1
|
Ibrahim MA, Isah MB, Inim MD, Abdullahi AD, Adamu A. The connections of sialic acids and diabetes mellitus: therapeutic or diagnostic value? Glycobiology 2024; 34:cwae053. [PMID: 39041707 DOI: 10.1093/glycob/cwae053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/16/2024] [Accepted: 07/19/2024] [Indexed: 07/24/2024] Open
Abstract
Modulation of sialic acids is one of the important pathological consequences of both type 1 and type 2 diabetes mellitus with or without the micro- and macrovascular complications. However, the mechanistic, therapeutic and/or diagnostic implications of these observations are uncoordinated and possibly conflicting. This review critically analyses the scientific investigations connecting sialic acids with diabetes mellitus. Generally, variations in the levels and patterns of sialylation, fucosylation and galactosylation were predominant across various tissues and body systems of diabetic patients, but the immune system seemed to be most affected. These might be explored as a basis for differential diagnosis of various diabetic complications. Sialic acids are predominantly elevated in nearly all forms of diabetic conditions, particularly nephropathy and retinopathy, which suggests some diagnostic value but the mechanistic details were not unequivocal from the available data. The plausible mechanistic explanations for the elevated sialic acids are increased desialylation by sialidases, stimulation of hexosamine pathway and synthesis of acute phase proteins as well as oxidative stress. Additionally, sialic acids are also profoundly associated with glucose transport and insulin resistance in human-based studies while animal-based studies revealed that the increased desialylation of insulin receptors by sialidases, especially NEU1, might be the causal link. Interestingly, inhibition of the diabetes-associated NEU1 desialylation was beneficial in diabetes management and might be considered as a therapeutic target. It is hoped that the article will provide an informed basis for future research activities on the exploitation of sialic acids and glycobiology for therapeutic and/or diagnostic purposes against diabetes mellitus.
Collapse
Affiliation(s)
| | - Murtala Bindawa Isah
- Department of Biochemistry, Umaru Musa Yar'adua University, P.M.B. 2218, Katsina, Nigeria
| | - Mayen David Inim
- Department of Biochemistry, Ahmadu Bello University, Samaru, 80001, Zaria, Nigeria
| | | | - Auwal Adamu
- Department of Biochemistry, Ahmadu Bello University, Samaru, 80001, Zaria, Nigeria
| |
Collapse
|
2
|
Dam TK, Brewer CF. Multivalent lectin-carbohydrate interactions: Energetics and mechanisms of binding. Adv Carbohydr Chem Biochem 2023; 84:23-48. [PMID: 37979978 DOI: 10.1016/bs.accb.2023.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2023]
Abstract
The biological signaling properties of lectins, which are carbohydrate-binding proteins, are due to their ability to bind and cross-link multivalent glycoprotein receptors on the surface of normal and transformed cells. While the cross-linking properties of lectins with multivalent carbohydrates and glycoproteins are relatively well understood, the mechanisms of binding of lectins to multivalent glycoconjugates are less well understood. Recently, the thermodynamics of binding of lectins to synthetic clustered glycosides, a multivalent globular glycoprotein, and to linear glycoproteins (mucins) have been described. The results are consistent with a dynamic binding mechanism in which lectins bind and jump from carbohydrate to carbohydrate epitope in these molecules. Importantly, the mechanism of binding of lectins to mucins is similar to that for a variety of protein ligands binding to DNA. Recent analysis also shows that high-affinity lectin-mucin cross-linking interactions are driven by favorable entropy of binding that is associated with the bind and jump mechanism. The results suggest that the binding of ligands to biopolymers, in general, may involve a common mechanism that involves enhanced entropic effects which facilitate binding and subsequent complex formation including enzymology.
Collapse
Affiliation(s)
- Tarun K Dam
- Formerly of the Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States.
| | - C Fred Brewer
- Department of Molecular Pharmacology, Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
3
|
Raev S, Amimo J, Saif L, Vlasova A. Intestinal mucin-type O-glycans: the major players in the host-bacteria-rotavirus interactions. Gut Microbes 2023; 15:2197833. [PMID: 37020288 PMCID: PMC10078158 DOI: 10.1080/19490976.2023.2197833] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 03/28/2023] [Indexed: 04/07/2023] Open
Abstract
Rotavirus (RV) causes severe diarrhea in young children and animals worldwide. Several glycans terminating in sialic acids (SAs) and histo-blood group antigens (HBGAs) on intestinal epithelial cell (IEC) surface have been recognized to act as attachment sites for RV. IECs are protected by the double layer of mucus of which O-glycans (including HBGAs and SAs) are a major organic component. Luminal mucins, as well as bacterial glycans, can act as decoy molecules removing RV particles from the gut. The composition of the intestinal mucus is regulated by complex O-glycan-specific interactions among the gut microbiota, RV and the host. In this review, we highlight O-glycan-mediated interactions within the intestinal lumen prior to RV attachment to IECs. A better understanding of the role of mucus is essential for the development of alternative therapeutic tools including the use of pre- and probiotics to control RV infection.
Collapse
Affiliation(s)
- S.A. Raev
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH, USA
| | - J.O. Amimo
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH, USA
- Department of Animal Production, Faculty of Veterinary Medicine, University of Nairobi, Nairobi, Kenya
| | - L.J. Saif
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH, USA
| | - A.N. Vlasova
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH, USA
| |
Collapse
|
4
|
Rudman N, Kifer D, Kaur S, Simunović V, Cvetko A, Pociot F, Morahan G, Gornik O. Children at onset of type 1 diabetes show altered N-glycosylation of plasma proteins and IgG. Diabetologia 2022; 65:1315-1327. [PMID: 35622127 PMCID: PMC9283363 DOI: 10.1007/s00125-022-05703-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 02/09/2022] [Indexed: 11/29/2022]
Abstract
AIMS/HYPOTHESIS Individual variation in plasma N-glycosylation has mainly been studied in the context of diabetes complications, and its role in type 1 diabetes onset is largely unknown. Our aims were to undertake a detailed characterisation of the plasma and IgG N-glycomes in patients with recent onset type 1 diabetes, and to evaluate their discriminative potential in risk assessment. METHODS In the first part of the study, plasma and IgG N-glycans were chromatographically analysed in a study population from the DanDiabKids registry, comprising 1917 children and adolescents (0.6-19.1 years) who were newly diagnosed with type 1 diabetes. A follow-up study compared the results for 188 of these participants with those for their 244 unaffected siblings. Correlation of N-glycan abundance with the levels and number of various autoantibodies (against IA-2, GAD, ZnT8R, ZnT8W), as well as with sex and age at diagnosis, were estimated by using general linear modelling. A disease predictive model was built using logistic mixed-model elastic net regression, and evaluated using a 10-fold cross-validation. RESULTS Our study showed that onset of type 1 diabetes was associated with an increase in the proportion of plasma and IgG high-mannose and bisecting GlcNAc structures, a decrease in monogalactosylation, and an increase in IgG disialylation. ZnT8R autoantibody levels were associated with higher IgG digalactosylated glycan with bisecting GlcNAc. Finally, an increase in the number of autoantibodies (which is a better predictor of progression to overt diabetes than the level of any individual antibody) was accompanied by a decrease in the proportions of some of the highly branched plasma N-glycans. Models including age, sex and N-glycans yielded notable discriminative power between children with type 1 diabetes and their healthy siblings, with AUCs of 0.915 and 0.869 for addition of plasma and IgG N-glycans, respectively. CONCLUSIONS/INTERPRETATION We defined N-glycan changes accompanying onset of type 1 diabetes, and developed a predictive model based on N-glycan profiles that could have valuable potential in risk assessment. Increasing the power of tests to identify individuals at risk of disease development would be a considerable asset for type 1 diabetes prevention trials.
Collapse
Affiliation(s)
- Najda Rudman
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Domagoj Kifer
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | | | - Vesna Simunović
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Ana Cvetko
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Flemming Pociot
- Steno Diabetes Center Copenhagen, Herlev, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Copenhagen Diabetes Research Center (CPH-DIRECT), Department of Pediatrics E, Herlev Hospital, Herlev, Denmark
| | - Grant Morahan
- Centre for Diabetes Research, The Harry Perkins Institute for Medical Research, Perth, WA, Australia.
- University of Melbourne, Parkville, VIC, Australia.
| | - Olga Gornik
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia.
| |
Collapse
|
5
|
Sung PS, Hsieh SL. C-type lectins and extracellular vesicles in virus-induced NETosis. J Biomed Sci 2021; 28:46. [PMID: 34116654 PMCID: PMC8193014 DOI: 10.1186/s12929-021-00741-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 06/08/2021] [Indexed: 12/12/2022] Open
Abstract
Dysregulated formation of neutrophil extracellular traps (NETs) is observed in acute viral infections. Moreover, NETs contribute to the pathogenesis of acute viral infections, including those caused by the dengue virus (DV) and severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Furthermore, excessive NET formation (NETosis) is associated with disease severity in patients suffering from SARS-CoV-2-induced multiple organ injuries. Dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN) and other members of C-type lectin family (L-SIGN, LSECtin, CLEC10A) have been reported to interact with viral glycans to facilitate virus spreading and exacerbates inflammatory reactions. Moreover, spleen tyrosine kinase (Syk)-coupled C-type lectin member 5A (CLEC5A) has been shown as the pattern recognition receptor for members of flaviviruses, and is responsible for DV-induced cytokine storm and Japanese encephalomyelitis virus (JEV)-induced neuronal inflammation. Moreover, DV activates platelets via CLEC2 to release extracellular vesicles (EVs), including microvesicles (MVs) and exosomes (EXOs). The DV-activated EXOs (DV-EXOs) and MVs (DV-MVs) stimulate CLEC5A and Toll-like receptor 2 (TLR2), respectively, to enhance NET formation and inflammatory reactions. Thus, EVs from virus-activated platelets (PLT-EVs) are potent endogenous danger signals, and blockade of C-type lectins is a promising strategy to attenuate virus-induced NETosis and intravascular coagulopathy.
