 PMCID: PMC6952620 DOI: 10.1074/jbc.ra119.010449] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 11/25/2019] [Indexed: 11/06/2022] Open
Abstract
It is well-established that complexes of plasminogen-activator inhibitor 1 (PAI-1) with its target enzymes bind tightly to low-density lipoprotein (LDL) receptor-related protein 1 (LRP1), but the molecular details of this interaction are not well-defined. Furthermore, considerable controversy exists in the literature regarding the nature of the interaction of free PAI-1 with LRP1. In this study, we examined the binding of free PAI-1 and complexes of PAI-1 with low-molecular-weight urokinase-type plasminogen activator to LRP1. Our results confirmed that uPA:PAI-1 complexes bind LRP1 with ∼100-fold increased affinity over PAI-1 alone. Chemical modification of PAI-1 confirmed an essential requirement of lysine residues in PAI-1 for the interactions of both PAI-1 and uPA:PAI-1 complexes with LRP1. Results of surface plasmon resonance measurements supported a bivalent binding model in which multiple sites on PAI-1 and uPA:PAI-1 complexes interact with complementary sites on LRP1. An ionic-strength dependence of binding suggested the critical involvement of two charged residues for the interaction of PAI-1 with LRP1 and three charged residues for the interaction of uPA:PAI-1 complexes with LRP1. An enhanced affinity resulting from the interaction of three regions of the uPA:PAI-1 complex with LDLa repeats on LRP1 provided an explanation for the increased affinity of uPA:PAI-1 complexes for LRP1. Mutational analysis revealed an overlap between LRP1 binding and binding of a small-molecule inhibitor of PAI-1, CDE-096, confirming an important role for Lys-207 in the interaction of PAI-1 with LRP1 and of the orientations of Lys-207, -88, and -80 for the interaction of uPA:PAI-1 complexes with LRP1.
Collapse
Affiliation(s)
- Mary Migliorini
- Center for Vascular and Inflammatory Diseases and the Departments of Surgery and Physiology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Shih-Hon Li
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Anqi Zhou
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Cory D Emal
- Department of Chemistry, Eastern Michigan University, Ypsilanti, Michigan 48197
| | - Daniel A Lawrence
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109.
| | - Dudley K Strickland
- Center for Vascular and Inflammatory Diseases and the Departments of Surgery and Physiology, University of Maryland School of Medicine, Baltimore, Maryland 21201.
| |
Collapse
|
5
|
Essayan-Perez S, Zhou B, Nabet AM, Wernig M, Huang YWA. Modeling Alzheimer's disease with human iPS cells: advancements, lessons, and applications. Neurobiol Dis 2019; 130:104503. [PMID: 31202913 PMCID: PMC6689423 DOI: 10.1016/j.nbd.2019.104503] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 03/24/2019] [Accepted: 06/12/2019] [Indexed: 12/11/2022] Open
Abstract
One in three people will develop Alzheimer's disease (AD) or another dementia and, despite intense research efforts, treatment options remain inadequate. Understanding the mechanisms of AD pathogenesis remains our principal hurdle to developing effective therapeutics to tackle this looming medical crisis. In light of recent discoveries from whole-genome sequencing and technical advances in humanized models, studying disease risk genes with induced human neural cells presents unprecedented advantages. Here, we first review the current knowledge of the proposed mechanisms underlying AD and focus on modern genetic insights to inform future studies. To highlight the utility of human pluripotent stem cell-based innovations, we then present an update on efforts in recapitulating the pathophysiology by induced neuronal, non-neuronal and a collection of brain cell types, departing from the neuron-centric convention. Lastly, we examine the translational potentials of such approaches, and provide our perspectives on the promise they offer to deepen our understanding of AD pathogenesis and to accelerate the development of intervention strategies for patients and risk carriers.
Collapse
Affiliation(s)
- Sofia Essayan-Perez
- Department of Molecular and Cellular Physiology, Stanford University Medical School, Stanford, CA 94305, United States of America
| | - Bo Zhou
- Department of Molecular and Cellular Physiology, Stanford University Medical School, Stanford, CA 94305, United States of America; Institute for Stem Cell Biology and Regenerative Medicine and Department of Pathology, Stanford University Medical School, Stanford, CA 94305, United States of America
| | - Amber M Nabet
- Department of Molecular and Cellular Physiology, Stanford University Medical School, Stanford, CA 94305, United States of America
| | - Marius Wernig
- Institute for Stem Cell Biology and Regenerative Medicine and Department of Pathology, Stanford University Medical School, Stanford, CA 94305, United States of America
| | - Yu-Wen Alvin Huang
- Department of Molecular and Cellular Physiology, Stanford University Medical School, Stanford, CA 94305, United States of America.
| |
Collapse
|
6
|
Singh SA, Andraski AB, Pieper B, Goh W, Mendivil CO, Sacks FM, Aikawa M. Multiple apolipoprotein kinetics measured in human HDL by high-resolution/accurate mass parallel reaction monitoring. J Lipid Res 2016; 57:714-28. [PMID: 26862155 DOI: 10.1194/jlr.d061432] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Indexed: 01/10/2023] Open
Abstract
Endogenous labeling with stable isotopes is used to study the metabolism of proteins in vivo. However, traditional detection methods such as GC/MS cannot measure tracer enrichment in multiple proteins simultaneously, and multiple reaction monitoring MS cannot measure precisely the low tracer enrichment in slowly turning-over proteins as in HDL. We exploited the versatility of the high-resolution/accurate mass (HR/AM) quadrupole Orbitrap for proteomic analysis of five HDL sizes. We identified 58 proteins in HDL that were shared among three humans and that were organized into five subproteomes according to HDL size. For seven of these proteins, apoA-I, apoA-II, apoA-IV, apoC-III, apoD, apoE, and apoM, we performed parallel reaction monitoring (PRM) to measure trideuterated leucine tracer enrichment between 0.03 to 1.0% in vivo, as required to study their metabolism. The results were suitable for multicompartmental modeling in all except apoD. These apolipoproteins in each HDL size mainly originated directly from the source compartment, presumably the liver and intestine. Flux of apolipoproteins from smaller to larger HDL or the reverse contributed only slightly to apolipoprotein metabolism. These novel findings on HDL apolipoprotein metabolism demonstrate the analytical breadth and scope of the HR/AM-PRM technology to perform metabolic research.
Collapse
Affiliation(s)
- Sasha A Singh
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Allison B Andraski
- Department of Nutrition, Harvard T. H. Chan School of Public Health, Boston, MA
| | - Brett Pieper
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Wilson Goh
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | | | - Frank M Sacks
- Department of Nutrition, Harvard T. H. Chan School of Public Health, Boston, MA Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Masanori Aikawa
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
7
|
Han CY, Tang C, Guevara ME, Wei H, Wietecha T, Shao B, Subramanian S, Omer M, Wang S, O'Brien KD, Marcovina SM, Wight TN, Vaisar T, de Beer MC, de Beer FC, Osborne WR, Elkon KB, Chait A. Serum amyloid A impairs the antiinflammatory properties of HDL. J Clin Invest 2015; 126:266-81. [PMID: 26642365 DOI: 10.1172/jci83475] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 10/29/2015] [Indexed: 01/25/2023] Open
Abstract
HDL from healthy humans and lean mice inhibits palmitate-induced adipocyte inflammation; however, the effect of the inflammatory state on the functional properties of HDL on adipocytes is unknown. Here, we found that HDL from mice injected with AgNO3 fails to inhibit palmitate-induced inflammation and reduces cholesterol efflux from 3T3-L1 adipocytes. Moreover, HDL isolated from obese mice with moderate inflammation and humans with systemic lupus erythematosus had similar effects. Since serum amyloid A (SAA) concentrations in HDL increase with inflammation, we investigated whether elevated SAA is a causal factor in HDL dysfunction. HDL from AgNO3-injected mice lacking Saa1.1 and Saa2.1 exhibited a partial restoration of antiinflammatory and cholesterol efflux properties in adipocytes. Conversely, incorporation of SAA into HDL preparations reduced antiinflammatory properties but not to the same extent as HDL from AgNO3-injected mice. SAA-enriched HDL colocalized with cell surface-associated extracellular matrix (ECM) of adipocytes, suggesting impaired access to the plasma membrane. Enzymatic digestion of proteoglycans in the ECM restored the ability of SAA-containing HDL to inhibit palmitate-induced inflammation and cholesterol efflux. Collectively, these findings indicate that inflammation results in a loss of the antiinflammatory properties of HDL on adipocytes, which appears to partially result from the SAA component of HDL binding to cell-surface proteoglycans, thereby preventing access of HDL to the plasma membrane.
