1
|
Östlund C, Hernandez-Ono A, Turk SJ, Dauer WT, Ginsberg HN, Worman HJ, Shin JY. Hepatocytes Deficient in Nuclear Envelope Protein Lamina-associated Polypeptide 1 are an Ideal Mammalian System to Study Intranuclear Lipid Droplets. J Lipid Res 2022; 63:100277. [PMID: 36100089 PMCID: PMC9587410 DOI: 10.1016/j.jlr.2022.100277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 01/21/2023] Open
Abstract
Lipid droplets (LDs) are generally considered to be synthesized in the ER and utilized in the cytoplasm. However, LDs have been observed inside nuclei in some cells, although recent research on nuclear LDs has focused on cultured cell lines. To better understand nuclear LDs that occur in vivo, here we examined LDs in primary hepatocytes from mice following depletion of the nuclear envelope protein lamina-associated polypeptide 1 (LAP1). Microscopic image analysis showed that LAP1-depleted hepatocytes contain frequent nuclear LDs, which differ from cytoplasmic LDs in their associated proteins. We found type 1 nucleoplasmic reticula, which are invaginations of the inner nuclear membrane, are often associated with nuclear LDs in these hepatocytes. Furthermore, in vivo depletion of the nuclear envelope proteins lamin A and C from mouse hepatocytes led to severely abnormal nuclear morphology, but significantly fewer nuclear LDs than were observed upon depletion of LAP1. In addition, we show both high-fat diet feeding and fasting of mice increased cytoplasmic lipids in LAP1-depleted hepatocytes but reduced nuclear LDs, demonstrating a relationship of LD formation with nutritional state. Finally, depletion of microsomal triglyceride transfer protein did not change the frequency of nuclear LDs in LAP1-depleted hepatocytes, suggesting that it is not required for the biogenesis of nuclear LDs in these cells. Together, these data show that LAP1-depleted hepatocytes represent an ideal mammalian system to investigate the biogenesis of nuclear LDs and their partitioning between the nucleus and cytoplasm in response to changes in nutritional state and cellular metabolism in vivo.
Collapse
Affiliation(s)
- Cecilia Östlund
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA,Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Antonio Hernandez-Ono
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Samantha J. Turk
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA,Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - William T. Dauer
- Peter O’Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA,Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA,Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Henry N. Ginsberg
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Howard J. Worman
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA,Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Ji-Yeon Shin
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA,For correspondence: Ji-Yeon Shin
| |
Collapse
|
2
|
Cornell RB. Membrane Lipids Assist Catalysis by CTP: Phosphocholine Cytidylyltransferase. J Mol Biol 2020; 432:5023-5042. [PMID: 32234309 DOI: 10.1016/j.jmb.2020.03.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/22/2020] [Accepted: 03/25/2020] [Indexed: 02/06/2023]
Abstract
While most of the articles in this issue review the workings of integral membrane enzymes, in this review, we describe the catalytic mechanism of an enzyme that contains a soluble catalytic domain but appears to catalyze its reaction on the membrane surface, anchored and assisted by a separate regulatory amphipathic helical domain and inter-domain linker. Membrane partitioning of CTP: phosphocholine cytidylyltransferase (CCT), a key regulatory enzyme of phosphatidylcholine metabolism, is regulated chiefly by changes in membrane phospholipid composition, and boosts the enzyme's catalytic efficiency >200-fold. Catalytic enhancement by membrane binding involves the displacement of an auto-inhibitory helix from the active site entrance-way and promotion of a new conformational ensemble for the inter-domain, allosteric linker that has an active role in the catalytic cycle. We describe the evidence for close contact between membrane lipid, a compact allosteric linker, and the CCT active site, and discuss potential ways that this interaction enhances catalysis.
Collapse
Affiliation(s)
- Rosemary B Cornell
- Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada V5A-1S6.
| |
Collapse
|
3
|
Membrane lipid compositional sensing by the inducible amphipathic helix of CCT. Biochim Biophys Acta Mol Cell Biol Lipids 2015; 1861:847-861. [PMID: 26747646 DOI: 10.1016/j.bbalip.2015.12.022] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 12/22/2015] [Accepted: 12/29/2015] [Indexed: 11/21/2022]
Abstract
The amphipathic helical (AH) membrane binding motif is recognized as a major device for lipid compositional sensing. We explore the function and mechanism of sensing by the lipid biosynthetic enzyme, CTP:phosphocholine cytidylyltransferase (CCT). As the regulatory enzyme in phosphatidylcholine (PC) synthesis, CCT contributes to membrane PC homeostasis. CCT directly binds and inserts into the surface of bilayers that are deficient in PC and therefore enriched in lipids that enhance surface charge and/or create lipid packing voids. These two membrane physical properties induce the folding of the CCT M domain into a ≥60 residue AH. Membrane binding activates catalysis by a mechanism that has been partially deciphered. We review the evidence for CCT compositional sensing, and the membrane and protein determinants for lipid selective membrane-interactions. We consider the factors that promote the binding of CCT isoforms to the membranes of the ER, nuclear envelope, or lipid droplets, but exclude CCT from other organelles and the plasma membrane. The CCT sensing mechanism is compared with several other proteins that use an AH motif for membrane compositional sensing. This article is part of a Special Issue entitled: The cellular lipid landscape edited by Tim P. Levine and Anant K. Menon.
Collapse
|
4
|
Cornell RB, Ridgway ND. CTP:phosphocholine cytidylyltransferase: Function, regulation, and structure of an amphitropic enzyme required for membrane biogenesis. Prog Lipid Res 2015; 59:147-71. [PMID: 26165797 DOI: 10.1016/j.plipres.2015.07.001] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 07/07/2015] [Accepted: 07/07/2015] [Indexed: 12/12/2022]
Abstract
CTP:phosphocholine cytidylyltransferase (CCT) catalyzes a rate-limiting and regulated step in the CDP-choline pathway for the synthesis of phosphatidylcholine (PC) and PC-derived lipids. Control of CCT activity is multi-layered, and includes direct regulation by reversible membrane binding involving a built-in lipid compositional sensor. Thus CCT contributes to phospholipid compositional homeostasis. CCT also modifies the curvature of its target membrane. Knowledge of CCT structure and regulation of its catalytic function are relatively advanced compared to many lipid metabolic enzymes, and are reviewed in detail. Recently the genetic origins of two human developmental and lipogenesis disorders have been traced to mutations in the gene for CCTα.
Collapse
Affiliation(s)
- Rosemary B Cornell
- Department of Molecular Biology and Biochemistry and the Department of Chemistry, Simon Fraser University, Burnaby, B.C. V5A-1S6, Canada.
| | - Neale D Ridgway
- Departments of Pediatrics, and Biochemistry and Molecular Biology, Atlantic Research Centre, Dalhousie University, Halifax, Nova Scotia B3H-4H7, Canada
| |
Collapse
|
5
|
Phosphatidylcholine and the CDP-choline cycle. Biochim Biophys Acta Mol Cell Biol Lipids 2012; 1831:523-32. [PMID: 23010477 DOI: 10.1016/j.bbalip.2012.09.009] [Citation(s) in RCA: 177] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Accepted: 09/16/2012] [Indexed: 11/20/2022]
Abstract
The CDP-choline pathway of phosphatidylcholine (PtdCho) biosynthesis was first described more than 50 years ago. Investigation of the CDP-choline pathway in yeast provides a basis for understanding the CDP-choline pathway in mammals. PtdCho is considered as an intermediate in a cycle of synthesis and degradation, and the activity of a CDP-choline cycle is linked to subcellular membrane lipid movement. The components of the mammalian CDP-choline pathway include choline transport, choline kinase, phosphocholine cytidylyltransferase, and choline phosphotransferase activities. The protein isoforms and biochemical mechanisms of regulation of the pathway enzymes are related to their cell- and tissue-specific functions. Regulated PtdCho turnover mediated by phospholipases or neuropathy target esterase participates in the mammalian CDP-choline cycle. Knockout mouse models define the biological functions of the CDP-choline cycle in mammalian cells and tissues. This article is part of a Special Issue entitled Phospholipids and Phospholipid Metabolism.
Collapse
|
6
|
Tang J, Chen Y, Chen X, Yao Y, Ying H, Xiong J, Bai J. Production of cytidine 5'-diphosphorylcholine with high utilization of ATP by whole cells of Saccharomyces cerevisiae. BIORESOURCE TECHNOLOGY 2010; 101:8807-8813. [PMID: 20620046 DOI: 10.1016/j.biortech.2010.06.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Revised: 05/29/2010] [Accepted: 06/02/2010] [Indexed: 05/29/2023]
Abstract
Cytidine 5'-diphosphorylcholine (CDP-choline) was produced using a high efficiency ATP regeneration system and the Kennedy pathway in whole cells of Saccharomyces cerevisiae As 2.398. Out of eight variables, KH(2)PO(4), glycerol and (NH(4))(2)SO(4) were considered to be the most significant factors by response surface methodology including a Plackett-Burman design, path of steepest accent and central composite design. The optimum levels of the three variables were 20.13g/L KH(2)PO(4), 12.35g/L glycerol and 0.49g/L (NH(4))(2)SO(4), respectively. Energy utilization efficiency increased from 10.59% to 16.72% and choline chloride conversion yields increased from 12.35% to 42.78%. A high efficiency ATP regeneration system improves CDP-choline production.
