1
|
Kawahata I, Fukunaga K. Pathogenic Impact of Fatty Acid-Binding Proteins in Parkinson's Disease-Potential Biomarkers and Therapeutic Targets. Int J Mol Sci 2023; 24:17037. [PMID: 38069360 PMCID: PMC10707307 DOI: 10.3390/ijms242317037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/26/2023] [Accepted: 11/30/2023] [Indexed: 12/18/2023] Open
Abstract
Parkinson's disease is a neurodegenerative condition characterized by motor dysfunction resulting from the degeneration of dopamine-producing neurons in the midbrain. This dopamine deficiency gives rise to a spectrum of movement-related symptoms, including tremors, rigidity, and bradykinesia. While the precise etiology of Parkinson's disease remains elusive, genetic mutations, protein aggregation, inflammatory processes, and oxidative stress are believed to contribute to its development. In this context, fatty acid-binding proteins (FABPs) in the central nervous system, FABP3, FABP5, and FABP7, impact α-synuclein aggregation, neurotoxicity, and neuroinflammation. These FABPs accumulate in mitochondria during neurodegeneration, disrupting their membrane potential and homeostasis. In particular, FABP3, abundant in nigrostriatal dopaminergic neurons, is responsible for α-synuclein propagation into neurons and intracellular accumulation, affecting the loss of mesencephalic tyrosine hydroxylase protein, a rate-limiting enzyme of dopamine biosynthesis. This review summarizes the characteristics of FABP family proteins and delves into the pathogenic significance of FABPs in the pathogenesis of Parkinson's disease. Furthermore, it examines potential novel therapeutic targets and early diagnostic biomarkers for Parkinson's disease and related neurodegenerative disorders.
Collapse
Affiliation(s)
- Ichiro Kawahata
- Department of CNS Drug Innovation, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan;
| | - Kohji Fukunaga
- Department of CNS Drug Innovation, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan;
- BRI Pharma Inc., Sendai 982-0804, Japan
| |
Collapse
|
2
|
Chen Y, Agellon LB. Distinct Alteration of Gene Expression Programs in the Small Intestine of Male and Female Mice in Response to Ablation of Intestinal Fabp Genes. Genes (Basel) 2020; 11:genes11080943. [PMID: 32824144 PMCID: PMC7465894 DOI: 10.3390/genes11080943] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/02/2020] [Accepted: 08/13/2020] [Indexed: 02/07/2023] Open
Abstract
Fatty acid-binding proteins (Fabps) make up a family of widely distributed cytoplasmic lipid-binding proteins. The small intestine contains three predominant Fabp species, Fabp1, Fabp2, and Fabp6. Our previous studies showed that Fabp2 and Fabp6 gene-disrupted mice exhibited sexually dimorphic phenotypes. In this study, we carried out a systematic comparative analysis of the small intestinal transcriptomes of 10 week-old wild-type (WT) and Fabp gene-disrupted male and female mice. We found that the small intestinal transcriptome of male and female mice showed key differences in the gene expression profiles that affect major biological processes. The deletion of specific Fabp genes induced unique and sex-specific changes in the gene expression program, although some differentially expressed genes in certain genotypes were common to both sexes. Functional annotation and interaction network analyses revealed that the number and type of affected pathways, as well as the sets of interacting nodes in each of the Fabp genotypes, are partitioned by sex. To our knowledge, this is the first time that sex differences were identified and categorized at the transcriptome level in mice lacking different intestinal Fabps. The distinctive transcriptome profiles of WT male and female small intestine may predetermine the nature of transcriptional reprogramming that manifests as sexually dimorphic responses to the ablation of intestinal Fabp genes.
Collapse
|
3
|
Martin GG, Huang H, McIntosh AL, Kier AB, Schroeder F. Endocannabinoid Interaction with Human FABP1: Impact of the T94A Variant. Biochemistry 2017; 56:5147-5159. [DOI: 10.1021/acs.biochem.7b00647] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Gregory G. Martin
- Department of Physiology and Pharmacology, Texas A&M University, College Station, Texas 77843-4466, United States
| | - Huan Huang
- Department of Physiology and Pharmacology, Texas A&M University, College Station, Texas 77843-4466, United States
| | - Avery L. McIntosh
- Department of Physiology and Pharmacology, Texas A&M University, College Station, Texas 77843-4466, United States
| | - Ann B. Kier
- Department of Pathobiology, Texas A&M University, College Station, Texas 77843-4467, United States
| | - Friedhelm Schroeder
- Department of Physiology and Pharmacology, Texas A&M University, College Station, Texas 77843-4466, United States
| |
Collapse
|
4
|
Orito W, Ohhira F, Ogasawara M. Gene expression profiles of FABP genes in protochordates, Ciona intestinalis and Branchiostoma belcheri. Cell Tissue Res 2015; 362:331-45. [DOI: 10.1007/s00441-015-2198-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 04/13/2015] [Indexed: 10/23/2022]
|
5
|
Patil R, Laguerre A, Wielens J, Headey SJ, Williams ML, Hughes MLR, Mohanty B, Porter CJH, Scanlon MJ. Characterization of two distinct modes of drug binding to human intestinal fatty acid binding protein. ACS Chem Biol 2014; 9:2526-34. [PMID: 25144524 DOI: 10.1021/cb5005178] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The aqueous cytoplasm of cells poses a potentially significant barrier for many lipophilic drugs to reach their sites of action. Fatty acid binding proteins (FABPs) bind to poorly water-soluble fatty acids (FAs) and lipophilic compounds and facilitate their intracellular transport. Several structures of FA in complex with FABPs have been described, but data describing the binding sites of other lipophilic ligands including drugs are limited. Here the environmentally sensitive fluorophores, 1-anilinonapthalene 8-sulfonic acid (ANS), and 11-dansylamino undecanoic acid (DAUDA) were used to investigate drug binding to human intestinal FABP (hIFABP). Most drugs that bound hIFABP were able to displace both ANS and DAUDA. A notable exception was ketorolac, a non-steroidal anti-inflammatory drug that bound to hIFABP and displaced DAUDA but failed to displace ANS. Isothermal titration calorimetry revealed that for the majority of ligands including FA, ANS, and DAUDA, binding to hIFABP was exothermic. In contrast, ketorolac binding to hIFABP was endothermic and entropy-driven. The X-ray crystal structure of DAUDA-hIFABP revealed a FA-like binding mode where the carboxylate of DAUDA formed a network of hydrogen bonds with residues at the bottom of the binding cavity and the dansyl group interacted with residues in the portal region. In contrast, NMR chemical shift perturbation (CSP) data suggested that ANS bound only toward the bottom of the hIFABP cavity, whereas ketorolac occupied only the portal region. The CSP data further suggested that ANS and ketorolac were able to bind simultaneously to hIFABP, consistent with the lack of displacement of ANS observed by fluorescence and supported by a model of the ternary complex. The NMR solution structure of the ketorolac-hIFABP complex therefore describes a newly characterized, hydrophobic ligand binding site in the portal region of hIFABP.