Collapse
|
8
|
Wang X, Shang X, Luan J, Zhang S. Identification, expression and function of apolipoprotein E in annual fish Nothobranchius guentheri: implication for an aging marker. Biogerontology 2014; 15:233-43. [DOI: 10.1007/s10522-014-9493-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 02/18/2014] [Indexed: 11/30/2022]
|
9
|
Alves AC, Etxebarria A, Soutar AK, Martin C, Bourbon M. Novel functional APOB mutations outside LDL-binding region causing familial hypercholesterolaemia. Hum Mol Genet 2013; 23:1817-28. [DOI: 10.1093/hmg/ddt573] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
|
10
|
Motazacker MM, Pirruccello J, Huijgen R, Do R, Gabriel S, Peter J, Kuivenhoven JA, Defesche JC, Kastelein JJP, Hovingh GK, Zelcer N, Kathiresan S, Fouchier SW. Advances in genetics show the need for extending screening strategies for autosomal dominant hypercholesterolaemia. Eur Heart J 2012; 33:1360-6. [PMID: 22408029 DOI: 10.1093/eurheartj/ehs010] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Aims Autosomal dominant hypercholesterolaemia (ADH) is a major risk factor for coronary artery disease. This disorder is caused by mutations in the genes coding for the low-density lipoprotein receptor (LDLR), apolipoprotein B (APOB), and proprotein convertase subtilisin/kexin 9 (PCSK9). However, in 41% of the cases, we cannot find mutations in these genes. In this study, new genetic approaches were used for the identification and validation of new variants that cause ADH. Methods and results Using exome sequencing, we unexpectedly identified a novel APOB mutation, p.R3059C, in a small-sized ADH family. Since this mutation was located outside the regularly screened APOB region, we extended our routine sequencing strategy and identified another novel APOB mutation (p.K3394N) in a second family. In vitro analyses show that both mutations attenuate binding to the LDLR significantly. Despite this, both mutations were not always associated with ADH in both families, which prompted us to validate causality through using a novel genetic approach. Conclusion This study shows that advances in genetics help increasing our understanding of the causes of ADH. We identified two novel functional APOB mutations located outside the routinely analysed APOB region, suggesting that screening for mutations causing ADH should encompass the entire APOB coding sequence involved in LDL binding to help identifying and treating patients at increased cardiovascular risk.
Collapse
Affiliation(s)
- Mohammad Mahdi Motazacker
- Department of Experimental Vascular Medicine, Academic Medical Center, Meibergdreef 9, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Lähdesmäki K, Öörni K, Alanne-Kinnunen M, Jauhiainen M, Hurt-Camejo E, Kovanen PT. Acidity and lipolysis by group V secreted phospholipase A2 strongly increase the binding of apoB-100-containing lipoproteins to human aortic proteoglycans. Biochim Biophys Acta Mol Cell Biol Lipids 2012; 1821:257-67. [DOI: 10.1016/j.bbalip.2011.10.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Revised: 10/11/2011] [Accepted: 10/17/2011] [Indexed: 11/16/2022]
|
12
|
Rabbani N, Godfrey L, Xue M, Shaheen F, Geoffrion M, Milne R, Thornalley PJ. Glycation of LDL by methylglyoxal increases arterial atherogenicity: a possible contributor to increased risk of cardiovascular disease in diabetes. Diabetes 2011; 60:1973-80. [PMID: 21617182 PMCID: PMC3121424 DOI: 10.2337/db11-0085] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
OBJECTIVE To study whether modification of LDL by methylglyoxal (MG), a potent arginine-directed glycating agent that is increased in diabetes, is associated with increased atherogenicity. RESEARCH DESIGN AND METHODS Human LDL was isolated and modified by MG in vitro to minimal extent (MG(min)-LDL) as occurs in vivo. Atherogenic characteristics of MG(min)-LDL were characterized: particle size, proteoglycan-binding, susceptibility to aggregation, LDL and non-LDL receptor-binding, and aortal deposition. The major site of modification of apolipoprotein B100 (apoB100) modification was investigated by mass spectrometric peptide mapping. RESULTS MG(min)-LDL contained 1.6 molar equivalents of MG modification-mostly hydroimidazolone-as found in vivo. MG(min)-LDL had decreased particle size, increased binding to proteoglycans, and increased aggregation in vitro. Cell culture studies showed that MG(min)-LDL was bound by the LDL receptor but not by the scavenger receptor and had increased binding affinity for cell surface heparan sulfate-containing proteoglycan. Radiotracer studies in rats showed that MG(min)-LDL had a similar fractional clearance rate in plasma to unmodified LDL but increased partitioning onto the aortal wall. Mass spectrometry peptide mapping identified arginine-18 as the hotspot site of apoB100 modification in MG(min)-LDL. A computed structural model predicted that MG modification of apoB100 induces distortion, increasing exposure of the N-terminal proteoglycan-binding domain on the surface of LDL. This likely mediates particle remodeling and increases proteoglycan binding. CONCLUSIONS MG modification of LDL forms small, dense LDL with increased atherogenicity that provides a new route to atherogenic LDL and may explain the escalation of cardiovascular risk in diabetes and the cardioprotective effect of metformin.
Collapse
Affiliation(s)
- Naila Rabbani
- Warwick Medical School, Clinical Sciences Research Institute, University of Warwick, University Hospital, Coventry, UK.
| | | | | | | | | | | | | |
Collapse
|
13
|
Hauser PS, Narayanaswami V, Ryan RO. Apolipoprotein E: from lipid transport to neurobiology. Prog Lipid Res 2010; 50:62-74. [PMID: 20854843 DOI: 10.1016/j.plipres.2010.09.001] [Citation(s) in RCA: 233] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Revised: 09/04/2010] [Accepted: 09/12/2010] [Indexed: 12/17/2022]
Abstract
Apolipoprotein (apo) E has a storied history as a lipid transport protein. The integral association between cholesterol homeostasis and lipoprotein clearance from circulation are intimately related to apoE's function as a ligand for cell-surface receptors of the low-density lipoprotein receptor family. The receptor binding properties of apoE are strongly influenced by isoform specific amino acid differences as well as the lipidation state of the protein. As understanding of apoE as a structural component of circulating plasma lipoproteins has evolved, exciting developments in neurobiology have revitalized interest in apoE. The strong and enduring correlation between the apoE4 isoform and age of onset and increased risk of Alzheimer's disease has catapulted apoE to the forefront of neurobiology. Using genetic tools generated for study of apoE lipoprotein metabolism, transgenic "knock-in" and gene-disrupted mice are now favored models for study of its role in a variety of neurodegenerative diseases. Key structural knowledge of apoE and isoform-specific differences is driving research activity designed to elucidate how a single amino acid change can manifest such profoundly significant pathological consequences. This review describes apoE through a lens of structure-based knowledge that leads to hypotheses that attempt to explain the functions of apoE and isoform-specific effects relating to disease mechanism.