Collapse
Affiliation(s)
- Jiapeng Tang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Life Science and Pharmaceutical Engineering, Nanjing University of Technology, Nanjing, PR China
| | | | | | | | | | | | | |
Collapse
|
7
|
Tang J, Yao Y, Ying H, Xiong J, Zhang L, Li Z, Bai J, Zhang Y, Ouyang P. Effect of NH4+ and glycerol on cytidine 5'-diphosphocholine synthesis in Saccharomyces cerevisiae. BIORESOURCE TECHNOLOGY 2009; 100:4848-4853. [PMID: 19467861 DOI: 10.1016/j.biortech.2009.04.045] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2008] [Revised: 04/13/2009] [Accepted: 04/22/2009] [Indexed: 05/27/2023]
Abstract
Both stimulation of ammonium ion on the glycolytic flux and regulation by glycerol of enzymes in Kennedy pathway for cytidine diphosphate choline production in S. cerevisiae were studied. The conventional transformation course featured four stages. Firstly, CMP and choline chloride were phosphorylated and CDP-choline was formed rapidly; secondly, the rate of CDP-choline formation declined and CMP was not detected in the mixture; thirdly, CMP was released and the CDP-choline concentration reached a peak; Fourthly, the compound concentrations did not practically changes eventually. Using the central composite design, the concentration, yield, and utilization efficiency of energy reached 24.7 mmol/L, 82.3% and 10.6%, with 30 mmol/L of ammonium ion and 1% (V/V) of glycerol, respectively. Ammonium ion not only strengthened the glycolytic pathway, but also coordinated the reaction rate between the glycolytic pathway and the Kennedy pathway. Glycerol alleviated the activity decrease of the key enzymes in the mixture.
Collapse
Affiliation(s)
- Jiapeng Tang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Life Science and Pharmaceutical Engineering, Nanjing University of Technology, No. 5 Xin Mo Fan Road, Nanjing, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Wurtman RJ, Cansev M, Sakamoto T, Ulus IH. Use of phosphatide precursors to promote synaptogenesis. Annu Rev Nutr 2009; 29:59-87. [PMID: 19400698 DOI: 10.1146/annurev-nutr-080508-141059] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
New brain synapses form when a postsynaptic structure, the dendritic spine, interacts with a presynaptic terminal. Brain synapses and dendritic spines, membrane-rich structures, are depleted in Alzheimer's disease, as are some circulating compounds needed for synthesizing phosphatides, the major constituents of synaptic membranes. Animals given three of these compounds, all nutrients-uridine, the omega-3 polyunsaturated fatty acid docosahexaenoic acid, and choline-develop increased levels of brain phosphatides and of proteins that are concentrated within synaptic membranes (e.g., PSD-95, synapsin-1), improved cognition, and enhanced neurotransmitter release. The nutrients work by increasing the substrate-saturation of low-affinity enzymes that synthesize the phosphatides. Moreover, uridine and its nucleotide metabolites activate brain P2Y receptors, which control neuronal differentiation and synaptic protein synthesis. A preparation containing these compounds is being tested for treating Alzheimer's disease.
Collapse
Affiliation(s)
- Richard J Wurtman
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | | | | | | |
Collapse
|
9
|
Wurtman RJ, Cansev M, Ulus IH. Synapse formation is enhanced by oral administration of uridine and DHA, the circulating precursors of brain phosphatides. J Nutr Health Aging 2009; 13:189-97. [PMID: 19262950 DOI: 10.1007/s12603-009-0056-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVE The loss of cortical and hippocampal synapses is a universal hallmark of Alzheimer's disease, and probably underlies its effects on cognition. Synapses are formed from the interaction of neurites projecting from "presynaptic" neurons with dendritic spines projecting from "postsynaptic" neurons. Both of these structures are vulnerable to the toxic effects of nearby amyloid plaques, and their loss contributes to the decreased number of synapses that characterize the disease. A treatment that increased the formation of neurites and dendritic spines might reverse this loss, thereby increasing the number of synapses and slowing the decline in cognition. DESIGN SETTING, PARTICIPANTS, INTERVENTION, MEASUREMENTS AND RESULTS We observe that giving normal rodents uridine and the omega-3 fatty acid docosahexaenoic acid (DHA) orally can enhance dendritic spine levels (3), and cognitive functions (32). Moreover this treatment also increases levels of biochemical markers for neurites (i.e., neurofilament-M and neurofilament-70) (2) in vivo, and uridine alone increases both these markers and the outgrowth of visible neurites by cultured PC-12 cells (9). A phase 2 clinical trial, performed in Europe, is described briefly. DISCUSSION AND CONCLUSION Uridine and DHA are circulating precursors for the phosphatides in synaptic membranes, and act in part by increasing the substrate-saturation of enzymes that synthesize phosphatidylcholine from CTP (formed from the uridine, via UTP) and from diacylglycerol species that contain DHA: the enzymes have poor affinities for these substrates, and thus are unsaturated with them, and only partially active, under basal conditions. The enhancement by uridine of neurite outgrowth is also mediated in part by UTP serving as a ligand for neuronal P2Y receptors. Moreover administration of uridine with DHA activates many brain genes, among them the gene for the m-1 metabotropic glutamate receptor [Cansev, et al, submitted]. This activation, in turn, increases brain levels of that gene's protein product and of such other synaptic proteins as PSD-95, synapsin-1, syntaxin-3 and F-actin, but not levels of non-synaptic brain proteins like beta-tubulin. Hence it is possible that giving uridine plus DHA triggers a neuronal program that, by accelerating phosphatide and synaptic protein synthesis, controls synaptogenesis. If administering this mix of phosphatide precursors also increases synaptic elements in brains of patients with Alzheimer 's disease, as it does in normal rodents, then this treatment may ameliorate some of the manifestations of the disease.
Collapse
Affiliation(s)
- R J Wurtman
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | | | | |
Collapse
|
10
|
Cansev M, Wurtman RJ, Sakamoto T, Ulus IH. Oral administration of circulating precursors for membrane phosphatides can promote the synthesis of new brain synapses. Alzheimers Dement 2007; 4:S153-68. [PMID: 18631994 DOI: 10.1016/j.jalz.2007.10.005] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2007] [Accepted: 10/03/2007] [Indexed: 12/19/2022]
Abstract
Although cognitive performance in humans and experimental animals can be improved by administering omega-3 fatty acid docosahexaenoic acid (DHA), the neurochemical mechanisms underlying this effect remain uncertain. In general, nutrients or drugs that modify brain function or behavior do so by affecting synaptic transmission, usually by changing the quantities of particular neurotransmitters present within synaptic clefts or by acting directly on neurotransmitter receptors or signal-transduction molecules. We find that DHA also affects synaptic transmission in mammalian brain. Brain cells of gerbils or rats receiving this fatty acid manifest increased levels of phosphatides and of specific presynaptic or postsynaptic proteins. They also exhibit increased numbers of dendritic spines on postsynaptic neurons. These actions are markedly enhanced in animals that have also received the other two circulating precursors for phosphatidylcholine, uridine (which gives rise to brain uridine diphosphate and cytidine triphosphate) and choline (which gives rise to phosphocholine). The actions of DHA aere reproduced by eicosapentaenoic acid, another omega-3 compound, but not by omega-6 fatty acid arachidonic acid. Administration of circulating phosphatide precursors can also increase neurotransmitter release (acetylcholine, dopamine) and affect animal behavior. Conceivably, this treatment might have use in patients with the synaptic loss that characterizes Alzheimer's disease or other neurodegenerative diseases or occurs after stroke or brain injury.
Collapse
Affiliation(s)
- Mehmet Cansev
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | | | | |
Collapse
|
11
|
Jernigan HM, Blum PS, Chakrabarti I, Su Y, Zigler JS. Effects of cataractogenesis on the CDP-choline pathway: increased phospholipid synthesis in lenses from galactosemic rats and 13/N guinea pigs. Ophthalmic Res 2005; 37:7-12. [PMID: 15604593 DOI: 10.1159/000082764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We investigated the effects of cataractogenesis on phospholipid (P-lipid) synthesis in sugar cataracts from galactosemic rats and in hereditary cataracts from 13/N guinea pigs. Cataractous lenses from rats fed a 50% galactose diet for 7 days were incubated 24 h with radiolabeled choline or ethanolamine and the P-lipids were extracted. The galactosemic cataracts synthesized twice as much phosphatidylcholine (PtdCho) as control rat lenses, and phosphatidylethanolamine synthesis also was increased. Similar analysis of cataractous lenses from 3-week-old 13/N guinea pigs showed a 3-fold increase in PtdCho synthesis compared with control lenses. In all cases, the P-lipid precursor pool was lower in cataracts than in control lenses. The increased P-lipid synthesis in these cataracts may represent a membrane repair response to cataractogenic stress.
