1
|
Zhao J, Chen Y, Alford H, Franzen S. The mechanism of autoreduction in Dehaloperoxidase-A. Biochem Biophys Res Commun 2024; 745:151217. [PMID: 39729674 DOI: 10.1016/j.bbrc.2024.151217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/18/2024] [Accepted: 12/18/2024] [Indexed: 12/29/2024]
Abstract
Hemoglobin and myoglobin are known to undergo autoxidation, in which the oxyferrous form of the heme is oxidized to the ferric state by O2. Dehaloperoxidase-A (DHP-A), a multifunctional catalytic hemoglobin from Amphitrite ornata is an exception and is observed to undergo the reverse process, during which the ferric heme is spontaneously reduced to the oxyferrous form under aerobic conditions. The high reduction potential of DHP (+202 mV at pH 7.0) partially explains this unusual behavior, but the endogenous source of reducing equivalents has remained obscure. Cysteine, methionine, tyrosine, and tryptophan are the principal endogenous reducing agents in proteins that may explain the observed autoreduction in DHP-A. In fact, DHP-A has six methionines, which may be of particular importance for the observed autoreduction. To investigate the role of the sulfur-containing residues, we created seven mutants (C73S, C73 S/M49C, S78C, M63L, M64L, M63 L/M64L, and H55V) by site-directed mutagenesis and conducted a series of CO-driven autoreduction kinetic measurements. Mutational analysis suggests a role for the pair of methionines M63 and M64 increaing the autoreduction rate. Adding surface cysteines has little effect, but the C73S mutation that eliminates the only native surface cysteine accelerates the autoreduction process. The kinetics had a sigmoidal form which was found to be a result of anti-cooperative behavior. This observation suggests that DHP-A's monomer-dimer equilibrium in solution may play a role in regulating the autoreduction process.
Collapse
Affiliation(s)
- Jing Zhao
- Department of Chemistry, North Carolina State University, Raleigh, NC, 27695, USA
| | - Yinglu Chen
- Department of Chemistry, North Carolina State University, Raleigh, NC, 27695, USA
| | - Hunter Alford
- Department of Chemistry, North Carolina State University, Raleigh, NC, 27695, USA
| | - Stefan Franzen
- Department of Chemistry, North Carolina State University, Raleigh, NC, 27695, USA.
| |
Collapse
|
2
|
Costa GJ, Liang R. Understanding the Multifaceted Mechanism of Compound I Formation in Unspecific Peroxygenases through Multiscale Simulations. J Phys Chem B 2023; 127:8809-8824. [PMID: 37796883 DOI: 10.1021/acs.jpcb.3c04589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
Unspecific peroxygenases (UPOs) can selectively oxyfunctionalize unactivated hydrocarbons by using peroxides under mild conditions. They circumvent the oxygen dilemma faced by cytochrome P450s and exhibit greater stability than the latter. As such, they hold great potential for industrial applications. A thorough understanding of their catalysis is needed to improve their catalytic performance. However, it remains elusive how UPOs effectively convert peroxide to Compound I (CpdI), the principal oxidizing intermediate in the catalytic cycle. Previous computational studies of this process primarily focused on heme peroxidases and P450s, which have significant differences in the active site from UPOs. Additionally, the roles of peroxide unbinding in the kinetics of CpdI formation, which is essential for interpreting existing experiments, have been understudied. Moreover, there has been a lack of free energy characterizations with explicit sampling of protein and hydration dynamics, which is critical for understanding the thermodynamics of the proton transport (PT) events involved in CpdI formation. To bridge these gaps, we employed multiscale simulations to comprehensively characterize the CpdI formation in wild-type UPO from Agrocybe aegerita (AaeUPO). Extensive free energy and potential energy calculations were performed in a quantum mechanics/molecular mechanics setting. Our results indicate that substrate-binding dehydrates the active site, impeding the PT from H2O2 to a nearby catalytic base (Glu196). Furthermore, the PT is coupled with considerable hydrogen bond network rearrangements near the active site, facilitating subsequent O-O bond cleavage. Finally, large unbinding free energy barriers kinetically stabilize H2O2 at the active site. These findings reveal a delicate balance among PT, hydration dynamics, hydrogen bond rearrangement, and cosubstrate unbinding, which collectively enable efficient CpdI formation. Our simulation results are consistent with kinetic measurements and offer new insights into the CpdI formation mechanism at atomic-level details, which can potentially aid the design of next-generation biocatalysts for sustainable chemical transformations of feedstocks.
Collapse
Affiliation(s)
- Gustavo J Costa
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
| | - Ruibin Liang
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
| |
Collapse
|
3
|
Chattopadhyay S, Mukherjee M, Kandemir B, Bowman SEJ, Bren KL, Dey A. Contributions to cytochrome c inner- and outer-sphere reorganization energy. Chem Sci 2021; 12:11894-11913. [PMID: 34659730 PMCID: PMC8442690 DOI: 10.1039/d1sc02865k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/05/2021] [Indexed: 11/21/2022] Open
Abstract
Cytochromes c are small water-soluble proteins that catalyze electron transfer in metabolism and energy conversion processes. Hydrogenobacter thermophilus cytochrome c552 presents a curious case in displaying fluxionality of its heme axial methionine ligand; this behavior is altered by single point mutation of the Q64 residue to N64 or V64, which fixes the ligand in a single configuration. The reorganization energy (λ) of these cytochrome c552 variants is experimentally determined using a combination of rotating disc electrochemistry, chronoamperometry and cyclic voltammetry. The differences between the λ determined from these complementary techniques helps to deconvolute the contribution of the active site and its immediate environment to the overall λ (λTotal). The experimentally determined λ values in conjunction with DFT calculations indicate that the differences in λ among the protein variants are mainly due to the differences in contributions from the protein environment and not just inner-sphere λ. DFT calculations indicate that the position of residue 64, responsible for the orientation of the axial methionine, determines the geometric relaxation of the redox active molecular orbital (RAMO). The orientation of the RAMO with respect to the heme is key to determining electron transfer coupling (HAB) which results in higher ET rates in the wild-type protein relative to the Q64V mutant despite a 150 mV higher λTotal in the former. Efficient delocalization of the redox-active molecular orbital (RAMO) in HtWT results in an increase in HAB value which in turn accelerates the electron transfer (ET) rate in spite of the higher reorganization energy (λ) than the HtQ64V mutant.![]()
Collapse
Affiliation(s)
- Samir Chattopadhyay
- School of Chemical Sciences, Indian Association for the Cultivation of Science 2A Raja SC Mullick Road Kolkata WB 700032 India
| | - Manjistha Mukherjee
- School of Chemical Sciences, Indian Association for the Cultivation of Science 2A Raja SC Mullick Road Kolkata WB 700032 India
| | - Banu Kandemir
- Department of Chemistry, University of Rochester Rochester NY 14627-0216 USA
| | - Sarah E J Bowman
- Department of Chemistry, University of Rochester Rochester NY 14627-0216 USA
| | - Kara L Bren
- Department of Chemistry, University of Rochester Rochester NY 14627-0216 USA
| | - Abhishek Dey
- School of Chemical Sciences, Indian Association for the Cultivation of Science 2A Raja SC Mullick Road Kolkata WB 700032 India
| |
Collapse
|
4
|
Influence of Varying Functionalization on the Peroxidase Activity of Nickel(II)–Pyridine Macrocycle Catalysts: Mechanistic Insights from Density Functional Theory. COMPUTATION 2020. [DOI: 10.3390/computation8020052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Nickel(II) complexes of mono-functionalized pyridine-tetraazamacrocycles (PyMACs) are a new class of catalysts that possess promising activity similar to biological peroxidases. Experimental studies with ABTS (2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid), substrate) and H2O2 (oxidant) proposed that hydrogen-bonding and proton-transfer reactions facilitated by their pendant arm were responsible for their catalytic activity. In this work, density functional theory calculations were performed to unravel the influence of pendant arm functionalization on the catalytic performance of Ni(II)–PyMACs. Generated frontier orbitals suggested that Ni(II)–PyMACs activate H2O2 by satisfying two requirements: (1) the deprotonation of H2O2 to form the highly nucleophilic HOO−, and (2) the generation of low-spin, singlet state Ni(II)–PyMACs to allow the binding of HOO−. COSMO solvation-based energies revealed that the O–O Ni(II)–hydroperoxo bond, regardless of pendant arm type, ruptures favorably via heterolysis to produce high-spin (S = 1) [(L)Ni3+–O·]2+ and HO−. Aqueous solvation was found crucial in the stabilization of charged species, thereby favoring the heterolytic process over homolytic. The redox reaction of [(L)Ni3+–O·]2+ with ABTS obeyed a 1:2 stoichiometric ratio, followed by proton transfer to produce the final intermediate. The regeneration of Ni(II)–PyMACs at the final step involved the liberation of HO−, which was highly favorable when protons were readily available or when the pKa of the pendant arm was low.