Collapse
Affiliation(s)
- Paul S Hauser
- Center for Prevention of Obesity, Cardiovascular Disease and Diabetes, Children's Hospital Oakland Research Institute, 5700 Martin Luther King Jr. Way, Oakland, CA 94609, USA
| | | | | |
Collapse
|
14
|
Sivaraman B, Latour RA. The adherence of platelets to adsorbed albumin by receptor-mediated recognition of binding sites exposed by adsorption-induced unfolding. Biomaterials 2009; 31:1036-44. [PMID: 19864017 DOI: 10.1016/j.biomaterials.2009.10.017] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2009] [Accepted: 10/08/2009] [Indexed: 11/27/2022]
Abstract
Although albumin (Alb) is the most abundant plasma protein, it is considered to be non-adhesive to platelets, as it lacks any known amino acid sequences for binding platelet receptors. Recent studies have suggested that platelets adhere to adsorbed Alb by mechanisms linked to its conformational state. To definitively address this issue we used circular dichroism (CD) spectropolarimetry to characterize the conformation of Alb adsorbed on a broad range of surface chemistries from a wide range of Alb solution concentrations, with platelet adhesion examined using a lactate dehydrogenase (LDH) assay and scanning electron microscopy (SEM). Our results prove that platelets bind to adsorbed Alb through receptor-mediated processes, with binding sites in Alb exposed and/or formed by adsorption-induced protein unfolding. Most importantly, beyond a critical degree of unfolding, the platelet adhesion levels correlated strongly with the adsorption-induced unfolding in Alb. The blockage of Arg-Gly-Asp (RGD) specific platelet receptors using an Arg-Gly-Asp-Ser (RGDS) peptide led to significant inhibition of platelet adhesion to adsorbed Alb, with the extent of inhibition and morphology of adherent platelets being similar for both Alb and Fg. Chemical neutralization of arginine (Arg) residues in the adsorbed Alb layer inhibited platelet-Alb interactions significantly, indicating that Arg residues play a prominent role in mediating platelet adhesion to Alb. These results provide deeper insight into the molecular mechanisms that mediate the interactions of platelets with adsorbed proteins, and how to control these interactions to improve the blood compatibility of biomaterials for cardiovascular applications.
Collapse
Affiliation(s)
- Balakrishnan Sivaraman
- Department of Bioengineering, 501 Rhodes Engineering Center, Clemson University, Clemson, SC 29634, USA
| | | |
Collapse
|
15
|
Innerarity TL, Weisgraber KH, Rall SC, Mahley RW. Functional domains of apolipoprotein E and apolipoprotein B. ACTA MEDICA SCANDINAVICA. SUPPLEMENTUM 2009; 715:51-9. [PMID: 3035881 DOI: 10.1111/j.0954-6820.1987.tb09903.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
16
|
Mahley RW, Weisgraber KH, Huang Y. Apolipoprotein E: structure determines function, from atherosclerosis to Alzheimer's disease to AIDS. J Lipid Res 2009; 50 Suppl:S183-8. [PMID: 19106071 PMCID: PMC2674716 DOI: 10.1194/jlr.r800069-jlr200] [Citation(s) in RCA: 394] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2008] [Revised: 12/19/2008] [Indexed: 12/31/2022] Open
Abstract
Apolipoprotein (apo) E has roles beyond lipoprotein metabolism. The detrimental effects of apoE4 in cardiovascular, neurological, and infectious diseases correlate with its structural features (e.g., domain interaction) that distinguish it from apoE3 and apoE2. Structure/function studies revealed that apoE2 is severely defective in LDL receptor binding because of a structural difference that alters the receptor binding region and helped unravel the mechanism of type III hyperlipoproteinemia. ApoE4 is the major genetic risk factor for Alzheimer's disease and sets the stage for neuropathological disorders precipitated by genetic, metabolic, and environmental stressors. ApoE also influences susceptibility to parasitic, bacterial, and viral infections. In HIV-positive patients, apoE4 homozygosity hastens progression to AIDS and death and increases susceptibility to opportunistic infections. The next phase in our understanding of apoE will be characterized by clinical intervention to prevent or reverse the detrimental effects of apoE4 by modulating its structure or blocking the pathological processes it mediates.
Collapse
Affiliation(s)
- Robert W Mahley
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA.
| | | | | |
Collapse
|
17
|
Zhao Z, Michaely P. The epidermal growth factor homology domain of the LDL receptor drives lipoprotein release through an allosteric mechanism involving H190, H562, and H586. J Biol Chem 2008; 283:26528-37. [PMID: 18677035 DOI: 10.1074/jbc.m804624200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The low density lipoprotein (LDL) receptor (LDLR) mediates efficient endocytosis of VLDL, VLDL remnants, and LDL. As part of the endocytic process, the LDLR releases lipoproteins in endosomes. The release process correlates with an acid-dependent conformational change in the receptor from an extended, "open" state to a compact, "closed" state. The closed state has an intramolecular contact involving H190, H562, and H586. The current model for lipoprotein release holds that protonation of these histidines drives the conformational change that is associated with release. We tested the roles of H190, H562, and H586 on LDLR conformation and on lipoprotein binding, uptake, and release using variants in which the three histidines were replaced with alanine (AAA variant) or in which the histidines were replaced with charged residues that can form ionic contacts at neutral pH (DRK variant). Contrary to expectation, both the AAA and the DRK variants exhibited normal acid-dependent transitions from open to closed conformations. Despite this similarity, both the AAA and DRK mutations modulated lipoprotein release, indicating that H190, H562, and H586 act subsequent to the conformational transition. These observations also suggest that the intramolecular contact does not drive release through a competitive mechanism. In support of this possibility, mutagenesis experiments showed that beta-VLDL binding was inhibited by mutations at D203 and E208, which are exposed in the closed conformation of the LDLR. We propose that H190, H562, and H586 are part of an allosteric mechanism that drives lipoprotein release.
Collapse
Affiliation(s)
- Zhenze Zhao
- Department of Cell Biology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390-9039, USA
| | | |
Collapse
|
18
|
Yamamoto T, Ryan RO. Anionic phospholipids inhibit apolipoprotein E--low-density lipoprotein receptor interactions. Biochem Biophys Res Commun 2007; 354:820-4. [PMID: 17258176 DOI: 10.1016/j.bbrc.2007.01.066] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2007] [Accepted: 01/16/2007] [Indexed: 10/23/2022]
Abstract
Apolipoprotein E (apoE) is a ligand for members of the low-density lipoprotein receptor (LDLR) family. Lipid-free apoE is not recognized by LDLR, yet interaction with lipid confers receptor recognition properties. Although lipid interaction is known to induce a conformational change in apoE, it is not known if the lipid composition of the resulting complex influences binding. Using reconstituted lipoprotein particles of apoE3 N-terminal (NT) domain and dimyristoylphosphatidylcholine (DMPC), maximal LDLR binding was observed at DMPC:apoE3-NT ratios >2.5:1 (w/w). ApoE3-NT lipid particles prepared with egg sphingomyelin were functional as LDLR ligands while complexes formed with the anionic phospholipids dimyristoylphosphatidylglycerol or dimyristoylphosphatidylserine (DMPS) were not. In the case of apoE3-NT, lipid particles comprised of a mixture of DMPC and DMPS, a DMPS concentration dependent inhibition of LDLR binding activity was observed. Thus, in addition to affecting apoE conformational status, the lipid composition of ligand particles can modulate LDLR binding activity.
Collapse
Affiliation(s)
- Taichi Yamamoto
- Center for Prevention of Obesity, Diabetes and Cardiovascular Disease, Children's Hospital, Oakland Research Institute, 5700 Martin Luther King Jr. Way, Oakland, CA 94609, USA
| | | |
Collapse
|
19
|
|
20
|
Abstract
African trypanosomiasis, otherwise known as sleeping sickness in humans and 'Nagana' in cattle, is a disease that is resurgent in Africa. Research on the disease suggests that the development of a vaccine is still far away; even existing drugs are becoming ineffective on account of the emergence of drug-resistant trypanosomes. All this contributes to heavy economic losses and a sociopolitical crisis in the continent, thus underscoring the pressure to intensify research for inexpensive, less toxic and affordable trypanocides. This review discusses the current treatment of trypanosomiasis and the progress made towards the effective control of trypanosomiasis.
Collapse
Affiliation(s)
- Andrew J Nok
- Department of Biochemistry, Ahmadou Bello University, Zaria, Nigeria.
| |
Collapse
|
21
|
Prévost M, Raussens V. Apolipoprotein E-low density lipoprotein receptor binding: Study of protein-protein interaction in rationally selected docked complexes. Proteins 2004; 55:874-84. [PMID: 15146486 DOI: 10.1002/prot.20080] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Apolipoprotein E (apoE) is an important protein involved in lipid metabolism due to its interaction with members of the low-density lipoprotein receptor (LDLR) family. To further understand the molecular basis for this receptor-binding activity, an apoE fragment containing the receptor binding region (residues 135-151) was docked onto the fifth LDLR ligand binding repeat (LR5) by computational methods. A subset of structures generated by the docking was rationally selected on the grounds of experimental data combined with modeling and was used for further analysis. The application and comparison of two different experimental structures for the apoE fragment underlines the local structural changes occurring in apoE when switching from a receptor-inactive to a receptor-active conformation. The body of interactions occurring at the interface between the two proteins is in very good agreement with the biochemical data available for both apoE and LDLR. Charged residues are involved in numerous ionic interactions and might therefore be important for the specificity of the interaction between apoE and LR5. In addition, the interface also features a tryptophan and a stacking of histidine residues, revealing that the association between the two proteins is not entirely governed by ionic interactions. In particular, the presence of histidine residues in the interface gives a structural basis for the pH-regulated release mechanism of apoE in the endosomes. The proposed molecular basis for apoE binding to LDLR could aid the design of strategies for targeting alterations in lipid transport and metabolism.