Collapse
Affiliation(s)
- Howard M Jernigan
- Department of Molecular Sciences, University of Tennessee, Memphis, TN 38163, USA.
| | | | | | | | | |
Collapse
|
12
|
Kent C. Regulatory enzymes of phosphatidylcholine biosynthesis: a personal perspective. Biochim Biophys Acta Mol Cell Biol Lipids 2005; 1733:53-66. [PMID: 15749057 DOI: 10.1016/j.bbalip.2004.12.008] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2004] [Revised: 12/14/2004] [Accepted: 12/17/2004] [Indexed: 12/22/2022]
Abstract
Phosphatidylcholine is a prominent constituent of eukaryotic and some prokaryotic membranes. This Perspective focuses on the two enzymes that regulate its biosynthesis, choline kinase and CTP:phosphocholine cytidylyltransferase. These enzymes are discussed with respect to their molecular properties, isoforms, enzymatic activities, and structures, and the possible molecular mechanisms by which they participate in regulation of phosphatidylcholine levels in the cell.
Collapse
|
13
|
Abstract
Identification of the genes and gene products involved in the biosynthesis of phosphatidylcholine, phosphatidylethanolamine, and phosphatidylserine has lagged behind that in many other fields because of difficulties encountered in purifying the respective proteins. Nevertheless, most of these genes have now been identified. In this review article, we have highlighted important new findings on the individual enzymes and the corresponding genes of phosphatidylcholine synthesis via its two major biosynthetic pathways: the CDP-choline pathway and the methylation pathway. We also review recent studies on phosphatidylethanolamine biosynthesis by two pathways: the CDP-ethanolamine pathway, which is active in the endoplasmic reticulum, and the phosphatidylserine decarboxylase pathway, which operates in mitochondria. Finally, the two base-exchange enzymes, phosphatidylserine synthase-1 and phosphatidylserine synthase-2, that synthesize phosphatidylserine in mammalian cells are also discussed.
Collapse
Affiliation(s)
- Jean E Vance
- Department of Medicine and CIHR Group on the Molecualr and Cell Biology of Lipids, University of Alberta, Edmonton, Canada.
| | | |
Collapse
|
14
|
Flores-Díaz M, Thelestam M, Clark GC, Titball RW, Alape-Girón A. Effects of Clostridium perfringens phospholipase C in mammalian cells. Anaerobe 2004; 10:115-23. [PMID: 16701508 DOI: 10.1016/j.anaerobe.2003.11.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2003] [Accepted: 11/05/2003] [Indexed: 11/23/2022]
Abstract
Clostridium perfringens phospholipase C (Cp-PLC), the major virulence factor in the pathogenesis of gas gangrene, is a Zn(2+) metalloenzyme with lecithinase and sphingomyelinase activities. Its structure shows an N-terminal domain containing the active site, and a C-terminal Ca(2+) binding domain required for membrane interaction. Although the knowledge of the structure of Cp-PLC and its interaction with aggregated phospholipids has advanced significantly, an understanding of the effects of Cp-PLC in mammalian cells is still incomplete. Cp-PLC binds to artificial bilayers containing cholesterol and sphingomyelin or phosphatidylcholine (PC) and degrades them, but glycoconjugates present in biological membranes influence its binding or positioning toward its substrates. Studies with Cp-PLC variants harboring single amino-acid substitutions have revealed that the active site, the Ca(2+) binding region, and the membrane interacting surface are required for cytotoxic and haemolytic activity. Cp-PLC causes plasma membrane disruption at high concentrations, whereas at low concentrations it perturbs phospholipid metabolism, induces DAG generation, PKC activation, Ca(2+) mobilization, and activates arachidonic acid metabolism. The cellular susceptibility to Cp-PLC depends on the composition of the plasma membrane and the capacity to up-regulate PC synthesis. The composition of the plasma membrane determines whether Cp-PLC can bind and acquire its active conformation, and thus the extent of phospholipid degradation. The capacity of PC synthesis and the availability of precursors determine whether the cell can replace the degraded phospholipids. Whether the perturbations of signal transduction processes caused by Cp-PLC play a role in cytotoxicity is not clear. However, these perturbations in endothelial cells, platelets and neutrophils lead to the uncontrolled production of intercellular mediators and adhesion molecules, which inhibits bacterial clearance and induces thrombotic events, thus favouring bacterial growth and spread in the host tissues.
Collapse
Affiliation(s)
- Marietta Flores-Díaz
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | | | | | | | | |
Collapse
|
15
|
Carter JM, Waite KA, Campenot RB, Vance JE, Vance DE. Enhanced expression and activation of CTP:phosphocholine cytidylyltransferase beta2 during neurite outgrowth. J Biol Chem 2003; 278:44988-94. [PMID: 12928431 DOI: 10.1074/jbc.m307336200] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
During differentiation neurons increase phospholipid biosynthesis to provide new membrane for neurite growth. We studied the regulation of phosphatidylcholine (PC) biosynthesis during differentiation of two neuronal cell lines: PC12 cells and Neuro2a cells. We hypothesized that in PC12 cells nerve growth factor (NGF) would up-regulate the activity and expression of the rate-limiting enzyme in PC biosynthesis, CTP:phosphocholine cytidylyltransferase (CT). During neurite outgrowth, NGF doubled the amount of cellular PC and CT activity. CTbeta2 mRNA increased within 1 day of NGF application, prior to the formation of visible neurites, and continued to increase during neurite growth. When neurites retracted in response to NGF withdrawal, CTbeta2 mRNA, protein, and CT activity decreased. NGF specifically activated CTbeta2 by promoting its translocation from cytosol to membranes. In contrast, NGF did not alter CTalpha expression or translocation. The increase in both CTbeta2 mRNA and CT activity was inhibited by U0126, an inhibitor of mitogen-activated kinase/extracellular signal-regulated kinase kinase 1/2 (MEK1/2). In Neuro2a cells, retinoic acid significantly increased CT activity (by 54%) and increased CTbeta2 protein, coincident with neurite outgrowth but did not change CTalpha expression. Together, these data suggest that the CTbeta2 isoform of CT is specifically up-regulated and activated during neuronal differentiation to increase PC biosynthesis for growing neurites.
Collapse
Affiliation(s)
- Jodi M Carter
- Canadian Institutes of Health Research Group on the Molecular and Cell Biology of Lipids, Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2S2, Canada
| | | | | | | | | |
Collapse
|
16
|
Helmink BA, Braker JD, Kent C, Friesen JA. Identification of lysine 122 and arginine 196 as important functional residues of rat CTP:phosphocholine cytidylyltransferase alpha. Biochemistry 2003; 42:5043-51. [PMID: 12718547 DOI: 10.1021/bi027431+] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
CTP:phosphocholine cytidylyltransferase alpha (CCTalpha) contains a central region that functions as a catalytic domain, converting phosphocholine and cytidine 5'-triphosphate (CTP) to CDP-choline for the subsequent synthesis of phosphatidylcholine. We have investigated the catalytic role of lysine 122 and arginine 196 of rat CCTalpha using site-directed mutagenesis and a baculovirus expression system. Arginine 196 is part of the highly conserved RTEGIST motif, while lysine 122 has not previously been identified by protein sequence alignment as a candidate catalytic amino acid. Removing the side chain of lysine 122 compromises the catalytic ability of CCTalpha, decreasing the apparent V(max) value in mutant enzymes Lys122Ala and Lys122Arg to 0.30 and 0.09% of the wild-type value, respectively. The decrease in V(max) is accompanied by dramatic 471- and 80-fold increases in the apparent K(m) value for phosphocholine but no greater than 3-fold increases in the apparent Hill constant (K*) value for CTP. Mutation of arginine 196 to lysine results in an enzyme that retains 24% of the wild-type V(max) value with a modest 5-fold increase in the K(m) value for phosphocholine. However, the Arg196Lys mutant enzyme exhibits a 23-fold increase in the K* value for CTP. These data suggest lysine 122 and arginine 196 of rat CTP:phosphocholine cytidylyltransferase are functionally important amino acids, perhaps at or near the active site involved in forming contacts with the substrates phosphocholine and CTP, respectively.
Collapse
Affiliation(s)
- Beth Ann Helmink
- Department of Chemistry, Illinois State University, Normal, Illinois 61790, USA
| | | | | | | |
Collapse
|
17
|
Golfman LS, Bakovic M, Vance DE. Transcription of the CTP:phosphocholine cytidylyltransferase alpha gene is enhanced during the S phase of the cell cycle. J Biol Chem 2001; 276:43688-92. [PMID: 11557772 DOI: 10.1074/jbc.m108170200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have studied the transcription of the CTP:phosphocholine cytidylyltransferase alpha (CTalpha) gene in C3H10T1/2 fibroblasts as a function of the cell cycle. The cells were incubated for 48 h with 0.5% fetal bovine serum. The cells were induced into the G(1) phase of the cell cycle by the addition of medium with 10% fetal bovine serum. The cells began the synthesis of DNA after 12 h. At 16 and 20 h there was an increased amount of CTalpha mRNA that coincided with an increase in the expression of CTalpha proximal promoter-luciferase constructs (-201/+38 and -130/+38). Luciferase constructs with the basal promoter (-52/+38) showed no change in activity during the cell cycle. Incorporation of [(3)H]choline into phosphatidylcholine began to increase by 8 h after the addition of serum and peaked at 18 h. The mass of phosphatidylcholine nearly doubled between 8 and 26 h after addition of serum. CT activity increased by 6 h after serum addition and was maintained until 22 h. Thus, the increase of phosphatidylcholine biosynthesis in the G(1) phase of the cell cycle is not due to enhanced transcription of the CTalpha gene. Instead increased transcription of the CTalpha gene occurred during the S phase of the cell cycle in preparation for mitosis.
