1
|
Razin SV, Zhegalova IV, Kantidze OL. Domain Model of Eukaryotic Genome Organization: From DNA Loops Fixed on the Nuclear Matrix to TADs. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:667-680. [PMID: 36154886 DOI: 10.1134/s0006297922070082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/18/2022] [Accepted: 06/22/2022] [Indexed: 06/16/2023]
Abstract
The article reviews the development of ideas on the domain organization of eukaryotic genome, with special attention on the studies of DNA loops anchored to the nuclear matrix and their role in the emergence of the modern model of eukaryotic genome spatial organization. Critical analysis of results demonstrating that topologically associated chromatin domains are structural-functional blocks of the genome supports the notion that these blocks are fundamentally different from domains whose existence was proposed by the domain hypothesis of eukaryotic genome organization formulated in the 1980s. Based on the discussed evidence, it is concluded that the model postulating that eukaryotic genome is built from uniformly organized structural-functional blocks has proven to be untenable.
Collapse
Affiliation(s)
- Sergey V Razin
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia.
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Irina V Zhegalova
- Skolkovo Institute of Science and Technology, Moscow, 121205, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119991, Russia
- Kharkevich Institute for Information Transmission Problems, Moscow, 127051, Russia
| | - Omar L Kantidze
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| |
Collapse
|
2
|
Razin SV, Kantidze OL. The twisted path of the 3D genome: where does it lead? Trends Biochem Sci 2022; 47:736-744. [DOI: 10.1016/j.tibs.2022.04.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/19/2022] [Accepted: 04/11/2022] [Indexed: 01/01/2023]
|
3
|
Transcriptionally Active Chromatin-Lessons Learned from the Chicken Erythrocyte Chromatin Fractionation. Cells 2021; 10:cells10061354. [PMID: 34070759 PMCID: PMC8226759 DOI: 10.3390/cells10061354] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 11/20/2022] Open
Abstract
The chicken erythrocyte model system has been valuable to the study of chromatin structure and function, specifically for genes involved in oxygen transport and the innate immune response. Several seminal features of transcriptionally active chromatin were discovered in this system. Davie and colleagues capitalized on the unique features of the chicken erythrocyte to separate and isolate transcriptionally active chromatin and silenced chromatin, using a powerful native fractionation procedure. Histone modifications, histone variants, atypical nucleosomes (U-shaped nucleosomes) and other chromatin structural features (open chromatin) were identified in these studies. More recently, the transcriptionally active chromosomal domains in the chicken erythrocyte genome were mapped by combining this chromatin fractionation method with next-generation DNA and RNA sequencing. The landscape of histone modifications relative to chromatin structural features in the chicken erythrocyte genome was reported in detail, including the first ever mapping of histone H4 asymmetrically dimethylated at Arg 3 (H4R3me2a) and histone H3 symmetrically dimethylated at Arg 2 (H3R2me2s), which are products of protein arginine methyltransferases (PRMTs) 1 and 5, respectively. PRMT1 is important in the establishment and maintenance of chicken erythrocyte transcriptionally active chromatin.
Collapse
|
4
|
3D genomics imposes evolution of the domain model of eukaryotic genome organization. Chromosoma 2016; 126:59-69. [DOI: 10.1007/s00412-016-0604-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 05/11/2016] [Accepted: 06/06/2016] [Indexed: 10/21/2022]
|
5
|
Abstract
BACKGROUND Transcriptional regulation is impacted by multiple layers of genome organization. A general feature of transcriptionally active chromatin is sensitivity to DNase I and association with acetylated histones. However, very few of these active DNase I-sensitive domains, such as the chicken erythrocyte β-globin domain, have been identified and characterized. In chicken polychromatic erythrocytes, dynamically acetylated histones associated with DNase I-sensitive, transcriptionally active chromatin prevent histone H1/H5-induced insolubility at physiological ionic strength. RESULTS Here, we identified and mapped out all the transcriptionally active chromosomal domains in the chicken polychromatic erythrocyte genome by combining a powerful chromatin fractionation method with next-generation DNA and RNA sequencing. Two classes of transcribed chromatin organizations were identified on the basis of the extent of solubility at physiological ionic strength. Highly transcribed genes were present in multigenic salt-soluble chromatin domains ranging in length from 30 to over 150 kb. We identified over 100 highly expressed genes that were organized in broad dynamically highly acetylated, salt-soluble chromatin domains. Highly expressed genes were associated with H3K4me3 and H3K27ac and produced discernible antisense transcripts. The moderately- and low-expressing genes had highly acetylated, salt-soluble chromatin regions confined to the 5' end of the gene. CONCLUSIONS Our data provide a genome-wide profile of chromatin signatures in relation to expression levels in chicken polychromatic erythrocytes.
Collapse
|
6
|
Jahan S, Davie JR. Protein arginine methyltransferases (PRMTs): role in chromatin organization. Adv Biol Regul 2014; 57:173-84. [PMID: 25263650 DOI: 10.1016/j.jbior.2014.09.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 09/06/2014] [Indexed: 01/19/2023]
Abstract
The mammalian genome encodes eleven protein arginine methyltransferases (PRMTs) that are involved in the transfer of a methyl group from S-adenosylmethionine (AdoMet) to the guanidino nitrogen of arginine. The substrates for these enzymes range from histones to several nuclear and cytoplasmic proteins. Methylation of histones by PRMTs can block the docking site for other reader/effector molecules and thus this modification can interfere with histone code orchestration. Several members of the PRMTs have roles in chromatin organization and function. Although PRMT aberrant expression is correlated with several diseases including cancer, the underlying mechanisms are still obscure in most cases.
Collapse
Affiliation(s)
- Sanzida Jahan
- Manitoba Institute of Child Health, University of Manitoba, Winnipeg, Manitoba R3E 3P4 Canada
| | - James R Davie
- Manitoba Institute of Child Health, University of Manitoba, Winnipeg, Manitoba R3E 3P4 Canada.