Collapse
Affiliation(s)
- Pei-Shan Sung
- Genomics Research Center, Academia Sinica, 128, Academia Road, Sec. 2, Nankang District, Taipei, 115 Taiwan
| | - Shie-Liang Hsieh
- Genomics Research Center, Academia Sinica, 128, Academia Road, Sec. 2, Nankang District, Taipei, 115 Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute for Cancer Biology and Drug Discovery, Taipei Medical University, Taipei, Taiwan
- Institute of Immunology, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
6
|
Bachem G, Wamhoff E, Silberreis K, Kim D, Baukmann H, Fuchsberger F, Dernedde J, Rademacher C, Seitz O. Rational Design of a DNA‐Scaffolded High‐Affinity Binder for Langerin. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Gunnar Bachem
- Department of Chemistry Humboldt-Universität zu Berlin 12489 Berlin Germany
| | - Eike‐Christian Wamhoff
- Department of Biomolecular Systems Max Planck Institute of Colloids and Interfaces 14424 Potsdam Germany
| | - Kim Silberreis
- Institute of Laboratory Medicine, Clinical Chemistry and Pathobiochemistry Charité-Universitätsmedizin Berlin corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health 13353 Berlin Germany
| | - Dongyoon Kim
- Department of Biomolecular Systems Max Planck Institute of Colloids and Interfaces 14424 Potsdam Germany
| | - Hannes Baukmann
- Department of Biomolecular Systems Max Planck Institute of Colloids and Interfaces 14424 Potsdam Germany
| | - Felix Fuchsberger
- Department of Biomolecular Systems Max Planck Institute of Colloids and Interfaces 14424 Potsdam Germany
| | - Jens Dernedde
- Institute of Laboratory Medicine, Clinical Chemistry and Pathobiochemistry Charité-Universitätsmedizin Berlin corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health 13353 Berlin Germany
| | - Christoph Rademacher
- Department of Biomolecular Systems Max Planck Institute of Colloids and Interfaces 14424 Potsdam Germany
| | - Oliver Seitz
- Department of Chemistry Humboldt-Universität zu Berlin 12489 Berlin Germany
| |
Collapse
|
7
|
Bachem G, Wamhoff E, Silberreis K, Kim D, Baukmann H, Fuchsberger F, Dernedde J, Rademacher C, Seitz O. Rational Design of a DNA-Scaffolded High-Affinity Binder for Langerin. Angew Chem Int Ed Engl 2020; 59:21016-21022. [PMID: 32749019 PMCID: PMC7693190 DOI: 10.1002/anie.202006880] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/24/2020] [Indexed: 11/17/2022]
Abstract
Binders of langerin could target vaccines to Langerhans cells for improved therapeutic effect. Since langerin has low affinity for monovalent glycan ligands, highly multivalent presentation has previously been key for targeting. Aiming to reduce the amount of ligand required, we rationally designed molecularly defined high-affinity binders based on the precise display of glycomimetic ligands (Glc2NTs) on DNA-PNA scaffolds. Rather than mimicking langerin's homotrimeric structure with a C3-symmetric scaffold, we developed readily accessible, easy-to-design bivalent binders. The method considers the requirements for bridging sugar binding sites and statistical rebinding as a means to both strengthen the interactions at single binding sites and amplify the avidity enhancement provided by chelation. This gave a 1150-fold net improvement over the affinity of the free ligand and provided a nanomolar binder (IC50 =300 nM) for specific internalization by langerin-expressing cells.
Collapse
Affiliation(s)
- Gunnar Bachem
- Department of ChemistryHumboldt-Universität zu Berlin12489BerlinGermany
| | - Eike‐Christian Wamhoff
- Department of Biomolecular SystemsMax Planck Institute of Colloids and Interfaces14424PotsdamGermany
| | - Kim Silberreis
- Institute of Laboratory Medicine, Clinical Chemistry and PathobiochemistryCharité-Universitätsmedizin Berlincorporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health13353BerlinGermany
| | - Dongyoon Kim
- Department of Biomolecular SystemsMax Planck Institute of Colloids and Interfaces14424PotsdamGermany
| | - Hannes Baukmann
- Department of Biomolecular SystemsMax Planck Institute of Colloids and Interfaces14424PotsdamGermany
| | - Felix Fuchsberger
- Department of Biomolecular SystemsMax Planck Institute of Colloids and Interfaces14424PotsdamGermany
| | - Jens Dernedde
- Institute of Laboratory Medicine, Clinical Chemistry and PathobiochemistryCharité-Universitätsmedizin Berlincorporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health13353BerlinGermany
| | - Christoph Rademacher
- Department of Biomolecular SystemsMax Planck Institute of Colloids and Interfaces14424PotsdamGermany
| | - Oliver Seitz
- Department of ChemistryHumboldt-Universität zu Berlin12489BerlinGermany
| |
Collapse
|
8
|
Wong SSW, Rani M, Dodagatta-Marri E, Ibrahim-Granet O, Kishore U, Bayry J, Latgé JP, Sahu A, Madan T, Aimanianda V. Fungal melanin stimulates surfactant protein D-mediated opsonization of and host immune response to Aspergillus fumigatus spores. J Biol Chem 2018; 293:4901-4912. [PMID: 29414772 DOI: 10.1074/jbc.m117.815852] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 01/10/2018] [Indexed: 11/06/2022] Open
Abstract
Surfactant protein D (SP-D), a C-type lectin and pattern-recognition soluble factor, plays an important role in immune surveillance to detect and eliminate human pulmonary pathogens. SP-D has been shown to protect against infections with the most ubiquitous airborne fungal pathogen, Aspergillus fumigatus, but the fungal surface component(s) interacting with SP-D is unknown. Here, we show that SP-D binds to melanin pigment on the surface of A. fumigatus dormant spores (conidia). SP-D also exhibited an affinity to two cell-wall polysaccharides of A. fumigatus, galactomannan (GM) and galactosaminogalactan (GAG). The immunolabeling pattern of SP-D was punctate on the conidial surface and was uniform on germinating conidia, in accordance with the localization of melanin, GM, and GAG. We also found that the collagen-like domain of SP-D is involved in its interaction with melanin, whereas its carbohydrate-recognition domain recognized GM and GAG. Unlike un-opsonized conidia, SP-D-opsonized conidia were phagocytosed more efficiently and stimulated the secretion of proinflammatory cytokines by human monocyte-derived macrophages. Furthermore, SP-D-/- mice challenged intranasally with wildtype conidia or melanin ghosts (i.e. hollow melanin spheres) displayed significantly reduced proinflammatory cytokines in the lung compared with wildtype mice. In summary, SP-D binds to melanin present on the dormant A. fumigatus conidial surface, facilitates conidial phagocytosis, and stimulates the host immune response.
Collapse
Affiliation(s)
| | - Manjusha Rani
- ICMR-National Institute for Research in Reproductive Health, Parel, Mumbai 400012, India
| | - Eswari Dodagatta-Marri
- College of Health and Life Sciences, Brunel University London, Uxbridge UB8 3PH, United Kingdom
| | | | - Uday Kishore
- College of Health and Life Sciences, Brunel University London, Uxbridge UB8 3PH, United Kingdom
| | | | | | - Arvind Sahu
- Complement Biology Laboratory, National Centre for Cell Science, Ganeshkhind, Pune 411007, India
| | - Taruna Madan
- ICMR-National Institute for Research in Reproductive Health, Parel, Mumbai 400012, India.
| | | |
Collapse
|
9
|
Sager CP, Eriş D, Smieško M, Hevey R, Ernst B. What contributes to an effective mannose recognition domain? Beilstein J Org Chem 2017; 13:2584-2595. [PMID: 29259668 PMCID: PMC5727865 DOI: 10.3762/bjoc.13.255] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 11/15/2017] [Indexed: 12/27/2022] Open
Abstract
In general, carbohydrate-lectin interactions are characterized by high specificity but also low affinity. The main reason for the low affinities are desolvation costs, due to the numerous hydroxy groups present on the ligand, together with the typically polar surface of the binding sites. Nonetheless, nature has evolved strategies to overcome this hurdle, most prominently in relation to carbohydrate-lectin interactions of the innate immune system but also in bacterial adhesion, a process key for the bacterium's survival. In an effort to better understand the particular characteristics, which contribute to a successful carbohydrate recognition domain, the mannose-binding sites of six C-type lectins and of three bacterial adhesins were analyzed. One important finding is that the high enthalpic penalties caused by desolvation can only be compensated for by the number and quality of hydrogen bonds formed by each of the polar hydroxy groups engaged in the binding process. In addition, since mammalian mannose-binding sites are in general flat and solvent exposed, the half-lives of carbohydrate-lectin complexes are rather short since water molecules can easily access and displace the ligand from the binding site. In contrast, the bacterial lectin FimH benefits from a deep mannose-binding site, leading to a substantial improvement in the off-rate. Together with both a catch-bond mechanism (i.e., improvement of affinity under shear stress) and multivalency, two methods commonly utilized by pathogens, the affinity of the carbohydrate-FimH interaction can be further improved. Including those just described, the various approaches explored by nature to optimize selectivity and affinity of carbohydrate-lectin interactions offer interesting therapeutic perspectives for the development of carbohydrate-based drugs.