Collapse
Affiliation(s)
| | | | - Jerome Wielens
- ACRF
Rational Drug Discovery Centre and Biota Structural Biology Laboratory, St. Vincent’s Institute of Medical Research, 9 Princes Street, Fitzroy, Victoria 3056, Australia
- Department
of Medicine, University of Melbourne, 41 Victoria Parade, Fitzroy, Victoria 3065, Australia
| | | | | | | | | | | | | |
Collapse
|
6
|
Interactions between Human Liver Fatty Acid Binding Protein and Peroxisome Proliferator Activated Receptor Selective Drugs. PPAR Res 2013; 2013:938401. [PMID: 23476633 PMCID: PMC3588188 DOI: 10.1155/2013/938401] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 11/13/2012] [Accepted: 11/23/2012] [Indexed: 01/12/2023] Open
Abstract
Fatty acid binding proteins (FABPs) act as intracellular shuttles for fatty acids as well as lipophilic xenobiotics to the nucleus, where these ligands are released to a group of nuclear receptors called the peroxisome proliferator activated receptors (PPARs). PPAR mediated gene activation is ultimately involved in maintenance of cellular homeostasis through the transcriptional regulation of metabolic enzymes and transporters that target the activating ligand. Here we show that liver- (L-) FABP displays a high binding affinity for PPAR subtype selective drugs. NMR chemical shift perturbation mapping and proteolytic protection experiments show that the binding of the PPAR subtype selective drugs produces conformational changes that stabilize the portal region of L-FABP. NMR chemical shift perturbation studies also revealed that L-FABP can form a complex with the PPAR ligand binding domain (LBD) of PPARα. This protein-protein interaction may represent a mechanism for facilitating the activation of PPAR transcriptional activity via the direct channeling of ligands between the binding pocket of L-FABP and the PPARαLBD. The role of L-FABP in the delivery of ligands directly to PPARα via this channeling mechanism has important implications for regulatory pathways that mediate xenobiotic responses and host protection in tissues such as the small intestine and the liver where L-FABP is highly expressed.
Collapse
|
7
|
Guzmán C, Benet M, Pisonero-Vaquero S, Moya M, García-Mediavilla MV, Martínez-Chantar ML, González-Gallego J, Castell JV, Sánchez-Campos S, Jover R. The human liver fatty acid binding protein (FABP1) gene is activated by FOXA1 and PPARα; and repressed by C/EBPα: Implications in FABP1 down-regulation in nonalcoholic fatty liver disease. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1831:803-18. [PMID: 23318274 DOI: 10.1016/j.bbalip.2012.12.014] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 11/22/2012] [Accepted: 12/27/2012] [Indexed: 01/24/2023]
Abstract
Liver fatty acid binding protein (FABP1) prevents lipotoxicity of free fatty acids and regulates fatty acid trafficking and partition. Our objective is to investigate the transcription factors controlling the human FABP1 gene and their regulation in nonalcoholic fatty liver disease (NAFLD). Adenovirus-mediated expression of multiple transcription factors in HepG2 cells and cultured human hepatocytes demonstrated that FOXA1 and PPARα are among the most effective activators of human FABP1, whereas C/EBPα is a major dominant repressor. Moreover, FOXA1 and PPARα induced re-distribution of FABP1 protein and increased cytoplasmic expression. Reporter assays demonstrated that the major basal activity of the human FABP1 promoter locates between -96 and -229bp, where C/EBPα binds to a composite DR1-C/EBP element. Mutation of this element at -123bp diminished basal reporter activity, abolished repression by C/EBPα and reduced transactivation by HNF4α. Moreover, HNF4α gene silencing by shRNA in HepG2 cells caused a significant down-regulation of FABP1 mRNA expression. FOXA1 activated the FABP1 promoter through binding to a cluster of elements between -229 and -592bp, whereas PPARα operated through a conserved proximal element at -59bp. Finally, FABP1, FOXA1 and PPARα were concomitantly repressed in animal models of NAFLD and in human nonalcoholic fatty livers, whereas C/EBPα was induced or did not change. We conclude that human FABP1 has a complex mechanism of regulation where C/EBPα displaces HNF4α and hampers activation by FOXA1 and PPARα. Alteration of expression of these transcription factors in NAFLD leads to FABP1 gen repression and could exacerbate lipotoxicity and disease progression.
Collapse
Affiliation(s)
- Carla Guzmán
- Experimental Hepatology Unit, IIS Hospital La Fe, Valencia, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Wu YL, Peng XE, Wang D, Chen WN, Lin X. Human liver fatty acid binding protein (hFABP1) gene is regulated by liver-enriched transcription factors HNF3β and C/EBPα. Biochimie 2011; 94:384-92. [PMID: 21856370 DOI: 10.1016/j.biochi.2011.08.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Accepted: 08/09/2011] [Indexed: 11/19/2022]
Abstract
The human liver fatty acid binding protein (hFABP1) participates in cellular long-chain fatty acid trafficking and regulation of lipid metabolism and changes in hFABP1 are associated with an increased risk for type 2 diabetes, cardiovascular disease (CVD), and metabolic syndromes. Gene regulation of hFABP1 is not fully understood. Therefore, in the present study, the full length hFABP1 promoter (nucleotides -2125 to +51) and a series of truncated promoter regions were cloned. A luciferase reporter assay revealed that nucleotides -255 to +50 in the promoter region contained full of maximum hFABP1 promoter activity compared with the full length promoter. Furthermore high activity was shown when the plasmid was transfected into liver-derived cells such as the human hepatoblastoma cell line HepG2 and the hepatoma cell line Huh7. TFSEARCH and TESS programs were used to predict potential transcription factor binding sites. Two putative binding sites for the liver-enriched transcription factors hepatocyte nuclear factor 3β (HNF3β) and CCAAT/enhancer binding protein α (C/EBPα) were identified in the -255 nt to -155 nt hFABP1 promoter region. Site-directed mutagenesis of these two sites reduced dramatically hFABP1 promoter activity. In addition, the electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation assay (ChIP) revealed that these binding sites were recognized by HNF3β and C/EBPα respectively. Overexpression of HNF3β and C/EBPα enhanced the transcription of hFABP1 and consequently improved the protein level of hFABP1 in HepG2 cells, while knockdown of HNF3β and C/EBPα showed the inverse effects. Taken together, the hFABP1 gene is highly transcribed in liver-derived cells, and regulated predominantly by liver-enriched transcription factors HNF3β and C/EBPα.