Collapse
|
5
|
Leveson-Gower RB, Mayer C, Roelfes G. The importance of catalytic promiscuity for enzyme design and evolution. Nat Rev Chem 2019. [DOI: 10.1038/s41570-019-0143-x] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
6
|
Yee EF, Dzikovski B, Crane BR. Tuning Radical Relay Residues by Proton Management Rescues Protein Electron Hopping. J Am Chem Soc 2019; 141:17571-17587. [PMID: 31603693 DOI: 10.1021/jacs.9b05715] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Transient tyrosine and tryptophan radicals play key roles in the electron transfer (ET) reactions of photosystem (PS) II, ribonucleotide reductase (RNR), photolyase, and many other proteins. However, Tyr and Trp are not functionally interchangeable, and the factors controlling their reactivity are often unclear. Cytochrome c peroxidase (CcP) employs a Trp191•+ radical to oxidize reduced cytochrome c (Cc). Although a Tyr191 replacement also forms a stable radical, it does not support rapid ET from Cc. Here we probe the redox properties of CcP Y191 by non-natural amino acid substitution, altering the ET driving force and manipulating the protic environment of Y191. Higher potential fluorotyrosine residues increase ET rates marginally, but only addition of a hydrogen bond donor to Tyr191• (via Leu232His or Glu) substantially alters activity by increasing the ET rate by nearly 30-fold. ESR and ESEEM spectroscopies, crystallography, and pH-dependent ET kinetics provide strong evidence for hydrogen bond formation to Y191• by His232/Glu232. Rate measurements and rapid freeze quench ESR spectroscopy further reveal differences in radical propagation and Cc oxidation that support an increased Y191• formal potential of ∼200 mV in the presence of E232. Hence, Y191 inactivity results from a potential drop owing to Y191•+ deprotonation. Incorporation of a well-positioned base to accept and donate back a hydrogen bond upshifts the Tyr• potential into a range where it can effectively oxidize Cc. These findings have implications for the YZ/YD radicals of PS II, hole-hopping in RNR and cryptochrome, and engineering proteins for long-range ET reactions.
Collapse
Affiliation(s)
- Estella F Yee
- Department of Chemistry and Chemical Biology , Cornell University , Ithaca , New York 14853 , United States
| | - Boris Dzikovski
- Department of Chemistry and Chemical Biology , Cornell University , Ithaca , New York 14853 , United States.,National Biomedical Center for Advanced ESR Technologies (ACERT) , Cornell University , Ithaca , New York 14850 , United States
| | - Brian R Crane
- Department of Chemistry and Chemical Biology , Cornell University , Ithaca , New York 14853 , United States
| |
Collapse
|
7
|
A novel thermophilic hemoprotein scaffold for rational design of biocatalysts. J Biol Inorg Chem 2018; 23:1295-1307. [PMID: 30209579 DOI: 10.1007/s00775-018-1615-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 09/03/2018] [Indexed: 10/28/2022]
Abstract
Hemoproteins are commonly found in nature, and involved in many important cellular processes such as oxygen transport, electron transfer, and catalysis. Rational design of hemoproteins can not only inspire novel biocatalysts but will also lead to a better understanding of structure-function relationships in native hemoproteins. Here, the heme nitric oxide/oxygen-binding protein from Caldanaerobacter subterraneus subsp. tengcongensis (TtH-NOX) is used as a novel scaffold for oxidation biocatalyst design. We show that signaling protein TtH-NOX can be reengineered to catalyze H2O2 decomposition and oxidation of 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) by H2O2. In addition, the role of the distal tyrosine (Tyr140) in catalysis is investigated. The mutation of Tyr140 to alanine hinders the catalysis of the oxidation reactions. On the other hand, the mutation of Tyr140 to histidine, which is commonly observed in peroxidases, leads to a significant increase of the catalytic activity. Taken together, these results show that, while the distal histidine plays an important role in hemoprotein reactions with H2O2, it is not always essential for oxidation activity. We show that TtH-NOX protein can be used as an alternative scaffold for the design of novel biocatalysts with desired reactivity or functionality. H-NOX proteins are homologous to the nitric oxide sensor soluble guanylate cyclase. Here, we show that the gas sensor protein TtH-NOX shows limited capacity for catalysis of redox reactions and it can be used as a novel scaffold in biocatalysis design.
Collapse
|
8
|
Crystal structure of the pristine peroxidase ferryl center and its relevance to proton-coupled electron transfer. Proc Natl Acad Sci U S A 2016; 113:1226-31. [PMID: 26787871 DOI: 10.1073/pnas.1521664113] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The reaction of peroxides with peroxidases oxidizes the heme iron from Fe(III) to Fe(IV)=O and a porphyrin or aromatic side chain to a cationic radical. X-ray-generated hydrated electrons rapidly reduce Fe(IV), thereby requiring very short exposures using many crystals, and, even then, some reduction cannot be avoided. The new generation of X-ray free electron lasers capable of generating intense X-rays on the tenths of femtosecond time scale enables structure determination with no reduction or X-ray damage. Here, we report the 1.5-Å crystal structure of cytochrome c peroxidase (CCP) compound I (CmpI) using data obtained with the Stanford Linear Coherent Light Source (LCLS). This structure is consistent with previous structures. Of particular importance is the active site water structure that can mediate the proton transfer reactions required for both CmpI formation and reduction of Fe(IV)=O to Fe(III)-OH. The structures indicate that a water molecule is ideally positioned to shuttle protons between an iron-linked oxygen and the active site catalytic His. We therefore have carried out both computational and kinetic studies to probe the reduction of Fe(IV)=O. Kinetic solvent isotope experiments show that the transfer of a single proton is critical in the peroxidase rate-limiting step, which is very likely the proton-coupled reduction of Fe(IV)=O to Fe(III)-OH. We also find that the pKa of the catalytic His substantially increases in CmpI, indicating that this active site His is the source of the proton required in the reduction of Fe(IV)=O to Fe(IV)-OH.