Collapse
Affiliation(s)
- Christoph P Sager
- Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, CH-4056 Basel, Switzerland
| | - Deniz Eriş
- Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, CH-4056 Basel, Switzerland
| | - Martin Smieško
- Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, CH-4056 Basel, Switzerland
| | - Rachel Hevey
- Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, CH-4056 Basel, Switzerland
| | - Beat Ernst
- Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, CH-4056 Basel, Switzerland
| |
Collapse
|
10
|
Unno H, Matsuyama K, Tsuji Y, Goda S, Hiemori K, Tateno H, Hirabayashi J, Hatakeyama T. Identification, Characterization, and X-ray Crystallographic Analysis of a Novel Type of Mannose-Specific Lectin CGL1 from the Pacific Oyster Crassostrea gigas. Sci Rep 2016; 6:29135. [PMID: 27377186 PMCID: PMC4932603 DOI: 10.1038/srep29135] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 06/15/2016] [Indexed: 12/31/2022] Open
Abstract
A novel mannose-specific lectin, named CGL1 (15.5 kDa), was isolated from the oyster Crassostrea gigas. Characterization of CGL1 involved isothermal titration calorimetry (ITC), glycoconjugate microarray, and frontal affinity chromatography (FAC). This analysis revealed that CGL1 has strict specificity for the mannose monomer and for high mannose-type N-glycans (HMTGs). Primary structure of CGL1 did not show any homology with known lectins but did show homology with proteins of the natterin family. Crystal structure of the CGL1 revealed a unique homodimer in which each protomer was composed of 2 domains related by a pseudo two-fold axis. Complex structures of CGL1 with mannose molecules showed that residues have 8 hydrogen bond interactions with O1, O2, O3, O4, and O5 hydroxyl groups of mannose. The complex interactions that are not observed with other mannose-binding lectins revealed the structural basis for the strict specificity for mannose. These characteristics of CGL1 may be helpful as a research tool and for clinical applications.
Collapse
Affiliation(s)
- Hideaki Unno
- Graduate School of Engineering, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Kazuki Matsuyama
- Graduate School of Engineering, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Yoshiteru Tsuji
- Graduate School of Engineering, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Shuichiro Goda
- Graduate School of Engineering, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Keiko Hiemori
- Research Center for Medical Glycosciences, National Institute of Advanced Industrial Science and Technology, Tsukuba 305-8568, Japan
| | - Hiroaki Tateno
- Research Center for Medical Glycosciences, National Institute of Advanced Industrial Science and Technology, Tsukuba 305-8568, Japan
| | - Jun Hirabayashi
- Research Center for Medical Glycosciences, National Institute of Advanced Industrial Science and Technology, Tsukuba 305-8568, Japan
| | - Tomomitsu Hatakeyama
- Graduate School of Engineering, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| |
Collapse
|
11
|
Sartim MA, Sampaio SV. Snake venom galactoside-binding lectins: a structural and functional overview. J Venom Anim Toxins Incl Trop Dis 2015; 21:35. [PMID: 26413085 PMCID: PMC4583214 DOI: 10.1186/s40409-015-0038-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 09/16/2015] [Indexed: 12/13/2022] Open
Abstract
Snake venom galactoside-binding lectins (SVgalLs) comprise a class of toxins capable of recognizing and interacting with terminal galactoside residues of glycans. In the past 35 years, since the first report on the purification of thrombolectin from Bothrops atrox snake venom, several SVgalLs from Viperidae and Elapidae snake families have been described, as has progressive improvement in the investigation of structural/functional aspects of these lectins. Moreover, the advances of techniques applied in protein-carbohydrate recognition have provided important approaches in order to screen for possible biological targets. The present review describes the efforts over the past 35 years to elucidate SVgalLs, highlighting their structure and carbohydrate recognition function involved in envenomation pathophysiology and potential biomedical applications.
Collapse
Affiliation(s)
- Marco A. Sartim
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo (USP), Avenida do Café, s/n, Ribeirão Preto, SP CEP 14040-903 Brazil
| | - Suely V. Sampaio
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo (USP), Avenida do Café, s/n, Ribeirão Preto, SP CEP 14040-903 Brazil
| |
Collapse
|
12
|
Jégouzo SAF, Feinberg H, Dungarwalla T, Drickamer K, Weis WI, Taylor ME. A Novel Mechanism for Binding of Galactose-terminated Glycans by the C-type Carbohydrate Recognition Domain in Blood Dendritic Cell Antigen 2. J Biol Chem 2015; 290:16759-71. [PMID: 25995448 PMCID: PMC4505424 DOI: 10.1074/jbc.m115.660613] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Indexed: 11/06/2022] Open
Abstract
Blood dendritic cell antigen 2 (BDCA-2; also designated CLEC4C or CD303) is uniquely expressed on plasmacytoid dendritic cells. Stimulation of BDCA-2 with antibodies leads to an anti-inflammatory response in these cells, but the natural ligands for the receptor are not known. The C-type carbohydrate recognition domain in the extracellular portion of BDCA-2 contains a signature motif typical of C-type animal lectins that bind mannose, glucose, or GlcNAc, yet it has been reported that BDCA-2 binds selectively to galactose-terminated, biantennary N-linked glycans. A combination of glycan array analysis and binding competition studies with monosaccharides and natural and synthetic oligosaccharides have been used to define the binding epitope for BDCA-2 as the trisaccharide Galβ1-3/4GlcNAcβ1-2Man. X-ray crystallography and mutagenesis studies show that mannose is ligated to the conserved Ca(2+) in the primary binding site that is characteristic of C-type carbohydrate recognition domains, and the GlcNAc and galactose residues make additional interactions in a wide, shallow groove adjacent to the primary binding site. As predicted from these studies, BDCA-2 binds to IgG, which bears galactose-terminated glycans that are not commonly found attached to other serum glycoproteins. Thus, BDCA-2 has the potential to serve as a previously unrecognized immunoglobulin Fc receptor.
Collapse
Affiliation(s)
- Sabine A F Jégouzo
- the Department of Life Sciences, Imperial College, London SW7 2AZ, United Kingdom
| | - Hadar Feinberg
- From the Departments of Structural Biology and Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California 94305 and
| | - Tabassum Dungarwalla
- the Department of Life Sciences, Imperial College, London SW7 2AZ, United Kingdom
| | - Kurt Drickamer
- the Department of Life Sciences, Imperial College, London SW7 2AZ, United Kingdom
| | - William I Weis
- From the Departments of Structural Biology and Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California 94305 and
| | - Maureen E Taylor
- the Department of Life Sciences, Imperial College, London SW7 2AZ, United Kingdom
| |
Collapse
|
13
|
André S, O'Sullivan S, Koller C, Murphy PV, Gabius HJ. Bi- to tetravalent glycoclusters presenting GlcNAc/GalNAc as inhibitors: from plant agglutinins to human macrophage galactose-type lectin (CD301) and galectins. Org Biomol Chem 2015; 13:4190-203. [PMID: 25721929 DOI: 10.1039/c5ob00048c] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Emerging insights into the functional spectrum of tissue lectins leads to identification of new targets for the custom-made design of potent inhibitors, providing a challenge for synthetic chemistry. The affinity and selectivity of a carbohydrate ligand for a lectin may immensely be increased by a number of approaches, which includes varying geometrical or topological features. This perspective leads to the design and synthesis of glycoclusters and their testing using assays of physiological relevance. Herein, hydroquinone, resorcinol, benzene-1,3,5-triol and tetra(4-hydroxyphenyl)ethene have been employed as scaffolds and propargyl derivatives obtained. The triazole-containing linker to the α/β-O/S-glycosides of GlcNAc/GalNAc presented on these scaffolds was generated by copper-catalysed azide-alkyne cycloaddition. This strategy was used to give a panel of nine glycoclusters with bi-, tri- and tetravalency. Maintained activity for lectin binding after conjugation was ascertained for both sugars in solid-phase assays with the plant agglutinins WGA (GlcNAc) and DBA (GalNAc). Absence of cross-reactivity excluded any carbohydrate-independent reactivity of the bivalent compounds, allowing us to proceed to further testing with a biomedically relevant lectin specific for GalNAc. Macrophage galactose(-binding C)-type lectin, involved in immune defence by dendritic cells and in virus uptake, was produced as a soluble protein without/with its α-helical coiled-coil stalk region. Binding to ligands presented on a matrix and on cell surfaces was highly susceptible to the presence of the tetravalent inhibitor derived from the tetraphenylethene-containing scaffold, and presentation of GalNAc with an α-thioglycosidic linkage proved favorable. Cross-reactivity of this glycocluster to human galectins-3 and -4, which interact with Tn-antigen-presenting mucins, was rather small. Evidently, the valency and spatial display of α-GalNAc residues is a key factor to design potent and selective inhibitors for this lectin.