| |
Collapse
|
7
|
Razin SV, Ulianov SV, Ioudinkova ES, Gushchanskaya ES, Gavrilov AA, Iarovaia OV. Domains of α- and β-globin genes in the context of the structural-functional organization of the eukaryotic genome. BIOCHEMISTRY (MOSCOW) 2012; 77:1409-1423. [DOI: 10.1134/s0006297912130019] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
|
8
|
Gargiulo G, Levy S, Bucci G, Romanenghi M, Fornasari L, Beeson KY, Goldberg SM, Cesaroni M, Ballarini M, Santoro F, Bezman N, Frigè G, Gregory PD, Holmes MC, Strausberg RL, Pelicci PG, Urnov FD, Minucci S. NA-Seq: a discovery tool for the analysis of chromatin structure and dynamics during differentiation. Dev Cell 2009; 16:466-81. [PMID: 19289091 DOI: 10.1016/j.devcel.2009.02.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2008] [Revised: 12/19/2008] [Accepted: 02/06/2009] [Indexed: 12/19/2022]
Abstract
It is well established that epigenetic modulation of genome accessibility in chromatin occurs during biological processes. Here we describe a method based on restriction enzymes and next-generation sequencing for identifying accessible DNA elements using a small amount of starting material, and use it to examine myeloid differentiation of primary human CD34+ cells. The accessibility of several classes of cis-regulatory elements was a predictive marker of in vivo DNA binding by transcription factors, and was associated with distinct patterns of histone posttranslational modifications. We also mapped large chromosomal domains with differential accessibility in progenitors and maturing cells. Accessibility became restricted during differentiation, correlating with a decreased number of expressed genes and loss of regulatory potential. Our data suggest that a permissive chromatin structure in multipotent cells is progressively and selectively closed during differentiation, and illustrate the use of our method for the identification of functional cis-regulatory elements.
Collapse
Affiliation(s)
- Gaetano Gargiulo
- Department of Experimental Oncology, IFOM-IEO Campus, European Institute of Oncology (IEO), Via Ripamonti 435, 20141 Milan, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
The chromatin of active genes is not in a permanently open conformation. J Mol Biol 2008; 386:290-9. [PMID: 19136010 DOI: 10.1016/j.jmb.2008.12.048] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2008] [Revised: 11/17/2008] [Accepted: 12/19/2008] [Indexed: 01/09/2023]
Abstract
Quantitative measurements of local chromatin accessibility to DNase I in 15-day chicken embryo erythrocyte nuclei have been performed using a range of nuclease concentrations and real-time TaqMan PCR to monitor the loss of short ( approximately 80 bp) amplicons. At the beta-globin locus, well-established DNase I hypersensitive sites stand out against a background in which actively transcribed gene sequences (e.g., beta-adult and beta-hatching) are no more sensitive than the nearby constitutive heterochromatin that has previously been shown to form the 30-nm fibre structure. Similar observations were made at the lysozyme locus containing the active Gas41 gene and also at the GAPDH locus. We conclude that active genes are not continuously held in an open 'beads-on-a-string' configuration, but adopt a 30-nm-type structure most of the time. This implies that the compact nucleosomal supercoil re-forms in the wake of the polymerase complex.
Collapse
|
10
|
Stumph WE, Baez M, Lawson GM, Tsai MJ, O'Malley BW. Higher-Order Structural Determinants for Expression of the Ovalbumin Gene Family. CIBA FOUNDATION SYMPOSIUM 98 - MOLECULAR BIOLOGY OF EGG MATURATION 2008; 98:80-95. [PMID: 6557011 DOI: 10.1002/9780470720790.ch6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The ovalbumin gene and the ovalbumin-related X and Y genes are expressed in the chicken oviduct in response to steroid hormones. These three genes are linked within a 100 kb domain of DNA which is preferentially sensitive to DNase I digestion in oviduct cell nuclei. No such preferential sensitivity to DNase is observed in nuclei isolated from other chicken tissues in which these genes are not transcribed. Thus, the DNase I sensitivity observed is correlated with the capacity for these genes to be expressed in oviduct. We have asked the question: are there specific signals in the DNA which are responsible for defining this domain or for conferring upon it the active, DNase I-sensitive, conformation? We have located DNA sequences belonging to a single repetitive DNA family, termed CR1, which are preferentially located in or near the boundary regions of the 100 kb domain. Therefore, these CR1 sequences are possible candidates for such a function. We have also searched for, but have not observed, any tissue-specific rearrangements of the DNA in the boundary regions of the domain. It is therefore unlikely that DNA rearrangements are involved in establishing the DNase I-sensitive domain in oviduct cells. However, we do note that a region at the far 3' end of the domain exhibits a cytidine methylation pattern which is highly variable among different chicken tissues. In particular, this region, which is approximately 30 kb downstream from the ovalbumin gene, is undermethylated in oviduct as compared to other hen tissues, and thus could be a control region involved in domain activation.
Collapse
|
11
|
Martins RP, Krawetz SA. Decondensing the protamine domain for transcription. Proc Natl Acad Sci U S A 2007; 104:8340-5. [PMID: 17483471 PMCID: PMC1895951 DOI: 10.1073/pnas.0700076104] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Potentiation is the transition from higher-order, transcriptionally silent chromatin to a less condensed state requisite to accommodating the molecular elements required for transcription. To examine the underlying mechanism of potentiation an approximately 13.7-kb mouse protamine domain of increased nuclease sensitivity flanked by 5' and 3' nuclear matrix attachment regions was defined. The potentiated DNase I-sensitive region is formed at the pachytene spermatocyte stage with the recruitment to the nuclear matrix of a large approximately 9.6-kb region just upstream of the domain. Attachment is then specified in the transcribing round spermatid, recapitulating the organization of the human cluster. In comparison to other modifiers that have no effect, i.e., histone methylation, HP1, and SATB1, topoisomerase engages nuclear matrix binding as minor marks of histone acetylation appear. Reorganization is marked by specific sites of topoisomerase II activity that are initially detected in leptotene-zygotene spermatocytes just preceding the formation of the DNase I-sensitive domain. This has provided a likely model of the events initiating potentiation, i.e., the opening of a chromatin domain.
Collapse
Affiliation(s)
| | - Stephen A. Krawetz
- *Center for Molecular Medicine and Genetics and
- Department of Obstetrics and Gynecology, School of Medicine and Institute for Scientific Computing, Wayne State University, Detroit, MI 48201
- To whom correspondence should be addressed at:
253 C. S. Mott Center, 275 East Hancock Avenue, Detroit, MI 48201. E-mail:
| |
Collapse
|
12
|
Elnitski L, Jin VX, Farnham PJ, Jones SJM. Locating mammalian transcription factor binding sites: a survey of computational and experimental techniques. Genome Res 2006; 16:1455-64. [PMID: 17053094 DOI: 10.1101/gr.4140006] [Citation(s) in RCA: 168] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Fields such as genomics and systems biology are built on the synergism between computational and experimental techniques. This type of synergism is especially important in accomplishing goals like identifying all functional transcription factor binding sites in vertebrate genomes. Precise detection of these elements is a prerequisite to deciphering the complex regulatory networks that direct tissue specific and lineage specific patterns of gene expression. This review summarizes approaches for in silico, in vitro, and in vivo identification of transcription factor binding sites. A variety of techniques useful for localized- and high-throughput analyses are discussed here, with emphasis on aspects of data generation and verification.