Collapse
Affiliation(s)
- L S Golfman
- CIHR Group on Molecular and Cell Biology of Lipids, Department of Biochemistry, University of Alberta, Edmonton, Alberta T6H 5S3, Canada
| | | | | |
Collapse
|
18
|
Lykidis A, Jackson P, Jackowski S. Lipid activation of CTP: phosphocholine cytidylyltransferase alpha: characterization and identification of a second activation domain. Biochemistry 2001; 40:494-503. [PMID: 11148044 DOI: 10.1021/bi002140r] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The CTP:phosphocholine cytidylyltransferase (CCT) governs the rate of phosphatidylcholine (PtdCho) biosynthesis, and its activity is governed by interaction with membrane lipids. The carboxy-terminus was dissected to delineate the minimum sequences required for lipid responsiveness. The helical domain is recognized as a site of lipid interaction, and all three tandem alpha-helical repeats from residues 257 through 290 were found to be required for regulation of enzymatic activity by this domain. Truncation of the carboxy-terminus to remove one or more of the alpha-helical repeats yielded catalytically compromised proteins that were not responsive to lipids but retained sufficient activity to accelerate PtdCho biosynthesis when overexpressed in vivo. The role of the helical region in lipid-activation was tested further by excising residues 257 through 309 to yield a protein that retained a 57-residue carboxy terminal domain fused to the catalytic core. This construct tested the hypothesis that the helical region inhibits activity in the absence of lipid rather than activates the enzyme in the presence of lipid. This hypothesis predicts constitutive activity for CCTalpha[Delta257-309]; however, this protein was tightly regulated by lipid with activities comparable to the full-length CCTalpha, in both the absence and presence of lipid. Activation of CCTalpha[Delta257-309] was dependent exclusively on anionic lipids, whereas full-length CCTalpha responded to either anionic or neutral lipids. Phosphatidic acid delivered in Triton X-100 micelles was the preferred activator of the second lipid-activation domain. These data demonstrate that CCTalpha can be regulated by lipids by two independent domains: (i) the three amphipathic alpha-helical repeats that interact with both neutral and anionic lipid mixtures and (ii) the last 57 residues that interact with anionic lipids. The results show that both domains are inhibitory in the absence of lipid and activating in the presence of lipid. Removal of both domains results in a nonresponsive, dysregulated enzyme with reduced activity. The data also demonstrate for the first time that the 57-residue carboxy-terminal domain in CCTalpha participates in lipid-mediated regulation and is sufficient for maximum activation of enzyme activity.
Collapse
Affiliation(s)
- A Lykidis
- Department of Biochemistry, St. Jude Children's Research Hospital, Department of Biochemistry, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | | | | |
Collapse
|
19
|
Henneberry AL, Wistow G, McMaster CR. Cloning, genomic organization, and characterization of a human cholinephosphotransferase. J Biol Chem 2000; 275:29808-15. [PMID: 10893425 DOI: 10.1074/jbc.m005786200] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A cholinephosphotransferase activity catalyzes the final step in the de novo synthesis of phosphatidylcholine via the transfer of a phosphocholine moiety from CDP choline to diacylglycerol. Ethanolaminephosphotransferase activity catalyzes a similar reaction substituting CDP ethanolamine as the phosphobase donor. We report the identification and cloning of a human cDNA (human cholinephosphotransferase (hCPT1)) that codes for a cholinephosphotransferase-specific enzyme. This was demonstrated using in vitro enzyme assays and in vivo measurement of the reconstitution of the phosphatidylcholine and phosphatidylethanolamine biosynthetic pathways in yeast cells devoid of their own endogenous cholinephosphotransferase and ethanolaminephosphotransferase activities. This contrasted with our previously cloned human choline/ethanolaminephosphotransferase cDNA that was demonstrated to code for a dual specificity choline/ethanolaminephosphotransferase. The hCPT1 and human choline/ethanolaminephosphotransferase (hCEPT1) predicted amino acid sequences possessed 60% overall identity and had only one variation in the amino acid residues within the CDP-alcohol phosphotransferase catalytic motif. In vitro assessment of hCPT1 and hCEPT1 derived cholinephosphotransferase activities also revealed differences in diradylglycerol specificities including their capacity to synthesize platelet-activating factor and platelet-activating factor precursor. Expression of the hCPT1 mRNA varied greater than 100-fold between tissues and was most abundant in testis followed by colon, small intestine, heart, prostate, and spleen. This was in marked contrast to the hCEPT1 mRNA, which has been found in similar abundance in all tissues tested to date. Both the hCPT1 and hCEPT1 enzymes were able to reconstitute the synthesis of PC in yeast to levels provided by the endogenous yeast cholinephosphotransferase; however, only hCEPT1-derived activity was able to complement the yeast CPT1 gene in its interaction with SEC14 and affect cell growth.
Collapse
Affiliation(s)
- A L Henneberry
- Atlantic Research Centre, Department of Pediatrics, IWK Grace Health Centre, Dalhousie University, Halifax, Nova Scotia B3H 4H7, Canada
| | | | | |
Collapse
|
20
|
Utal AK, Coleman PD. Non-HPLC separation of water-soluble choline metabolites by two-dimensional high voltage electrophoresis and thin layer chromatography. J Neurosci Methods 1999; 90:13-21. [PMID: 10517269 DOI: 10.1016/s0165-0270(99)00059-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
In cholinergic neurons choline is directed to three main pathways; (1) conversion to phosphorylcholine (PCh) and cytidine diphosphate choline (CDP-choline) for the synthesis of phosphatidylcholine, (2) acylation to the neurotransmitter acetylcholine and (3) oxidation to betaine for the formation of methionine. Thus, the distribution of choline among the different metabolites is important for a better understanding of the regulation of these pathways in neurons. A non-HPLC method for the simultaneous separation of five choline metabolites found in neurons is described. High voltage electrophoresis (HVE) was combined with thin layer chromatography (TLC) to separate choline, PCh, CDP-choline, acetylcholine and betaine. This method is useful in studying the distribution of choline among its different metabolites in radiotracer experiments. Aqueous metabolites from leukemia inhibitory factor treated LA-N-2 cells labeled with [methyl-3H]choline were separated by HVE followed by TLC in the same dimension. Although the separation appeared to be complete, some 'tailing' by PCh significantly elevated the radioactivity measured in CDP-choline. This tailing of PCh was confirmed by subjecting radiolabeled PCh alone to this multiple separation method. Contamination of CDP-choline by PCh was eliminated by subjecting the samples to HVE followed by TLC in the second dimension. This two-dimensional approach was consistently reproducible and achieved excellent resolution of all five metabolites. In addition, this technique also resolved a sixth choline-containing metabolite, glycerophosphorylcholine (GPC), a breakdown product of phosphatidylcholine.
Collapse
Affiliation(s)
- A K Utal
- Department of Neurobiology and Anatomy, University of Rochester School of Medicine and Dentistry, NY 14642, USA.
| | | |
Collapse
|
21
|
Anthony ML, Zhao M, Brindle KM. Inhibition of phosphatidylcholine biosynthesis following induction of apoptosis in HL-60 cells. J Biol Chem 1999; 274:19686-92. [PMID: 10391908 DOI: 10.1074/jbc.274.28.19686] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Induction of apoptosis in HL-60 cells, using a variety of cytotoxic drugs, resulted, in all cases, in inhibition of CDP-choline:1, 2-diacylglycerol choline phosphotransferase, leading to an accumulation of its substrate, CDP-choline, and inhibition of phosphatidylcholine biosynthesis. Incubation of the cells with phosphatidylcholine reduced the number displaying an apoptotic morphology following drug treatment, and this was inversely related to the degree to which the drugs inhibited phosphatidylcholine biosynthesis. Inhibition of choline phosphotransferase by two of the drugs, farnesol and chelerythrine, was shown to be due to direct inhibition of the enzyme, while inhibition by the other drugs, etoposide and camptothecin, could be explained by the intracellular acidification that followed induction of apoptosis.
Collapse
Affiliation(s)
- M L Anthony
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Old Addenbrookes Site, Cambridge CB2 1GA, United Kingdom
| | | | | |
Collapse
|
22
|
Carrella M, Feldman D, Cogoi S, Csillaghy A, Weinhold PA. Enhancement of mdr2 gene transcription mediates the biliary transfer of phosphatidylcholine supplied by an increased biosynthesis in the pravastatin-treated rat. Hepatology 1999; 29:1825-32. [PMID: 10347126 DOI: 10.1002/hep.510290620] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
An increase of biliary lipid secretion is known to occur in the rat under sustained administration of statin-type 3-hydroxy-3-methylglutaryl (HMG) coenzyme A (CoA) reductase inhibitors. The present study has addressed critical mechanisms of hepatic lipid synthesis and phosphatidylcholine (PC) biliary transport in the rat fed with a 0.075% pravastatin diet for 3 weeks. After treatment, biliary secretion of PC and cholesterol increased to 233% and 249% of controls, while that of bile salts was unchanged. Activity of cytidylyltransferase (CT), a major regulatory enzyme in the CDP-choline pathway of PC synthesis, was raised in both microsomal and cytosolic fractions (226% and 150% of controls), and there was an increase to 187% in the mass of active enzyme as determined by Western blot of microsomal protein using an antibody specific to CT. Cytosolic activity of choline kinase, another enzyme of the CDP-choline pathway, also increased to 175% of controls. In addition, there was an over eightfold increase in the HMG CoA reductase activity and mRNA. Thus, an increased PC and cholesterol synthetic supply to hepatocytes appeared as a basic mechanism for the biliary hypersecretion of these lipids. Notwithstanding the increased synthesis, hepatic PC content was unchanged, suggesting an enhanced transfer of this lipid into bile. Indeed, there was a sevenfold increase of multidrug resistance gene 2 (mdr2) gene mRNA coding for a main PC canalicular translocase. Thus, hypersecretion of biliary PC in the model studied can be explained by an up-regulation of mdr2 gene transcription and its P-glycoprotein product mediating the biliary transfer of PC supplied by an increased biosynthesis.