Collapse
Affiliation(s)
- Sabine André
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Veterinärstr. 13, 80539 Munich, Germany
| | | | | | | | | |
Collapse
|
14
|
Mori K, Ohtani K, Jang S, Kim Y, Hwang I, Roy N, Matsuda Y, Suzuki Y, Wakamiya N. Scavenger receptor CL-P1 mainly utilizes a collagen-like domain to uptake microbes and modified LDL. Biochim Biophys Acta Gen Subj 2014; 1840:3345-56. [DOI: 10.1016/j.bbagen.2014.08.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 08/27/2014] [Accepted: 08/28/2014] [Indexed: 12/30/2022]
|
15
|
Venkatakrishnan V, Thaysen-Andersen M, Chen SCA, Nevalainen H, Packer NH. Cystic fibrosis and bacterial colonization define the sputum N-glycosylation phenotype. Glycobiology 2014; 25:88-100. [DOI: 10.1093/glycob/cwu092] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
16
|
Pederson K, Mitchell DA, Prestegard JH. Structural characterization of the DC-SIGN-Lewis(X) complex. Biochemistry 2014; 53:5700-9. [PMID: 25121780 PMCID: PMC4159204 DOI: 10.1021/bi5005014] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Dendritic cell-specific intracellular adhesion molecule-3-grabbing nonintegrin (DC-SIGN) is a C-type lectin highly expressed on the surface of antigen-presenting dendritic cells. DC-SIGN mediates interactions among dendritic cells, pathogens, and a variety of epithelia, myeloid cells, and endothelia by binding to high mannose residues on pathogenic invaders or fucosylated residues on the membranes of other immune cells. Although these interactions are normally beneficial, they can also contribute to disease. The structural characterization of binding geometries is therefore of interest as a basis for the construction of mimetics that can mediate the effects of abnormal immune response. Here, we report the structural characteristics of the interaction of the DC-SIGN carbohydrate recognition domain (CRD) with a common fucosylated entity, the Lewis(X) trisaccharide (Le(X)), using NMR methods. Titration of the monomeric DC-SIGN CRD with Le(X) monitored by 2D NMR revealed significant perturbations of DC-SIGN cross-peak positions in (1)H-(15)N heteronuclear single quantum coherence (HSQC) spectra and identified residues near the binding site. Additionally, saturation transfer difference (STD) and transferred nuclear Overhauser effect (trNOE) NMR experiments, using a tetrameric form of DC-SIGN, identified binding epitopes and bound conformations of the Le(X) ligand. The restraints derived from these multiple experiments were used to generate models for the binding of Le(X) to the DC-SIGN CRD. Ranking of the models based on the fit of model-based simulations of the trNOE data and STD buildup curves suggested conformations distinct from those seen in previous crystal structures. The new conformations offer insight into how differences between binding of Lewis(X) and mannose-terminated saccharides may be propagated.
Collapse
Affiliation(s)
- Kari Pederson
- Complex Carbohydrate Research Center, University of Georgia , Athens, Georgia 30602, United States
| | | | | |
Collapse
|
17
|
Nonaka M, Imaeda H, Matsumoto S, Yong Ma B, Kawasaki N, Mekata E, Andoh A, Saito Y, Tani T, Fujiyama Y, Kawasaki T. Mannan-binding protein, a C-type serum lectin, recognizes primary colorectal carcinomas through tumor-associated Lewis glycans. THE JOURNAL OF IMMUNOLOGY 2014; 192:1294-301. [PMID: 24391218 DOI: 10.4049/jimmunol.1203023] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Mannan (mannose)-binding protein (MBP) is a C-type serum lectin that plays a key role in innate immunity. MBP forms large multimers (200-600 kDa) and exhibits broad specificity for mannose, N-acetylglucosamine, and fucose. MBP exhibits high affinity for unique oligosaccharides that have been isolated from human colorectal carcinoma (SW1116) cells and characterized as highly fucosylated high m.w. type 1 Lewis glycans. In this study, we first demonstrated that MBP recognizes human primary colorectal carcinoma tissues through tumor-associated MBP ligands. We performed fluorescence-based histochemistry of MBP in human colorectal carcinoma tissues and showed that MBP clearly stained cancer mucosae in a Ca(2+)-dependent manner. Coincubation with plant (Aleuria aurantia) lectin, but not Con A, blocked MBP staining, indicating that fucose, rather than mannose, is involved in this interaction. The expression of MBP ligands was detected in 127 of 330 patients (38.5%), whereas, most significantly, there was no expression in 69 nonmalignant tissues. The MBP-staining pattern in cancer mucosae significantly overlapped with that of Lewis b [Fucα1-2Galβ1-3(Fucα1-4)GlcNAc] staining, but the Lewis b staining in normal tissues was not associated with MBP staining. In addition, the MBP staining correlated inversely with the expression of CA19-9 Ag, and MBP stained 11 of 25 (44%) CA19-9 (sialyl Lewis a [NeuAc(α2-3)Galβ1-3(Fucα1-4)GlcNAc])(-) colorectal carcinoma tissues. We found a favorable prognosis in patients with MBP ligand(+) tumors. These results suggest that selective recognition of cancer cells by endogenous MBP seems to be associated with an antitumor effect and that tissue staining with MBP in combination with CA19-9 may serve as a novel indicator of colorectal carcinoma tissues.
Collapse
Affiliation(s)
- Motohiro Nonaka
- Research Center for Glycobiotechnology, Ritsumeikan University, Shiga 525-8577, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Khier S, Tolchinsky S, Lederkremer GZ, Shaanan B. Modeling the Combining Site of the Human Asialoglycoprotein Receptor. Isr J Chem 2013. [DOI: 10.1002/ijch.199400023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
19
|
Henriksen ML, Brandt J, Iyer SSC, Thielens NM, Hansen S. Characterization of the interaction between collectin 11 (CL-11, CL-K1) and nucleic acids. Mol Immunol 2013; 56:757-67. [PMID: 23954398 DOI: 10.1016/j.molimm.2013.07.011] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 07/15/2013] [Accepted: 07/17/2013] [Indexed: 01/22/2023]
Abstract
Collectins are a group of innate immune proteins that contain collagen-like regions and globular C-type lectin domains. Via the lectin domains, collectins recognize and bind to various microbial carbohydrate patterns. Collectin 11 (CL-11) exists in complex with the complement activating MBL-associated proteases, MASPs. In the present work, we characterize the interaction between CL-11 and DNA, and show that CL-11 binds to DNA from a variety of origins in a calcium-independent manner. CL-11 binds also to apoptotic cells presenting extracellular DNA on their surface. The binding to DNA is sensitive to changes in ionic strength and pH. Competition studies show that CL-11 binds to nucleic acids and carbohydrates via separate binding-sites and oligomericity appears crucial for binding activity. Combined interaction with DNA and mannan strongly increases binding avidity. By surface plasmon resonance we estimate the dissociation constant for the binding between CL-11 and double stranded DNA oligonucleotides to K(D)=9-20 nM. In an in vitro assay we find that CL-11 binds to DNA coated surfaces, which leads to C4b deposition via MASP-2. We propose that CL-11, e.g. via complement, may play a role in response to particles and surfaces presenting extracellular DNA, such as apopototic cells, neutrophil extracellular traps and biofilms.
Collapse
Affiliation(s)
- Maiken L Henriksen
- Department of Cancer & Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | | | | | | | | |
Collapse
|
20
|
Handké N, Lahaye V, Bertin D, Delair T, Verrier B, Gigmes D, Trimaille T. Elaboration of Glycopolymer-Functionalized Micelles from an N
-Vinylpyrrolidone/Lactide-Based Reactive Copolymer Platform. Macromol Biosci 2013; 13:1213-20. [DOI: 10.1002/mabi.201300102] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Revised: 04/08/2013] [Indexed: 12/27/2022]
Affiliation(s)
- Nadège Handké
- Aix-Marseille Université, CNRS, UMR 7273, Institut de Chimie Radicalaire, Avenue Escadrille Normandie-Niemen; 13397 Marseille Cedex 20 France
| | - Vincent Lahaye
- Université Lyon 1, Univ Lyon, CNRS, UMR 5305; Biologie Tissulaire et Ingénierie Thérapeutique, IBCP, 7 passage du Vercors; 69367 Lyon Cedex 07 France
| | - Denis Bertin
- Aix-Marseille Université, CNRS, UMR 7273, Institut de Chimie Radicalaire, Avenue Escadrille Normandie-Niemen; 13397 Marseille Cedex 20 France
| | - Thierry Delair
- Université Lyon 1, Univ Lyon, CNRS, UMR 5223; Ingénierie des Matériaux Polymères; 15 boulevard Latarjet, 69622 Villeurbanne France
| | - Bernard Verrier
- Université Lyon 1, Univ Lyon, CNRS, UMR 5305; Biologie Tissulaire et Ingénierie Thérapeutique, IBCP, 7 passage du Vercors; 69367 Lyon Cedex 07 France
| | - Didier Gigmes
- Aix-Marseille Université, CNRS, UMR 7273, Institut de Chimie Radicalaire, Avenue Escadrille Normandie-Niemen; 13397 Marseille Cedex 20 France
| | - Thomas Trimaille
- Aix-Marseille Université, CNRS, UMR 7273, Institut de Chimie Radicalaire, Avenue Escadrille Normandie-Niemen; 13397 Marseille Cedex 20 France
| |
Collapse
|
21
|
Dennis JW, Brewer CF. Density-dependent lectin-glycan interactions as a paradigm for conditional regulation by posttranslational modifications. Mol Cell Proteomics 2013; 12:913-20. [PMID: 23378517 DOI: 10.1074/mcp.r112.026989] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Mice with null mutations in specific Golgi glycosyltransferases show evidence of glycan compensation where missing carbohydrate epitopes are found on biosynthetically related structures. Repetitive saccharide sequences within the larger glycan structures are functional epitopes recognized by animal lectins. These studies provide the first in vivo support for the existence of a feedback system that maintains and regulates glycan epitope density in cells. Receptor regulation by lectin-glycan interactions and the Golgi provides a mechanism for the adaptation of cell surface receptors and solute transporters in response to environmental cues and intracellular signaling. We suggest that other posttranslational modification systems might have similar conditional features regulated by density-dependent ligand-epitope interactions.