Collapse
Affiliation(s)
- Laura Elnitski
- Genomic Functional Analysis Section, National Human Genome Research Institute, National Institutes of Health, Rockville, Maryland 20878, USA.
| | | | | | | |
Collapse
|
13
|
Vogel JH, von Heydebreck A, Purmann A, Sperling S. Chromosomal clustering of a human transcriptome reveals regulatory background. BMC Bioinformatics 2005; 6:230. [PMID: 16171528 PMCID: PMC1261156 DOI: 10.1186/1471-2105-6-230] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2005] [Accepted: 09/19/2005] [Indexed: 11/28/2022] Open
Abstract
Background There has been much evidence recently for a link between transcriptional regulation and chromosomal gene order, but the relationship between genomic organization, regulation and gene function in higher eukaryotes remains to be precisely defined. Results Here, we present evidence for organization of a large proportion of a human transcriptome into gene clusters throughout the genome, which are partly regulated by the same transcription factors, share biological functions and are characterized by non-housekeeping genes. This analysis was based on the cardiac transcriptome identified by our genome-wide array analysis of 55 human heart samples. We found 37% of these genes to be arranged mainly in adjacent pairs or triplets. A significant number of pairs of adjacent genes are putatively regulated by common transcription factors (p = 0.02). Furthermore, these gene pairs share a significant number of GO functional classification terms. We show that the human cardiac transcriptome is organized into many small clusters across the whole genome, rather than being concentrated in a few larger clusters. Conclusion Our findings suggest that genes expressed in concert are organized in a linear arrangement for coordinated regulation. Determining the relationship between gene arrangement, regulation and nuclear organization as well as gene function will have broad biological implications.
Collapse
Affiliation(s)
- Jan H Vogel
- Cardiovascular Genetics Group, Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics, Ihnestrasse 73, 14195 Berlin, Germany
| | - Anja von Heydebreck
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Ihnestrasse 73, 14195 Berlin, Germany
| | - Antje Purmann
- Cardiovascular Genetics Group, Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics, Ihnestrasse 73, 14195 Berlin, Germany
| | - Silke Sperling
- Cardiovascular Genetics Group, Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics, Ihnestrasse 73, 14195 Berlin, Germany
| |
Collapse
|
14
|
Matsudo H, Osano K, Arakawa H, Ono M. Effect of deletion of the DNase I hypersensitive sites on the transcription of chicken Ig-beta gene and on the maintenance of active chromatin state in the Ig-beta locus. FEBS J 2005; 272:422-32. [PMID: 15654880 DOI: 10.1111/j.1742-4658.2004.04482.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The role of DNase I hypersensitive sites (DHSs) in transcription of the B cell-specific Ig-beta gene and in maintenance of active chromatin state in the Ig-beta locus were examined. A total of 10 DHSs were divided into four regions, and each region was deleted separately in chicken B lymphocyte-derived DT40 cells. Deletion of three DHSs located between the Ig-beta promoter and its upstream Na channelgene, resulted in the absence of Ig-beta mRNA. Three regions except the region in the Na channel gene were involved in the transcription of Ig-beta gene. The enhancing activity of DHSs as determined by transient transfection assays did not always correlate with the effect of DHS deletion on the expression level of Ig-beta mRNA. In each deletion, cells contained the same DHSs as observed in the predeletion cells, indicating that deleted DHSs did not participate in the maintenance of DT40-specific DHSs. Enhanced acetylation of H3 and H4 histones at the Ig-beta promoter and at DT40-specific DHSs was observed in cells in which DHSs between the Na channel gene and Ig-beta promoter were deleted; therefore, these DHSs are prerequisite for transcription of the Ig-beta gene but not required for the maintenance of active chromatin state in the Ig-beta locus. Thus, epigenetic factors required for the maintenance of the active chromatin state are suggested to reside in other regions than those deleted in this study.
Collapse
Affiliation(s)
- Hiroki Matsudo
- Department of Life Science, and Frontier Project Life's Adaptation Strategies to Environmental Changes, Rikkyo University, College of Science, Toshima-ku, Tokyo 171-8501, Japan
| | | | | | | |
Collapse
|
15
|
Martins RP, Ostermeier GC, Krawetz SA. Nuclear Matrix Interactions at the Human Protamine Domain. J Biol Chem 2004; 279:51862-8. [PMID: 15452126 DOI: 10.1074/jbc.m409415200] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The compact eukaryotic genome must be selectively opened to grant trans-factor access to cis-regulatory elements to overcome the primary barrier to gene transcription. The mechanism that governs the selective opening of chromatin domains (i.e. potentiation) remains poorly understood. In the absence of a well defined locus control region, the nuclear matrix is considered the primary candidate regulating the opening of the multigenic PRM1 --> PRM2 --> TNP2 human protamine domain. To directly examine its role, four lines of transgenic mice with different configurations of flanking nuclear matrix attachment regions (MARs) encompassing the protamine domain were created. We show that upon removal of the MARs, the locus becomes subject to position effects. The 3' MAR alone may be sufficient to protect against silencing. In concert, the MARs bounding this domain likely synergize to regulate the expression of the various members of this gene cluster. Interestingly, the MARs may convey a selective reproductive advantage, such that constructs bearing both 5' and 3' MARs are passed to their offspring with greater frequency. Thus, the MARs bounding the PRM1 --> PRM2 --> TNP2 protamine domain have many and varied functions.
Collapse
Affiliation(s)
- Rui Pires Martins
- Center for Molecular Medicine and Genetics, Wayne State University, School of Medicine, Detroit, Michigan 4820, USA
| | | | | |
Collapse
|
16
|
Razin SV, Farrell CM, Recillas-Targa F. Genomic domains and regulatory elements operating at the domain level. INTERNATIONAL REVIEW OF CYTOLOGY 2004; 226:63-125. [PMID: 12921236 DOI: 10.1016/s0074-7696(03)01002-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
The sequencing of the complete genomes of several organisms, including humans, has so far not contributed much to our understanding of the mechanisms regulating gene expression in the course of realization of developmental programs. In this so-called "postgenomic" era, we still do not understand how (if at all) the long-range organization of the genome is related to its function. The domain hypothesis of the eukaryotic genome organization postulates that the genome is subdivided into a number of semiindependent functional units (domains) that may include one or several functionally related genes, with these domains having well-defined borders, and operate under the control of special (domain-level) regulatory systems. This hypothesis was extensively discussed in the literature over the past 15 years. Yet it is still unclear whether the hypothesis is valid or not. There is evidence both supporting and questioning this hypothesis. The most conclusive data supporting the domain hypothesis come from studies of avian and mammalian beta-globin domains. In this review we will critically discuss the present state of the studies on these and other genomic domains, paying special attention to the domain-level regulatory systems known as locus control regions (LCRs). Based on this discussion, we will try to reevaluate the domain hypothesis of the organization of the eukaryotic genome.