Collapse
Affiliation(s)
- Yun-li Wu
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Research Center of Molecular Medicine, Fujian Medical University, Fuzhou City 350004, PR China
| | | | | | | | | |
Collapse
|
9
|
Relja B, Szermutzky M, Henrich D, Maier M, de Haan JJ, Lubbers T, Buurman WA, Marzi I. Intestinal-FABP and liver-FABP: Novel markers for severe abdominal injury. Acad Emerg Med 2010; 17:729-35. [PMID: 20653587 DOI: 10.1111/j.1553-2712.2010.00792.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
OBJECTIVES Fatty acid-binding proteins (FABPs) have relatively high tissue concentrations and low plasma concentrations and are released into the circulation following organ injury. We explored the utility of intestinal-(I)-FABP and liver-(L)-FABP for the diagnosis of abdominal injury in patients with multiple trauma. METHODS This prospective study included 102 trauma patients and 30 healthy volunteers. Plasma I-FABP and L-FABP levels were measured in the emergency department (ED) by enzyme-linked immunosorbent assay (ELISA). Forty-one patients suffered from serious or severe abdominal trauma (Abbreviated Injury Score [AIS] code "ai" for abdominal injury, AISai > or = 3) and nine were moderately abdominally injured (AISai < 3). Fifty-two had no abdominal injury. RESULTS Median I-FABP and L-FABP levels in the AISai > or = 3 group (516 pg/mL and 135 ng/mL, respectively) were significantly higher compared to the AISai < 3 group (154 pg/mL and 13 ng/mL, respectively) or those without abdominal injury (207 pg/mL and 21 ng/mL, respectively) or normal controls (108 pg/mL and 13 ng/mL, respectively). The cutoff to distinguish the ai > or = 3 is 359 pg/mL for I-FABP and 54 ng/mL for L-FABP, with 93% specificity and 75% sensitivity for I-FABP and 93% and 82% for L-FABP, respectively. CONCLUSIONS High I-FABP and L-FABP levels correlate with relevant severity of abdominal tissue damage in patients with multiple trauma. I-FABP and L-FABP could be useful as markers for the early detection of significant abdominal injury in acute multiple trauma and identify patients who require rapid intervention.
Collapse
Affiliation(s)
- Borna Relja
- Department of Trauma Surgery, Johann Wolfgang Goethe University Frankfurt am Main, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Chuang S, Velkov T, Horne J, Wielens J, Chalmers DK, Porter CJH, Scanlon MJ. Probing the fibrate binding specificity of rat liver fatty acid binding protein. J Med Chem 2009; 52:5344-55. [PMID: 19663428 DOI: 10.1021/jm801349e] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Liver-fatty acid binding protein (L-FABP) is found in high levels in enterocytes and is involved in cytosolic solubilization of fatty acids. In addition, L-FABP has been shown to bind endogenous and exogenous lipophilic compounds, suggesting that it may also play a role in modulating their absorption and disposition within enterocytes. Previously, we have described binding of L-FABP to a range of drugs, including a series of fibrates. In the present study, we have generated structural models of L-FABP-fibrate complexes and undertaken thermodynamic analysis of the binding of fibrates containing either a carboxylic acid or ester functionality. Analysis of the current data reveals that both the location and the energetics of binding are different for fibrates that contain a carboxylate compared to those that do not. As such, the data presented in this study suggest potential mechanisms that underpin molecular recognition and dictate specificity in the interaction between fibrates and L-FABP.
Collapse
Affiliation(s)
- Sara Chuang
- Medicinal Chemistry and Drug Action, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | | | | | | | | | | | | |
Collapse
|
11
|
Kajiura S, Yashiki T, Funaoka H, Ohkaru Y, Nishikura K, Kanda T, Ajioka Y, Igarashi M, Hatakeyama K, Fujii H. Establishment and characterization of monoclonal and polyclonal antibodies against human intestinal fatty acid-binding protein (I-FABP) using synthetic regional peptides and recombinant I-FABP. J Immunoassay Immunochem 2008; 29:19-41. [PMID: 18080878 DOI: 10.1080/15321810701735005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
We have succeeded in raising highly specific anti-human intestinal fatty acid-binding protein (I-FABP) monoclonal antibodies by immunizing animals with three synthetic regional peptides, i.e., the amino terminal (RP-1: N-acetylated 1-19-cysteine), middle portion (RP-2: cysteinyl-91-107) and carboxylic terminal (RP-3: cysteinyl-121-131) regions of human I-FABP, and the whole I-FABP molecule as antigens. We also raised a polyclonal antibody by immunizing with a recombinant (r) I-FABP. To ascertain the specificity of these antibodies for human I-FABP, the immunological reactivity of each was examined by a binding assay using rI-FABP, partially purified native I-FABP and related proteins such as liver-type (L)-FABP, heart-type (H)-FABP, as well as the regional peptides as reactants, and by Western blot analysis. In addition, the expression and distribution of I-FABP in the human gastrointestinal tract were investigated by an immunohistochemical technique using a carboxylic terminal region-specific monoclonal antibody, 8F9, and a polyclonal antibody, DN-R2. Our results indicated that both the monoclonal and polyclonal antibodies established in this study were highly specific for I-FABP, but not for L-FABP and H-FABP. Especially, the monoclonal antibodies raised against the regional peptides, showed regional specificity for the I-FABP molecule. Immunoreactivity of I-FABP was demonstrated in the mucosal epithelium of the jejunum and ileum by immunohistochemical staining, and the immunoreactivity was based on the presence of the whole I-FABP molecule but not the presence of any precursors or degradation products containing a carboxylic terminal fragment. It is concluded that some of these monoclonal and polyclonal antibodies, such as 8F9, 4205, and DN-R2, will be suitable for use in research on the immunochemistry and clinical chemistry of I-FABP because those antibodies can recognize both types of native and denatured I-FABP. In order to detect I-FABP in blood samples, it is essential to use this type of antibody, reactive to native type of I-FABP. It is anticipated that, in the near future, such a method for measuring I-FABP will be developed as a useful tool for diagnosing intestinal ischemia by using some of these antibodies.