Collapse
Affiliation(s)
- James W Dennis
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, and Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
22
|
Takahashi K, Kikuchi K, Uchida Y, Kanai-Kitayama S, Suzuki R, Sato R, Toma K, Geshi M, Akagi S, Nakano M, Yonezawa N. Binding of Sperm to the Zona Pellucida Mediated by Sperm Carbohydrate-Binding Proteins is not Species-Specific in Vitro between Pigs and Cattle. Biomolecules 2013; 3:85-107. [PMID: 24970158 PMCID: PMC4030887 DOI: 10.3390/biom3010085] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 01/07/2013] [Accepted: 01/16/2013] [Indexed: 12/23/2022] Open
Abstract
Carbohydrates are candidates for the basis of species-selective interaction of gametes during mammalian fertilization. In this study, we sought to clarify the roles of sugar residues in the species-selective, sperm-oocyte interaction in pigs and cattle. Acrosome-intact porcine and bovine sperm exhibited their strongest binding affinities for β-Gal and α-Man residues, respectively. Porcine-sperm specificity changed from β-Gal to α-Man after the acrosome reaction, while bovine-sperm specificity did not. Binding of acrosome-intact and acrosome-reacted sperm decreased after trypsinization, indicating that the carbohydrate-binding components are proteins. While immature oocytes bound homologous sperm preferentially to heterologous sperm, oocytes matured in vitro bound similar numbers of homologous and heterologous sperm. Lectin staining revealed the aggregation of α-Man residues on the outer surface of the porcine zona during maturation. In both species, zona-free, mature oocytes bound homologous sperm preferentially to heterologous sperm. The lectin-staining patterns of the zona pellucida and zona-free oocytes coincided with the carbohydrate-binding specificities of acrosome-intact and acrosome-reacted sperm, respectively, supporting the involvement of carbohydrates in gamete recognition in pigs and cattle. These results also indicate that sperm-zona pellucida and sperm-oolemma bindings are not strictly species-specific in pigs and cattle, and further suggest that sperm penetration into the zona and/or fusion with oolemma may be species-specific between pigs and cattle.
Collapse
Affiliation(s)
- Kazuya Takahashi
- Graduate School of Science, Chiba University, Chiba 263-8522, Japan.
| | - Kazuhiro Kikuchi
- National Institute of Agrobiological Sciences, Ibaraki 305-8602, Japan.
| | - Yasuomi Uchida
- Graduate School of Science, Chiba University, Chiba 263-8522, Japan.
| | | | - Reiichiro Suzuki
- Graduate School of Science, Chiba University, Chiba 263-8522, Japan.
| | - Reiko Sato
- The Noguchi Institute, Tokyo 173-0003, Japan.
| | | | - Masaya Geshi
- National Institute of Livestock and Grassland Science, Ibaraki 305-0901, Japan.
| | - Satoshi Akagi
- National Institute of Livestock and Grassland Science, Ibaraki 305-0901, Japan.
| | - Minoru Nakano
- Graduate School of Science, Chiba University, Chiba 263-8522, Japan.
| | - Naoto Yonezawa
- Graduate School of Science, Chiba University, Chiba 263-8522, Japan.
| |
Collapse
|
23
|
Boldt ABW, Goeldner I, de Messias-Reason IJT. Relevance of the lectin pathway of complement in rheumatic diseases. Adv Clin Chem 2012; 56:105-53. [PMID: 22397030 DOI: 10.1016/b978-0-12-394317-0.00012-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Due to its importance both in the clearance of pathogens that contribute as rheumatic etiological agents and in the disposal of apoptotic bodies and potential autoimmune initiators, deficiencies of the components of the lectin pathway of complement have been found to increase susceptibility and modulate the severity of most rheumatic disorders. This chapter introduces the general aspects of the structure, function, and genetics of lectin pathway components and summarizes current knowledge of the field regarding rheumatic diseases predisposition and modulation.
Collapse
Affiliation(s)
- Angelica B W Boldt
- Molecular Immunopathology Laboratory, Department of Medical Pathology, Federal University of Paraná, Curitiba, Brazil
| | | | | |
Collapse
|
24
|
Bottini M, Rosato N, Bottini N. PEG-Modified Carbon Nanotubes in Biomedicine: Current Status and Challenges Ahead. Biomacromolecules 2011; 12:3381-93. [PMID: 21916410 DOI: 10.1021/bm201020h] [Citation(s) in RCA: 166] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Massimo Bottini
- Sanford Burnham Medical Research Institute, 10901 North Torrey Pines
Road, La Jolla, California 92037, United States
- Department of Experimental Medicine
and Biochemical Sciences, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Nicola Rosato
- Department of Experimental Medicine
and Biochemical Sciences, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
- IRCCS-Neuromed Institute, Via Atinense 18, 86077 Pozzilli, Isernia, Italy
| | - Nunzio Bottini
- La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla,
California 92037, United States
| |
Collapse
|
25
|
Cerrada ML, Ruiz C, Sánchez-Chaves M, Fernández-García M. Rheological behavior of aminosaccharide-based glycopolymers obtained from ethylene-vinyl alcohol copolymers. Polym J 2010. [DOI: 10.1038/pj.2010.128] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
26
|
Lee RT, Hsu TL, Huang SK, Hsieh SL, Wong CH, Lee YC. Survey of immune-related, mannose/fucose-binding C-type lectin receptors reveals widely divergent sugar-binding specificities. Glycobiology 2010; 21:512-20. [PMID: 21112966 DOI: 10.1093/glycob/cwq193] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
C-type lectins (CTLs) are proteins that contain one or more carbohydrate-recognition domains (CRDs) that require calcium for sugar binding and share high degree of sequence homology and tertiary structure. CTLs whose CRD contain EPN (Glu-Pro-Asn) tripeptide motifs have potential to bind mannose (Man), N-acetylglucosamine (GlcNAc), glucose (Glc) and l-fucose (Fuc), whereas those with QPD (Glu-Pro-Asp) tripeptide motifs bind galactose (Gal) and N-acetylgalactosamine (GalNAc). We report here for the first time a direct comparison of monosaccharide (and some di- and trisaccharides)-binding characteristics of 11 EPX-containing (X = N, S or D) immune-related CTLs using a competition assay and an enzyme-linked immunosorbent assay, and neoglycoproteins as ligand. The EPX CTLs studied are DC-SIGN, L-SIGN, mSIGNR1, human and mouse mannose receptors, Langerin, BDCA-2, DCIR, dectin-2, MCL and MINCLE. We found that: (1) they all bound Man and Fuc; (2) binding of Glc and GlcNAc varied considerably among these lectins, but was always less than Man and Fuc; (3) in general, Gal and GalNAc were not bound. However, dectin-2, DCIR and MINCLE showed ability to bind Gal/GalNAc; (4) DC-SIGN, L-SIGN, mSIGNR1 and Langerin showed enhanced binding of Manα2Man over Man, whereas all others showed no enhancement; (5) DC-SIGN bound Le(x) trisaccharide structure, which has terminal Gal and Fuc residues, more avidly than Fuc, whereas L-SIGN, mSIGNR1, DCIR and MINCLE bound Le(x) less avidly than Fuc. BDCA-2, dectin-2, Langerin, MCL and mannose receptor did not bind Le(x) at all.
Collapse
Affiliation(s)
- Reiko T Lee
- Department of Biology, T he Johns Hopkins University, Baltimore, MD, USA
| | | | | | | | | | | |
Collapse
|
27
|
Dam TK, Brewer CF. Multivalent lectin-carbohydrate interactions energetics and mechanisms of binding. Adv Carbohydr Chem Biochem 2010; 63:139-64. [PMID: 20381706 DOI: 10.1016/s0065-2318(10)63005-3] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The biological signaling properties of lectins, which are carbohydrate-binding proteins, are due to their ability to bind and cross-link multivalent glycoprotein receptors on the surface of normal and transformed cells. While the crosslinking properties of lectins with multivalent carbohydrates and glycoproteins are relatively well understood, the mechanisms of binding of lectins to multivalent glycoconjugates are less well understood. Recently, the thermodynamics of binding of lectins to synthetic clustered glycosides, a multivalent globular glycoprotein, and to linear glycoproteins (mucins) have been described. The results are consistent with a dynamic binding mechanism in which lectins bind and jump from carbohydrate to carbohydrate epitope in these molecules. Importantly, the mechanism of binding of lectins to mucins is similar to that for a variety of protein ligands binding to DNA. Recent analysis also shows that high-affinity lectin-mucin crosslinking interactions are driven by favorable entropy of binding that is associated with the bind and jump mechanism. The results suggest that the binding of ligands to biopolymers, in general, may involve a common mechanism that involves enhanced entropic effects which facilitate binding and subsequent complex formation including enzymology.
Collapse
Affiliation(s)
- Tarun K Dam
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, 10461, USA
| | | |
Collapse
|
28
|
Ilyas R, Wallis R, Soilleux EJ, Townsend P, Zehnder D, Tan BK, Sim RB, Lehnert H, Randeva HS, Mitchell DA. High glucose disrupts oligosaccharide recognition function via competitive inhibition: a potential mechanism for immune dysregulation in diabetes mellitus. Immunobiology 2010; 216:126-31. [PMID: 20674073 DOI: 10.1016/j.imbio.2010.06.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Revised: 06/08/2010] [Accepted: 06/08/2010] [Indexed: 12/11/2022]
Abstract
Diabetic complications include infection and cardiovascular disease. Within the immune system, host-pathogen and regulatory host-host interactions operate through binding of oligosaccharides by C-type lectin. A number of C-type lectins recognise oligosaccharides rich in mannose and fucose - sugars with similar structures to glucose. This raises the possibility that high glucose conditions in diabetes affect protein-oligosaccharide interactions via competitive inhibition. Mannose-binding lectin, soluble DC-SIGN and DC-SIGNR, and surfactant protein D, were tested for carbohydrate binding in the presence of glucose concentrations typical of diabetes, via surface plasmon resonance and affinity chromatography. Complement activation assays were performed in high glucose. DC-SIGN and DC-SIGNR expression in adipose tissues was examined via immunohistochemistry. High glucose inhibited C-type lectin binding to high-mannose glycoprotein and binding of DC-SIGN to fucosylated ligand (blood group B) was abrogated in high glucose. Complement activation via the lectin pathway was inhibited in high glucose and also in high trehalose - a nonreducing sugar with glucoside stereochemistry. DC-SIGN staining was seen on cells with DC morphology within omental and subcutaneous adipose tissues. We conclude that high glucose disrupts C-type lectin function, potentially illuminating new perspectives on susceptibility to infectious and inflammatory disease in diabetes. Mechanisms involve competitive inhibition of carbohydrate binding within sets of defined proteins, in contrast to broadly indiscriminate, irreversible glycation of proteins.