Collapse
Affiliation(s)
- Sergey V Razin
- Laboratory of Structural and Functional Organization of Chromosomes, Institute of Gene Biology of the Russian Academy of Sciences, 117334 Moscow, Russia
| | | | | |
Collapse
|
17
|
Osano K, Otsuka A, Ono M. State of Chromatin Sensitivity to DNase I in the Rat Ig-.BETA./Growth Hormone Locus Determined by Real-Time PCR. Biol Pharm Bull 2004; 27:222-5. [PMID: 14758038 DOI: 10.1248/bpb.27.222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Using Ig-beta and growth hormone producing cells with liver-derived cells for controls, sensitivity of chromatin to DNase I was measured by real-time PCR at eleven targets in rat Ig-beta/growth hormone locus where four cell type-specific genes and two ubiquitously expressed genes are present in a compact 88-kb region. Chromatin situated at the promoter of actively-transcribed gene and placed at cell type-specific DNase I hypersensitive sites with enhancer activity was sensitive to DNase I. In the case of inactive gene, chromatin located in these regions was resistant to DNase I. Unexpectedly, however, chromatin placed in the transcribed intron was resistant to DNase I in two genes. DNase I sensitive chromatin was shown not to distribute locus-widely but rather to localize at the promoter and the enhancer of actively-transcribed genes in this locus.
Collapse
Affiliation(s)
- Kyoichi Osano
- Department of Life Science, and Frontier Project Life's Adaptation Strategies to Environmental Changes, College of Science, Rikkyo University, Toshima-ku, Tokyo 171-8501, Japan
| | | | | |
Collapse
|
18
|
Bulger M, Schübeler D, Bender MA, Hamilton J, Farrell CM, Hardison RC, Groudine M. A complex chromatin landscape revealed by patterns of nuclease sensitivity and histone modification within the mouse beta-globin locus. Mol Cell Biol 2003; 23:5234-44. [PMID: 12861010 PMCID: PMC165715 DOI: 10.1128/mcb.23.15.5234-5244.2003] [Citation(s) in RCA: 139] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
In order to create an extended map of chromatin features within a mammalian multigene locus, we have determined the extent of nuclease sensitivity and the pattern of histone modifications associated with the mouse beta-globin genes in adult erythroid tissue. We show that the nuclease-sensitive domain encompasses the beta-globin genes along with several flanking olfactory receptor genes that are inactive in erythroid cells. We describe enhancer-blocking or boundary elements on either side of the locus that are bound in vivo by the transcription factor CTCF, but we found that they do not coincide with transitions in nuclease sensitivity flanking the locus or with patterns of histone modifications within it. In addition, histone hyperacetylation and dimethylation of histone H3 K4 are not uniform features of the nuclease-sensitive mouse beta-globin domain but rather define distinct subdomains within it. Our results reveal a complex chromatin landscape for the active beta-globin locus and illustrate the complexity of broad structural changes that accompany gene activation.
Collapse
Affiliation(s)
- Michael Bulger
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Ramchandran R, Bengra C, Whitney B, Lanclos K, Tuan D. A (GATA)(7) motif located in the 5' boundary area of the human beta-globin locus control region exhibits silencer activity in erythroid cells. Am J Hematol 2000; 65:14-24. [PMID: 10936858 DOI: 10.1002/1096-8652(200009)65:1<14::aid-ajh3>3.0.co;2-f] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A 40-bp DNA, consisting of seven tandem GATA repeats, is located near the HS5 site in the 5' boundary area of the locus control region (LCR) of human beta-globin gene. This (GATA)(7) motif, named 5a, exhibits silencer activity in erythroid cells. In transfected, recombinant plasmids containing the chloramphenicol acetyltransferase (CAT) reporter gene, 5a repressed the activity of the cis-linked housekeeping phosphoglycerate kinase (pgk) promoter; 5a also repressed the activity of the cis-linked HS2 enhancer regardless of whether the CAT gene was driven by the pgk or the epsilon-globin promoter. Repression by 5a was most severe when 5a was spliced upstream of HS2 at a distance of less than 200 bases from the HS2 enhancer core. The silencer activity of 5a was independent of whether the component GATA motifs were in head to tail orientation as in the wild type 5a or in head to head or tail to tail orientation as in a mutant 5a. Band shift experiments show that the GATA-1 protein binds to both 5a and the mutant 5a and forms a large protein complex. Together, the results suggest that GATA-1 bound at 5a is a strong, proximal repressor of HS2 enhancer activity.
Collapse
Affiliation(s)
- R Ramchandran
- Department of Biochemistry and Molecular Biology, School of Medicine, Medical College of Georgia, Augusta, Georgia 30912, USA
| | | | | | | | | |
Collapse
|
20
|
Ioudinkova ES, Razin SV. Study of the regulatory sequences associated with DNase I-hypersensitive sites in the 5′ region of the chicken α-globin gene domain. Mol Biol 2000. [DOI: 10.1007/bf02759610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
21
|
Saitoh N, Bell AC, Recillas-Targa F, West AG, Simpson M, Pikaart M, Felsenfeld G. Structural and functional conservation at the boundaries of the chicken beta-globin domain. EMBO J 2000; 19:2315-22. [PMID: 10811622 PMCID: PMC384375 DOI: 10.1093/emboj/19.10.2315] [Citation(s) in RCA: 125] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
We show that the 3' boundary of the chicken beta-globin locus bears striking structural similarities to the 5' boundary. In erythroid cells a clear transition in DNase I sensitivity of chromatin at the 3' end of the locus is observed, the location of this transition is marked by a constitutive DNase I hypersensitive site (HS), and DNA spanning this site has the enhancer-blocking capacity of an insulator. This HS contains a binding site for the transcription factor CTCF. As in the case of the 5' insulator, the CTCF site is both necessary and sufficient for the enhancer-blocking activity of the 3' boundary. The position of this insulator is consistent with our proposal that it may function to maintain the distinct regulatory programs of the globin genes and their closely appended 3' neighbor, an odorant receptor gene. We conclude that both boundaries of the chicken beta-globin domain are capable of playing functionally similar roles and that the same protein is a necessary component of the molecular mechanism through which these boundaries are defined.