Collapse
Affiliation(s)
- Martine Prévost
- Bioinformatique génomique et structurale, Université Libre de Bruxelles, av. F. Roosevelt 50, B-1050 Brussels, Belgium.
| | | |
Collapse
|
22
|
Raussens V, Slupsky CM, Sykes BD, Ryan RO. Lipid-bound structure of an apolipoprotein E-derived peptide. J Biol Chem 2003; 278:25998-6006. [PMID: 12709434 DOI: 10.1074/jbc.m301753200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Apolipoprotein (apo) E regulates plasma lipid homeostasis through its ability to interact with the low density lipoprotein (LDL) receptor family. Whereas apoE is not a ligand for receptor binding in buffer alone, interaction with lipid confers receptor recognition properties. To investigate the nature of proposed lipid binding-induced conformational changes in apoE, we employed multidimensional heteronuclear NMR spectroscopy to determine the structure of an LDL receptor-active, 58-residue peptide comprising residues 126-183 of apoE in association with the micelle-forming lipid dodecylphosphocholine (DPC). In the presence of 34 mm DPC the peptide forms a continuous amphipathic helix from Glu131 to Arg178. NMR relaxation studies of DPC-bound apoE-(126-183), in contrast to apoE-(126-183) in the presence of TFE, are consistent with an isotropically tumbling peptide in solution giving a global correlation time of approximately 12.5 ns. These data indicate that the helical peptide is curved and constrained by a lipid micelle consisting of approximately 48 DPC molecules. Although the peptide behaves as if it were tumbling isotropically, spectral density analysis reveals that residues 150-183 have more motional freedom than residues 134-149. These molecular and dynamic features are discussed further to provide insight into the structural basis for the interaction between apoE and the ligand binding repeats of the LDL receptor.
Collapse
Affiliation(s)
- Vincent Raussens
- Protein Engineering Network Centres of Excellence and Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2S2, Canada
| | | | | | | |
Collapse
|
23
|
Nok AJ. Arsenicals (melarsoprol), pentamidine and suramin in the treatment of human African trypanosomiasis. Parasitol Res 2003; 90:71-9. [PMID: 12743807 DOI: 10.1007/s00436-002-0799-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2002] [Accepted: 10/31/2002] [Indexed: 10/25/2022]
Abstract
Human African trypanosomiasis (HAT), otherwise known as sleeping sickness, has remained a disease with no effective treatment. Recent progress in HAT research suggests that a vaccine against the disease is far from being successful. Also the emergence of drug-resistant trypanosomes makes further work in this area imperative. So far the treatment for the early stage of HAT involves the drugs pentamidine and suramin which have been very successful. In the second stage of the disease, during which the trypanosomes reside in the cerebrospinal fluid (CSF), treatment is dependent exclusively on the arsenical compound melarsoprol. This is largely due to the inability to find compounds that can cross the blood brain barrier and kill the CSF-residing trypanosomes. This review summarises our current understanding on the treatment of HAT.
Collapse
|
24
|
Hussain MM, Shi J, Dreizen P. Microsomal triglyceride transfer protein and its role in apoB-lipoprotein assembly. J Lipid Res 2003; 44:22-32. [PMID: 12518019 DOI: 10.1194/jlr.r200014-jlr200] [Citation(s) in RCA: 423] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Apolipoprotein B (apoB) and microsomal triglyceride transfer protein (MTP) are necessary for lipoprotein assembly. ApoB consists of five structural domains, betaalpha(1)-beta(1)-alpha(2)-beta(2)-alpha(3). We propose that MTP contains three structural motifs (N-terminal beta-barrel, central alpha-helix, and C-terminal lipid cavity) and three functional domains (lipid transfer, membrane associating, and apoB binding). MTP's lipid transfer activity is required for the assembly of lipoproteins. This activity renders nascent apoB secretion-competent and may be involved in the import of triglycerides into the lumen of endoplasmic reticulum. In addition, MTP binds to apoB with high affinity involving ionic interactions. MTP interacts at multiple sites in the N-terminal betaalpha(1) structural domain of apoB. A novel antagonist that inhibits apoB-MTP binding decreases apoB secretion. Furthermore, site-directed mutagenesis and deletion analyses that inhibit apoB-MTP binding decrease apoB secretion. Lipids modulate protein-protein interactions between apoB and MTP. Lipids associated with MTP increase apoB-MTP binding whereas lipids associated with apoB decrease this binding. Thus, specific antagonist, site-directed mutagenesis, deletion analyses, and modulation studies support the notion that apoB-MTP binding plays a role in lipoprotein biogenesis. However, specific steps in lipoprotein assembly that require apoB-MTP binding have not been identified. ApoB-MTP binding may be important for the prevention of degradation and lipidation of nascent apoB.
Collapse
Affiliation(s)
- M Mahmood Hussain
- Department of Anatomy, SUNY Downstate Medical Center, 450 Clarkson Avenue, Brooklyn, NY 11203, USA.
| | | | | |
Collapse
|
25
|
Raussens V, Slupsky CM, Ryan RO, Sykes BD. NMR structure and dynamics of a receptor-active apolipoprotein E peptide. J Biol Chem 2002; 277:29172-80. [PMID: 12036962 DOI: 10.1074/jbc.m204043200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Apolipoprotein E (apoE) is important in lipid metabolism due to its interaction with members of the low density lipoprotein (LDL) receptor family. ApoE is able to interact with the LDL receptor only when it is bound to lipid particles. To address structural aspects of this phenomenon, a receptor-active apoE peptide, encompassing the receptor-binding region of the protein, was studied by NMR in the presence of the lipid-mimicking agent trifluoroethanol. In 50% trifluoroethanol, apoE-(126-183) forms a continuous amphipathic alpha-helix over residues Thr(130)-Glu(179). Detailed NMR relaxation analysis indicates a high degree of plasticity for the residues surrounding 149-159. This intrinsic flexibility imposes a curvature to the peptide that may be important in terms of interaction of apoE with various sized lipid particles and the LDL receptor. Residues 165-179 of apoE may act as a molecular switch whereby these residues are unstructured in the absence of lipids and prevent interaction with the LDL receptor. In the presence of lipids, these residues become helical resulting in a receptor-active conformation of the protein. Furthermore, the electrostatic characteristics and geometric features of apoE-(126-183) suggest that apoE binds to the LDL receptor by interacting with more than one of the receptor ligand-binding repeats.
Collapse
Affiliation(s)
- Vincent Raussens
- Protein Engineering Network Centres of Excellence, 713 Heritage Medical Research Center, University of Alberta, Edmonton, Alberta T6G 2S2, Canada
| | | | | | | |
Collapse
|
26
|
Laffont I, Shuvaev VV, Briand O, Lestavel S, Barbier A, Taniguchi N, Fruchart JC, Clavey V, Siest G. Early-glycation of apolipoprotein E: effect on its binding to LDL receptor, scavenger receptor A and heparan sulfates. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1583:99-107. [PMID: 12069854 DOI: 10.1016/s1388-1981(02)00188-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Glycation is responsible for disruption of lipoprotein functions leading to the development of atherosclerosis in diabetes. The effects of apolipoprotein E (apoE) glycation were investigated with respect to its interaction with receptors. The interaction of apoE with the low density lipoprotein receptor (LDL-R) and scavenger receptor A (SR-A) was measured by competition experiments performed using, respectively, on a human fibroblast cell line 125I-LDL, and on a murine macrophage cell line (J774) 125I-acetylated LDL, and unlabeled apoE/phospholipid complexes. Glycated apoE binding to heparin and heparan sulfates (HS) was assessed by surface plasmon resonance (SPR) technology. Site-directed mutagenesis was then performed on Lys-75, the major glycation site of the protein. The prepared mutant protein proved to be useful as a tool to study the role of Lys-75 in apoE glycation. The findings showed that, although glycation has no effect on apoE binding either to the LDL-R or to SR-A, it impairs its binding to immobilized heparin and HS. The glycation of Lys-75 was found to be proceed rapidly and contributed significantly to total protein glycation. We propose that, in the case of diabetes, glycation may lead to the atherogenicity of apoE-containing lipoproteins disturbing their uptake via the HS proteoglycan pathway.