Collapse
|
9
|
Hannibal L, Tomasina F, Capdevila DA, Demicheli V, Tórtora V, Alvarez-Paggi D, Jemmerson R, Murgida DH, Radi R. Alternative Conformations of Cytochrome c: Structure, Function, and Detection. Biochemistry 2016; 55:407-28. [DOI: 10.1021/acs.biochem.5b01385] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Luciana Hannibal
- Departamento
de Bioquímica, Facultad de Medicina, Universidad de la República, Avda. General Flores 2125, 11800 Montevideo, Uruguay
- Centro
de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Avda. General Flores 2125, 11800 Montevideo, Uruguay
- Center
for Pediatrics and Adolescent Medicine, Medical Center, University of Freiburg, Mathildenstrasse 1, Freiburg D-79106, Germany
| | - Florencia Tomasina
- Departamento
de Bioquímica, Facultad de Medicina, Universidad de la República, Avda. General Flores 2125, 11800 Montevideo, Uruguay
- Centro
de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Avda. General Flores 2125, 11800 Montevideo, Uruguay
| | - Daiana A. Capdevila
- Departamento
de Química Inorgánica, Analítica y Química
Física/INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria, C1428EHA Buenos Aires, Argentina
| | - Verónica Demicheli
- Departamento
de Bioquímica, Facultad de Medicina, Universidad de la República, Avda. General Flores 2125, 11800 Montevideo, Uruguay
- Centro
de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Avda. General Flores 2125, 11800 Montevideo, Uruguay
| | - Verónica Tórtora
- Departamento
de Bioquímica, Facultad de Medicina, Universidad de la República, Avda. General Flores 2125, 11800 Montevideo, Uruguay
- Centro
de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Avda. General Flores 2125, 11800 Montevideo, Uruguay
| | - Damián Alvarez-Paggi
- Departamento
de Química Inorgánica, Analítica y Química
Física/INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria, C1428EHA Buenos Aires, Argentina
| | - Ronald Jemmerson
- Department
of Microbiology and Immunology, University of Minnesota, MMC 196,
420 Delaware Street, Southeast, Minneapolis, Minnesota 55455, United States
| | - Daniel H. Murgida
- Departamento
de Química Inorgánica, Analítica y Química
Física/INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria, C1428EHA Buenos Aires, Argentina
| | - Rafael Radi
- Departamento
de Bioquímica, Facultad de Medicina, Universidad de la República, Avda. General Flores 2125, 11800 Montevideo, Uruguay
- Centro
de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Avda. General Flores 2125, 11800 Montevideo, Uruguay
| |
Collapse
|
10
|
Tognaccini L, Ciaccio C, D'Oria V, Cervelli M, Howes BD, Coletta M, Mariottini P, Smulevich G, Fiorucci L. Structure-function relationships in human cytochrome c: The role of tyrosine 67. J Inorg Biochem 2015; 155:56-66. [PMID: 26610191 DOI: 10.1016/j.jinorgbio.2015.11.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 11/03/2015] [Accepted: 11/10/2015] [Indexed: 11/20/2022]
Abstract
Spectroscopic and functional properties of human cytochrome c and its Tyr67 residue mutants (i.e., Tyr67His and Tyr67Arg) have been investigated. In the case of the Tyr67His mutant, we have observed only a very limited structural alteration of the heme pocket and of the Ω-loop involving, among others, the residue Met80 and its bond with the heme iron. Conversely, in the Tyr67Arg mutant the Fe-Met80 bond is cleaved; consequently, a much more extensive structural alteration of the Ω-loop can be envisaged. The structural, and thus the functional modifications, of the Tyr67Arg mutant are present in both the ferric [Fe(III)] and the ferrous [Fe(II)] forms, indicating that the structural changes are independent of the heme iron oxidation state, depending instead on the type of substituting residue. Furthermore, a significant peroxidase activity is evident for the Tyr67Arg mutant, highlighting the role of Arg as a basic, positively charged residue at pH7.0, located in the heme distal pocket, which may act as an acid to cleave the O-O bond in H2O2. As a whole, our results indicate that a delicate equilibrium is associated with the spatial arrangement of the Ω-loop. Clearly, Arg, but not His, is able to stabilize and polarize the negative charge on the Fe(III)-OOH complex during the formation of Compound I, with important consequences on cytochrome peroxidation activity and its role in the apoptotic process, which is somewhat different in yeast and mammals.
Collapse
Affiliation(s)
- Lorenzo Tognaccini
- Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, FI, Italy
| | - Chiara Ciaccio
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy; Interuniversity Consortium for the Research on the Chemistry of Metals in Biological Systems (CIRCMSB), Bari, Italy
| | - Valentina D'Oria
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | | | - Barry D Howes
- Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, FI, Italy
| | - Massimo Coletta
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy; Interuniversity Consortium for the Research on the Chemistry of Metals in Biological Systems (CIRCMSB), Bari, Italy
| | | | - Giulietta Smulevich
- Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, FI, Italy; Interuniversity Consortium for the Research on the Chemistry of Metals in Biological Systems (CIRCMSB), Bari, Italy.
| | - Laura Fiorucci
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy.
| |
Collapse
|
11
|
Erman JE, Vitello LB, Pearl NM, Jacobson T, Francis M, Alberts E, Kou A, Bujarska K. Binding of Yeast Cytochrome c to Forty-Four Charge-Reversal Mutants of Yeast Cytochrome c Peroxidase: Isothermal Titration Calorimetry. Biochemistry 2015. [PMID: 26212209 DOI: 10.1021/acs.biochem.5b00686] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Previously, we constructed, expressed, and purified 46 charge-reversal mutants of yeast cytochrome c peroxidase (CcP) and determined their electronic absorption spectra, their reaction with H2O2, and their steady-state catalytic properties [ Pearl , N. M. et al. (2008) Biochemistry 47 , 2766 - 2775 ]. Forty-four of the mutants involve the conversion of either an aspartate or glutamate residue to a lysine residue, while two are positive-to-negative mutations, R31E and K149D. In this paper, we report on a calorimetric study of the interaction of each charge-reversal mutant (excluding the internal mutants D76K and D235K) with recombinant yeast iso-1 ferricytochrome c(C102T) (yCc) under conditions where only one-to-one yCc/CcP complex formation is observed. Thirteen of the 44 surface-site charge-reversal mutants decrease the binding affinity for yCc by a factor of 2 or more. Eight of the 13 mutations (E32K, D33K, D34K, E35K, E118K, E201K, E290K, E291K) occur within, or on the immediate periphery, of the crystallographically defined yCc binding site [ Pelletier , H. and Kraut , J. (1992) Science 258 , 1748 - 1755 ], three of the mutations (D37K, E98K, E209K) are slightly removed from the crystallographic site, and two of the mutations (D165K, D241K) occur on the "back-side" of CcP. The current study is consistent with a model for yCc binding to CcP in which yCc binds predominantly near the region defined by crystallographic structure of the 1:1 yCc-CcP complex, whether as a stable electron-transfer active complex or as part of a dynamic encounter complex.
Collapse
Affiliation(s)
- James E Erman
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, Illinois 60115, United States
| | - Lidia B Vitello
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, Illinois 60115, United States
| | - Naw May Pearl
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, Illinois 60115, United States
| | - Timothy Jacobson
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, Illinois 60115, United States
| | - Meka Francis
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, Illinois 60115, United States
| | - Erik Alberts
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, Illinois 60115, United States
| | - Allen Kou
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, Illinois 60115, United States
| | - Kathy Bujarska
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, Illinois 60115, United States
| |
Collapse
|
12
|
Zámocký M, Gasselhuber B, Furtmüller PG, Obinger C. Turning points in the evolution of peroxidase-catalase superfamily: molecular phylogeny of hybrid heme peroxidases. Cell Mol Life Sci 2014; 71:4681-96. [PMID: 24846396 PMCID: PMC4232752 DOI: 10.1007/s00018-014-1643-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 04/30/2014] [Accepted: 05/02/2014] [Indexed: 11/27/2022]
Abstract
Heme peroxidases and catalases are key enzymes of hydrogen peroxide metabolism and signaling. Here, the reconstruction of the molecular evolution of the peroxidase-catalase superfamily (annotated in pfam as PF00141) based on experimentally verified as well as numerous newly available genomic sequences is presented. The robust phylogenetic tree of this large enzyme superfamily was obtained from 490 full-length protein sequences. Besides already well-known families of heme b peroxidases arranged in three main structural classes, completely new (hybrid type) peroxidase families are described being located at the border of these classes as well as forming (so far missing) links between them. Hybrid-type A peroxidases represent a minor eukaryotic subfamily from Excavates, Stramenopiles and Rhizaria sharing enzymatic and structural features of ascorbate and cytochrome c peroxidases. Hybrid-type B peroxidases are shown to be spread exclusively among various fungi and evolved in parallel with peroxidases in land plants. In some ascomycetous hybrid-type B peroxidases, the peroxidase domain is fused to a carbohydrate binding (WSC) domain. Both here described hybrid-type peroxidase families represent important turning points in the complex evolution of the whole peroxidase-catalase superfamily. We present and discuss their phylogeny, sequence signatures and putative biological function.