Collapse
Affiliation(s)
- N Saitoh
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0540, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Mishra RK, Karch F. Boundaries that demarcate structural and functional domains of chromatin. J Biosci 1999. [DOI: 10.1007/bf02941252] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
23
|
Razin SV, Shen K, Ioudinkova E, Scherrer K. Functional analysis of DNA sequences located within a cluster of DNase U hypersensitive sites colocalizing with a MAR element at the upstream border of the chicken α‐globin gene domain. J Cell Biochem 1999. [DOI: 10.1002/(sici)1097-4644(19990701)74:1<38::aid-jcb5>3.0.co;2-#] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Sergey V. Razin
- Institut J. Monod/Université Paris 7; 75251 Paris Cedex 05, France
- Institute of Gene Biology, RAS, 117334 Moscow, Russia
| | - Kang Shen
- Institut J. Monod/Université Paris 7; 75251 Paris Cedex 05, France
| | - Elena Ioudinkova
- Institut J. Monod/Université Paris 7; 75251 Paris Cedex 05, France
- Institute of Gene Biology, RAS, 117334 Moscow, Russia
| | - Klaus Scherrer
- Institut J. Monod/Université Paris 7; 75251 Paris Cedex 05, France
| |
Collapse
|
24
|
Krawetz SA, Kramer JA, McCarrey JR. Reprogramming the male gamete genome: a window to successful gene therapy. Gene X 1999; 234:1-9. [PMID: 10393233 DOI: 10.1016/s0378-1119(99)00147-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Hematopoiesis and spermatogenesis both initiate from a stem cell capable of renewal and differentiation. Each pathway reflects the expression of unique combinations of facultative, i.e. tissue-specific and constitutive, i.e. housekeeping, genes in each cell type. In spermatogenesis, as in hematopoiesis, commitment is mediated by the mechanism of potentiation whereby specific chromatin domains are selectively opened along each chromosome. Within each open chromatin domain, a unique battery of gene(s) is availed to tissue-specific and ubiquitous transacting factors that are necessary to initiate transcription. In the absence of an open domain, trans-factor access is denied, and the initiation of transcription cannot proceed. Cell-fate is thus ultimately defined by the unique series of open-potentiated cell-specific chromatin domains. Defining the mechanism that opens chromatin domains is fundamental in understanding how differentiation from stem cells is controlled and whether cell-fate can be modified. A recent examination of the mammalian spermatogenic pathway [Kramer, J.A., McCarrey, J.M, Djakiew, D., Krawetz, S.A., 1998. Differentiation: the selective potentiation of chromatin domains. Development 125, 4749-4755] supports the view that cell fate is mediated by global changes in chromatin conformation. This stride underscores the possibility of moderating differentiation through chromatin conformation. It is likely that gene therapeutics capable of selectively potentiating individual genic domains in populations of differentiating and/or replicating cells that modify cellular phenotype will be developed in the next millennium.
Collapse
Affiliation(s)
- S A Krawetz
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| | | | | |
Collapse
|
25
|
Abstract
Transcriptional repression in eukaryotes often involves tens or hundreds of kilobase pairs, two to three orders of magnitude more than the bacterial operator/repressor model does. Classical repression, represented by this model, was maintained over the whole span of evolution under different guises, and consists of repressor factors interacting primarily with promoters and, in later evolution, also with enhancers. The use of much larger amounts of DNA in the other mode of repression, here called the sectorial mode ('superrepression'), results in the conceptual transfer of so-called junk DNA to the domain of functional DNA. This contribution to the solution of the c-value paradox involves perhaps 15% of genomic 'junk,' and encompasses the bulk of the introns, thought to fill a stabilizing role in sectorially repressed chromatin structures. In the case of developmental genes, such structures appear to be heterochromatoid in character. However, solid clues regarding general structural features of superrepressed terminal differentiation genes remain elusive. The competition among superrepressible DNA sectors for sectorially binding factors offers, in principle, a molecular mechanism for developmental switches. Position effect variegation may be considered an abnormal manifestation of normal processes that underly development and involve heterochromatoid sectorial repression, which is apparently required for local elimination or modulation of morphological features (morpholysis). Sectorial repression of genes participating either in development or in terminal differentiation is considered instrumental in establishing stable cell types, and provides a basis for the distinction between determination and cell type specification. The gamut of possible stable cell types may have been broadened by the appearance in evolution of heavy isochores. Additional types of relatively frequent GC-rich cis-acting DNA motifs may offer reiterated binding sites to factors endowed with a selective (though not individually strong) affinity for these motifs. The majority of sequence motifs thought to be used in superrepression need not be individually maintained by natural selection. It is re-emphasized that the dispensability of sequences is not an indicator of their nonfunctionality and that in many cases, along noncoding sequences, nucleotides tend to fill functions collectively, rather than individually.
Collapse
Affiliation(s)
- E Zuckerkandl
- Institute of Molecular Medical Sciences, Palo Alto, CA 94306, USA
| |
Collapse
|
26
|
Abstract
Coactivators and corepressors regulate transcription by controlling interactions between sequence-specific transcription factors, the basal transcriptional machinery and the chromatin environment. This review consider the access of nuclear and steroid receptors to chromatin, their use of corepressors and coactivators to modify chromatin structure and the implications for transcriptional control. The assembly of specific nucleoprotein architectures and targeted histone modification emerge as central controlling elements for gene expression.
Collapse
Affiliation(s)
- A P Wolffe
- Laboratory of Molecular Embryology, Nat'l Institute of Child Health and Human Development, Bethesda, MD 20892-5431, USA.
| |
Collapse
|
27
|
Ljungman M. Effect of differential gene expression on the chromatin structure of the DHFR gene domain in vivo. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1307:171-7. [PMID: 8679702 DOI: 10.1016/0167-4781(96)00037-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Photoactivated psoralen was used to probe region-specific chromatin structure in Chinese hamster ovary (CHO) cells. Specifically, the chromatin structure of six regions within the dihydrofolate reductase (DHFR) gene was probed with photoactivated psoralen in cells cultured in such ways as to differentially express the DHFR gene. Cells were irradiated with X-rays prior to the psoralen photocross-linking reaction in order to eliminate the influence of any DNA torsional tension on the psoralen binding and the sequence-specificity of psoralen binding was adjusted for. It was found that a region encompassing the promoter of the serum-regulated DHFR gene was about 50% more accessible to psoralen photocross-linking in serum-stimulated cells and about 90% more accessible in serum-starved cells than the other five regions of the DHFR gene analyzed and the genome overall. Treating serum-stimulated cells with the RNA polymerase II transcriptional inhibitor 5,6-dichloro-1-beta-D-ribofuranosyl-benzimidazole (DRB) or the topoisomerase I inhibitor camptothecin reversed the elevated accessibility of the DHFR promoter region. These results suggest that the accessible chromatin structure of the DHFR promoter is not dependent on serum-stimulated poising of the gene for transcription, but may reflect the ability of the RNA polymerase to clear the promoter.