Collapse
Affiliation(s)
- Isabelle Laffont
- INSERM U525 (Equipe 4), Centre du Médicament, Université Henri Poincaré Nancy 1, 30, rue Lionnois, France
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Skålén K, Gustafsson M, Rydberg EK, Hultén LM, Wiklund O, Innerarity TL, Borén J. Subendothelial retention of atherogenic lipoproteins in early atherosclerosis. Nature 2002; 417:750-4. [PMID: 12066187 DOI: 10.1038/nature00804] [Citation(s) in RCA: 658] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Complications of atherosclerosis are the most common cause of death in Western societies. Among the many risk factors identified by epidemiological studies, only elevated levels of lipoproteins containing apolipoprotein (apo) B can drive the development of atherosclerosis in humans and experimental animals even in the absence of other risk factors. However, the mechanisms that lead to atherosclerosis are still poorly understood. We tested the hypothesis that the subendothelial retention of atherogenic apoB-containing lipoproteins is the initiating event in atherogenesis. The extracellular matrix of the subendothelium, particularly proteoglycans, is thought to play a major role in the retention of atherogenic lipoproteins. The interaction between atherogenic lipoproteins and proteoglycans involves an ionic interaction between basic amino acids in apoB100 and negatively charged sulphate groups on the proteoglycans. Here we present direct experimental evidence that the atherogenicity of apoB-containing low-density lipoproteins (LDL) is linked to their affinity for artery wall proteoglycans. Mice expressing proteoglycan-binding-defective LDL developed significantly less atherosclerosis than mice expressing wild-type control LDL. We conclude that subendothelial retention of apoB100-containing lipoprotein is an early step in atherogenesis.
Collapse
MESH Headings
- Amino Acid Substitution
- Animals
- Aorta
- Apolipoprotein B-100
- Apolipoproteins B/blood
- Apolipoproteins B/genetics
- Apolipoproteins B/metabolism
- Arteriosclerosis/blood
- Arteriosclerosis/etiology
- Arteriosclerosis/metabolism
- Arteriosclerosis/pathology
- Binding, Competitive
- Cholesterol/blood
- Cholesterol/metabolism
- Diet, Atherogenic
- Endothelium, Vascular/metabolism
- Female
- Humans
- Lipoproteins/blood
- Lipoproteins/metabolism
- Lipoproteins, LDL/blood
- Lipoproteins, LDL/genetics
- Lipoproteins, LDL/metabolism
- Macrophages/metabolism
- Mice
- Mice, Transgenic
- Models, Biological
- Mutation
- Receptors, LDL/blood
- Receptors, LDL/metabolism
- Recombinant Proteins/metabolism
- Triglycerides/blood
- Triglycerides/metabolism
- Tumor Necrosis Factor-alpha/metabolism
Collapse
Affiliation(s)
- Kristina Skålén
- Wallenberg Laboratory for Cardiovascular Research, Göteborg University, Göteborg S-4345, Sweden
| | | | | | | | | | | | | |
Collapse
|
28
|
Cho BHS, Dokko RC, Chung BH. Oleic, linoleic and linolenic acids enhance receptor-mediated uptake of low density lipoproteins in Hep-G2 cells. J Nutr Biochem 2002; 13:330-336. [PMID: 12088798 DOI: 10.1016/s0955-2863(02)00174-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In the present study, the binding, internalization and degradation of low-density lipoprotein (LDL) was investigated in Hep-G2 cells treated with 18:0, 18:1, 18:2 and 18:3. In non-treated control cells, the surface binding (heparin-releasable) of 125I-LDL progressed in a saturable manner reaching equilibrium within 2 h, amounting 24.0 +/- 1.1, 29.5 +/- 1.3 and 31.4 +/- 2.8 (ng/mg cell protein) at 1, 2 and 4 h, respectively. The cells rapidly internalized 125I-LDL reaching a plateau at 2 h (72.4 +/- 6.3/1 h, 96.7 +/- 4.3/2 h and 100.8 +/- 4.6 ng/mg protein/4 h, respectively). The degradation of internalized LDL progressed slowly during the first hour of incubation reflecting the time required to an uptake and delivery of LDL to the cellular lysosomes. The levels of degraded LDL discharged into the medium then increased rapidly in a linear manner after the initial lag period, amounting 16.8 +/- 1.2, 51.8 +/- 7.0 and 118.2 +/- 5.7 ng/mg protein at 1, 2 and 4 h, respectively. The treatment of cells with of 1.0 mM of fatty acids for 4 h resulted in a significant increase in the surface binding of 125I-LDL compared to the control (34.9 +/- 3.0), but it was significantly lower in cells exposed to 18:0 (48.2 +/- 2.0) than to 18:1 (56.8 +/- 5.1), 18:2 (56.0 +/- 3.5) and 18:3 (57.8 +/- 6.0 ng/mg protein/4 h) (P < 0.05). The levels of degraded LDL in cells remained nearly the same regardless of fatty acid treatments, but degraded LDL levels in the medium were much higher in cells exposed to 18:1 (167.6 +/- 10.1), 18:2 (159.8 +/- 7.7) and 18:3 (165.1 +/- 14.7) than to 18:0 (142.1 +/- 8.4) and the control (121.2 +/- 3.4 ng/mg protein/4 h) (P < 0.05). The present finding that 18:1 is equally effective in enhancing the receptor-mediated LDL uptake and its degradation as those of 18:2 and 18:3 suggests that the major action of 18:1 in lowering LDL-cholesterol levels also involves an increased clearance of LDL via hepatic LDL-receptors.
Collapse
Affiliation(s)
- B H. Simon Cho
- Division of Nutritional Sciences, University of Illinois, Harlan E. Moore Heart Research Foundation, 503 South Sixth Street, 61820, Champaign, IL, USA
| | | | | |
Collapse
|
29
|
Abstract
Bio-reactive advanced glycation endproducts (AGE) alter the structure and function of molecules in biological systems and increase oxidative stress. These adverse effects of both exogenous and endogenously derived AGE have been implicated in the pathogenesis of diabetic complications and changes associated with ageing including atherosclerosis, renal, eye and neurological disease. Specific AGE receptors and nonreceptor mechanisms contribute to these processes but also assist in the removal and degradation of AGE. The final disposal of AGE depends on renal clearance. Promising pharmacologic strategies to prevent AGE formation, reduce AGE toxicity, and/or inactivate AGE are under investigation.
Collapse
Affiliation(s)
- H Vlassara
- Department of Geriatrics, Mount Sinai School of Medicine, NY 10029, USA.
| | | |
Collapse
|
30
|
Coppens I, Courtoy PJ. The adaptative mechanisms of Trypanosoma brucei for sterol homeostasis in its different life-cycle environments. Annu Rev Microbiol 2001; 54:129-56. [PMID: 11018126 DOI: 10.1146/annurev.micro.54.1.129] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Bloodstream forms of Trypanosoma brucei do not synthesize sterols de novo and therefore cannot survive in medium devoid of lipoproteins. Growth of parasites is essentially supported by receptor-mediated endocytosis of low-density lipoproteins (LDLs), which carry phospholipids and cholesteryl esters. These lipids are released from internalized LDL after apoprotein B-100 is degraded by acidic thiol-proteases in the endolysosomal apparatus and then metabolized, as in mammalian cells. The LDL receptor is recycled and its expression is regulated by the sterol stores. Documented pharmacological and immunological interferences with LDL receptor-mediated lipid supply to the bloodstream forms are summarized, and the potential for new approaches to fight against these parasites is evaluated. In contrast to bloodstream forms, cultured procyclic forms can acquire sterols from both exogenous (lipoprotein endocytosis) and endogenous (biosynthesis of ergosterol) sources. The rate-limiting steps of both endocytosis (surface LDL receptor expression) and biosynthesis (3-hydroxy-3-methylglutaryl coenzyme A reductase activity) are regulated by the cellular content of sterol. These two pathways thus complement each other to yield a balanced sterol supply, which demonstrates adaptative capacities to survive in totally different environments and fine regulatory mechanisms of sterol homeostasis.