Collapse
Affiliation(s)
- Marcel Zámocký
- Division of Biochemistry, Department of Chemistry, VIBT, Vienna Institute of BioTechnology, BOKU, University of Natural Resources and Life Sciences, Muthgasse 18, 1190, Vienna, Austria,
| | | | | | | |
Collapse
|
13
|
De March M, Demitri N, De Zorzi R, Casini A, Gabbiani C, Guerri A, Messori L, Geremia S. Nitrate as a probe of cytochrome c surface: Crystallographic identification of crucial “hot spots” for protein–protein recognition. J Inorg Biochem 2014; 135:58-67. [DOI: 10.1016/j.jinorgbio.2014.02.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 02/23/2014] [Accepted: 02/27/2014] [Indexed: 11/30/2022]
|
14
|
Zaidi S, Hassan MI, Islam A, Ahmad F. The role of key residues in structure, function, and stability of cytochrome-c. Cell Mol Life Sci 2014; 71:229-55. [PMID: 23615770 PMCID: PMC11113841 DOI: 10.1007/s00018-013-1341-1] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 04/05/2013] [Accepted: 04/08/2013] [Indexed: 02/06/2023]
Abstract
Cytochrome-c (cyt-c), a multi-functional protein, plays a significant role in the electron transport chain, and thus is indispensable in the energy-production process. Besides being an important component in apoptosis, it detoxifies reactive oxygen species. Two hundred and eighty-five complete amino acid sequences of cyt-c from different species are known. Sequence analysis suggests that the number of amino acid residues in most mitochondrial cyts-c is in the range 104 ± 10, and amino acid residues at only few positions are highly conserved throughout evolution. These highly conserved residues are Cys14, Cys17, His18, Gly29, Pro30, Gly41, Asn52, Trp59, Tyr67, Leu68, Pro71, Pro76, Thr78, Met80, and Phe82. These are also known as "key residues", which contribute significantly to the structure, function, folding, and stability of cyt-c. The three-dimensional structure of cyt-c from ten eukaryotic species have been determined using X-ray diffraction studies. Structure analysis suggests that the tertiary structure of cyt-c is almost preserved along the evolutionary scale. Furthermore, residues of N/C-terminal helices Gly6, Phe10, Leu94, and Tyr97 interact with each other in a specific manner, forming an evolutionary conserved interface. To understand the role of evolutionary conserved residues on structure, stability, and function, numerous studies have been performed in which these residues were substituted with different amino acids. In these studies, structure deals with the effect of mutation on secondary and tertiary structure measured by spectroscopic techniques; stability deals with the effect of mutation on T m (midpoint of heat denaturation), ∆G D (Gibbs free energy change on denaturation) and folding; and function deals with the effect of mutation on electron transport, apoptosis, cell growth, and protein expression. In this review, we have compiled all these studies at one place. This compilation will be useful to biochemists and biophysicists interested in understanding the importance of conservation of certain residues throughout the evolution in preserving the structure, function, and stability in proteins.
Collapse
Affiliation(s)
- Sobia Zaidi
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025 India
| | - Md. Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025 India
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025 India
| | - Faizan Ahmad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025 India
| |
Collapse
|
15
|
Bonanni PS, Massazza D, Busalmen JP. Stepping stones in the electron transport from cells to electrodes in Geobacter sulfurreducens biofilms. Phys Chem Chem Phys 2013; 15:10300-6. [DOI: 10.1039/c3cp50411e] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
16
|
Volkov AN, van Nuland NAJ. Electron transfer interactome of cytochrome C. PLoS Comput Biol 2012; 8:e1002807. [PMID: 23236271 PMCID: PMC3516563 DOI: 10.1371/journal.pcbi.1002807] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Accepted: 10/12/2012] [Indexed: 01/31/2023] Open
Abstract
Lying at the heart of many vital cellular processes such as photosynthesis and respiration, biological electron transfer (ET) is mediated by transient interactions among proteins that recognize multiple binding partners. Accurate description of the ET complexes – necessary for a comprehensive understanding of the cellular signaling and metabolism – is compounded by their short lifetimes and pronounced binding promiscuity. Here, we used a computational approach relying solely on the steric properties of the individual proteins to predict the ET properties of protein complexes constituting the functional interactome of the eukaryotic cytochrome c (Cc). Cc is a small, soluble, highly-conserved electron carrier protein that coordinates the electron flow among different redox partners. In eukaryotes, Cc is a key component of the mitochondrial respiratory chain, where it shuttles electrons between its reductase and oxidase, and an essential electron donor or acceptor in a number of other redox systems. Starting from the structures of individual proteins, we performed extensive conformational sampling of the ET-competent binding geometries, which allowed mapping out functional epitopes in the Cc complexes, estimating the upper limit of the ET rate in a given system, assessing ET properties of different binding stoichiometries, and gauging the effect of domain mobility on the intermolecular ET. The resulting picture of the Cc interactome 1) reveals that most ET-competent binding geometries are located in electrostatically favorable regions, 2) indicates that the ET can take place from more than one protein-protein orientation, and 3) suggests that protein dynamics within redox complexes, and not the electron tunneling event itself, is the rate-limiting step in the intermolecular ET. Further, we show that the functional epitope size correlates with the extent of dynamics in the Cc complexes and thus can be used as a diagnostic tool for protein mobility. A number of vital cellular processes such as respiration, photosynthesis, and multifarious metabolic conversions rely on a long-range electron transfer (ET) among protein molecules. Full understanding of the biological ET requires accurate description of the redox protein complexes, which is hampered by their pronounced mobility and short lifetimes. Here we used a simple computational approach to predict the ET properties of the physiological protein complexes of cytochrome c (Cc) – a small electron carrier that coordinates the electron flow among different redox partners. By performing extensive conformational sampling of the possible binding geometries, we mapped out functional epitopes in the Cc complexes and assessed their ET properties. Our study suggests that protein dynamics within redox complexes is the rate-limiting step in the intermolecular ET and indicates that the functional epitope size correlates with the extent of dynamics in the Cc complexes. We believe that the latter finding can be used as a diagnostic tool for protein mobility and expect that this work will engender future studies of the intermolecular ET in biological networks.
Collapse
Affiliation(s)
- Alexander N Volkov
- Jean Jeener NMR Centre, Structural Biology Brussels, Vrije Universiteit Brussel, Belgium.
| | | |
Collapse
|
17
|
Volkov AN, Nicholls P, Worrall JA. The complex of cytochrome c and cytochrome c peroxidase: The end of the road? BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1807:1482-503. [DOI: 10.1016/j.bbabio.2011.07.010] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Revised: 07/21/2011] [Accepted: 07/22/2011] [Indexed: 11/25/2022]
|
18
|
Takashima H, Kitano M, Hirai C, Murakami H, Tsukahara K. Photophysical and DNA-binding properties of cytochrome c modified with a platinum(II) complex. J Phys Chem B 2011; 114:13889-96. [PMID: 20936831 DOI: 10.1021/jp106121n] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cytochrome c (cyt c) derivatives modified with a platinum(II) complex at the lysine residue, cyt c(III)-[Pt(bpy)(dapap)](1) {bpy = 2,2'-bipyridine, and dapap = 3-(2,3-diaminopropionylamino)propionic acid}, have been prepared. The modified residues are Lys8, Lys13, Lys55, Lys60, Lys73, and Lys88. In the case of the cyt c(III)-[Pt(bpy)(dapap)](1) dyad, the photoexcited singlet state of (1)([Pt(bpy)(dapap)](1))* was quenched by the heme Fe(III) moiety through the intramolecular photoinduced energy-transfer reaction via a through-space mechanism. Next, in the presence of calf thymus (CT)-DNA, the DNA-responsive fluorescence properties of cyt c(III)-[Pt(bpy)(dapap)](1) isomers were investigated. The order of the obtained binding constants between the cyt c(III)-[Pt(bpy)(dapap)](1) isomer and CT-DNA in an aqueous solution suggested that the electrostatic interaction is one of the important factors to stabilize the cyt c-DNA complex. Finally, we discussed the rotational motion of the [Pt(bpy)(dapap)](2+) moiety at the surface of cyt c by fluorescence anisotropy measurement. The increase in the anisotropy parameter, r, for each cyt c isomer clearly revealed that the noncovalent recognition of the [Pt(bpy)(dapap)](2+) moiety by CT-DNA is an essential event in the formation of the cyt c-DNA complex and generation of DNA-sensitive fluorescence signals.