Collapse
|
12
|
Newberry EP, Kennedy SM, Xie Y, Sternard BT, Luo J, Davidson NO. Diet-induced obesity and hepatic steatosis in L-Fabp / mice is abrogated with SF, but not PUFA, feeding and attenuated after cholesterol supplementation. Am J Physiol Gastrointest Liver Physiol 2008; 294:G307-14. [PMID: 18032478 DOI: 10.1152/ajpgi.00377.2007] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Liver fatty acid (FA)-binding protein (L-Fabp), a cytoplasmic protein expressed in liver and small intestine, regulates FA trafficking in vitro and plays an important role in diet-induced obesity. We observed that L-Fabp(-/-) mice are protected against Western diet-induced obesity and hepatic steatosis. These findings are in conflict, however, with another report of exaggerated obesity and increased hepatic steatosis in female L-Fabp(-/-) mice fed a cholesterol-supplemented diet. To resolve this apparent paradox, we fed female L-Fabp(-/-) mice two different cholesterol-supplemented low-fat diets and discovered (on both diets) lower body weight in L-Fabp(-/-) mice than in congenic wild-type C57BL/6J controls and similar or reduced hepatic triglyceride content. We extended these comparisons to mice fed low-cholesterol, high-fat diets. Female L-Fabp(-/-) mice fed a high-saturated fat (SF) diet were dramatically protected against obesity and hepatic steatosis, whereas weight gain and hepatic lipid content were indistinguishable between mice fed a high-polyunsaturated FA (PUFA) diet and control mice. These findings demonstrate that L-Fabp functions as a metabolic sensor with a distinct hierarchy of FA sensitivity. We further conclude that cholesterol supplementation does not induce an obesity phenotype in L-Fabp(-/-) mice, nor does it play a significant role in the protection against Western diet-induced obesity in this background.
Collapse
Affiliation(s)
- Elizabeth P Newberry
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | | | |
Collapse
|
13
|
Bordewick U, Schulenberg H, Schäfer P, Spener F. Recognition of Fatty Acids by Hepatic Fatty Acid Binding Proteins. ACTA ACUST UNITED AC 2006. [DOI: 10.1002/lipi.19860881411] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
14
|
Chmurzyńska A. The multigene family of fatty acid-binding proteins (FABPs): function, structure and polymorphism. J Appl Genet 2006; 47:39-48. [PMID: 16424607 DOI: 10.1007/bf03194597] [Citation(s) in RCA: 484] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
Fatty acid-binding proteins (FABPs) are members of the superfamily of lipid-binding proteins (LBP). So far 9 different FABPs, with tissue-specific distribution, have been identified: L (liver), I (intestinal), H (muscle and heart), A (adipocyte), E (epidermal), Il (ileal), B (brain), M (myelin) and T (testis). The primary role of all the FABP family members is regulation of fatty acid uptake and intracellular transport. The structure of all FABPs is similar - the basic motif characterizing these proteins is beta-barrel, and a single ligand (e.g. a fatty acid, cholesterol, or retinoid) is bound in its internal water-filled cavity. Despite the wide variance in the protein sequence, the gene structure is identical. The FABP genes consist of 4 exons and 3 introns and a few of them are located in the same chromosomal region. For example, A-FABP, E-FABP and M-FABP create a gene cluster. Because of their physiological properties some FABP genes were tested in order to identify mutations altering lipid metabolism. Furthermore, the porcine A-FABP and H-FABP were studied as candidate genes with major effect on fatness traits.
Collapse
Affiliation(s)
- Agata Chmurzyńska
- Department of Animal Genetics and Breeding, August Cieszkowski Agricultural University of Poznan, Wolynska 33, Poznan 60-637, Poland
| |
Collapse
|
15
|
Esteves A, Ehrlich R. Invertebrate intracellular fatty acid binding proteins. Comp Biochem Physiol C Toxicol Pharmacol 2006; 142:262-274. [PMID: 16423563 DOI: 10.1016/j.cbpc.2005.11.006] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2005] [Revised: 10/24/2005] [Accepted: 10/30/2005] [Indexed: 02/02/2023]
Abstract
Fatty acid binding proteins are multigenic cytosolic proteins largely distributed along the zoological scale. Their overall identity at primary and tertiary structure is conserved. They are involved in the uptake and transport of hydrophobic ligands to different cellular fates. The precise functions of each FABP type remain imperfectly understood, since sub-specialization of functions is suggested. Evolutionary studies have distinguished major subfamilies that could have been derived from a common ancestor close to vertebrate/invertebrate split. Since the isolation of the first invertebrate FABP from Schistocerca gregaria in 1990, the number of FABPs isolated from invertebrates has been increasing. Differences at the sequence level are appreciable and relationships with vertebrate FABPs are not clear, and lesser among invertebrate proteins, introducing some uncertainty to infer functional relatedness and phylogenetic relationships. The objective of this review is to summarize the information available on invertebrate FABPs to elucidate their mutual relationships, the relationship with their vertebrate counterparts and putative functions. Structure, gene structure, putative functions, expression studies and phylogenetic relationships with vertebrate counterparts are analyzed. Previous suggestions of the ancestral position concerning the heart-type of FABPs are reinforced by evidence from invertebrate models.
Collapse
Affiliation(s)
- Adriana Esteves
- Sección Bioquímica, Dpto. de Biología Celular y Molecular, Facultad de Ciencias Montevideo, Uruguay.
| | - Ricardo Ehrlich
- Sección Bioquímica, Dpto. de Biología Celular y Molecular, Facultad de Ciencias Montevideo, Uruguay
| |
Collapse
|
16
|
Cai J, Chen J, Liu Y, Miura T, Luo Y, Loring JF, Freed WJ, Rao MS, Zeng X. Assessing self-renewal and differentiation in human embryonic stem cell lines. Stem Cells 2005; 24:516-30. [PMID: 16293578 PMCID: PMC1855239 DOI: 10.1634/stemcells.2005-0143] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Like other cell populations, undifferentiated human embryonic stem cells (hESCs) express a characteristic set of proteins and mRNA that is unique to the cells regardless of culture conditions, number of passages, and methods of propagation. We sought to identify a small set of markers that would serve as a reliable indicator of the balance of undifferentiated and differentiated cells in hESC populations. Markers of undifferentiated cells should be rapidly downregulated as the cells differentiate to form embryoid bodies (EBs), whereas markers that are absent or low during the undifferentiated state but that are induced as hESCs differentiate could be used to assess the presence of differentiated cells in the cultures. In this paper, we describe a list of markers that reliably distinguish undifferentiated and differentiated cells. An initial list of approximately 150 genes was generated by scanning published massively parallel signature sequencing, expressed sequence tag scan, and microarray datasets. From this list, a subset of 109 genes was selected that included 55 candidate markers of undifferentiated cells, 46 markers of hESC derivatives, four germ cell markers, and four trophoblast markers. Expression of these candidate marker genes was analyzed in undifferentiated hESCs and differentiating EB populations in four different lines by immunocytochemistry, reverse transcription-polymer-ase chain reaction (RT-PCR), microarray analysis, and quantitative RT-PCR (qPCR). We show that qPCR, with as few as 12 selected genes, can reliably distinguish differentiated cells from undifferentiated hESC populations.