Collapse
Affiliation(s)
- I Coppens
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06520-8022, USA.
| | | |
Collapse
|
31
|
Raussens V, Mah MK, Kay CM, Sykes BD, Ryan RO. Structural characterization of a low density lipoprotein receptor-active apolipoprotein E peptide, ApoE3-(126-183). J Biol Chem 2000; 275:38329-36. [PMID: 10986285 DOI: 10.1074/jbc.m005732200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Apolipoprotein E (apoE) plays a critical role in lipoprotein particle clearance from blood plasma through its interaction with the low density lipoprotein (LDL) receptor and other related receptors. Here, we studied a 58-residue peptide encompassing the receptor binding region of apoE. ApoE3-(126-183) was generated by cyanogen bromide cleavage of recombinant apoE3-(1-183), purified by reversed-phase high pressure liquid chromatography, and characterized by mass spectrometry. Far UV CD spectroscopy of the peptide showed that it is unstructured in aqueous solution. The addition of trifluoroethanol or dodecylphosphocholine induces the peptide to adopt an alpha-helical conformation. ApoE3-(126-183) efficiently transforms dimyristoylphosphatidylglycerol (DMPG) vesicles into peptide-lipid complexes. Analysis of apoE3-(126-183). DMPG complexes by electron microscopy revealed disc-shaped particles with an average diameter of 13 +/- 3 nm. Flotation equilibrium analysis yielded a particle molecular mass of 252 kDa. Far UV CD analysis of apoE3-(126-183).DMPG discs provided evidence that the peptide adopts a helical conformation. Competition binding experiments with (125)I-labeled low density lipoprotein (LDL) were conducted to assess the ability of apoE3-(126-183).DMPG complexes to bind to the LDL receptor. Both N-terminal apoE and the peptide, when complexed with DMPG, competed with (125)I-LDL for binding sites on the surface of cultured human skin fibroblasts. Under the conditions employed, apoE3-(126-183).DMPG complexes were similar to apoE3-(1-183).DMPG discs in their ability to bind to the receptor, demonstrating that the peptide represents a good model to study the interaction between apoE and the LDL receptor. Preliminary NMR results indicated that a high resolution structure of the apoE3-(126-183) peptide is obtainable.
Collapse
Affiliation(s)
- V Raussens
- Lipid Biology Research Group and Protein Engineering Network of Centres of Excellence, Department of Biochemistry, University of Alberta, 327 HMRC, Edmonton, Alberta T6G 2S2, Canada.
| | | | | | | | | |
Collapse
|
32
|
Klezovitch O, Formato M, Cherchi GM, Weisgraber KH, Scanu AM. Structural determinants in the C-terminal domain of apolipoprotein E mediating binding to the protein core of human aortic biglycan. J Biol Chem 2000; 275:18913-8. [PMID: 10751422 DOI: 10.1074/jbc.m909644199] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Apolipoprotein (apo) E-containing high density lipoprotein particles were reported to interact in vitro with the proteoglycan biglycan (Bg), but the direct participation of apoE in this binding was not defined. To this end, we examined the in vitro binding of apoE complexed with dimyristoylphosphatidylcholine (DMPC) to human aortic Bg before and after glycosaminoglycan (GAG) depletion. In a solid-phase assay, apoE.DMPC bound to Bg and GAG-depleted protein core in a similar manner, suggesting a protein-protein mode of interaction. The binding was decreased in the presence of 1 m NaCl and was partially inhibited by either positively (0.2 m lysine, arginine) or negatively charged (0.2 m aspartic, glutamic) amino acids. A recombinant apoE fragment representing the C-terminal 10-kDa domain, complexed with DMPC, bound as efficiently as full-length apoE, whereas the N-terminal 22-kDa domain was inactive. Similar results were obtained with a gel mobility shift assay. Competition studies using a series of recombinant truncated apoEs showed that the charged segment in the C-terminal domain between residues 223 and 230 was involved in the binding. Overall, our results demonstrate that the C-terminal domain contains elements critical for the binding of apoE to the Bg protein core and that this binding is ionic in nature and independent of GAGs.
Collapse
Affiliation(s)
- O Klezovitch
- Department of Medicine, University of Chicago, Chicago, Illinois 60637, USA.
| | | | | | | | | |
Collapse
|
33
|
Morrow JA, Arnold KS, Dong J, Balestra ME, Innerarity TL, Weisgraber KH. Effect of arginine 172 on the binding of apolipoprotein E to the low density lipoprotein receptor. J Biol Chem 2000; 275:2576-80. [PMID: 10644716 DOI: 10.1074/jbc.275.4.2576] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The region of apolipoprotein E (apoE) that interacts directly with the low density lipoprotein (LDL) receptor lies in the vicinity of residues 136-150, where lysine and arginine residues are crucial for full binding activity. However, defective binding of carboxyl-terminal truncations of apoE3 has suggested that residues in the vicinity of 170-183 are also important. To characterize and define the role of this region in LDL receptor binding, we created either mutants of apoE in which this region was deleted or in which arginine residues within this region were sequentially changed to alanine. Deletion of residues 167-185 reduced binding activity (15% of apoE3), and elimination of arginines at positions 167, 172, 178, and 180 revealed that only position 172 affected binding activity (2% of apoE3). Substitution of lysine for Arg(172) reduced binding activity to 6%, indicating a specific requirement for arginine at this position. The higher binding activity of the Delta167-185 mutant relative to the Arg(172) mutant (15% versus 2%) is explained by the fact that arginine residues at positions 189 and 191 are shifted in the deletion mutant into positions equivalent to 170 and 172 in the intact protein. Mutation of these residues and modeling the region around these residues suggested that the influence of Arg(172) on receptor binding activity may be determined by its orientation at a lipid surface. Thus, the association of apoE with phospholipids allows Arg(172) to interact directly with the LDL receptor or with other residues in apoE to promote its receptor-active conformation.
Collapse
Affiliation(s)
- J A Morrow
- Gladstone Institute of Cardiovascular Disease, University of California, San Francisco, California 94141-9100, USA
| | | | | | | | | | | |
Collapse
|
34
|
Narayanaswami V, Ryan RO. Molecular basis of exchangeable apolipoprotein function. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1483:15-36. [PMID: 10601693 DOI: 10.1016/s1388-1981(99)00176-6] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- V Narayanaswami
- Lipid and Lipoprotein Research Group, Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | | |
Collapse
|
35
|
Advanced Glycosylation Endproducts and Diabetic Vascular Disease. DEVELOPMENTS IN CARDIOVASCULAR MEDICINE 2000. [DOI: 10.1007/978-1-4615-4649-8_15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
36
|
Agnello V, Abel G, Elfahal M, Knight GB, Zhang QX. Hepatitis C virus and other flaviviridae viruses enter cells via low density lipoprotein receptor. Proc Natl Acad Sci U S A 1999; 96:12766-71. [PMID: 10535997 PMCID: PMC23090 DOI: 10.1073/pnas.96.22.12766] [Citation(s) in RCA: 700] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Endocytosis of the Flaviviridae viruses, hepatitis C virus, GB virus C/hepatitis G virus, and bovine viral diarrheal virus (BVDV) was shown to be mediated by low density lipoprotein (LDL) receptors on cultured cells by several lines of evidence: by the demonstration that endocytosis of these virus correlated with LDL receptor activity, by complete inhibition of detectable endocytosis by anti-LDL receptor antibody, by inhibition with anti-apolipoprotein E and -apolipoprotein B antibodies, by chemical methods abrogating lipoprotein/LDL receptor interactions, and by inhibition with the endocytosis inhibitor phenylarsine oxide. Confirmatory evidence was provided by the lack of detectable LDL receptor on cells known to be resistant to BVDV infection. Endocytosis via the LDL receptor was shown to be mediated by complexing of the virus to very low density lipoprotein or LDL but not high density lipoprotein. Studies using LDL receptor-deficient cells or a cytolytic BVDV system indicated that the LDL receptor may be the main but not exclusive means of cell entry of these viruses. Studies on other types of viruses indicated that this mechanism may not be exclusive to Flaviviridae but may be used by viruses that associate with lipoprotein in the blood. These findings provide evidence that the family of LDL receptors may serve as viral receptors.