Collapse
Affiliation(s)
- Hiroshi Takashima
- Department of Chemistry, Faculty of Science, Nara Women's University, Nara, 630-8506 Japan.
| | | | | | | | | |
Collapse
|
19
|
D'Antonio J, D'Antonio EL, Thompson MK, Bowden EF, Franzen S, Smirnova T, Ghiladi RA. Spectroscopic and mechanistic investigations of dehaloperoxidase B from Amphitrite ornata. Biochemistry 2010; 49:6600-16. [PMID: 20545299 DOI: 10.1021/bi100407v] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Dehaloperoxidase (DHP) from the terebellid polychaete Amphitrite ornata is a bifunctional enzyme that possesses both hemoglobin and peroxidase activities. Of the two DHP isoenzymes identified to date, much of the recent focus has been on DHP A, whereas very little is known pertaining to the activity, substrate specificity, mechanism of function, or spectroscopic properties of DHP B. Herein, we report the recombinant expression and purification of DHP B, as well as the details of our investigations into its catalytic cycle using biochemical assays, stopped-flow UV-visible, resonance Raman, and rapid freeze-quench electron paramagnetic resonance spectroscopies, and spectroelectrochemistry. Our experimental design reveals mechanistic insights and kinetic descriptions of the dehaloperoxidase mechanism which have not been previously reported for isoenzyme A. Namely, we demonstrate a novel reaction pathway in which the products of the oxidative dehalogenation of trihalophenols (dihaloquinones) are themselves capable of inducing formation of oxyferrous DHP B, and an updated catalytic cycle for DHP is proposed. We further demonstrate that, unlike the traditional monofunctional peroxidases, the oxyferrous state in DHP is a peroxidase-competent starting species, which suggests that the ferric oxidation state may not be an obligatory starting point for the enzyme. The data presented herein provide a link between the peroxidase and oxygen transport activities which furthers our understanding of how this bifunctional enzyme is able to unite its two inherent functions in one system.
Collapse
Affiliation(s)
- Jennifer D'Antonio
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Belikova NA, Tyurina YY, Borisenko G, Tyurin V, Samhan Arias AK, Yanamala N, Furtmüller PG, Klein-Seetharaman J, Obinger C, Kagan VE. Heterolytic reduction of fatty acid hydroperoxides by cytochrome c/cardiolipin complexes: antioxidant function in mitochondria. J Am Chem Soc 2009; 131:11288-9. [PMID: 18973815 DOI: 10.1021/ja904343c] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cytochrome c (cyt c), a mitochondrial intermembrane electron shuttle between complexes III and IV, can, upon binding with an anionic phospholipid, cardiolipin (CL), act as a peroxidase that catalyzes cardiolipin oxidation. H(2)O(2) was considered as a source of oxidative equivalents for this reaction, which is essential for programmed cell death. Here we report that peroxidase cyt c/CL complexes can utilize free fatty acid hydroperoxides (FFA-OOH) at exceptionally high rates that are approximately 3 orders of magnitude higher than for H(2)O(2). Similarly, peroxidase activity of murine liver mitochondria was high with FFA-OOH. Using EPR spin trapping and LC-MS techniques, we have demonstrated that cyt c/CL complexes split FFA-OOH predominantly via a heterolytic mechanism, yielding hydroxy-fatty acids, whereas H(2)O(2) (and tert-butyl hydroperoxide, t-BuOOH) undergo homolytic cleavage. Computer simulations have revealed that Arg(38) and His(33) are important for the heterolytic mechanism at potential FFA-OOH binding sites of cyt c (but not for H(2)O(2) or t-BuOOH). Regulation of FFA-OOH metabolism may be an important function of cyt c that is associated with elimination of toxic FFA-OOH and synthesis of physiologically active hydroxy-fatty acids in mitochondria.
Collapse
Affiliation(s)
- Natalia A Belikova
- Center for Free Radical and Antioxidant Health and Department of Environmental and Occupational Health, University of Pittsburgh, 100 Technology Drive, Suite 350, Pittsburgh, Pennsylvania 15219-3130, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Kagan VE, Bayir HA, Belikova NA, Kapralov O, Tyurina YY, Tyurin VA, Jiang J, Stoyanovsky DA, Wipf P, Kochanek PM, Greenberger JS, Pitt B, Shvedova AA, Borisenko G. Cytochrome c/cardiolipin relations in mitochondria: a kiss of death. Free Radic Biol Med 2009; 46:1439-53. [PMID: 19285551 PMCID: PMC2732771 DOI: 10.1016/j.freeradbiomed.2009.03.004] [Citation(s) in RCA: 341] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2009] [Revised: 03/02/2009] [Accepted: 03/04/2009] [Indexed: 12/16/2022]
Abstract
Recently, phospholipid peroxidation products gained a reputation as key regulatory molecules and participants in oxidative signaling pathways. During apoptosis, a mitochondria-specific phospholipid, cardiolipin (CL), interacts with cytochrome c (cyt c) to form a peroxidase complex that catalyzes CL oxidation; this process plays a pivotal role in the mitochondrial stage of the execution of the cell death program. This review is focused on redox mechanisms and essential structural features of cyt c's conversion into a CL-specific peroxidase that represent an interesting and maybe still unique example of a functionally significant ligand change in hemoproteins. Furthermore, specific characteristics of CL in mitochondria--its asymmetric transmembrane distribution and mechanisms of collapse, the regulation of its synthesis, remodeling, and fatty acid composition--are given significant consideration. Finally, new concepts in drug discovery based on the design of mitochondria-targeted inhibitors of cyt c/CL peroxidase and CL peroxidation with antiapoptotic effects are presented.
Collapse
Affiliation(s)
- Valerian E Kagan
- Center for Free Radical and Antioxidant Health, Pittsburgh, PA 15219, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Kagan VE, Bayir A, Bayir H, Stoyanovsky D, Borisenko GG, Tyurina YY, Wipf P, Atkinson J, Greenberger JS, Chapkin RS, Belikova NA. Mitochondria-targeted disruptors and inhibitors of cytochrome c/cardiolipin peroxidase complexes: a new strategy in anti-apoptotic drug discovery. Mol Nutr Food Res 2009; 53:104-14. [PMID: 18979502 DOI: 10.1002/mnfr.200700402] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The critical role of mitochondria in programmed cell death leads to the design of mitochondriotropic agents as a strategy in regulating apoptosis. For anticancer therapy, stimulation of proapoptotic mitochondrial events in tumor cells and their suppression in surrounding normal cells represents a promising paradigm for new therapies. Different approaches targeting regulation of components of mitochondrial antioxidant system such as Mn-SOD demonstrated significant antitumor efficiency, particularly in combination therapy. This review is focused on a newly discovered early stage of mitochondria-dependent apoptosis - oxidative lipid signaling involving a mitochondria-specific phospholipid cardiolipin (CL). Cytochrome c (cyt c) acts as a CL-specific peroxidase very early in apoptosis. At this stage, the hostile events are still secluded within the mitochondria and do not reach the cytosolic targets. CL oxidation process is required for the release of pro-apoptotic factors into the cytosol. Manipulation of cyt c interactions with CL, inhibition of peroxidase activity, and prevention of CL peroxidation are prime targets for the discovery of anti-apoptotic drugs acting before the "point-of-no-return" in the fulfillment of the cell death program. Therefore, mitochondria-targeted disruptors and inhibitors of cyt c/CL peroxidase complexes and suppression of CL peroxidation represent new strategies in anti-apoptotic drug discovery.