Collapse
Affiliation(s)
- M Ljungman
- Department of Radiation Oncology, University of Michigan Medical Center, Ann Arbor 48109-0582, USA.
| |
Collapse
|
28
|
Bode J, Schlake T, Ríos-Ramírez M, Mielke C, Stengert M, Kay V, Klehr-Wirth D. Scaffold/matrix-attached regions: structural properties creating transcriptionally active loci. INTERNATIONAL REVIEW OF CYTOLOGY 1996; 162A:389-454. [PMID: 8575884 DOI: 10.1016/s0074-7696(08)61235-8] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The expression characteristics of the human interferon-beta gene, as part of a long stretch of genomic DNA, led to the discovery of the putative domain bordering elements. The chromatin structure of these elements and their surroundings was determined during the process of gene activation and correlated with their postulated functions. It is shown that these "scaffold-attached regions" (S/MAR elements) have some characteristics in common with and others distinct from enhancers with which they cooperate in various ways. Our model of S/MAR function will focus on their properties of mediating topological changes within the respective domain.
Collapse
Affiliation(s)
- J Bode
- Gesellschaft für Biotechnologische Forschung m.b.H., Braunschweig, Germany
| | | | | | | | | | | | | |
Collapse
|
29
|
Davie JR. The nuclear matrix and the regulation of chromatin organization and function. INTERNATIONAL REVIEW OF CYTOLOGY 1996; 162A:191-250. [PMID: 8575881 DOI: 10.1016/s0074-7696(08)61232-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Nuclear DNA is organized into loop domains, with the base of the loop being bound to the nuclear matrix. Loops with transcriptionally active and/or potentially active genes have a DNase I-sensitive chromatin structure, while repressed chromatin loops have a condensed configuration that is essentially invisible to the transcription machinery. Core histone acetylation and torsional stress appear to be responsible for the generation and/or maintenance of the open potentially active chromatin loops. The transcriptionally active region of the loop makes several dynamic attachments with the nuclear matrix and is associated with core histones that are dynamically acetylated. Histone acetyltransferase and deacetylase, which catalyze this rapid acetylation and deacetylation, are bound to the nuclear matrix. Several transcription factors are components of the nuclear matrix. Histone acetyltransferase, deacetylase, and transcription factors may contribute to the dynamic attachment of the active chromatin domains with the nuclear matrix at sites of ongoing transcription.
Collapse
Affiliation(s)
- J R Davie
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
30
|
Choudhary SK, Wykes SM, Kramer JA, Mohamed AN, Koppitch F, Nelson JE, Krawetz SA. A haploid expressed gene cluster exists as a single chromatin domain in human sperm. J Biol Chem 1995; 270:8755-62. [PMID: 7721781 DOI: 10.1074/jbc.270.15.8755] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Mammalian spermiogenesis is marked by the initial disruption of the nuclear-histone-DNA complex by the transition proteins for ultimate replacement with protamines. The genes for three of these low molecular weight basic nuclear proteins exist as a single linear array of PRM1, PRM2, and TNP2 on human chromosome 16p13.2. To begin to address the mechanism governing their transcriptional potentiation, a region of approximately 40 kilo-bases of the human genome encompassing these genes was introduced into the germ line of mice. Fluorescence in situ hybridization and Southern analysis showed that this segment of the human genome integrated into independent chromosomal sites while maintaining its fidelity. Transcript analysis demonstrated that the expression of the endogenous mouse protamine Prm1 and Prm2 genes as well as the mouse transition protein Tnp2 gene were expressed along with their human transgene counterparts. The pattern of expression of these transgenic human genes within this multigenic cluster faithfully represented that observed in vivo. In addition, all members of this transgenic gene cluster were expressed in proportions similar to those in human testis. Copy number-dependent and position-independent expression of the transgenic construct demonstrated that the corresponding biological locus was contained within this segment of the human genome. Furthermore, DNase I sensitivity established that in sperm the human PRM1-->PRM2-->TNP2 genic domain was contained as an approximately 28.5-kilobase contiguous segment bounded by an array of nuclear matrix associated topoisomerase II consensus sites. This is the first description of a multigenic male gamete-specific domain as a fundamental gene regulatory unit. A model of haploid-specific gene determination is presented.
Collapse
Affiliation(s)
- S K Choudhary
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Schlake T, Klehr-Wirth D, Yoshida M, Beppu T, Bode J. Gene expression within a chromatin domain: the role of core histone hyperacetylation. Biochemistry 1994; 33:4197-206. [PMID: 8155635 DOI: 10.1021/bi00180a012] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Scaffold-attached regions (SAR elements) increase transcriptional rates for integrated but not episomal templates, and this effect can be potentiated by using an epigenetically active reagent, butyrate. The action of butyrate is a direct one, not involving de novo protein synthesis, and can be mimicked by using a novel and highly specific inhibitor of histone deacetylases, (R)-trichostatin A. This leads to a model in which SAR elements serve to stabilize the chromosomal topology arising as a consequence of hyperacetylation of histone cores. The synergistic effects of histone hyperacetylation and SARs are mediated by promoter upstream elements since, for a simple TATA box, the response to both parameters is an additive one.
Collapse
Affiliation(s)
- T Schlake
- GBF, Gesellschaft für Biotechnologische Forschung mbH, Braunschweig-Stöckheim, Germany
| | | | | | | | | |
Collapse
|
32
|
Kay V, Bode J. Binding specificity of a nuclear scaffold: supercoiled, single-stranded, and scaffold-attached-region DNA. Biochemistry 1994; 33:367-74. [PMID: 8286358 DOI: 10.1021/bi00167a047] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Scaffold-attached-region (SAR) elements of DNA enhance transcriptional rates, and this has been correlated with their ability to undergo separation into single strands (ssDNA) under conditions of negative superhelicity (Bode et al., 1992). The competition studies presented here suggest that the SAR-scaffold interaction is based, in part, on the recognition of single strands, while about one-half of SAR sites are inaccessible to ssDNA. Conversely, since there are 20,000 SAR sites but more than 60,000 sites for ssDNA per nuclear equivalent, not all ssDNA sites are open for SARs. In addition, a completely separate set of binding centers recognizing and enzymatically converting DNA of superhelical density below -0.04 can be titrated. These findings reflect multiple binding specificities for scaffold preparations that are routinely used for screening scaffold-attached regions.
Collapse
Affiliation(s)
- V Kay
- GBF, Gesellschaft für Biotechnologische Forschung mbH, Braunschweig-Stöckheim, Germany
| | | |
Collapse
|
33
|
Chung JH, Whiteley M, Felsenfeld G. A 5' element of the chicken beta-globin domain serves as an insulator in human erythroid cells and protects against position effect in Drosophila. Cell 1993; 74:505-14. [PMID: 8348617 DOI: 10.1016/0092-8674(93)80052-g] [Citation(s) in RCA: 685] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We have characterized an element near the 5' boundary of the chicken beta-globin domain that insulates a reporter gene from the activating effects of a nearby beta-globin locus control region (5'HS2) when assayed in the human erythroid cell line K562. We show that the insulation mechanism is directional, that it operates at the level of transcription, and that it involves the alteration of chromatin structure over the promoter of the gene. The insulator has no significant stimulatory or inhibitory effects of its own. In transgenic Drosophila, the insulator protects the white minigene from position effects. The action of the insulator thus is not restricted to erythroid or mammalian cells, suggesting that such elements may serve an important and widely distributed function in the organization of chromatin structure.