Collapse
Affiliation(s)
- Jingli Cai
- Laboratory of Neurosciences, National Institute on Aging, Department of Health and Human Services (DHHS), Baltimore, MD
| | - Jia Chen
- Cellular Neurobiology Branch, National Institute on Drug Abuse, DHHS, Baltimore, MD
| | - Ying Liu
- Laboratory of Neurosciences, National Institute on Aging, Department of Health and Human Services (DHHS), Baltimore, MD
| | - Takumi Miura
- Laboratory of Neurosciences, National Institute on Aging, Department of Health and Human Services (DHHS), Baltimore, MD
| | - Yongquan Luo
- Laboratory of Neurosciences, National Institute on Aging, Department of Health and Human Services (DHHS), Baltimore, MD
| | - Jeanne F. Loring
- Program in Stem Cells and Regeneration, The Burnham Institute, La Jolla, CA
| | - William J Freed
- Cellular Neurobiology Branch, National Institute on Drug Abuse, DHHS, Baltimore, MD
| | - Mahendra S Rao
- Laboratory of Neurosciences, National Institute on Aging, Department of Health and Human Services (DHHS), Baltimore, MD
| | - Xianmin Zeng
- Cellular Neurobiology Branch, National Institute on Drug Abuse, DHHS, Baltimore, MD
- Buck Institute for Age Research, 8001 Redwood Blvd, Novato, CA
| |
Collapse
|
17
|
Wolfrum C, Ellinghaus P, Fobker M, Seedorf U, Assmann G, Börchers T, Spener F. Phytanic acid is ligand and transcriptional activator of murine liver fatty acid binding protein. J Lipid Res 1999. [DOI: 10.1016/s0022-2275(20)32150-7] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
18
|
Wolfrum C, Buhlmann C, Rolf B, Börchers T, Spener F. Variation of liver-type fatty acid binding protein content in the human hepatoma cell line HepG2 by peroxisome proliferators and antisense RNA affects the rate of fatty acid uptake. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1437:194-201. [PMID: 10064902 DOI: 10.1016/s1388-1981(99)00008-6] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The liver-type fatty acid binding protein (L-FABP), a member of a family of mostly cytosolic 14-15 kDa proteins known to bind fatty acids in vitro and in vivo, is discussed to play a role in fatty acid uptake. Cells of the hepatoma HepG2 cell line endogenously express this protein to approximately 0.2% of cytosolic proteins and served as a model to study the effect of L-FABP on fatty acid uptake, by manipulating L-FABP expression in two approaches. First, L-FABP content was more than doubled upon treating the cells with the potent peroxisome proliferators bezafibrate and Wy14,643 and incubation of these cells with [1-14C]oleic acid led to an increase in fatty acid uptake rate from 0.55 to 0.74 and 0.98 nmol/min per mg protein, respectively. In the second approach L-FABP expression was reduced by stable transfection with antisense L-FABP mRNA yielding seven clones with L-FABP contents ranging from 0.03% to 0.14% of cytosolic proteins. This reduction to one sixth of normal L-FABP content reduced the rate of [1-14C]oleic acid uptake from 0.55 to 0. 19 nmol/min per mg protein, i.e., by 66%. The analysis of peroxisome proliferator-treated cells and L-FABP mRNA antisense clones revealed a direct correlation between L-FABP content and fatty acid uptake.
Collapse
Affiliation(s)
- C Wolfrum
- Department of Biochemistry, University of Münster, Wilhelm-Klemm Str. 2, D-48149, Münster, Germany
| | | | | | | | | |
Collapse
|
19
|
Li W, Krasinski SD, Verhave M, Montgomery RK, Grand RJ. Three distinct messenger RNA distribution patterns in human jejunal enterocytes. Gastroenterology 1998; 115:86-92. [PMID: 9649462 DOI: 10.1016/s0016-5085(98)70368-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
BACKGROUND & AIMS The importance of messenger RNA (mRNA) localization in human enterocytes is poorly understood. Previous studies from our laboratory have indicated that mRNAs are asymmetrically distributed in human intestinal epithelial cells, but in general colocalized with their encoded proteins. The aim of this study was to characterize, in human enterocytes, mRNA localization patterns of three genes with distinctly different functions. METHODS mRNA distribution was determined by in situ hybridization with digoxigenin-labeled RNA probes in tissue sections of human jejunum. RESULTS The mRNA for villin, a well-characterized microvillus cytoskeletal protein, was sorted to the basal region of the enterocyte. The mRNA for human sodium glucose cotransporter 1 was localized to the apical region, and the mRNA for human liver fatty acid-binding protein was distributed diffusely in the cytoplasm. CONCLUSIONS The three distinct mRNA distribution patterns suggest that active mRNA sorting mechanisms exist in human enterocytes. This study also reveals for the first time that dichotomies may occur between the distribution patterns of sorted mRNAs and their encoded proteins.
Collapse
Affiliation(s)
- W Li
- Department of Pediatrics, Floating Hospital for Children, Boston, Massachusetts, USA
| | | | | | | | | |
Collapse
|
20
|
Esteves A, Joseph L, Paulino M, Ehrlich R. Remarks on the phylogeny and structure of fatty acid binding proteins from parasitic platyhelminths. Int J Parasitol 1997; 27:1013-23. [PMID: 9363483 DOI: 10.1016/s0020-7519(97)00071-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Four fatty acid binding proteins (FABPs) have been described in 4 parasitic platyhelminths: Schistosoma mansoni, Schistosoma japonicum, Fasciola hepatica and Echinococcus granulosus. FABPs form a multigenic family of cytosolic proteins widely distributed in metazoan tissues, the function of which is still poorly understood. These helminth proteins have recently received attention, since there are reports to indicate that S. mansoni and F. hepatica FABPs may be protective antigens. In addition, these proteins could play a major role in the parasites' life-cycles because platyhelminths are unable to synthesize de novo most of their lipids. We have undertaken phylogenetic and structural analyses of platyhelminth FABPs in an attempt to characterize features of biological relevance. Phylogenetically, these FABPs appear to be more closely related to those of vertebrate heart, mammary gland, muscle, retina, skin, brain and myelin, although no clear functional relationships were established between them. We describe several conserved motifs characteristic of specific groups of FABPs. Hydrophilicity, flexibility and accessibility analyses revealed several major putative epitopes for the E. granulosus FABP, EgDf1, that appear to be centred in loops of the EgDf1 3-dimensional structure modelled by molecular replacement.