Collapse
Affiliation(s)
- Valerian E Kagan
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA 15219-3130, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Fantuzzi A, Meharenna YT, Briscoe PB, Guerlesquin F, Sadeghi SJ, Gilardi G. Characterisation of the electron transfer and complex formation between flavodoxin from D. vulgaris and the haem domain of cytochrome P450 BM3 from B. megaterium. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2009; 1787:234-41. [PMID: 19366612 DOI: 10.1016/j.bbabio.2009.01.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2008] [Revised: 01/09/2009] [Accepted: 01/13/2009] [Indexed: 11/16/2022]
Abstract
Investigation of the complex formation and electron transfer kinetics between P450 BMP and flavodoxin was carried out following the suggested involvement of flavodoxin in modulating the electron transfer to BMP in artificial redox chains bound to an electrode surface. While electron transfer measurements show the formation of a tightly bound complex, the NMR data indicate the formation of shortly lived complexes. The measured k(obs) ranged from 24.2 s(-1) to 44.1 s(-1) with k(on) ranging from 0.07 x 10(6) to 1.1 x 10(6) s(-1) M(-1) and K(d) ranging from 300 microM to 24 microM in buffers of different ionic strength. This apparent contradiction is due to the existence of two events in the complex formation prior to electron transfer. A stable complex is initially formed. Within such tightly bound complex, flavodoxin rocks rapidly between different positions. The rocking of the bound flavodoxin between several different orientations gives rise to the transient complexes in fast exchange as observed in the NMR experiments. Docking simulations with two different approaches support the theory that there is no highly specific orientation in the complex, but instead one side of the flavodoxin binds the P450 with high overall affinity but with a number of different orientations. The level of functionality of each orientation is dependent on the distance between cofactors, which can vary between 8 and 25 A, with some of the transient complexes showing distances compatible with the measured electron transfer rate constants.
Collapse
Affiliation(s)
- Andrea Fantuzzi
- Division of Biomolecular Sciences, Imperial College London, SW7 2AZ London, UK
| | | | | | | | | | | |
Collapse
|
24
|
Pearl NM, Jacobson T, Meyen C, Clementz AG, Ok EY, Choi E, Wilson K, Vitello LB, Erman JE. Effect of single-site charge-reversal mutations on the catalytic properties of yeast cytochrome c peroxidase: evidence for a single, catalytically active, cytochrome c binding domain. Biochemistry 2008; 47:2766-75. [PMID: 18232645 DOI: 10.1021/bi702271r] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Forty-six charge-reversal mutants of yeast cytochrome c peroxidase (CcP) have been constructed in order to determine the effect of localized charge on the catalytic properties of the enzyme. The mutants include the conversion of all 20 glutamate residues and 24 of the 25 aspartate residues in CcP, one at a time, to lysine residues. In addition, two positive-to-negative charge-reversal mutants, R31E and K149D, are included in the study. The mutants have been characterized by absorption spectroscopy and hydrogen peroxide reactivity at pH 6.0 and 7.5 and by steady-state kinetic studies using recombinant yeast iso-1 ferrocytochrome c (C102T) as substrate at pH 7.5. Many of the charge-reversal mutations cause detectable changes in the absorption spectrum of the enzyme reflecting increased amounts of hexacoordinate heme compared to wild-type CcP. The increase in hexacoordinate heme in the mutant enzymes correlates with an increase in H 2O 2-inactive enzyme. The maximum velocity of the mutants decreases with increasing hexacoordination of the heme group. Steady-state velocity studies indicate that 5 of the 46 mutations (R31E, D34K, D37K, E118K, and E290K) cause large increases in the Michaelis constant indicating a reduced affinity for cytochrome c. Four of the mutations occur within the cytochrome c binding site identified in the crystal structure of the 1:1 complex of yeast cytochrome c and CcP [Pelletier, H., and Kraut, J. (1992) Science 258, 1748-1755] while the fifth mutation site lies outside, but near, the crystallographic site. These data support the hypothesis that the CcP has a single, catalytically active cytochrome c binding domain, that observed in the crystal structures of the cytochrome c/CcP complex.
Collapse
Affiliation(s)
- Naw May Pearl
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, Illinois 60115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Isied SS. Long-Range Electron Transfer in Peptides and Proteins. PROGRESS IN INORGANIC CHEMISTRY 2007. [DOI: 10.1002/9780470166338.ch5] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
26
|
|
27
|
Maggiora GM, Mao B, Chou KC, Narasimhan SL. Theoretical and empirical approaches to protein-structure prediction and analysis. METHODS OF BIOCHEMICAL ANALYSIS 2006; 35:1-86. [PMID: 2002769 DOI: 10.1002/9780470110560.ch1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
28
|
|
29
|
Abstract
The pH dependence of the peroxidase activity (guaiacol assay) of the ferric hemeoctapeptide N-acetylmicroperoxidase-8 (N-AcMP8) was studied under conditions where formation of the Compound I analogue of the peroxidase enzymes is rate limiting. The pH profile of the reaction rate is consistent with a mechanism where both H2O2 and HO2- can displace H2O coordinated trans to neutral His but where the hydroxo complex of the hemepeptide (OH- trans to His) is kinetically inert. At pH > 11, where the proximal His ligand of Fe(III) ionizes to form a histidinate, the hydroxo complex (OH- trans to His-) becomes kinetically labile. A comparison of DeltaH(double dagger) and DeltaS(double dagger) values for the reaction of H2O2 and HO2-, obtained from the temperature dependence of the rate constants, with values for CN- and cysteine reported previously, shows that the activation parameters depend on the identity of the incoming ligand. This suggests that ligand substitution at Fe(III) in N-AcMP8 proceeds through an interchange mechanism.
Collapse
Affiliation(s)
- Helder M Marques
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, P.O. Wits, Johannesburg, 2050 South Africa.
| |
Collapse
|
30
|
Grant Mauk A. Electron transfer in genetically engineered proteins. The cytochrome c paradigm. STRUCTURE AND BONDING 2005. [DOI: 10.1007/3-540-53260-9_5] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
31
|
Bertrand P. Application of electron transfer theories to biological systems. STRUCTURE AND BONDING 2005. [DOI: 10.1007/3-540-53260-9_1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
32
|
Abstract
Recent investigations have shed much light on the nuclear and electronic factors that control the rates of long-range electron tunneling through molecules in aqueous and organic glasses as well as through bonds in donor-bridge-acceptor complexes. Couplings through covalent and hydrogen bonds are much stronger than those across van der Waals gaps, and these differences in coupling between bonded and nonbonded atoms account for the dependence of tunneling rates on the structure of the media between redox sites in Ru-modified proteins and protein-protein complexes.
Collapse
Affiliation(s)
- Harry B Gray
- Beckman Institute, California Institute of Technology, Pasadena, CA 91125, USA.
| | | |
Collapse
|
33
|
Dias JM, Alves T, Bonifácio C, Pereira AS, Trincão J, Bourgeois D, Moura I, Romão MJ. Structural basis for the mechanism of Ca(2+) activation of the di-heme cytochrome c peroxidase from Pseudomonas nautica 617. Structure 2004; 12:961-73. [PMID: 15274917 DOI: 10.1016/j.str.2004.03.025] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2004] [Revised: 03/15/2004] [Accepted: 03/19/2004] [Indexed: 10/26/2022]
Abstract
Cytochrome c peroxidase (CCP) catalyses the reduction of H(2)O(2) to H(2)O, an important step in the cellular detoxification process. The crystal structure of the di-heme CCP from Pseudomonas nautica 617 was obtained in two different conformations in a redox state with the electron transfer heme reduced. Form IN, obtained at pH 4.0, does not contain Ca(2+) and was refined at 2.2 A resolution. This inactive form presents a closed conformation where the peroxidatic heme adopts a six-ligand coordination, hindering the peroxidatic reaction from taking place. Form OUT is Ca(2+) dependent and was crystallized at pH 5.3 and refined at 2.4 A resolution. This active form shows an open conformation, with release of the distal histidine (His71) ligand, providing peroxide access to the active site. This is the first time that the active and inactive states are reported for a di-heme peroxidase.