Collapse
Affiliation(s)
- M Carrella
- Cattedra di Gastroenterologia, Facoltà di Medicina e Chirurgia, Università degli Studi di Udine, Italy
| | | | | | | | | |
Collapse
|
23
|
Clement JM, Kent C. CTP:phosphocholine cytidylyltransferase: insights into regulatory mechanisms and novel functions. Biochem Biophys Res Commun 1999; 257:643-50. [PMID: 10208837 DOI: 10.1006/bbrc.1999.0512] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
A key regulatory enzyme in phosphatidylcholine biosynthesis, CTP:cholinephosphate cytidylyltransferase (CCT), catalyzes the formation of CDP-choline. This review discusses the essential features of CCT and addresses intriguing new insights into the catalytic and regulatory properties of this complex enzyme. Characterization of a lipid-binding segment in rat CCT is described and the role of lipids in CCT activation is discussed. An analysis of the phosphorylation domain is presented and possible physiological rationales for reversible phosphorylation of CCT are discussed. The nuclear localization of CCT is examined in the context of multiple CCT isoforms, as is recent evidence establishing a potential link between CCT activity and vesicular transport.
Collapse
Affiliation(s)
- J M Clement
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan, 48109, USA
| | | |
Collapse
|
24
|
Kent C, Carman GM. Interactions among pathways for phosphatidylcholine metabolism, CTP synthesis and secretion through the Golgi apparatus. Trends Biochem Sci 1999; 24:146-50. [PMID: 10322420 DOI: 10.1016/s0968-0004(99)01365-1] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Phosphatidylcholine is the major phospholipid in eukaryotic cells. It serves as a structural component of cell membranes and a reservoir of several lipid messengers. Recent studies in yeast and mammalian systems have revealed interrelationships between the two pathways of phosphatidylcholine metabolism, and between these pathways and those for CTP synthesis and secretion via the Golgi. These processes involve the regulation of the CDP-choline and phosphatidylethanolamine-methylation pathways of phosphatidylcholine synthesis, CTP synthetase, phospholipase D and the phospholipid-transfer protein Sec14p.
Collapse
Affiliation(s)
- C Kent
- Dept of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | | |
Collapse
|
25
|
Miquel K, Pradines A, Tercé F, Selmi S, Favre G. Competitive inhibition of choline phosphotransferase by geranylgeraniol and farnesol inhibits phosphatidylcholine synthesis and induces apoptosis in human lung adenocarcinoma A549 cells. J Biol Chem 1998; 273:26179-86. [PMID: 9748300 DOI: 10.1074/jbc.273.40.26179] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have previously shown that, among various isoprenoids, farnesol and geranylgeraniol specifically induced actin fiber disorganization, growth inhibition, and apoptosis in human lung adenocarcinoma A549 cells (Miquel, K., Pradines, A., and Favre, G. (1996) Biochem. Biophys. Res. Commun. 225, 869-876). Here we demonstrate that isoprenoid-induced apoptosis was preceded by an arrest in G0/G1 phase. The isoprenoid effects were independent of protein prenylation and of mitogen-activated protein kinase activity. Moreover, geranylgeraniol and farnesol induced a rapid inhibition of phosphatidylcholine biosynthesis at the last step of the CDP-choline pathway controlled by choline phosphotransferase and not at the level of CTP:phosphocholine cytidylyltransferase, the key enzyme of the pathway. Inhibition of choline phosphotransferase was confirmed by in vitro assays on microsomal fractions, which clearly showed that the isoprenoids acted by competitive inhibition with the diacylglycerol binding. Exogenous phosphatidylcholine addition prevented all the biological effects of the isoprenoids, including actin fiber disorganization and apoptosis, suggesting that inhibition of phosphatidylcholine biosynthesis might be the primary event of the isoprenoid action. These data demonstrate the molecular mechanism of geranylgeraniol and farnesol effects and suggest that the mevalonate pathway, leading notably to prenylated proteins, might be linked to the control of cell proliferation through the regulation of phosphatidylcholine biosynthesis.
Collapse
Affiliation(s)
- K Miquel
- Laboratoire d'Oncologie Cellulaire et Moléculaire, EA 2048, Faculté des Sciences Pharmaceutiques et Centre de Lutte Contre le Cancer Claudius Regaud, 31052 Toulouse cedex, France
| | | | | | | | | |
Collapse
|
26
|
Weinhold PA, Barrett D. Studies on the regulation of CTP:phosphocholine cytidylyltransferase using permeabilized HEP G2 cells: evidence that both active and inactive enzyme are membrane-bound. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1391:307-19. [PMID: 9555069 DOI: 10.1016/s0005-2760(97)00206-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
To obtain more insight into the mechanisms regulating CTP:phosphocholine cytidylyltransferase (CT), we determined the effect of oleate treatment on the rate of CT release from permeabilized Hep G2 cells and the distribution of the CT remaining in the permeabilized cells. When we permeabilized untreated cells in pH 7.5 buffer containing 0.15 M KCl, the rate of CT release was much slower than the release of lactate dehydrogenase. Oleate treatment caused a further decrease in CT release from cells. In untreated cells, 70-80% of the CT remaining in cells 10 min after permeabilization was recovered as soluble CT. Oleate treatment increased the amount of bound CT but over 50% of the CT in cells 10 min after permeabilization was recovered as soluble CT. In both control and oleate-treated cells, the increase in CT release with time correlated with a decrease in the amount of CT recovered from permeabilized cells as soluble CT. These results suggested that CT existed in a form that was not immediately available for release from permeabilized cells, but was recovered in the soluble fraction after cell disruption. When cells were permeabilized in 10 mM imidazole-20% glycerol-5 mM Mg2+ pH 6.5, over 80% of CT in control and over 90% of CT in oleate-treated cells was recovered bound to the particulate fraction. Essentially no CT was released from the cells. The recovery of CT in the particulate fraction required Mg2+ to be present when permeabilization was initiated. The addition of Mg2+, after cells were disrupted, did not increase CT in the particulate fraction. In untreated cells, 50% of bound CT was active. Oleate treatment increased the amount of active CT in the particulate fraction to over 70% of total. About 50% of particulate CT in untreated cells but only 15% in oleate-treated cells was extracted with 0.15 M KCl. Inactive CT was preferentially extracted by KCl. The bound CT was recovered in isolated nuclei. Overall, the results suggested that both inactive and active CT are bound to nuclear membranes, and that the activation of CT involves conversion of CT loosely bound to membrane to a form more tightly bound to membranes perhaps by hydrophobic interaction with phospholipids. This model does not involve translocation from a soluble pool.
Collapse
Affiliation(s)
- P A Weinhold
- Veterans Affairs Medical Center and Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, USA.
| | | |
Collapse
|
27
|
Abstract
CTP:phosphocholine cytidylyltransferase (CCT) catalyzes the synthesis of CDP-choline and is regulatory for phosphatidylcholine biosynthesis. This review focuses on recent developments in understanding the catalytic and regulatory mechanisms of this enzyme. Evidence for the nuclear localization of the enzyme is discussed, as well as evidence suggesting cytoplasmic localization. A comparison of the catalytic domains of CCTs from a wide variety of organisms is presented, highlighting a large number of completely conserved residues. Work implying a role for the conserved HXGH sequence in catalysis is described. The membrane-binding domain in rat CCT has been defined, and the role of lipids in activating the enzyme is discussed. The identification of the phosphorylation domain is described, as well as approaches to understand the role of phosphorylation in enzyme activity. Other possible control mechanisms such as enzyme degradation and gene expression are presented.
Collapse
Affiliation(s)
- C Kent
- Department of Biological Chemistry, University of Michigan Medical Center, Ann Arbor 48109-0606, USA.
| |
Collapse
|
28
|
Vogler WR, Shoji M, Hayzer DJ, Xie YP, Renshaw M. The effect of edelfosine on CTP:cholinephosphate cytidylyltransferase activity in leukemic cell lines. Leuk Res 1996; 20:947-51. [PMID: 9009253 DOI: 10.1016/s0145-2126(96)00070-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Analogs of ether phospholipids have been shown to have selective anti-neoplastic activity. The compounds are known to inhibit phospholipid biosynthesis. This paper examines the effect of the alkyl-lysophospholipid, edelfosine, on the rate-limiting enzyme, CTP:cholinephosphate cytidylyltransferase, in de novo phosphatidylcholine synthesis in sensitive and resistant leukemic cell lines. Enzyme activity was measured by the incorporation of 14C-phosphocholine into CDP-choline by lysates of HL60 and K562; cells demonstrated inhibition of incorporation of 14C-phosphocholine in HL60 cell lysates but no inhibition in K562 lysates. Partial purification of cytidylyltransferase by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and immunoblotting demonstrated similarity between the enzyme isolated from each cell line. Cloning and sequencing of cytidylyltransferase cDNA of HL60 cells was accomplished using a probe encoding the entire protein sequence of the K562 cytidylyltransferase gene. A substitution at nucleotide 751 from A in the HL60 cell cDNA clone to G in the K562 cDNA clone resulted in a change in amino acid number 251 from lysine (positively charged) in the HL60 enzyme to glutamic acid (negatively charged) in the K562 enzyme. This negative charge in the lipid-binding domain of the K562 enzyme may result in a weaker binding of edelfosine and the observed decrease in activity, as evidenced by resistance to edelfosine by K562 cells.