Collapse
Affiliation(s)
- A Esteves
- Sección Bioquímica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | | | | | | |
Collapse
|
21
|
Tomizuka K, Yoshida H, Uejima H, Kugoh H, Sato K, Ohguma A, Hayasaka M, Hanaoka K, Oshimura M, Ishida I. Functional expression and germline transmission of a human chromosome fragment in chimaeric mice. Nat Genet 1997; 16:133-43. [PMID: 9171824 DOI: 10.1038/ng0697-133] [Citation(s) in RCA: 201] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Human chromosomes or chromosome fragments derived from normal fibroblasts were introduced into mouse embryonic stem (ES) cells via microcell-mediated chromosome transfer (MMCT) and viable chimaeric mice were produced from them. Transferred chromosomes were stably retained, and human genes, including immunoglobulin (Ig) kappa, heavy, lambda genes, were expressed in proper tissue-specific manner in adult chimaeric tissues. In the case of a human chromosome (hChr.) 2-derived fragment, it was found to be transmitted to the offspring through the germline. Our study demonstrates that MMCT allows for introduction of very large amounts of foreign genetic material into mice. This novel procedure will facilitate the functional analyses of human genomes in vivo.
Collapse
Affiliation(s)
- K Tomizuka
- Central Laboratories for Key Technology, Kirin Brewery Co., LTD., Kanagawa, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Fujita M, Fujii H, Kanda T, Sato E, Hatakeyama K, Ono T. Molecular cloning, expression, and characterization of a human intestinal 15-kDa protein. EUROPEAN JOURNAL OF BIOCHEMISTRY 1995; 233:406-13. [PMID: 7588781 DOI: 10.1111/j.1432-1033.1995.406_2.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We have isolated a cDNA encoding a human intestinal 15-kDa protein (I-15P) from a human ileal lambda gt 11 cDNA library, using a full-length rat I-15P cDNA. One clone encompassed 571 nucleotides and encoded a 128-amino-acid protein with a calculated molecular mass of 14355 Da. The deduced amino acid sequence of human I-15P showed high similarity to the rat counterpart (78%), mouse ileal lipid-binding protein (80%) and porcine gastrotropin (75%). It also exhibited 36% similarity to human liver fatty-acid-binding protein (L-FABP). Northern blot analysis of human I-15P revealed a single transcript only in ileum, however, the reverse-transcription/PCR demonstrated expression in ovary and placenta, but it was much lower than in ileum. Transformation of Escherichia coli with the I-15P cDNA resulted in the efficient expression of a protein that was identical to the ileal cytosolic I-15P. In vitro binding studies revealed that the bacterially expressed recombinant I-15P showed much lower affinities for palmitate and oleate than L-FABP. However, it showed similar affinity for taurocholate, compared with a control, BSA. Comparison of the structural features of human I-15P and human L-FABP suggested that loss of a long alpha-helix region and hydrophobic profile of I-15P may be attributable to a unique ligand-binding specificity of I-15P.
Collapse
Affiliation(s)
- M Fujita
- Department of Biochemistry, Niigata University School of Medicine, Japan
| | | | | | | | | | | |
Collapse
|
23
|
Abstract
Liver fatty acid binding protein (L-FABP), a cytoplasmic 14 kDa protein previously termed Z protein, is conventionally considered to be an intracellular carrier of fatty acids in rat hepatocytes. The following evidence now indicates that L-FABP is also a specific mediator of mitogenesis of rat hepatocytes: a. the synergy between the action of L-FABP and unsaturated fatty acids, especially linoleic acid, in the promotion of cell proliferation; b. the specific requirement for L-FABP in induction of mitogenesis by two classes of nongenotoxic hepatocarcinogenic peroxisome proliferators (amphipathic carboxylates and tetrazole-substituted acetophenones); c. the direct correlation between the binding avidities of different prostaglandins for L-FABP and their relative growth inhibitory activities toward cultured rat hepatocytes; d. the temporal coincidences between the covalent binding to L-FABP by chemically reactive metabolites of the genotoxic carcinogens, 2-acetylaminofluorene and aminoazo dyes, and their growth inhibitions of hepatocytes during liver carcinogenesis in rats; e. and f. the marked elevations of L-FABP in rat liver during mitosis in normal and regenerating hepatocytes, and during the entire cell cycle in the hyperplastic and malignant hepatocytes that are produced by the genotoxic carcinogens, 2-acetylaminofluorene and aminoazo dyes. These actions of L-FABP are consistent with those of a protein involved in regulation of hepatocyte multiplication. Discovery that L-FABP, the target protein of the two types of genotoxic carcinogens, is required for the mitogenesis induced by two classes of nongenotoxic carcinogens points to a common process by which both groups of carcinogens promote hepatocyte multiplication. The implication is that during tumor promotion of liver carcinogenesis, these genotoxic and nongenotoxic carcinogens modify the normal process by which L-FABP, functioning as a specific receptor of unsaturated fatty acids or their metabolites, promotes the multiplication of hepatocytes.
Collapse
Affiliation(s)
- S Sorof
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| |
Collapse
|
24
|
Becker MM, Kalinna BH, Waine GJ, McManus DP. Gene cloning, overproduction and purification of a functionally active cytoplasmic fatty acid-binding protein (Sj-FABPC) from the human blood fluke Schistosoma japonicum. Gene 1994; 148:321-5. [PMID: 7958962 DOI: 10.1016/0378-1119(94)90706-4] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We report the gene cloning, molecular characterisation and purification of a 14.7-kDa functionally active recombinant (re) cytoplasmic fatty acid-binding protein (Sj-FABPC) from the Chinese strain of the human bloodfluke Schistosoma japonicum (Sj). As schistosomes are unable to synthesise long chain fatty acids and sterols de novo and must, therefore, take up these lipids from the host, Sj-FABPC is an attractive vaccine and/or drug target. Clone 39 (C39), which contains the entire Sj-FABPC gene, was isolated from a Sj lambda ZAPII cDNA expression library immunoscreened with hyperimmune rabbit serum (HRS) raised against soluble adult Sj proteins. The complete ORF (open reading frame) of Sj-FABPC encodes a protein of 132 amino acids (aa) of 14.7 kDa. The aa sequence of Sj-FABPC exhibits 91% identity to a FABP of S. mansoni (Sm14) and 45% identity to a FABP of Fasciola hepatica (Fh15), putative vaccine candidates for schistosomiasis. Sj-FABPC was subcloned into the QIAexpress vector, pQE-10, and subsequently expressed in Escherichia coli. The re-Sj-FABPC, purified under non-denaturing conditions, was recognized by sera from patients with acute and chronic schistosomiasis japonica. The purified re-Sj-FABPC was also shown to bind to palmitic acid with high affinity. The functional expression of Sj-FABPC will facilitate studies on re-Sj-FABPC to assess its potential as a drug and/or vaccine candidate.