Collapse
Affiliation(s)
- V Agnello
- Lahey Clinic Medical Center, Department of Laboratory Medicine, Burlington, MA 01805, USA.
| | | | | | | | | |
Collapse
|
37
|
Fisher CA, Ryan RO. Lipid binding-induced conformational changes in the N-terminal domain of human apolipoprotein E. J Lipid Res 1999. [DOI: 10.1016/s0022-2275(20)33343-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
38
|
Bajari TM, Lindstedt KA, Riepl M, Mirsky VM, Nimpf J, Wolfbeis OS, Dresel HA, Bautz EK, Schneider WJ. A minimal binding domain of the low density lipoprotein receptor family. Biol Chem 1998; 379:1053-62. [PMID: 9792438 DOI: 10.1515/bchm.1998.379.8-9.1053] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
As more relatives of the low density lipoprotein receptor (LDLR) are discovered, defining their minimal binding domain(s) becomes a challenge. Here we have chosen the multifunctional chicken oocyte receptor for yolk deposition (termed LR8), and the pan-receptor ligand, receptor associated protein (RAP), as model systems to characterize a minireceptor using the phage display approach. Displayed fragments derived from the entire 819 residue LR8 molecule, followed by selection via panning on RAP, led to the definition of an 80 residue stretch LR8 minireceptor. It contains 12 cysteines, and represents parts of the second, the entire third, and parts of the fourth, of the eight clustered 'ligand binding repeats' in LR8; only two of the eight stretches of negatively charged residues of LR8, i.e., EDGSDE and DSGEDEE, are present. The latter sequence is reminiscent of that in the fifth repeat of the human LDLR, thought to be most critical for interaction with positive charge clusters in ligands. Baculovirus-mediated expression of the soluble minireceptor in insect cells showed it to fold as a monomer, and sulfhydryl-reduction-sensitive interaction with RAP was demonstrated for immobilized as well as soluble minireceptor. Furthermore, the LR8-derived minireceptor provided a RAP-responsive surface when covalently coupled to the surface of a gold electrode. In addition to its use in defining minimal binding domains, the phage display approach provides powerful tools for dissection, and consequently, manipulation, of the function of receptors so as to direct their binding activity toward ligands of diagnostic and/or therapeutic interest.
Collapse
Affiliation(s)
- T M Bajari
- Department of Molecular Genetics, University of Heidelberg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Neels J, Horn I, van den Berg B, Pannekoek H, van Zonneveld AJ. Ligand-receptor interactions of the low density lipoprotein receptor-related protein, a multi-ligand endocytic receptor. ACTA ACUST UNITED AC 1998. [DOI: 10.1016/s0268-9499(98)80016-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
40
|
Pentikäinen MO, Oörni K, Lassila R, Kovanen PT. The proteoglycan decorin links low density lipoproteins with collagen type I. J Biol Chem 1997; 272:7633-8. [PMID: 9065418 DOI: 10.1074/jbc.272.12.7633] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Decorin is a small dermatan sulfate-rich proteoglycan which binds to collagen type I in vitro and in vivo. In atherosclerotic lesions the contents of low density lipoprotein (LDL), decorin, and collagen type I are increased, and ultrastructural studies have suggested an association between LDL and collagen in the lesions. To study interactions between LDL, decorin, and collagen type I, we used solid phase systems in which LDL was coupled to a Sepharose column, or in which LDL, decorin, or collagen type I was attached to microtiter wells. The interaction between LDL and decorin in the fluid phase was evaluated using a gel mobility shift assay. We found that LDL binds to decorin by ionic interactions. After treatment with chondroitinase ABC, decorin did not bind to LDL, showing that the glycosaminoglycan side chain of decorin is essential for LDL binding. Acetylated and cyclohexanedione-treated LDL did not bind to decorin, demonstrating that both lysine and arginine residues of apoB-100 are necessary for the interaction. When collagen type I was attached to the microtiter plates, only insignificant amounts of LDL bound to the collagen. However, if decorin was first allowed to bind to the collagen, binding of LDL to the decorin-collagen complexes was over 10-fold higher than to collagen alone. Thus, decorin can link LDL with collagen type I in vitro, which suggests a novel mechanism for retention of LDL in collagen-rich areas of atherosclerotic lesions.
Collapse
Affiliation(s)
- M O Pentikäinen
- Wihuri Research Institute, Kalliolinnantie 4, SF-00140 Helsinki, Finland
| | | | | | | |
Collapse
|
41
|
Bucala R. Lipoprotein Modification by Advanced Glycosylation Endproducts (AGEs): Role in Atherosclerosis. Trends Cardiovasc Med 1997; 7:39-47. [PMID: 21235862 DOI: 10.1016/s1050-1738(96)00137-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Recent progress in our understanding of advanced glycosylation reactions in vivo has affirmed the hypothesis that these products play an important role in the evolution of both diabetic and nondiabetic vascular disease. Utilizing newly developed advanced glycosylation end-products (AGE)-specific enzyme-linked immunosorbent assay (ELISA) techniques, AGEs have been identified to be present on a variety of vascular wall, lipoprotein, and lipid constituents. Vascular wall AGEs contribute to vascular pathology by increasing vascular permeability, enhancing subintimal protein and lipoprotein deposition, and inactivating nitric oxide. Lipid-linked AGEs present in low-density lipoprotein (LDL) also have been shown to initiate oxidative modification, promoting oxidation reactions that may proceed without the involvement of free metals or other radical generating systems. AGE-specific ELISA analysis has demonstrated a significantly increased level of AGE-modified LDL in the plasma of diabetic patients when compared to normal controls. AGE-modification impairs LDL-receptor-mediated clearance mechanisms in vivo and may contribute to elevated LDL levels in patients with diabetes. This concept has been substantiated further by the recent clinical observations that administration of the advanced glycosylation inhibitor aminoguanidine to diabetic patients significantly decreases circulating LDL levels. (Trends Cardiovasc Med 1997;7:39-47). © 1997, Elsevier Science Inc.
Collapse
Affiliation(s)
- R Bucala
- The Picower Institute for Medical Research, 350 Community Drive,Manhasset, NY 11030,USA
| |
Collapse
|
42
|
Yang CY, Gu ZW, Yang HX, Yang M, Gotto AM, Smith CV. Oxidative modifications of apoB-100 by exposure of low density lipoproteins to HOCL in vitro. Free Radic Biol Med 1997; 23:82-9. [PMID: 9165300 DOI: 10.1016/s0891-5849(96)00624-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Although the products of oxidation of the lipid components of LDL have been studied extensively, much less is known about the specific products of oxidative modification of the apoprotein. We reacted native LDL and LDL that had been treated with HOCl with 2,4-dinitrophenylhydrazine (DNPH), delipidated and trypsinized the protein, and analyzed the products by HPLC. Although tryptic digests of native LDL and LDL oxidized by limited quantities of HOCl showed similar patterns by HPLC with detection at 220 nm, oxidized LDL showed several discrete peaks at 365 nm, which is characteristic of hydrazones formed with aldehydes and ketones, commonly termed protein carbonyls. Native LDl showed no peaks in the chromatograms at 365 nm. Peptides absorbing at 365 nm were isolated by HPLC and characterized. In most cases, the probable sites of modification on the peptides could be implied by failure of an anticipated amino acid to appear in the expected sequence. Of the 14 peptides isolated and characterized to date, eight peptides contained Cys residues. In other peptides, Lys, Trp, and Met were identified as amino acid residues apparently modified by HOCl treatment of LDL. Thirteen of the peptides identified are from trypsin-releasable peptides located on the surface of unoxidized native LDL. Our studies suggest a selective process of modification of apoB-100 by HOCl and the approaches used in the present studies should be useful for the characterization of the mechanisms of oxidation of this and other proteins.