Collapse
Affiliation(s)
- Rebecca Ilyas
- Clinical Sciences Research Institute, University of Warwick, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Shankar SP, Chen II, Keselowsky BG, García AJ, Babensee JE. Profiles of carbohydrate ligands associated with adsorbed proteins on self-assembled monolayers of defined chemistries. J Biomed Mater Res A 2010; 92:1329-42. [PMID: 19353560 DOI: 10.1002/jbm.a.32457] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Conserved protein-carbohydrate-lipid pathogen-associated molecular patterns (PAMPs) interact with cells of the innate immune system to mediate antigen recognition and internalization and activation of immune cells. We examined if analogous "biomaterial-associated molecular patterns" composed of proteins, specifically their carbohydrate modifications, existed on biomaterials, which can play a role in mediating the innate immune response to biomaterials. To probe for these carbohydrates in the adsorbed protein layer, as directed by the underlying biomaterial chemistry, self-assembled monolayers (SAMs) presenting -CH(3), -OH, -COOH, or -NH(2) were preincubated with serum/plasma, and the presence of carbohydrate ligands of C-type lectin receptors (CLRs) was investigated using lectin probes in an enzyme-linked lectin assay (ELLA). Presentation of CLR ligands was detected on control tissue culture polystyrene (TCPS). Absorbances of mannose or N-acetylglucosamine increased with decreasing incubating serum concentration, whereas absorbances of sialylated epitopes or fucose remained unchanged. Absorbances of alpha-galactose or N-acetylgalactosamine decreased with decreasing incubating serum concentration; beta-galactose was undetectable. Among SAM endgroups, preincubation with 10% serum resulted in differential presentation of CLR ligands: higher alpha-galactose on COOH SAMs than NH(2) or CH(3) SAMs, highest complex mannose on NH(2) SAMs, and higher complex mannose on OH SAMs than CH(3) SAMs. Least sialylated groups were detected on CH(3) SAMs. In summary, biomaterial chemistry may regulate protein adsorption and hence unique presentation of associated carbohydrates. The ultimate goal is to identify the effects of protein glycosylations associated with biomaterials in stimulating innate immune responses.
Collapse
Affiliation(s)
- Sucharita P Shankar
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, USA
| | | | | | | | | |
Collapse
|
30
|
|
31
|
Kawasaki N, Kawasaki T. Recognition of Endogenous Ligands by C-Type Lectins:Interaction of Serum Mannan-binding Protein with Tumor-associated Oligosaccharide Epitopes. TRENDS GLYCOSCI GLYC 2010. [DOI: 10.4052/tigg.22.141] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
32
|
Dam TK, Brewer CF. Lectins as pattern recognition molecules: the effects of epitope density in innate immunity. Glycobiology 2009; 20:270-9. [PMID: 19939826 DOI: 10.1093/glycob/cwp186] [Citation(s) in RCA: 196] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The innate immune response of multicellular organisms is initiated by the binding of soluble and membrane-bound host molecules including lectins to the surface of pathogenic organisms. Until recently, it was believed that the epitopes recognized by host molecules were uniquely associated with the pathogenic organisms. Hence, the term pattern recognition receptors (PRRs) was used to describe their binding specificities. However, with an expanding number of lectin classes including C-type lectins, siglecs, and galectins recognized as PRRs, it is apparent that many of the glycan epitopes recognized on foreign pathogens are present in the host and involved in cellular functions. Hence, the molecular basis for pattern recognition by lectins of carbohydrate epitopes on pathogens is in question. A number of studies indicate that the density and number of glycan epitopes in multivalent carbohydrates and glycoprotein receptors determine the affinity of lectins and their effector functions. This paper reviews lectins that are involved in innate immunity, mechanisms of enhanced affinity and cross-linking of lectins with density-dependent glycan epitopes, density-dependent recognition of glycan receptors by lectins in host systems and lectin-glycan interactions in foreign pathogens. Evidence indicates that lectin pattern recognition in innate immunity is part of a general mechanism of density-dependent glycan recognition. This leads to a new definition of lectin receptor in biological systems, which considers the density and number of glycan epitopes on the surface of cells and not just the affinity of single epitopes.
Collapse
Affiliation(s)
- Tarun K Dam
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | |
Collapse
|
33
|
Cerrada M, Ruiz C, Sánchez-Chaves M, Fernández-García M. Molecular recognition capability and rheological behavior in solution of novel lactone-based glycopolymers. Eur Polym J 2009. [DOI: 10.1016/j.eurpolymj.2009.07.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
34
|
Binding-site geometry and flexibility in DC-SIGN demonstrated with surface force measurements. Proc Natl Acad Sci U S A 2009; 106:11524-9. [PMID: 19553201 DOI: 10.1073/pnas.0901783106] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The dendritic cell receptor DC-SIGN mediates pathogen recognition by binding to glycans characteristic of pathogen surfaces, including those found on HIV. Clustering of carbohydrate-binding sites in the receptor tetramer is believed to be critical for targeting of pathogen glycans, but the arrangement of these sites remains poorly understood. Surface force measurements between apposed lipid bilayers displaying the extracellular domain of DC-SIGN and a neoglycolipid bearing an oligosaccharide ligand provide evidence that the receptor is in an extended conformation and that glycan docking is associated with a conformational change that repositions the carbohydrate-recognition domains during ligand binding. The results further show that the lateral mobility of membrane-bound ligands enhances the engagement of multiple carbohydrate-recognition domains in the receptor oligomer with appropriately spaced ligands. These studies highlight differences between pathogen targeting by DC-SIGN and receptors in which binding sites at fixed spacing bind to simple molecular patterns.
Collapse
|
35
|
Hamad I, Hunter A, Szebeni J, Moghimi S. Poly(ethylene glycol)s generate complement activation products in human serum through increased alternative pathway turnover and a MASP-2-dependent process. Mol Immunol 2008; 46:225-32. [DOI: 10.1016/j.molimm.2008.08.276] [Citation(s) in RCA: 162] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2008] [Revised: 08/26/2008] [Accepted: 08/27/2008] [Indexed: 10/21/2022]
|
36
|
Ruiz C, Sánchez‐Chaves M, Cerrada ML, Fernández‐García M. Glycopolymers resulting from ethylene–vinyl alcohol copolymers: Synthetic approach, characterization, and interactions with lectins. ACTA ACUST UNITED AC 2008. [DOI: 10.1002/pola.23030] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- C. Ruiz
- Instituto de Ciencia y Tecnología de Polímeros (CSIC), C/ Juan de la Cierva 3, 28006‐Madrid, Spain
| | - M. Sánchez‐Chaves
- Instituto de Ciencia y Tecnología de Polímeros (CSIC), C/ Juan de la Cierva 3, 28006‐Madrid, Spain
| | - M. L. Cerrada
- Instituto de Ciencia y Tecnología de Polímeros (CSIC), C/ Juan de la Cierva 3, 28006‐Madrid, Spain
| | - M. Fernández‐García
- Instituto de Ciencia y Tecnología de Polímeros (CSIC), C/ Juan de la Cierva 3, 28006‐Madrid, Spain
| |
Collapse
|
37
|
Dam TK, Brewer CF. Effects of clustered epitopes in multivalent ligand-receptor interactions. Biochemistry 2008; 47:8470-6. [PMID: 18652478 DOI: 10.1021/bi801208b] [Citation(s) in RCA: 151] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Many biological ligands are composed of clustered binding epitopes. However, the effects of clustered epitopes on the affinity of ligand-receptor interactions in many cases are not well understood. Clustered carbohydrate epitopes are present in naturally occurring multivalent carbohydrates and glycoproteins, which are receptors on the surface of cells. Recent studies have provided evidence that the enhanced affinities of lectins, which are carbohydrate binding proteins, for multivalent carbohydrates and glycoproteins are due to internal diffusion of lectin molecules from epitope to epitope in these multivalent ligands before dissociation. Indeed, binding of lectins to mucins, which are large linear glycoproteins, appears to be similar to the internal diffusion mechanism(s) of protein ligands binding to DNA, which have been termed the "bind and slide" or "bind and hop" mechanisms. The observed increasing negative cooperativity and gradient of decreasing microaffinity constants of a lectin binding to multivalent carbohydrates and glycoproteins result in an initial fraction of lectin molecules that bind with very high affinity and dynamic motion. These findings have important implications for the mechanisms of binding of lectins to mucins, and for other ligand-biopolymer interactions and clustered ligand-receptor systems in general.