Collapse
Affiliation(s)
- M M Becker
- Molecular Parasitology Unit, Queensland Institute of Medical Research, Brisbane, Australia
| | | | | | | |
Collapse
|
25
|
Richieri G, Ogata R, Kleinfeld A. Equilibrium constants for the binding of fatty acids with fatty acid-binding proteins from adipocyte, intestine, heart, and liver measured with the fluorescent probe ADIFAB. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(19)51026-2] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
26
|
Berry SA, Yoon JB, List J, Seelig S. Hepatic fatty acid-binding protein mRNA is regulated by growth hormone. J Am Coll Nutr 1993; 12:638-42. [PMID: 8294718 DOI: 10.1080/07315724.1993.10718354] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Hepatic fatty acid-binding protein (FABP) is one of several abundant proteins which may participate in fatty acid uptake and utilization. Using differential hybridization to screen for growth hormone-responsive gene products, a complementary deoxyribonucleic acid (cDNA) was isolated which proved to be a hepatic FABP cDNA fragment. Hypophysectomy caused a 60% reduction in hepatic FABP messenger ribonucleic acid (mRNA) levels in rat liver, and growth hormone administration to hypophysectomized rats resulted in restoration of the expression of hepatic FABP mRNA. Other pituitary hormones did not alter these changes in expression. The response to growth hormone occurred within 4 hours of administration. During development, expression of hepatic FABP mRNA in rat liver was low in late fetal life, with increases to 40% of adult values by day 2 of life. Significant increases to adult levels did not occur until after day 25, when weaning is essentially completed. Alteration of hepatic FABP mRNA expression by growth hormone in rat liver may be important in the complex regulation of fatty acid uptake and metabolism.
Collapse
Affiliation(s)
- S A Berry
- Department of Pediatrics, University of Minnesota, Minneapolis
| | | | | | | |
Collapse
|
27
|
Schroeder F, Jefferson JR, Powell D, Incerpi S, Woodford JK, Colles SM, Myers-Payne S, Emge T, Hubbell T, Moncecchi D. Expression of rat L-FABP in mouse fibroblasts: role in fat absorption. Mol Cell Biochem 1993; 123:73-83. [PMID: 8232270 DOI: 10.1007/bf01076477] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Fatty acid-binding proteins (FABP) are abundant cytosolic proteins whose levels is responsive to nutritional, endocrine, and a variety of pathological states. Although FABPs have been investigated in vitro for several decades, little is known of their physiological function. Liver L-FABP binds both fatty acids and cholesterol. Competitive binding analysis and molecular modeling studies of L-FABP indicate the presence of two ligand binding pockets that accommodate one fatty acid each. One fatty acid binding site is identical to the cholesterol binding site. To test whether these observations obtained in vitro were physiologically relevant, the cDNA encoding L-FABP was transfected into L-cells, a cell line with very low endogenous FABP and sterol carrier proteins. Uptake of both ligands did not differ between control cells and low expression clones. In contrast, both fatty acid uptake and cholesterol uptake were stimulated in the high expression cells. In high expression cells, uptake of fluorescent cis-parinaric acid was enhanced more than that of trans-parinaric acid. This is consistent with the preferential binding of cis-fatty acids to L-FABP but in contrast to the preferential binding of trans-parinaric acid to the L-cell plasma membrane fatty acid transporter (PMFABP). These data show that the level of cytosolic fatty acids in intact cells can regulate both the extent and specificity of fatty acid uptake. Last, sphingomyelinase treatment of L-cells released cholesterol from the plasma membrane to the cytoplasm and stimulated microsomal acyl-CoA: cholesteryl acyl transferase (ACAT). This process was accelerated in high expression cells. These observations show for the first time in intact cells that L-FABP, a protein most prevalent in liver and intestine where much fat absorption takes place, may have a role in fatty acid and cholesterol absorption.
Collapse
Affiliation(s)
- F Schroeder
- Dept. of Pharmacology & Cell Biophysics, University of Cincinnati Medical Center, OH 45267-0004
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Mallordy A, Besnard P, Carlier H. Research of an in vitro model to study the expression of fatty acid-binding proteins in the small intestine. Mol Cell Biochem 1993; 123:85-92. [PMID: 8232271 DOI: 10.1007/bf01076478] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
In order to find an in vitro model for studying the regulation of the biosynthesis of the cytoplasmic Fatty Acid-Binding Proteins (FABPc) expressed in the small intestine, Intestinal- and Liver- (I- and L-) FABPc expressions were tested by Northern blotting in 8 normal or cancerous intestinal cell lines from man, mouse and rat and in organ culture of mouse jejunal explants. Neither I- nor L-FABPc mRNA was detected in any cell strains tested except in the highly differentiated human enterocyte-like intestinal cell line Caco-2. In this line, Northern blot analysis revealed a single messenger of about 0.7 kb corresponding to the L-FABPc. A two-fold increase in mRNA L-FABPc occurred in differentiated Caco-2 cells treated for 7 days with 0.05 mM bezafibrate, a peroxisome-proliferating hypolipidemic drug. The lack of I-FABPc messengers in this strain led us to seek another in vitro model. I- and L-FABPc messengers were found using an organ culture of mouse jejunal explants. A clear rise in I- and, especially, L-FABPc mRNA levels occurred 6 and 24 hr after the addition of 0.05 mM bezafibrate in the culture medium.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- A Mallordy
- Laboratoire de Physiologie de la Nutrition, EA DRED 580, Ecole Nationale Supérieure de Biologie Appliquée à la Nutrition et à l'Alimentation, Université de Bourgogne, Dijon, France
| | | | | |
Collapse
|
29
|
Modulation of ligand binding affinity of the adipocyte lipid-binding protein by selective mutation. Analysis in vitro and in situ. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)53040-4] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
30
|
|
31
|
Nemecz G, Jefferson J, Schroeder F. Polyene fatty acid interactions with recombinant intestinal and liver fatty acid-binding proteins. Spectroscopic studies. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(19)47347-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
32
|
Kanda T, Odani S, Tomoi M, Matsubara Y, Ono T. Primary structure of a 15-kDa protein from rat intestinal epithelium. Sequence similarity to fatty-acid-binding proteins. EUROPEAN JOURNAL OF BIOCHEMISTRY 1991; 197:759-68. [PMID: 2029905 DOI: 10.1111/j.1432-1033.1991.tb15968.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
An abundant and novel cytosolic protein was purified from the rat intestinal epithelium by gel filtration, ion-exchange and hydroxylapatite chromatography. The protein was eluted into two different positions (fractions 1 and 2) on DEAE-cellulose chromatography. We have completed the primary structure of the protein of fraction 1 by Edman degradation. The protein (144565 Da) contains 127 amino acid residues and has an acetylated alanine at its NH2-terminus. Comparison of the primary structure of the protein with porcine gastrotropin [Walz, A. D., Wider, M. D., Snow, J. W., Dass, C. & Desiderio, D. M. (1988) J. Biol. Chem. 263, 14189-14195] and rat hepatic fatty-acid-binding protein revealed that identical residues within these proteins are found in 90 and 54 out of a total of 127 positions, respectively. Bioactivity studies demonstrated that neither the protein nor liver and intestinal fatty-acid-binding proteins influence gastric acid secretory activity in rats with gastric fistulas compared to pentagastrin. The protein showed very low affinity for palmitic-acid-binding in vitro assay system and only trace amounts of endogenous fatty acids were detected from the protein. The protein, rat intestinal 15-kDa protein is considered to be a new member of the fatty-acid-binding protein family based on its structural features.