Collapse
Affiliation(s)
- C Y Yang
- Department of Medicine, Baylor College of Medicine, Methodist Hospital, Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|
43
|
Bucala R. What is the effect of hyperglycemia on atherogenesis and can it be reversed by aminoguanidine? Diabetes Res Clin Pract 1996; 30 Suppl:123-30. [PMID: 8964186 DOI: 10.1016/s0168-8227(96)80048-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Reducing sugars such as glucose react non-enzymatically with the amino groups of proteins and lipids to initiate a chemical modification pathway known as advanced glycosylation. Recent progress in our understanding of this process has affirmed the hypothesis that advanced glycosylation endproducts (AGEs) play an important role in the evolution of both diabetic and non-diabetic vascular disease. Utilizing newly developed AGE-specific ELISA techniques, AGEs have been identified to be present on a variety of vascular wall, lipoprotein, and lipid constituents. Vascular wall AGEs contribute to vascular pathology by acting to increase vascular permeability, enhance subintimal protein and lipoprotein deposition, and inactivate the endothelium-derived relaxing factor, nitric oxide. Lipid-linked AGEs also have been shown to initiate oxidative modification, thus promoting the formation of oxidized low-density lipoprotein. AGE-specific ELISA analysis has demonstrated a significantly increased level of AGE-modified LDL in the plasma of diabetic patients when compared to normal controls. Furthermore, LDL which has been modified by advanced glycosylation exhibits markedly impaired clearance kinetics in vivo. Thus, AGE-modification impairs LDL-receptor-mediated clearance mechanisms and contributes to elevated LDL levels in patients with diabetes. This concept has been substantiated recently by the clinical observation that administration of the advanced glycosylation inhibitor aminoguanidine to diabetic patients significantly decreases circulating LDL levels.
Collapse
Affiliation(s)
- R Bucala
- Picower Institute for Medical Research, Manhasset, NY 11030, USA
| |
Collapse
|
44
|
Abstract
An increasing body of experimental data supports the important, etiologic role of advanced glycosylation end products (AGEs) in the development of the renal and vascular complications of diabetes. Advanced glycosylation end products arise from glucose-derived Amadori products and act to increase vascular permeability, enhance protein and lipoprotein deposition, inactivate nitric oxide, and promote matrix protein synthesis and glomerular sclerosis. Loss of normal renal function increases the level of circulating plasma AGEs and contributes markedly to their ultimate tissue toxicity. Aminoguanidine, a recently developed pharmacologic inhibitor of advanced glycosylation, is presently undergoing phase II/III clinical trials in diabetic nephropathy and may offer a specific therapeutic modality for diminishing the formation and toxicity of AGEs.
Collapse
Affiliation(s)
- R Bucala
- Picower Institute for Medical Research, Manhasset, NY 11030, USA
| | | |
Collapse
|
45
|
Raffai R, Maurice R, Weisgraber K, Innerarity T, Wang X, MacKenzie R, Hirama T, Watson D, Rassart E, Milne R. Molecular characterization of two monoclonal antibodies specific for the LDL receptor-binding site of human apolipoprotein E. J Lipid Res 1995. [DOI: 10.1016/s0022-2275(20)41109-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
46
|
Paananen K, Saarinen J, Annila A, Kovanen PT. Proteolysis and fusion of low density lipoprotein particles strengthen their binding to human aortic proteoglycans. J Biol Chem 1995; 270:12257-62. [PMID: 7744877 DOI: 10.1074/jbc.270.20.12257] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Lipid droplets resembling those seen in the extracellular space of the arterial intima were generated in vitro when granule proteases of rat serosal mast cells degraded the apolipoprotein B-100 (apoB-100) component of granule-bound low density lipoprotein (LDL), and the particles fused on the granule surface (Paanenen, K., and Kovanen, P. T. (1994) J. Biol. Chem. 269, 2023-2031). Moreover, the binding of the fused particles to the heparin proteoglycan component of the granules was found to be strengthened. We have now treated LDL particles with alpha-chymotrypsin and examined the strength with which the proteolytically modified LDL binds to human aortic proteoglycans on an affinity column. We found that chymotryptic degradation of the LDL particles triggered particle fusion. The higher the degree of proteolytic degradation, the higher were the degree of fusion and the strength of binding to the aortic proteoglycans. Separation of the proteolyzed particles by size exclusion chromatography into two fractions, unfused and fused particles, and analysis of their binding strengths revealed that not only the fused but also the unfused proteolyzed particles bound more tightly to the proteoglycans than did the native LDL particles. To investigate the mechanism underlying this increase in binding strength, we attached [13C]dimethyl groups to the lysines and used NMR spectroscopy to quantify the active lysine residues of apoB-100, which are thought to be located in basic areas of apoB-100 and involved in binding of LDL to proteoglycans. Analysis of the 13C-labeled particles showed that, despite loss of apoB-100 fragments from the particles, the number of active lysine residues in the unfused proteolyzed particles had not decreased. In the fused proteolyzed particles, the number of active lysine residues was markedly increased. Thus, proteolytic fusion appears to increase the number of basic domains of apoB-100, which would explain the observed increase in the strength of binding of the modified LDL particles to arterial proteoglycans. Since the fused particles resemble the small lipid droplets found in the atherosclerotic arterial intima, this LDL modification offers a plausible mechanism for the focal accumulation of lipid droplets in the extracellular proteoglycan matrix during atherogenesis.
Collapse
Affiliation(s)
- K Paananen
- Wihuri Research Institute, Helsinki, Finland
| | | | | | | |
Collapse
|
47
|
Bucala R, Mitchell R, Arnold K, Innerarity T, Vlassara H, Cerami A. Identification of the major site of apolipoprotein B modification by advanced glycosylation end products blocking uptake by the low density lipoprotein receptor. J Biol Chem 1995; 270:10828-32. [PMID: 7738020 DOI: 10.1074/jbc.270.18.10828] [Citation(s) in RCA: 83] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Advanced glycosylation end products (AGEs) arise from glucose-derived Amadori products and have been implicated in the pathogenesis of diabetic vascular disease. We recently reported the presence of an AGE-modified form of low density lipoprotein (LDL) that circulates in high amounts in patients with diabetes or renal insufficiency and that exhibits impaired plasma clearance kinetics. We utilized AGE-specific antibodies to identify the major sites of AGE modification within protease-digested preparations of apolipoprotein B that impair the binding of the AGE-modified form of LDL by human fibroblast LDL receptors. The predominant site of AGE immunoreactivity was found to lie within a single, 67-amino acid region located 1791 residues NH2-terminal of the putative LDL receptor binding domain. These data point to the high reactivity and specificity of this site for AGE formation and provide further evidence for important structural interactions between the LDL receptor binding domain and remote regions of the apolipoprotein B polypeptide.
Collapse
Affiliation(s)
- R Bucala
- Picower Institute for Medical Research, Manhasset, New York 11030, USA
| | | | | | | | | | | |
Collapse
|
48
|
Affiliation(s)
- M J Halpern
- Instituto Superior de Ciências da Saúde-Sul, Quinta da Granja, Monte de Caparica, Portugal
| |
Collapse
|
49
|
Hunt JV, Bailey JR, Schultz DL, McKay AG, Mitchinson MJ. Apolipoprotein oxidation in the absence of lipid peroxidation enhances LDL uptake by macrophages. FEBS Lett 1994; 349:375-9. [PMID: 8050600 DOI: 10.1016/0014-5793(94)00706-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A characteristic of the antioxidant, probucol, is its inability to inhibit apolipoprotein B fragmentation in low density lipoprotein (LDL), despite a pronounced ability to inhibit lipid oxidation on relatively lengthy exposure to Cu(II). Here we show that a short exposure of LDL to hydrogen peroxide and Cu(II) leads to 125I-labelled apolipoprotein B fragmentation, the production of malondialdehyde and hydroperoxides and leads to increased uptake by macrophages on subsequent culture. However, pre-loading LDL with probucol protects LDL from lipid oxidation but not protein fragmentation or macrophage uptake. The use of probucol to conduct studies on apolipoprotein B oxidation without extensive lipid oxidation may prove useful when studying LDL apolipoprotein damage on exposure to an aqueous free radical insult.
Collapse
Affiliation(s)
- J V Hunt
- Department of Pathology, University of Cambridge, UK
| | | | | | | | | |
Collapse
|
50
|
Affiliation(s)
- K H Weisgraber
- Gladstone Institute of Cardiovascular Disease, San Francisco, California 94141-9100
| |
Collapse
|