Collapse
Affiliation(s)
- Tarun K Dam
- Department of Molecular Pharmacology and Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | |
Collapse
|
38
|
Amphiphilk carbohydrates as a tool for molecular recognition in organized systems. ACTA ACUST UNITED AC 2008. [DOI: 10.1007/bfb0119260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
39
|
Lee RT, Lee YC. Carbohydrate ligands of human C-reactive protein: binding of neoglycoproteins containing galactose-6-phosphate and galactose-terminated disaccharide. Glycoconj J 2007; 23:317-27. [PMID: 16897175 DOI: 10.1007/s10719-006-6173-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2005] [Revised: 10/31/2005] [Accepted: 11/11/2005] [Indexed: 12/27/2022]
Abstract
Binding of carbohydrate ligand by human C-reactive protein (CRP), in both native form and structurally deviated form (neoCRP or mCRP), was investigated using galactose-6-phosphate (Gal6P)- and Galbeta3GalNAc-containing bovine serum albumin (BSA) derivatives. To this end, we synthesized glycosides of Gal6P and Galbeta3GalNAc that can potentially generate a terminal aldehyde group. omega-Aldehydo glycosides were then conjugated to BSA via reductive amination. Using these neoglycoproteins, we showed that: (1) Gal6P-BSA and Galbeta3GalNAc-BSA bound to both forms of CRP, the former with or without calcium and the latter only in the absence of calcium; (2) phosphate-containing ligands can be bound with or without calcium, but the binding is much stronger in the presence of calcium than in the absence, underscoring the importance of direct coordination of phosphate to two calcium ions observed in the X-ray structure of phosphorylcholine (PC)-CRP complex; (3) cross-inhibition studies further corroborated the hypothesis that binding sites of PC and sugar are contiguous; (4) while PC-BSA bound to the native CRP over a wide pH range of 4.5 to 9, all the carbohydrate ligands and protamine-BSA (poly-cation-based ligand) exhibited optimal binding at around pH 6 to 6.5; and (5) ligand-binding conformation of mCRP appears to be more fragile than that of the native CRP in the acidic media (pH < 6).
Collapse
Affiliation(s)
- Reiko T Lee
- Department of Biology, The Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA.
| | | |
Collapse
|
40
|
Park KH, Na K, Lee YS, Chang WK, Park JK, Akaike T, Kim DK. Effects of mannosylated glycopolymers on specific interaction to bone marrow hematopoietic and progenitor cells derived from murine species. J Biomed Mater Res A 2007; 82:281-7. [PMID: 17274028 DOI: 10.1002/jbm.a.31137] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Poly[N-pvinylbenzyl-O-D-galactopyranosyl-(1-4)-D-glucoamide], poly[N-pvinylbenzyl-O-D-glucopyranosyl-(1-4)-D-glucoamide], and poly[N-p-vinylbenzyl-O-mannopyranosyl-(1-4)-D-gluconamide] (referred to as PVLA, PVMA, and PV-Man) are polystyrene derivatives that contain galactose, glucose, and mannose moieties, which interact with hematopoietic cells (HCs). To clarify the specific interaction between the glucopolymers and hematopoietic cells, glycopolymers labeled with fluorescent isothiocyanate (FITC) were used to follow the specific interaction, which was visualized by confocal laser microscopy. We found that PV-Man binds strongly to HCs, probably because of a specific interaction mediated by specific receptors present on the cell membrane, while some cytotoxicity when was observed when PV-Man interacted with the cell membrane. The fluorescence intensity between PV-Man and HCs was up to four-fold (0.14 +/- 0.04) that of PVMA and PVLA with hematopoietic HCs (0.033 +/- 0.01). Moreover, cellular fluorescence increased significantly with increasing incubation time and increasing polymer concentration. Using hematopoietic lineage-specific antibodies, cells were stained and analyzed by flow cytometry to confirm which HCs showed specific binding with glycopolymers, especially hematopoietic stem cells and progenitor cells (c-kit+), B-lymphocyte progenitor cells (B220+), monocyte cells (CD11b+), and erythrocytes (Ter119+).
Collapse
Affiliation(s)
- Keun-Hong Park
- College of Medicine, CHA Stem Cell Institute 606-16, Pochon CHA University, Yeoksam 1-dong, Kangnam-gu, Seoul 135-081, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
41
|
Takahashi K, Ezekowitz RAB. The role of the mannose-binding lectin in innate immunity. Clin Infect Dis 2007; 41 Suppl 7:S440-4. [PMID: 16237644 DOI: 10.1086/431987] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
The innate immune system, which includes mannose-binding lectin (MBL), recognizes a broad range of molecular patterns on a broad range of infectious agents and is able to distinguish them from self. MBL is a liver-derived serum protein and is secreted into the serum, where it can activate an immune response before the induction of antigen-specific immunity. Circumstantial evidence in human populations suggests that low serum levels of MBL predispose to infection. To analyze the role of MBL in vivo, we created MBL-null mice and challenged these mice with infection under various conditions. Our results suggest that MBL plays an important role as a first-line host defense against certain infectious agents. In addition, it is likely that MBL is a key regulator of inflammation beyond expected roles in the infection.
Collapse
Affiliation(s)
- Kazue Takahashi
- Department of Pediatrics, Harvard Medical School, Massachusetts General Hospital, Boston, MA 02114, USA.
| | | |
Collapse
|
42
|
Tanio M, Kondo S, Sugio S, Kohno T. Trivalent recognition unit of innate immunity system: crystal structure of trimeric human M-ficolin fibrinogen-like domain. J Biol Chem 2007; 282:3889-95. [PMID: 17148457 DOI: 10.1074/jbc.m608627200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ficolins are a kind of pathogen-recognition molecule in the innate immune systems. To investigate the discrimination mechanism between self and non-self by ficolins, we determined the crystal structure of the human M-ficolin fibrinogen-like domain (FD1), which is the ligand-binding domain, at 1.9A resolution. Although the FD1 monomer shares a common fold with the fibrinogen gamma fragment and tachylectin-5A, the Asp-282-Cys-283 peptide bond, which is the predicted ligand-binding site on the C-terminal P domain, is a normal trans bond, unlike the cases of the other two proteins. The trimeric formation of FD1 results in the separation of the three P domains, and the spatial arrangement of the three predicted ligand-binding sites on the trimer is very similar to that of the trimeric collectin, indicating that such an arrangement is generally required for pathogen-recognition. The ligand binding study of FD1 in solution indicated that the recombinant protein binds to N-acetyl-d-glucosamine and the peptide Gly-Pro-Arg-Pro and suggested that the ligand-binding region exhibits a conformational equilibrium involving cis-trans isomerization of the Asp-282-Cys-283 peptide bond. The crystal structure and the ligand binding study of FD1 provide an insight of the self- and non-self discrimination mechanism by ficolins.
Collapse
Affiliation(s)
- Michikazu Tanio
- Mitsubishi Kagaku Institute of Life Sciences, 11 Minamiooya, Machida, Tokyo 194-8511, Japan
| | | | | | | |
Collapse
|
43
|
Abstract
Collectins, present in plasma and on mucosal surfaces, are humoral molecules of the innate immune system. They were discovered a hundred years ago in 1906 as the first association of an animal lectin with the immune system. They are a family of calcium-dependent lectins that recognize pathogen-associated molecular patterns. They share a similar modular domain architecture consisting of four regions; a cysteine-rich N-terminal domain, a collagen-like region, an alpha-helical neck domain and a C-terminal carbohydrate recognition domain. There have been eight collectins members defined so far, of which, MBL, SP-A and SP-D are the most characterized. Collectins represent the first line of host defense. Upon recognition of the infectious agents, collectins put into action effector mechanisms like direct opsonization, neutralization, agglutination, complement activation and phagocytosis to curb the microbial growth. In addition, they also modulate inflammatory and allergic responses and apoptotic cell clearance. These functions limit infection and subsequently modulate the adaptive immune responses. The role of collectins, their structure, function, characteristics and clinical significance are reviewed in this article.
Collapse
Affiliation(s)
- Garima Gupta
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | | |
Collapse
|
44
|
Podolsky MJ, Lasker A, Flaminio MJBF, Gowda LD, Ezekowitz RAB, Takahashi K. Characterization of an equine mannose-binding lectin and its roles in disease. Biochem Biophys Res Commun 2006; 343:928-36. [PMID: 16574074 DOI: 10.1016/j.bbrc.2006.03.055] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2006] [Accepted: 03/06/2006] [Indexed: 10/24/2022]
Abstract
The mannose-binding lectin (MBL), a pattern recognition serum protein, participates in the innate immune system of mammals as an opsonin. In humans, MBL plays a key role in first-line host defense against infection during the lag period prior to the development of a specific immune response. MBL also activates complement via the lectin pathway that requires a MBL-associated serine protease-2 (MASP-2). Homologues of human MBL (hMBL) have been identified in a variety of mammals, fish, and primitive animals such as ascidians. In this study, we report that equine MBL (eMBL) has properties that are similar to hMBL. In addition, we found low levels of MBL:MASP activity in sick horses compared to healthy horses. These results suggest that eMBL is involved in the immune response of the horse and that low MBL:MASP activity could be used to monitor immune function and clinical outcome.