Collapse
Affiliation(s)
- W R Vogler
- Department of Medicine, Emory University, Atlanta, GA 30322, USA
| | | | | | | | | |
Collapse
|
29
|
Mahfouz MM, Smith TL, Zhou Q, Kummerow FA. Cholestane-3 beta, 5 alpha, 6 beta-triol stimulates phospholipid synthesis and CTP-phosphocholine cytidyltransferase in cultured LLC-PK cells. Int J Biochem Cell Biol 1996; 28:739-50. [PMID: 8925405 DOI: 10.1016/1357-2725(96)00025-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The present study was conducted to examine the effect, if any, of triol on the rate of total or individual phospholipid synthesis by LLC-PK cells in culture. LLC-PK cells were incubated in medium with or without 10 micrograms/ml of 5 alpha-cholestane-3 beta, 5 alpha,6 beta-triol (triol) for 24 h. Triol-treated and control cells were then incubated with medium containing either [14C]glycerol or [32P]phosphate for 1, 6 or 12 hr. In triol-treated cells, the amount of labeled glycerol and [32P]phosphate incorporated into glycerophospholipids and phospholipids (PL), respectively, were higher in triol-treated cells than in control cells, indicating a higher rate of PL synthesis in triol-treated cells. The results also showed that the increase in PL synthesis was higher in magnitude for some PL than others, thus disturbing the ratios among the PL fractions in the cell membrane. CTP-phosphocholine cytidyltransferase activity was greatly enhanced in the cytosolic as well as the particulate fractions of the triol-treated cells, which explains the increase of PC synthesis under triol effect. The rate of [3H]acetate incorporation into the total and free fatty acid fractions was significantly increased in triol-treated cells. The activation of the cytidyl transferase enzyme was related to the enhanced de novo synthesis and cellular uptake of fatty acids in triol-treated cells, which make fatty acids more available in these cells and can upregulate the enzyme. The increased synthesis of phospholipids in the triol cells and the increased level of phospholipid in these cells (as micrograms lipid phosphorus/mg cell protein) observed in our previous study indicate changes in the phospholipid head group composition of the triol cells. These changes can affect several membrane properties and membrane bound enzymes.
Collapse
Affiliation(s)
- M M Mahfouz
- Burnsides Research Laboratory, University of Illinois, Urbana 61801, USA
| | | | | | | |
Collapse
|
30
|
Regulation of mammalian CTP. ACTA ACUST UNITED AC 1996. [DOI: 10.1016/s1874-5245(96)80003-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
31
|
Zhou X, Arthur G. Effect of 1-O -Octadecyl-2-O -Methyl-Glycerophosphocholine on Phosphatidylcholine and Phosphatidylethanolamine Synthesis in MCF-7 and A549 Cells and its Relationship to Inhibition of Cell Proliferation. ACTA ACUST UNITED AC 1995. [DOI: 10.1111/j.1432-1033.1995.tb20887.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
32
|
Wang Y, Kent C. Identification of an inhibitory domain of CTP:phosphocholine cytidylyltransferase. J Biol Chem 1995; 270:18948-52. [PMID: 7642553 DOI: 10.1074/jbc.270.32.18948] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The function of the putative amphipathic helices between residues 236 and 314 of CTP:phosphocholine cytidylyltransferase was examined by constructing two truncation mutants; CT314 was missing the entire phosphorylation segment, whereas CT236 was missing both the region with the putative amphipathic helices and the phosphorylation segment. Stable cells lines expressing these truncation mutants in Chinese hamster ovary 58 cells were isolated and characterized. CT314 was predominantly soluble in control cells but became membrane-associated in cells treated with oleate, which also causes translocation of wild-type cytidylyltransferase. CT236 was found to be soluble both in control cells and in cells treated to cause translocation. These results strongly suggest that the membrane-binding site is located within residues 237-314. When assayed for activity in vitro, the mutant forms were catalytically active in the presence of exogenous lipids. CT236, moreover, was as active in the absence of lipids as in their presence, whereas CT314 required lipids for activity. The rate of phosphatidylcholine synthesis in cells expressing CT236 was considerably higher than in wild-type cells, consistent with the enzyme being constitutively active in the cells. These results indicate that residues 237-314 constitute an inhibitory segment; when this segment is removed from the catalytic domain by truncation or by binding to membranes, an inhibitory constraint is removed and cytidylyltransferase is activated.
Collapse
Affiliation(s)
- Y Wang
- Department of Biological Chemistry, University of Michigan Medical Center, Ann Arbor 48109-0606, USA
| | | |
Collapse
|
33
|
Wang Y, Kent C. Effects of altered phosphorylation sites on the properties of CTP:phosphocholine cytidylyltransferase. J Biol Chem 1995; 270:17843-9. [PMID: 7629086 DOI: 10.1074/jbc.270.30.17843] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
To investigate the role of phosphorylation and dephosphorylation in modulating the activity and location of CTP:phosphocholine cytidylyltransferase, we used site-directed mutagenesis to construct four mutant forms of cytidylyltransferase. These forms were 5SP-->AP, in which five of the seven Ser-Pro sequences were converted to Ala-Pro; 7SP-->AP, in which all of the seven Ser-Pro sequences converted to Ala-Pro; 16S-->A, in which all sixteen Ser residues that can be phosphorylated in wild type cytidylyltransferase were converted to Ala; and 16S-->E, in which all sixteen Ser residues were converted to Glu. The mutant enzymes were expressed in the strain 58 Chinese hamster ovary cell line, which is temperature-sensitive for growth and cytidylyltransferase activity. All mutant enzyme forms were enzymatically as active as the wild type when assayed under optimal conditions. In untreated cells, more of the Ser-->Ala mutants were membrane-associated than in cells expressing wild type enzyme, consistent with the phosphorylation state of the enzyme affecting its affinity for membranes. About half of the 16S-->A mutant remained soluble, however, indicating that dephosphorylation alone does not trigger membrane association. Although the amount of membrane-associated enzyme in the 16S-->A mutant was about 10-fold greater than that of wild type, phosphatidylcholine synthesis was increased by only about 75%, suggesting that membrane association does not necessarily cause full activation. All mutant forms, including the 16S-->E mutant, translocated to the particulate fraction upon oleate treatment, indicating that a high negative charge in the phosphorylation region does not preclude association of cytidylyltransferase with membranes. All mutant enzymes were able to support growth of strain 58 at 40 degrees C, and the rate of phosphatidylcholine synthesis was not greatly altered in the cell lines expressing mutant cytidylyltransferase forms. These results are consistent with a role for phosphorylation in the equilibrium distribution of cytidylyltransferase but suggest that changes in enzyme activity and location are not triggered exclusively by changes in the phosphorylation state.
Collapse
Affiliation(s)
- Y Wang
- Department of Biological Chemistry, University of Michigan Medical Center, Ann Arbor 48109, USA
| | | |
Collapse
|
34
|
Mallampalli RK, Salome RG, Li CH, VanRollins M, Hunninghake GW. Betamethasone activation of CTP:cholinephosphate cytidylyltransferase is mediated by fatty acids. J Cell Physiol 1995; 162:410-21. [PMID: 7860648 DOI: 10.1002/jcp.1041620313] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The purpose of the present study was to determine the mechanisms by which glucocorticoids increase the activity of CTP:cholinephosphate cytidylyltransferase, a key enzyme required for the synthesis of surfactant phosphatidylcholine. Lung cytidylyltransferase exists as an inactive, light form low in lipids (L-form) and an active, heavy form high in lipid content (H-form). In vitro, fatty acids stimulate and aggregate the inactive L-form to the active H-form. In vivo, betamethasone increases the amount of H-form while decreasing the amount of L-form in fetal lung. There is also a coordinate increase in total free fatty acids in the H-form. In the present study, we used gas chromatography-mass spectrometry to measure the fatty acid species associated with the H-forms in fetal rat lung after the mothers were treated with betamethasone (1 mg/kg). In vivo, betamethasone increased the total amount of free fatty acids associated with the H-form by 62%. Further, the hormone selectively increased the mass of myristic and oleic acids in H-form by 52 and 82%, respectively. However, betamethasone produced the greatest increase in the amount of H-form linoleic acid, which increased fourfold relative to control. In vitro, each of the fatty acids increased L-form activity in a dose-dependent manner; however, linoleic acid was the most potent. Linoleic and oleic acids also effectively increased L-form aggregations. These observations suggest that in vivo glucocorticoids elevate the level of specific fatty acids which convert cytidylyltransferase to the active form.