Collapse
Affiliation(s)
- João M Dias
- REQUIMTE/CQFB, Departamento de Química, FCT, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Rouzer CA, Marnett LJ. Mechanism of free radical oxygenation of polyunsaturated fatty acids by cyclooxygenases. Chem Rev 2003; 103:2239-304. [PMID: 12797830 DOI: 10.1021/cr000068x] [Citation(s) in RCA: 184] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Carol A Rouzer
- A. B. Hancock Jr. Memorial Laboratory for Cancer Research, Department of Biochemistry, Vanderbilt Institute of Chemical Biology, Vanderbilt Ingram Comprehensive Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, USA
| | | |
Collapse
|
35
|
Yi X, Conesa A, Punt PJ, Hager LP. Examining the role of glutamic acid 183 in chloroperoxidase catalysis. J Biol Chem 2003; 278:13855-9. [PMID: 12576477 DOI: 10.1074/jbc.m210906200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Site-directed mutagenesis has been used to investigate the role of glutamic acid 183 in chloroperoxidase catalysis. Based on the x-ray crystallographic structure of chloroperoxidase, Glu-183 is postulated to function on distal side of the heme prosthetic group as an acid-base catalyst in facilitating the reaction between the peroxidase and hydrogen peroxide with the formation of Compound I. In contrast, the other members of the heme peroxidase family use a histidine residue in this role. Plasmids have now been constructed in which the codon for Glu-183 is replaced with a histidine codon. The mutant recombinant gene has been expressed in Aspergillus niger. An analysis of the produced mutant gene shows that the substitution of Glu-183 with a His residue is detrimental to the chlorination and dismutation activity of chloroperoxidase. The activity is reduced by 85 and 50% of wild type activity, respectively. However, quite unexpectedly, the epoxidation activity of the mutant enzyme is significantly enhanced approximately 2.5-fold. These results show that Glu-183 is important but not essential for the chlorination activity of chloroperoxidase. It is possible that the increased epoxidation of the mutant enzyme is based on an increase in the hydrophobicity of the active site.
Collapse
Affiliation(s)
- Xianwen Yi
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 61801, USA
| | | | | | | |
Collapse
|
36
|
Correia dos Santos M, Paes de Sousa P, Simões Gonçalves M, Krippahl L, Moura J, Lojou É, Bianco P. Electrochemical studies on small electron transfer proteins using membrane electrodes. J Electroanal Chem (Lausanne) 2003. [DOI: 10.1016/s0022-0728(02)01427-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
37
|
Zheng J, Zhou Q, Zhou Y, Lu T, Cotton TM, Chumanov G. Surface-enhanced resonance Raman spectroscopic study of yeast iso-1-cytochrome c and its mutant. J Electroanal Chem (Lausanne) 2002. [DOI: 10.1016/s0022-0728(02)01003-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
38
|
Erman JE, Vitello LB. Yeast cytochrome c peroxidase: mechanistic studies via protein engineering. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1597:193-220. [PMID: 12044899 DOI: 10.1016/s0167-4838(02)00317-5] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Cytochrome c peroxidase (CcP) is a yeast mitochondrial enzyme that catalyzes the reduction of hydrogen peroxide to water by ferrocytochrome c. It was the first heme enzyme to have its crystallographic structure determined and, as a consequence, has played a pivotal role in developing ideas about structural control of heme protein reactivity. Genetic engineering of the active site of CcP, along with structural, spectroscopic, and kinetic characterization of the mutant proteins has provided considerable insight into the mechanism of hydrogen peroxide activation, oxygen-oxygen bond cleavage, and formation of the higher-oxidation state intermediates in heme enzymes. The catalytic mechanism involves complex formation between cytochrome c and CcP. The cytochrome c/CcP system has been very useful in elucidating the complexities of long-range electron transfer in biological systems, including protein-protein recognition, complex formation, and intracomplex electron transfer processes.
Collapse
Affiliation(s)
- James E Erman
- Department of Chemistry and Biochemistry, Northern Illinois University, Normal Rd., DeKalb, IL 60115-2862, USA.
| | | |
Collapse
|
39
|
Lojou É, Pieulle L, Guerlesquin F, Bianco P. From the protein–polypeptide model system to the interaction between physiological partners using electrochemistry. J Electroanal Chem (Lausanne) 2002. [DOI: 10.1016/s0022-0728(02)00743-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
40
|
|
41
|
Wu L, Huang H, Li J, Luo J, Lin Z. Time-resolved UV-vis spectroelectrochemical studies of the electron transfer process of cytochrome c. Electrochim Acta 2000. [DOI: 10.1016/s0013-4686(00)00362-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
42
|
Hirota S, Tsukazaki T, Yamauchi O. Interactions of cytochrome c peroxidase with lysine peptides. Biochem Biophys Res Commun 2000; 268:395-7. [PMID: 10679215 DOI: 10.1006/bbrc.2000.2132] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Structural change of Cytochrome c peroxidase (CcP) due to interaction with lysine peptides (Lysptds) has been studied by absorption spectra and measurements on electron transfer between cytochrome c (cyt c) and CcP in the presence of Lysptd. Peaks were observed in the difference absorption spectrum of CcP between in the presence and absence of Lysptds, demonstrating a structural perturbation of CcP, at least at its heme site, on interaction with Lysptd. The interaction between CcP and Lysptd was electrostatic, since no significant peak was detected in the difference absorption spectrum when 100 mM of NaCl was added to the solution. Lysptds competitively inhibited electron transfer from cyt c to CcP, which indicated that they interacted with CcP at the same site as cyt c and would be models of the CcP interacting site of cyt c.
Collapse
Affiliation(s)
- S Hirota
- Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya, Japan.
| | | | | |
Collapse
|
43
|
Sevrioukova IF, Hazzard JT, Tollin G, Poulos TL. The FMN to heme electron transfer in cytochrome P450BM-3. Effect of chemical modification of cysteines engineered at the FMN-heme domain interaction site. J Biol Chem 1999; 274:36097-106. [PMID: 10593892 DOI: 10.1074/jbc.274.51.36097] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The crystal structure of the complex between the heme and FMN-containing domains of Bacillus megaterium cytochrome P450BM-3 (Sevrioukova, I. F., Li, H., Zhang, H., Peterson, J. A., and Poulos, T. L. (1999) Proc. Natl. Acad. Sci. U. S. A. 96, 1863-1868) indicates that the proximal side of the heme domain molecule is the docking site for the FMN domain and that the Pro(382)-Gln(387) peptide may provide an electron transfer (ET) path from the FMN to the heme iron. In order to evaluate whether ET complexes formed in solution by the heme and FMN domains are structurally relevant to that seen in the crystal structure, we utilized site-directed mutagenesis to introduce Cys residues at positions 104 and 387, which are sites of close contact between the domains in the crystal structure and at position 372 as a control. Cys residues were modified with a bulky sulfhydryl reagent, 1-dimethylaminonaphthalene-5-sulfonate-L-cystine (dansylcystine (DC)), to prevent the FMN domain from binding at the site seen in the crystal structure. The DC modification of Cys(372) and Cys(387) resulted in a 2-fold decrease in the rates of interdomain ET in the reconstituted system consisting of the separate heme and FMN domains and had no effect on heme reduction in the intact heme/FMN-binding fragment of P450BM-3. DC modification of Cys(104) caused a 10-20-fold decrease in the interdomain ET reaction rate in both the reconstituted system and the intact heme/FMN domain. This indicates that the proximal side of the heme domain molecule represents the FMN domain binding site in both the crystallized and solution complexes, with the area around residue 104 being the most critical for the redox partner docking.