Collapse
Affiliation(s)
- J H Chung
- Laboratory of Molecular Biology, National Institutes of Health, Bethesda, Maryland 20892
| | | | | |
Collapse
|
34
|
Waga S, Mizuno S. Different behavior of chromatin domains encompassing fibroin heavy-chain gene in active, temporarily inactive, and permanently inactive transcriptional states in silk gland nuclei. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)53270-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
35
|
Abstract
We have determined the accessibility of histone tyrosine residues to react with p-nitrobenzenesulfonyl fluoride (NBSF) in intact nuclei, salt-dissociated nucleosomes, isolated histone complexes, and individual core histones. Of the 15 core histone tyrosine residues, 13 are inaccessible in native nucleosomes; only Tyr121 near the C-terminus of H2B is fully accessible, and Tyr54 of H3 is partially accessible under near-physiological conditions. When H1 and the basic N-terminal tails of the core histones are dissociated from the DNA by treating nuclei with 0.4 and 0.8 M NaCl, the two tyrosines which are adjacent to the basic regions of H2B and H3 become accessible as well. This indicates that these tyrosine residues may be involved in histone-DNA interactions, either directly or indirectly. When the H2A-H2B dimers are dissociated from the chromatin by raising the NaCl concentration to 1.2 M, three to four tyrosines located in the structured regions of H2B and H4 are exposed, suggesting that these tyrosine residues may be located at the dimer-tetramer interface. Dissociating all the histones from the DNA at an even higher ionic strength as a mixture of dimers, tetramers, and octamers does not change the pattern of Tyr exposure, but reduces the reactivity of the tyrosines at the dimer-tetramer interface as would be expected from the reassociation of H2A-H2B dimers and H3-H4 tetramers.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- A Zweidler
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111
| |
Collapse
|
36
|
Vyas P, Vickers MA, Simmons DL, Ayyub H, Craddock CF, Higgs DR. Cis-acting sequences regulating expression of the human alpha-globin cluster lie within constitutively open chromatin. Cell 1992; 69:781-93. [PMID: 1591777 DOI: 10.1016/0092-8674(92)90290-s] [Citation(s) in RCA: 132] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Current models suggest that tissue-specific genes are arranged in discrete, independently controlled segments of chromatin referred to as regulatory domains. Transition from a closed to open chromatin structure may be an important step in the regulation of gene expression. To determine whether the human alpha-globin cluster, like the beta-globin cluster, lies within a discrete, erythroid-specific domain, we have examined the long-range genomic organization and chromatin structure around this region. The alpha genes lie adjacent to at least four widely expressed genes. The major alpha-globin regulatory element lies 40 kb away from the cluster within an intron of one of these genes. Therefore, unlike the beta cluster, cis-acting sequences controlling alpha gene expression are dispersed within a region of chromatin that is open in both erythroid and nonerythroid cells. This implies a difference in the hierarchical control of alpha- and beta-globin expression.
Collapse
Affiliation(s)
- P Vyas
- MRC Molecular Haematology Unit, Institute of Molecular Medicine, John Radcliffe Hospital, Oxford, England
| | | | | | | | | | | |
Collapse
|
37
|
Magor KA, Wright JM. Chromosomal proteins of Physarum polycephalum with preferential affinity for the sequence, poly d(A-T).poly d(A-T). Mol Biol Rep 1992; 16:105-15. [PMID: 1608398 DOI: 10.1007/bf00419756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We have identified two novel chromosomal proteins from Physarum polycephalum using a protein blotting DNA-binding assay. A fraction of these proteins was readily released from nuclei by solutions of moderate ionic strength (0.15 N-0.35 M NaCl) or mild nuclease treatment and appear associated with chromatin that is nucleosome-free. A significant proportion of these proteins, however, was not released from nuclei by solutions of high ionic strength (1.6 M NaCl) or treatment with excess nuclease. These results suggest that these chromosomal proteins are distributed between transcriptionally-competent and inert domains of chromatin. Both proteins preferentially and tenaciously bound duplex DNA, especially to the alternating B-DNA conformation displayed by the synthetic sequence, poly d(A-T).poly d(A-T).
Collapse
Affiliation(s)
- K A Magor
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | |
Collapse
|
38
|
Feng J, Villeponteau B. High-resolution analysis of c-fos chromatin accessibility using a novel DNase I-PCR assay. BIOCHIMICA ET BIOPHYSICA ACTA 1992; 1130:253-8. [PMID: 1562603 DOI: 10.1016/0167-4781(92)90437-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In our previous study, c-fos chromatin accessibility was assayed using DNase I digestion and Southern blot analysis. This low-resolution mapping of c-fos chromatin accessibility demonstrated that serum stimulation of the c-fos enhancer induces a reversible increase in c-fos DNase I sensitivity and suggested that a 5' to 3' gradient of DNase I sensitivity may form downstream from the c-fos enhancer. To confirm the existence of a 5' to 3' gradient of accessibility, we have recently developed a high-resolution polymerase chain reaction (PCR) assay for DNase I sensitivity. Using this novel DNase I assay, we have reliably detected position- and time-dependent gradients of chromatin accessibility around the c-fos enhancer. These data confirm our earlier results and further support the hypothesis that the changes in c-fos chromatin accessibility originate near the 5' enhancer. As a technique for future examinations of gene structure, our data demonstrate the value of the DNase I-PCR assay for rapidly preparing comprehensive and high-resolution maps of chromatin accessibility for any sequenced genomic region.
Collapse
Affiliation(s)
- J Feng
- Department of Biological Chemistry, University of Michigan, Ann Arbor 48109-2007
| | | |
Collapse
|
39
|
Villeponteau B, Brawley J, Martinson HG. Nucleosome spacing is compressed in active chromatin domains of chick erythroid cells. Biochemistry 1992; 31:1554-63. [PMID: 1310613 DOI: 10.1021/bi00120a037] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We have cleaved the chromatin of embryonic and adult chicken erythroid cells using a novel nuclease that is capable of resolving clearly the nucleosomes of active chromatin. We found that in active chromatin, nucleosomes are spaced up to 40 base pairs closer together than in inactive chromatin. This was true for both "housekeeping" and "luxury" genes and was observed whether the digestion was carried out on isolated nuclei in vitro or by activating the endogenous nuclease in vivo. The close spacing extended several kilobases into flanking chromatin, indicating that this is a domain property of active chromatin, not just a characteristic of regions disrupted by transcription. A simple interpretation of our results is that the nucleosomes of active chromatin are mobile in vivo and, not being constrained by linker histones, freely move closer together.