Collapse
Affiliation(s)
- R K Mallampalli
- Department of Internal Medicine, Department of Veterans Affairs Medical Center, Iowa City, Iowa 52242
| | | | | | | | | |
Collapse
|
35
|
Weiss GB. Metabolism and actions of CDP-choline as an endogenous compound and administered exogenously as citicoline. Life Sci 1995; 56:637-60. [PMID: 7869846 DOI: 10.1016/0024-3205(94)00427-t] [Citation(s) in RCA: 130] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
CDP-choline, supplied exogenously as citicoline, has beneficial physiological actions on cellular function that have been extensively studied and characterized in numerous model systems. As the product of the rate-limiting step in the synthesis of phosphatidylcholine from choline, CDP-choline and its hydrolysis products (cytidine and choline) play important roles in generation of phospholipids involved in membrane formation and repair. They also contribute to such critical metabolic functions as formation of nucleic acids, proteins, and acetylcholine. Orally-administered citicoline is hydrolyzed in the intestine, absorbed rapidly as choline and cytidine, resynthesized in liver and other tissues, and subsequently mobilized in CDP-choline synthetic pathways. Citicoline is efficiently utilized in brain cells for membrane lipid synthesis where it not only increases phospholipid synthesis but also inhibits phospholipid degradation. Exogenously administered citicoline prevents, reduces, or reverses effects of ischemia and/or hypoxia in most animal and cellular models studied, and acts in head trauma models to decrease and limit nerve cell membrane damage, restore intracellular regulatory enzyme sensitivity and function, and limit edema. Thus, considerable accumulated evidence supports use of citicoline to enhance membrane maintenance, membrane repair, and neuronal function in conditions such as ischemic and traumatic injuries. Beneficial effects of exogenous citicoline also have been postulated and/or reported in experimental models for dyskinesia, Parkinson's disease, cardiovascular disease, aging, Alzheimer's disease, learning and memory, and cholinergic stimulation.
Collapse
Affiliation(s)
- G B Weiss
- M. Hurley & Associates, Inc., Murray Hill, New Jersey 07974-1584
| |
Collapse
|
36
|
Tronchère H, Record M, Tercé F, Chap H. Phosphatidylcholine cycle and regulation of phosphatidylcholine biosynthesis by enzyme translocation. BIOCHIMICA ET BIOPHYSICA ACTA 1994; 1212:137-51. [PMID: 8180240 DOI: 10.1016/0005-2760(94)90248-8] [Citation(s) in RCA: 87] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- H Tronchère
- INSERM Unité 326, Hôpital Purpan, Toulouse, France
| | | | | | | |
Collapse
|
37
|
Zimmermann LJ, Lee WS, Smith BT, Post M. Cyclic AMP-dependent protein kinase does not regulate CTP:phosphocholine cytidylyltransferase activity in maturing type II cells. BIOCHIMICA ET BIOPHYSICA ACTA 1994; 1211:44-50. [PMID: 8123681 DOI: 10.1016/0005-2760(94)90137-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
CTP:phosphocholine cytidylyltransferase catalyses a rate regulatory step in the de novo synthesis of surfactant phosphatidylcholine in alveolar type II cells. To investigate if cytidylyltransferase can be regulated by cAMP-dependent protein kinase, we first studied the ontogeny of cAMP-dependent protein kinase activity in type II cells of fetal rat lung. Total cAMP-dependent protein kinase activity, measured in the presence of 10 microM cAMP, as well as endogenous activity, measured without cAMP, increased with advancing gestation. Phosphocholine cytidylyltransferase activity showed a similar developmental profile. This temporal relationship between cAMP-dependent protein kinase and cytidylyltransferase supports a potential role for cAMP-dependent protein kinase in regulating cytidylyltransferase phosphorylation. Cytidylyltransferase purified from adult rat lung was, indeed, phosphorylated in vitro by cAMP-dependent protein kinase. Despite the phosphorylation, however, no change in cytidylyltransferase activity was noted. Pre-incubation of fetal type II cell cytosol with ATP and Mg2+ did not affect cytidylyltransferase activity. Addition of either cAMP, dibutyryl-cAMP or the catalytic subunit of cAMP-dependent protein kinase to the pre-incubation medium did also not alter cytidylyltransferase activity. Furthermore, neither cAMP-dependent protein kinase inhibitor peptide, nor H8, a cyclic nucleo-dependent protein kinase inhibitor, affected cytidylyltransferase activity in fetal type II cell cytosol. Treatment of intact fetal type II cells with either cAMP, dibutyryl-cAMP or 8-[4-chlorophenylthio]cAMP activated cAMP-dependent protein kinase activity but did not alter cytidylyltransferase activity. We conclude that the increase in cytidylyltransferase activity in fetal type II cells at late gestation is not regulated by the developmental activation of cAMP-dependent protein kinase.
Collapse
Affiliation(s)
- L J Zimmermann
- Medical Research Group in Lung Development, Neonatal Research, Hospital for Sick Children Research Institute, Toronto, Canada
| | | | | | | |
Collapse
|
38
|
Wang Y, Sweitzer T, Weinhold P, Kent C. Nuclear localization of soluble CTP:phosphocholine cytidylyltransferase. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)53405-0] [Citation(s) in RCA: 115] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
39
|
Wang Y, MacDonald J, Kent C. Regulation of CTP:phosphocholine cytidylyltransferase in HeLa cells. Effect of oleate on phosphorylation and intracellular localization. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)53350-0] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
40
|
Watkins J, Kent C. Immunolocalization of membrane-associated CTP:phosphocholine cytidylyltransferase in phosphatidylcholine-deficient Chinese hamster ovary cells. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)42821-9] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
41
|
Watkins JD, Wang YL, Kent C. Regulation of CTP:phosphocholine cytidylyltransferase activity and phosphorylation in rat hepatocytes: Lack of effect of elevated cAMP levels. Arch Biochem Biophys 1992; 292:360-7. [PMID: 1370599 DOI: 10.1016/0003-9861(92)90003-f] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Immunoprecipitation of 32P-labeled CTP:phosphocholine cytidylyltransferase from freshly isolated rat hepatocytes followed by trypsin digestion and two-dimensional peptide mapping revealed multiple phosphorylation sites. Treatment of the hepatocytes with 0.5 mM of the cAMP analog, 8-(4-chlorophenylthio)-adenosine 3':5'-monophosphate or elevation of intracellular cAMP levels by cholera toxin activated the cAMP-dependent protein kinase activity in intact cells. Despite the activation of cAMP-dependent protein kinase no change in the rate of [3H]choline incorporation into phosphatidylcholine was detected. In addition, the activity of cytidylyltransferase in total cell homogenates and its distribution between soluble and particulate fractions remained unchanged. Comparison of peptide maps of 32P-labeled cytidylyltransferase obtained from control and cholera-toxin-treated hepatocytes did not reveal any differences in the phosphorylation state of cytidylyltransferase. Furthermore, only [32P]phosphoserine residues were detected following phosphoamino acid analysis. We conclude that cytidylyltransferase activity is not altered solely by the activation of the cAMP-dependent kinase in fresh hepatocytes.
Collapse
Affiliation(s)
- J D Watkins
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907
| | | | | |
Collapse
|
42
|
van der Grond J, Laven JS, van Echteld CJ, Dijkstra G, Grootegoed JA, de Rooij DG, Mali WP. The progression of spermatogenesis in the developing rat testis followed by 31P MR spectroscopy. Magn Reson Med 1992; 23:264-74. [PMID: 1549041 DOI: 10.1002/mrm.1910230207] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
To evaluate the use of human testicular 31P MR spectroscopy as a diagnostic tool to differentiate between several stages of male infertility, we have studied the testicular levels of several phosphorus containing compounds in the rat in relation to the condition of spermatogenesis and the cell types present in the seminiferous tubules of the testis. During testicular maturation several characteristic changes occur in the 31P MR spectrum of the testis of male Wistar rats. The phosphomonoester/adenosine triphosphate (PM/ATP) ratio shows a decline from 1.61 to 1.02 between the age of 3 and 12 weeks, whereas the phosphodiester (PD)/ATP ratio increases from 0 to 0.72. The testicular pH increases in the same time from 7.06 to 7.32. Testicular MR data obtained after 12 weeks of age onward do not show significant change anymore. The high PM/ATP ratio is associated by a relative high amount of proliferating spermatogonia and spermatocytes during meiosis in the testis, whereas the PD peak seems to be correlated with the release and maintenance of spermatozoa. The MR spectra show a specific fingerprint in all developmental stages of the rat testis as a result of the different cell types in the testis.