Collapse
Affiliation(s)
- I F Sevrioukova
- Department of Molecular Biology and Biochemistry and the Program in Macromolecular Structure, University of California, Irvine, California 92697-3900, USA
| | | | | | | |
Collapse
|
44
|
Affiliation(s)
- J B Schenkman
- Department of Pharmacology, University of Connecticut Health Center, Farmington 06030, USA
| | | |
Collapse
|
45
|
Correia C, Monzani E, Moura I, Lampreia J, Moura JJ. Cross-linking between cytochrome c3 and flavodoxin from Desulfovibrio gigas. Biochem Biophys Res Commun 1999; 256:367-71. [PMID: 10079190 DOI: 10.1006/bbrc.1999.0201] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Tetraheme cytochrome c3 (13 kDa) and flavodoxin (16 kDa), are small electron transfer proteins that have been used to mimic, in vitro, part of the electron-transfer chain that operates between substract electron donors and respiratory electron acceptors partners in Desulfovibrio species (Palma, N., Moura, I., LeGall, J., Van Beeumen, J., Wampler, J., Moura, J. J. G. (1994) Biochemistry 33, 6394-6407). The electron transfer between these two proteins is believed to occur through the formation of a specific complex where electrostatic interaction is the main driving force (Stewart, D., LeGall, J., Moura, I., Moura, J.J.G., Peck, H.D., Xavier, A.V., Weiner, P.K. and Wampler, J.E. (1988) Biochemistry 27, 2444-2450, Stewart, D., LeGall, J., Moura, I., Moura, J.J.G., Peck, H.D., Xavier, A.V., Weiner, P., Wampler, J. (1989) Eur. J. Biochem. 185, 695-700). In order to obtain structural information of the pre-complex, a covalent complex between the two proteins was prepared. A water-soluble carbodiimide [EDC (1-ethyl-3(3 dimethylaminopropyl) carbodiimide hydrochloride] was used for the cross linking reaction. The reaction was optimized varying a wide number of experimental parameters such as ionic strength, protein and cross linker concentration, and utilization of different cross linkers and reaction time between the crosslinker and proteins.
Collapse
Affiliation(s)
- C Correia
- Departamento de Química, Centro de Química Fina e Biotecnologia, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Monte de Caparica, 2825-114, Portugal
| | | | | | | | | |
Collapse
|
46
|
Schlereth DD. Characterization of protein monolayers by surface plasmon resonance combined with cyclic voltammetry ‘in situ’. J Electroanal Chem (Lausanne) 1999. [DOI: 10.1016/s0022-0728(99)00019-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
47
|
Wu LL, Huang HG, Li JX, Luo J, Lin ZH. Time-resolved UV-Vis Spectroelectrochemical Studies of the Conformational Rearrangement in the Electron Transfer of Cytochrome c. CHEM LETT 1998. [DOI: 10.1246/cl.1998.1137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
48
|
Castro G, Boswell CA, Northrup SH. Dynamics of protein-protein docking: cytochrome c and cytochrome c peroxidase revisited. J Biomol Struct Dyn 1998; 16:413-24. [PMID: 9833678 DOI: 10.1080/07391102.1998.10508257] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
The dynamics of the docking step in the electron transfer reaction between yeast cytochrome c peroxidase and iso-1-cytochrome c has been studied using the Brownian dynamics method. In particular we have calculated the bimolecular rate constant at which a specific complex, the xray crystalline complex, can form in solution by translational and rotational diffusion in a field of force. Complexation criteria have been assessed based on the simultaneous alignment of three atom-atom contacts, as well as alternative criteria. The proteins are able to align one or two contacts at remarkably high rates, in fact, at rates approaching the diffusion-controlled limit for two spheres reactive over their entire surfaces. Three contacts may align, and hence the specific complex may dock, at rates on the order of 10(8) M(-1) s(-1), which is quite representative of the experimental association rate constant for ET-competent complex(es). The formation of the specific complex is strongly influenced by the favorable electrostatic interaction between these proteins. It is striking that a specific protein-protein complex can form within one order of magnitude as fast as two spherical proteins can touch at any orientation. It remains plausible that the high ET tunneling rate in this system can take place through a single highly favorable specific complex using a single high efficiency pathway. Still the contribution from a nonspecific set of complexes is not ruled out, particularly considering the marginal reproduction of the ionic strength dependence in the formation of the xray complex.
Collapse
Affiliation(s)
- G Castro
- Department of Chemistry, Tennessee Technological University, Cookeville 38505, USA
| | | | | |
Collapse
|
49
|
Ekberg M, Pötsch S, Sandin E, Thunnissen M, Nordlund P, Sahlin M, Sjöberg BM. Preserved catalytic activity in an engineered ribonucleotide reductase R2 protein with a nonphysiological radical transfer pathway. The importance of hydrogen bond connections between the participating residues. J Biol Chem 1998; 273:21003-8. [PMID: 9694851 DOI: 10.1074/jbc.273.33.21003] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A hydrogen-bonded catalytic radical transfer pathway in Escherichia coli ribonucleotide reductase (RNR) is evident from the three-dimensional structures of the R1 and R2 proteins, phylogenetic studies, and site-directed mutagenesis experiments. Current knowledge of electron transfer processes is difficult to apply to the very long radical transfer pathway in RNR. To explore the importance of the hydrogen bonds between the participating residues, we converted the protein R2 residue Asp237, one of the conserved residues along the radical transfer route, to an asparagine and a glutamate residue in two separate mutant proteins. In this study, we show that the D237E mutant is catalytically active and has hydrogen bond connections similar to that of the wild type protein. This is the first reported mutant protein that affects the radical transfer pathway while catalytic activity is preserved. The D237N mutant is catalytically inactive, and its tyrosyl radical is unstable, although the mutant can form a diferric-oxo iron center and a R1-R2 complex. The data strongly support our hypothesis that an absolute requirement for radical transfer during catalysis in ribonucleotide reductase is an intact hydrogen-bonded pathway between the radical site in protein R2 and the substrate binding site in R1. Our data thus strongly favor the idea that the electron transfer mechanism in RNR is coupled with proton transfer, i.e. a radical transfer mechanism.
Collapse
Affiliation(s)
- M Ekberg
- Departments of Molecular Biology, University of Stockholm, S-10691 Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|
50
|
Cordier F, Caffrey M, Brutscher B, Cusanovich MA, Marion D, Blackledge M. Solution structure, rotational diffusion anisotropy and local backbone dynamics of Rhodobacter capsulatus cytochrome c2. J Mol Biol 1998; 281:341-61. [PMID: 9698552 DOI: 10.1006/jmbi.1998.1950] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The solution structure, backbone dynamics and rotational diffusion of the Rhodobacter capsulatus cytochrome c2 have been determined using heteronuclear NMR spectroscopy. In all, 1204 NOE-derived distances were used in the structure calculation to give a final ensemble with 0.59(+/-0.08) A rms deviation for the backbone atoms (C, Calpha and N) with respect to the mean coordinates. There is no major difference between the solution structure and the previously solved X-ray crystal structure (1.07(+/-0.07) A rms difference for the backbone atoms), although certain significant local structural differences have been identified. This protein contains five helical regions and a histidine-heme binding domain, connected by a series of structured loops. The orientation of the helices provides an excellent sampling of angular space and thus allows a precise characterization of the anisotropic diffusion tensor. Analysis of the hydrodynamics of the protein has been performed by interpretation of the 15N relaxation data using isotropic, axially asymmetric and fully anisotropic diffusion tensors. The protein can be shown to exhibit significant anisotropic reorientation with a diffusion tensor with principal axes values of 1.405(+/-0.031)x10(7) s-1, 1.566(+/-0.051)x10(7) s-1 and 1.829(+/-0.054)x10(7) s-1. Hydrodynamic calculations performed on the solution structure predict values of 1.399x10(7) s-1, 1.500x10(7) s-1 and 1.863x10(7) s-1 when a solvent shell of 3.5 A is included in the calculation. The optimal orientation of the diffusion tensor has been incorporated into a hybrid Lipari-Szabo type local motion-anisotropic rotational diffusion model to characterize the local mobility in the molecule. The mobility parameters thus extracted show a quantitative improvement with respect to the model-free analysis assuming isotropic reorientation; helical regions exhibit similar dynamic properties and fewer residues require more complex models of internal motion. While the molecule is essentially rigid, a tripeptide loop region (residues 101 to 103) exhibits flexibility in the range of 20 to 30 ps, which appears to be correlated with the order in the NMR solution structure.
Collapse
Affiliation(s)
- F Cordier
- Institut de Biologie Structurale - Jean-Pierre Ebel C.N.R.S.-C.E.A., 41, Avenue des Martyrs, Grenoble Cedex, 38027, France
| | | | | | | | | | | |
Collapse
|