Collapse
Affiliation(s)
- B Villeponteau
- Department of Biological Chemistry, University of Michigan, Ann Arbor 48109-2007
| | | | | |
Collapse
|
40
|
Affiliation(s)
- S M Gartler
- Department of Medicine, University of Washington, Seattle
| | | | | |
Collapse
|
41
|
Abstract
The DNA in the eukaryotic nucleus is highly compacted but well organized into distinct regional units. Chromosomal bands are characterized by their structure and distinctive replication time. They are subdivided into chromatin loops which serve as functional domains that have discrete boundary elements and can be regulated during development.
Collapse
Affiliation(s)
- D Kitsberg
- Department of Cellular Biochemistry, Hebrew University, Hadassah Medical School, Jerusalem, Israel
| | | | | |
Collapse
|
42
|
Abstract
It may be that eukaryotic nuclei contain a collection of operationally independent units (genes), each controlled through its interactions with soluble protein factors which diffuse at random throughout the nucleoplasmic space. Alternatively, nuclei might be organized in such a sophisticated fashion that specific genes occupy distinct sites and that spatially ordered RNA synthesis, processing and transport delivers mature RNAs to predestined sites in the cytoplasm. Different fields of research support each of these extreme views. Molecular biologists inspecting the precise details of specific interactions, usually in vitro, inevitably favour the former, while cell biologists working with far more complicated systems generally assume that more elaborate arrangements exist. In considering the importance of nuclear architecture, I have attempted to relate a collection of experiments each of which intimates some close relationship between structural aspects of chromatin organization and the precise mechanisms underlying nuclear function. I will argue that higher-order structures are crucial for achieving the observed efficiency and coordination of many nuclear processes.
Collapse
Affiliation(s)
- D A Jackson
- Sir William Dunn School of Pathology, University of Oxford, UK
| |
Collapse
|
43
|
Allfrey VG, Chen TA. Nucleosomes of transcriptionally active chromatin: isolation of template-active nucleosomes by affinity chromatography. Methods Cell Biol 1991; 35:315-35. [PMID: 1779861 DOI: 10.1016/s0091-679x(08)60578-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- V G Allfrey
- Laboratory of Cell Biology, Rockefeller University, New York, New York 10021
| | | |
Collapse
|
44
|
Levy-Wilson B, Fortier C. The limits of the DNase I-sensitive domain of the human apolipoprotein B gene coincide with the locations of chromosomal anchorage loops and define the 5′ and 3′ boundaries of the gene. J Biol Chem 1989. [DOI: 10.1016/s0021-9258(19)30066-3] [Citation(s) in RCA: 97] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
45
|
Ericsson C, Mehlin H, Björkroth B, Lamb MM, Daneholt B. The ultrastructure of upstream and downstream regions of an active Balbiani ring gene. Cell 1989; 56:631-9. [PMID: 2917368 DOI: 10.1016/0092-8674(89)90585-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
When active, the 37 kb Balbiani ring genes are known to form transcription loops with an almost fully extended chromatin axis. Here we examine the upstream and downstream regions of such transcription loops by electron microscopy. We demonstrate that a loop starts and ends in tightly packed chromatin; the two anchoring sites are clearly separated from each other in space. The upstream, nontranscribed region consists of a thin, extended, apparently flexible and nucleosome-free fiber corresponding to about 0.5 kb DNA. The downstream, nontranscribed region appears as a 200 nm long nucleofilament loosely coiled into a short, thick chromatin fiber and estimated to contain about 3 kb DNA.
Collapse
Affiliation(s)
- C Ericsson
- Department of Molecular Genetics, Medical Nobel Institute, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | |
Collapse
|
46
|
Bellard M, Dretzen G, Giangrande A, Ramain P. Nuclease digestion of transcriptionally active chromatin. Methods Enzymol 1989; 170:317-46. [PMID: 2770544 DOI: 10.1016/0076-6879(89)70054-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
47
|
Affiliation(s)
- J A Franklyn
- Department of Medicine, University of Birmingham, Queen Elizabeth Hospital, Edgbaston, UK
| | | |
Collapse
|
48
|
Abstract
Steroid hormones modify several brain functions, at least in part by altering expression of particular genes. Of interest are those genes that are involved in cell-cell communication in the brain, for instance neuropeptide genes and genes that code for enzymes involved in synthesis of neurotransmitters. Steroid regulation of mRNA levels for several genes has been reported, including the genes coding for the neuropeptides vasopressin, corticotropin releasing factor, luteinizing hormone-releasing factor, pro-opiomelanocortin; somatostatin, preproenkephalin, and the enzyme tyrosine hydroxylase. Steroid control of releasing factor genes is consistent with classical neuroendocrine concepts of negative feedback. Steroid-induced plasticity of gene expression is sometimes in evidence, with the presence or absence of a particular steroid inducing expression of a neuropeptide gene in neurons that under other conditions do not express the gene. As a means of gaining some insight into the mechanism of action of steroid hormones, several groups have determined some of the neuropeptide profiles of neurons that contain receptors for steroid hormones. Marked heterogeneity is found, in that often only a subpopulation of phenotypically-similar neurons, even within a single brain area, contains receptors for a given steroid.
Collapse
Affiliation(s)
- R E Harlan
- Department of Anatomy, Tulane University School of Medicine, New Orleans, LA 70112
| |
Collapse
|
49
|
|
50
|
Grosveld F, van Assendelft GB, Greaves DR, Kollias G. Position-independent, high-level expression of the human beta-globin gene in transgenic mice. Cell 1987; 51:975-85. [PMID: 3690667 DOI: 10.1016/0092-8674(87)90584-8] [Citation(s) in RCA: 1497] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
We have constructed a "minilocus" that contains the 5' and 3' flanking regions of the human beta-globin locus and the beta-globin gene. These regions are characterized by erythroid-specific DNAase I-superhypersensitive sites and are normally located approximately 50 kb 5' and 20 kb 3' of the beta-globin gene. This minilocus is expressed tissue-specifically in transgenic mice at a level directly related to its copy number yet independent of its position of integration in the genome. Moreover, the expression per gene copy is the same in each mouse and as high as that of the endogenous mouse beta-globin gene. These results indicate that the DNA regions flanking the human beta-globin locus contain dominant regulatory sequences that specify position-independent expression and normally activate the complete human multigene beta-globin locus.
Collapse
Affiliation(s)
- F Grosveld
- Laboratory of Gene Structure and Expression, National Institute for Medical Research, London, England
| | | | | | | |
Collapse
|