Collapse
Affiliation(s)
- J van der Grond
- Department of Radiodiagnosis, University Hospital Utrecht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
43
|
Slack B, Breu J, Wurtman R. Production of diacylglycerol by exogenous phospholipase C stimulates CTP:phosphocholine cytidylyltransferase activity and phosphatidylcholine synthesis in human neuroblastoma cells. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)54257-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
44
|
Watkins J, Kent C. Regulation of CTP:phosphocholine cytidylyltransferase activity and subcellular location by phosphorylation in Chinese hamster ovary cells. The effect of phospholipase C treatment. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)54827-4] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
45
|
Tercé F, Record M, Tronchère H, Ribbes G, Chap H. Cytidylyltransferase translocation onto endoplasmic reticulum and increased de novo synthesis without phosphatidylcholine accumulation in Krebs-II ascite cells. BIOCHIMICA ET BIOPHYSICA ACTA 1991; 1084:69-77. [PMID: 1647204 DOI: 10.1016/0005-2760(91)90057-o] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Addition of oleic acid to Krebs-II cells stimulated by 9-fold [3H]choline incorporation into choline glycerophospholipids without affecting the selective incorporation of the precursor into diacyl subclass (90% of total [3H]choline glycerophospholipids). The total activity of cytidylyltransferase (E.C. 2.7.7.15), the regulatory enzyme of choline glycerophospholipid synthesis, was increased in the particulate fraction at the expense of cytosol. Free [3H]oleic acid was also associated with the particulate fraction. Subcellular fractionation of membranes on Percoll gradient, indicated that the endoplasmic reticulum, which contained 90% of total cell free oleic acid, was the unique target for the translocation of cytidylyltransferase. [3H]oleic acid was incorporated almost exclusively into phosphatidylcholine and corresponded to a synthesis of 9 nmol/h per 10(6) cells. Based on [3H]choline incorporation a net synthesis of 22 nmol/h per 10(6) cells was determined. However, oleic acid treatment did not change the total amount of phosphatidylcholine (45 nmol/10(6) cells) and other phospholipids; also no modification in the subcellular distribution of phospholipids was observed. It is concluded that the stimulation of the de novo synthesis of phosphatidylcholine which involves translocation of cytidylyltransferase onto the endoplasmic reticulum, is accompanied by a renewal of their polar head group. Also exogenous oleic acid induces an enhanced fatty acid turnover, highly specific for phosphatidylcholine. Therefore, Krebs-II cells exhibited a high degree of regulation of their phosphatidylcholine content, suggesting a parallel stimulation of both synthesis and degradation.
Collapse
Affiliation(s)
- F Tercé
- INSERM Unité 326, Hôpital Purpan, Toulouse, France
| | | | | | | | | |
Collapse
|
46
|
Van der Grond J, Dijkstra G, Roelofsen B, Mali WP. 31P-NMR determination of phosphomonoesters in relation to phospholipid biosynthesis in testis of the rat at different ages. BIOCHIMICA ET BIOPHYSICA ACTA 1991; 1074:189-94. [PMID: 2043669 DOI: 10.1016/0304-4165(91)90060-t] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Changes in the phosphomonoester (PM) peak, as observed in in vivo 31P-NMR spectra, are often attributed to changes in phospholipid synthesis and therefore to changes in cell proliferation. However, this technique provides information about the absolute size of the phosphomonoester pool rather than its turnover rate. To investigate whether there is a good correlation between changes in PM concentration and its turnover rate, we studied the turnover rate of the two major PM compounds, phosphocholine and phosphoethanolamine, in rat testes at different stages of testis development. [3H]Choline and [3H]ethanolamine were injected intraperitoneally into rats at the age of 3, 6 and 13 weeks, respectively. Phosphorylation of these compounds and their incorporation into phospholipids, were followed up to 6 h after injection of the phospholipid precursors. When these data were compared with the changes observed in the in vivo 31P-NMR PM peak, the concentration of the PM compounds appeared to correlate linearly, both with the conversion of choline into phosphocholine, as well with the rate of phospholipid synthesis, and therefore with the rate of cell proliferation. Hence, it is suggested that cell proliferation can be monitored by determining the changes in the PM peak that is observed in in vivo 31P-NMR spectra.
Collapse
Affiliation(s)
- J Van der Grond
- Department of Radiodiagnosis, University Hospital Utrecht, The Netherlands
| | | | | | | |
Collapse
|
47
|
Tronchere H, Terce F, Record M, Ribbes G, Chap H. Modulation of CTP:phosphocholine cytidylyltransferase translocation by oleic acid and the antitumoral alkylphospholipid in HL-60 cells. Biochem Biophys Res Commun 1991; 176:157-65. [PMID: 1850254 DOI: 10.1016/0006-291x(91)90903-k] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Short time effect of oleate and 1-O-alkyl-2-O-methyl-rac-glycero-3-phosphocholine (AMGPC) on choline incorporation into phosphatidylcholines were studied in HL-60 cells. The non lytic concentration of 50 microM oleate induced a three-fold increase in [3H]choline incorporation into phosphatidylcholine. This stimulation was accompanied by a translocation of the CTP:phosphocholine cytidylyltransferase (EC 2.7.7.15) from cytosol to membranes. By contrast, the ether-lipid AMGPC inhibited [3H]choline incorporation into phosphatidylcholine by 60% at 10 microM. AMGPC had no effect on choline kinase or choline phosphotransferase activities. When AMGPC was added separately to an homogenate, a particulate or a cytosolic fraction, cytidylyltransferase inhibition was observed only in the homogenate. However on particulates recovered from homogenates treated with increasing concentrations of AMGPC, membranous cytidylyltransferase activity decreased dose-dependently. Thus AMGPC had no effect on cytidylyltransferase activity itself but inhibited its translocation from cytosol to membrane. At variance with the well-established positive effect on cytidylyltransferase translocation induced by fatty acids, this is the first demonstration that AMGPC can inhibit cytidylyltransferase translocation in cell-free system.
Collapse
Affiliation(s)
- H Tronchere
- Institut National de la Santé et de la Recherche Médicale, Unité 326, Toulouse, France
| | | | | | | | | |
Collapse
|
48
|
Weinhold PA, Charles L, Rounsifer ME, Feldman DA. Control of phosphatidylcholine synthesis in Hep G2 cells. Effect of fatty acids on the activity and immunoreactive content of choline phosphate cytidylyltransferase. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)38088-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
49
|
Tsukagoshi Y, Nikawa J, Hosaka K, Yamashita S. Expression in Escherichia coli of the Saccharomyces cerevisiae CCT gene encoding cholinephosphate cytidylyltransferase. J Bacteriol 1991; 173:2134-6. [PMID: 1848222 PMCID: PMC207753 DOI: 10.1128/jb.173.6.2134-2136.1991] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The coding region of the CCT gene from the yeast Saccharomyces cerevisiae was cloned into the pUC18 expression vector. The plasmid directed the synthesis of an active cholinephosphate cytidylyltransferase in Escherichia coli, confirming that CCT is the structural gene for this enzyme. The enzyme produced in E. coli efficiently utilized cholinephosphate and N,N-dimethylethanolaminephosphate, but N-methylethanolamine-phosphate and ethanolaminephosphate were poor substrates. Consistently, disruption of the CCT locus in the wild-type yeast cells resulted in a drastic decrease in activities with respect to the former two substrates. When activity was expressed in E. coli, over 90% was recovered in the cytosol, whereas most of the activity of yeast cells was associated with membranes, suggesting that yeast cells possess a mechanism that promotes membrane association of cytidylyltransferase.
Collapse
Affiliation(s)
- Y Tsukagoshi
- Department of Biochemistry, Gunma University School of Medicine, Maebashi, Japan
| | | | | | | |
Collapse
|
50
|
Hatch GM, Tsukitani Y, Vance DE. The protein phosphatase inhibitor, okadaic acid, inhibits phosphatidylcholine biosynthesis in isolated rat hepatocytes. BIOCHIMICA ET BIOPHYSICA ACTA 1991; 1081:25-32. [PMID: 1846757 DOI: 10.1016/0005-2760(91)90245-d] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
There is evidence that phosphatidylcholine (PC) biosynthesis in hepatocytes is regulated by a phosphorylation-dephosphorylation mechanism. The phosphatases involved have not been identified. We, therefore, investigated the effect of okadaic acid, a potent protein phosphatase inhibitor, on PC biosynthesis via the CDP-choline pathway in suspension cultures of isolated rat hepatocytes. Okadaic acid caused a 15% decrease (P less than 0.05) in [Me-3H]choline uptake in continuous-pulse labeling experiments. After 120 min of treatment, the labeling of PC was decreased 46% (P less than 0.05) with a corresponding 20% increase (P less than 0.05) in labeling of phosphocholine. Cells were pulsed with [Me-3H]choline for 30 min and subsequently chased for up to 120 min with choline in the absence or presence of okadaic acid. The labeling of phosphocholine was increased 86% (P less than 0.05) and labeling of PC decreased 29% (P less than 0.05) by 120 min of chase in okadaic acid-treated hepatocytes. The decrease of label in PC was quantitatively accounted for in the phosphocholine fraction. Incubation of hepatocytes with both okadaic acid and CPT-cAMP did not produce an additive inhibition in labeling of PC. Choline kinase and cholinephosphotransferase activities were unaltered by treatment with okadaic acid. Hepatocytes were incubated with digitonin to cause release of cytosolic components. Cell ghost membrane cytidylyltransferase (CT) activity was decreased 37% (P less than 0.005) with a concomitant 33% increase (P less than 0.05) in released cytosolic cytidylyltransferase activity in okadaic acid-treated hepatocytes. We postulate that CT activity and PC biosynthesis are regulated by protein phosphatase activity in isolated rat hepatocytes.
Collapse
Affiliation(s)
- G M Hatch
- Lipid and Lipoprotein Research Group, University of Alberta, Edmonton, Canada
| | | | | |
Collapse
|