Collapse
Affiliation(s)
- Michael J Podolsky
- Laboratory of Developmental Immunology, Department of Pediatrics, Harvard Medical School, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA
| | | | | | | | | | | |
Collapse
|
45
|
Møller-Kristensen M, Eddie Ip WK, Shi L, Gowda LD, Hamblin MR, Thiel S, Jensenius JC, Ezekowitz RAB, Takahashi K. Deficiency of mannose-binding lectin greatly increases susceptibility to postburn infection with Pseudomonas aeruginosa. THE JOURNAL OF IMMUNOLOGY 2006; 176:1769-75. [PMID: 16424207 PMCID: PMC3071691 DOI: 10.4049/jimmunol.176.3.1769] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Burn injury disrupts the mechanical and biological barrier that the skin presents against infection by symbionts like the Pseudomonas aeruginosa, a Gram-negative bacteria. A combination of local factors, antimicrobial peptides, and resident effector cells form the initial response to mechanical injury of the skin. This activity is followed by an inflammatory response that includes influx of phagocytes and serum factors, such as complement and mannose-binding lectin (MBL), which is a broad-spectrum pattern recognition molecule that plays a key role in innate immunity. A growing consensus from studies in humans and mice suggests that lack of MBL together with other comorbid factors predisposes the host to infection. In this study we examined whether MBL deficiency increases the risk of P. aeruginosa infection in a burned host. We found that both wild-type and MBL null mice were resistant to a 5% total body surface area burn alone or s.c. infection with P. aeruginosa alone. However, when mice were burned then inoculated s.c. with P. aeruginosa at the burn site, all MBL null mice died by 42 h from septicemia, whereas only one-third of wild-type mice succumbed (p = 0.0005). This result indicates that MBL plays a key role in containing and preventing a systemic spread of P. aeruginosa infection following burn injury and suggests that MBL deficiency in humans maybe a premorbid variable in the predisposition to infection in burn victims.
Collapse
Affiliation(s)
- Mette Møller-Kristensen
- Laboratory of Developmental Immunology, Department of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
- Department of Medical Microbiology and Immunology, University of Aarhus, Aarhus, Denmark
| | - W. K. Eddie Ip
- Laboratory of Developmental Immunology, Department of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| | - Lei Shi
- Laboratory of Developmental Immunology, Department of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| | - Lakshmi D. Gowda
- Laboratory of Developmental Immunology, Department of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| | - Michael R. Hamblin
- Wellman Laboratory of Photomedicine, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| | - Steffen Thiel
- Department of Medical Microbiology and Immunology, University of Aarhus, Aarhus, Denmark
| | - Jens Chr. Jensenius
- Department of Medical Microbiology and Immunology, University of Aarhus, Aarhus, Denmark
| | - R. Alan B. Ezekowitz
- Laboratory of Developmental Immunology, Department of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| | - Kazue Takahashi
- Laboratory of Developmental Immunology, Department of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
- Address correspondence and reprint requests to Dr. Kazue Takahashi, Laboratory of Developmental Immunology, Department of Pediatrics, Massachusetts General Hospital, GRJ 1402, Harvard Medical School, 55 Fruit Street, Boston, MA 02114.
| |
Collapse
|
46
|
Terada T, Nishikawa M, Yamashita F, Hashida M. Analysis of the molecular interaction of glycosylated proteins with rabbit liver asialoglycoprotein receptors using surface plasmon resonance spectroscopy. J Pharm Biomed Anal 2006; 41:966-72. [PMID: 16546339 DOI: 10.1016/j.jpba.2006.01.054] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2005] [Revised: 01/24/2006] [Accepted: 01/28/2006] [Indexed: 11/20/2022]
Abstract
A sensitive, accurate, and efficient biosensor analysis using surface plasmon resonance (SPR) spectroscopy was used for delineating the molecular interaction between rabbit liver asialoglycoprotein receptors (ASGPR) and glycosylated proteins. Isolated rabbit liver ASGPR obtained by affinity column chromatography was dissolved in buffer solution containing TritonX-100 and immobilized on the SPR sensor chip by amine coupling. The SPR study demonstrated that the association rate constants (ka) of galactosylated proteins with ASGPR are dependent on the number of galactose residues, while the dissociation rate constants (kd) are influenced not only by the surface density of the galactose moieties but also by their steric configuration. In addition, it was demonstrated that D-fucosylated BSA had a higher binding affinity to ASGPR than Gal-BSA, when the degree of sugar modification was equivalent.
Collapse
Affiliation(s)
- Takeshi Terada
- Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | | | | | | |
Collapse
|
47
|
Lillie BN, Brooks AS, Keirstead ND, Hayes MA. Comparative genetics and innate immune functions of collagenous lectins in animals. Vet Immunol Immunopathol 2005; 108:97-110. [PMID: 16098608 DOI: 10.1016/j.vetimm.2005.07.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Collagenous lectins such as mannan-binding lectins (MBLs), ficolins (FCNs), surfactant proteins A and D (SP-A, SP-D), conglutinin (CG), and related ruminant lectins are multimeric proteins with carbohydrate-binding domains aligned in a manner that facilitates binding to microbial surface polysaccharides. MBLs and FCNs are structurally related to C1q, but activate the lectin complement pathway via interaction with MBL-associated serine proteases (MASPs). MBLs, FCNs, and other collagenous lectins also bind to some host macromolecules and contribute to their removal. While there is evidence that some lectins and the lectin complement pathway are conserved in vertebrates, many differences in collagenous lectins have been observed among humans, rodents, and other vertebrates. For example, humans have only one MBL but three FCNs, whereas most other species express two FCNs and two MBLs. Bovidae express CG and other SP-D-related collectins that are not found in monogastric species. Some dysfunctions of human MBL are due to single nucleotide polymorphisms (SNPs) that affect its expression or structure and thereby increase susceptibility to some infections. Collagenous lectins have well-established roles in innate immunity to various microorganisms, so it is possible that some lectin genotypes or induced phenotypes influence resistance to some infectious or inflammatory diseases in animals.
Collapse
Affiliation(s)
- Brandon N Lillie
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ont., Canada N1G 2W1
| | | | | | | |
Collapse
|
48
|
Park KH, Sung WJ, Kim S, Kim DH, Akaike T, Chung HM. Specific interaction of mannosylated glycopolymers with macrophage cells mediated by mannose receptor. J Biosci Bioeng 2005; 99:285-9. [PMID: 16233790 DOI: 10.1263/jbb.99.285] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2004] [Accepted: 12/21/2004] [Indexed: 11/17/2022]
Abstract
Poly[N-p-vinylbenzyl-O-beta-mannopyranosyl-(1-4)-D-gluconamide] (PV-Man) is a polystyrene derivative that contains mannose moieties and interacts with the mannose-receptor-carrying macrophage cell line. To clarify the specific interaction between the PV-Man and the macrophage cell line J774A1, PV-Man polymer labeled with fluorescent fluorescein isothiocyanate (FITC) was used to amonitor the specific interaction, which was visualized by confocal laser microscopy. We found that PV-Man strongly binds to macrophage cells, probably due to a specific interaction mediated by the presence of mannose receptors on the cell membrane. The fluorescence intensity of PV-Man and macrophage cells was up to 7-fold that of any other glycopolymers bound to macrophage cells. Moreover, cellular fluorescence intensity increased significantly with increasing incubation time and polymer concentration. Many macrophage cells strongly express mannose and mannose receptor-related receptors, and receptor-mediated gene transfer via the mannose receptor using a PV-Man glycopolymer is a versatile means of targeted gene delivery into these cells.
Collapse
Affiliation(s)
- Keun-Hong Park
- College of Medicine, Pochon CHA University, Cell and Gene Therapy Research Institute 605, Yeoksam 1-dong, Kangnam-gu, Seoul 135-081, Korea
| | | | | | | | | | | |
Collapse
|
49
|
Ezekowitz RA, Shi L, Fraser I, Takahashi K. The mannose-binding lectin: an infection susceptibility gene. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2005; 560:99-103. [PMID: 15932025 PMCID: PMC7123131 DOI: 10.1007/0-387-24180-9_13] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
A critical but unanswered question is what defines each individual’s pre-morbid susceptibility to infection? w e propose that individuals must have an “immune haplotype” that shapes their response to infectious agents. Infection is a balance between the intrinsic virulence of the infectious agent and the host defenses. Recent viral outbreaks of SARS and influenza serve to illustrate this point as these viruses cause severe disease in certain individuals, yet there are others in whom the same infectious challenge results in minimal symptoms. On the other hand it might be that those self same people who are resistance to one particular viral infection might be susceptible to other infection challenges. Similar rules can apply to susceptibility to bacterial infections.
Collapse
Affiliation(s)
- R Alan Ezekowitz
- Laboratory of Developmental Immunology, Department of Pediatrics, Harvard Medical School, Massachusetts General Hospital, 55 Fruit Street, GRJ1402 Boston, MA 02114, USA
| | | | | | | |
Collapse
|
50
|
van de Wetering JK, van Remoortere A, Vaandrager AB, Batenburg JJ, van Golde LMG, Hokke CH, van Hellemond JJ. Surfactant protein D binding to terminal alpha1-3-linked fucose residues and to Schistosoma mansoni. Am J Respir Cell Mol Biol 2004; 31:565-72. [PMID: 15284077 DOI: 10.1165/rcmb.2004-0105oc] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Pulmonary surfactant protein (SP)-D is an important component of the innate immune system of the lung, which is thought to function by binding to specific carbohydrates on the surface of viruses and unicellular pathogens. SP-D has been shown to have a relatively high affinity for the monosaccharides mannose, glucose, and fucose. However, there is limited information on SP-D binding to complex carbohydrate structures, and binding of SP-D to fucose in the context of an oligosaccharide has not yet been investigated. In this study, we used surface plasmon resonance spectroscopy to examine the potential of SP-D to bind to various synthetic fucosylated oligosaccharides, and identified Fucalpha1-3GalNAc and Fucalpha1-3GlcNAc elements as strong ligands. These types of fucosylated glycoconjugates are presented at the surface of Schistosoma mansoni, a parasitic worm that, during development, transiently resides in the lung. In line with the findings by surface plasmon resonance, we found that SP-D can bind to larval stages of S. mansoni, demonstrating for the first time that SP-D interacts with multicellular lung pathogens.
Collapse
Affiliation(s)
- J Koenraad van de Wetering
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|