Collapse
Affiliation(s)
- T Kanda
- Department of Biochemistry, Niigata University School of Medicine, Japan
| | | | | | | | | |
Collapse
|
33
|
Moser D, Tendler M, Griffiths G, Klinkert M. A 14-kDa Schistosoma mansoni polypeptide is homologous to a gene family of fatty acid binding proteins. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)92995-9] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
34
|
Lyons HT, Kharroubi A, Wolins N, Tenner S, Chanderbhan RF, Fiskum G, Donaldson RP. Elevated cholesterol and decreased sterol carrier protein-2 in peroxisomes from AS-30D hepatoma compared to normal rat liver. Arch Biochem Biophys 1991; 285:238-45. [PMID: 1897930 DOI: 10.1016/0003-9861(91)90355-m] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Peroxisomes were isolated from AS-30D hepatoma and compared to normal rat liver cells for the purpose of investigating the cholesterol accumulation in the hepatoma cells. Cholesterol was found to be approximately 10-fold higher relative to protein in AS-30D peroxisomes as compared to peroxisomes from normal liver. The peroxisomes from the hepatoma cells were found to be more stable; catalase was not released from these peroxisomes during isolation or osmotic shock of the peroxisomal fraction. The elevated cholesterol level may stabilize the peroxisomal membrane. Sterol carrier protein-2 (SCP-2) levels were measured using a radioimmunoassay (RIA), which indicated the highest concentration of SCP-2 to be in peroxisomes. Hepatoma peroxisomes had a lower concentration of SCP-2 (2.5 micrograms/mg) than normal liver peroxisomes (8 micrograms/mg). Approximately half of all SCP-2 detected was found to be soluble in both hepatoma and normal rat liver cells. Immunoblots from both rat liver and AS-30D fractions demonstrated the presence of the 14-kDa form of SCP-2. The liver fractions also had a 57-kDa immunoreactive protein, which was barely detectable in the AS-30D fractions. The low abundance of the high molecular weight form of SCP-2 from hepatoma peroxisomes and the lower amounts of SCP-2 detected in the AS-30D peroxisomes may be related to the accumulation of cholesterol in the cells.
Collapse
Affiliation(s)
- H T Lyons
- Department of Biological Sciences, George Washington University, Washington, D.C. 20052
| | | | | | | | | | | | | |
Collapse
|
35
|
Veerkamp JH, Peeters RA, Maatman RG. Structural and functional features of different types of cytoplasmic fatty acid-binding proteins. BIOCHIMICA ET BIOPHYSICA ACTA 1991; 1081:1-24. [PMID: 1991151 DOI: 10.1016/0005-2760(91)90244-c] [Citation(s) in RCA: 294] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- J H Veerkamp
- Department of Biochemistry, University of Nijmegen, The Netherlands
| | | | | |
Collapse
|
36
|
Carroll SL, Roth KA, Gordon JI. Liver fatty acid-binding protein: a marker for studying cellular differentiation in gut epithelial neoplasms. Gastroenterology 1990; 99:1727-35. [PMID: 1699834 DOI: 10.1016/0016-5085(90)90480-o] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Human liver fatty acid binding protein is a 127 residue cytoplasmic protein synthesized in liver and in the intestinal epithelium. Previous studies of normal and transgenic mice indicated that the liver fatty acid-binding protein gene is a sensitive marker of enterocytic differentiation. This study shows the use of immunohistochemical methods to examine liver fatty acid-binding protein gene expression in normal human colonic epithelium, colonic villoglandular adenomas, nonmucinous and mucinous adenocarcinomas, and several types of noncolonic epithelial neoplasms. Cells containing liver fatty acid-binding protein were found in normal colonic epithelium, in two thirds of colorectal villoglandular adenomas and nonmucinous adenocarcinomas, and in one third of mucinous adenocarcinomas but not in noncolonic, nonhepatic carcinomas. All liver fatty acid-binding protein-positive colonic adenomas and adenocarcinomas contained patches of immunoreactive cells distributed among histologically identical patches of cells without liver fatty acid-binding protein immunoreactivity. This "mosaicism" was also found in metastases from liver fatty acid-binding protein-positive colonic adenocarcinomas. Immunostaining of these liver fatty acid-binding protein-positive tissues for carcinoembryonic antigen did not show a mosaic cellular pattern in its expression. These data suggest that within a given neoplasm, differences exist in the differentiation programs of monoclonally-derived, malignant colonic epithelial cells and that liver fatty acid-binding protein is a useful marker for operationally defining these subpopulations. Liver fatty acid-binding protein is also a potentially useful diagnostic marker for colorectal and hepatic carcinomas.
Collapse
Affiliation(s)
- S L Carroll
- Department of Pathology, Washington University School of Medicine, St. Louis, Missouri
| | | | | |
Collapse
|
37
|
Suzuki T, Watanabe K, Ono T. Immunohistochemical demonstration of liver fatty acid-binding protein in human hepatocellular malignancies. J Pathol 1990; 161:79-83. [PMID: 2164578 DOI: 10.1002/path.1711610113] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Twenty-three hepatoblastomas of childhood, sixty-two adult hepatocellular carcinomas, and two hepatic sarcomas were examined immunohistochemically with the use of a polyclonal antibody against rat liver fatty acid-binding protein (L-FABP), which cross-reacts to human L-FABP. All the hepatoblastomas and half of the hepatic cell carcinomas contained L-FABP immunoreactive tumour cells, whereas two hepatic sarcomas were negative. The overall frequency of immunostained tumour cells was 43.5 per cent in hepatoblastomas and 18.6 per cent in hepatocellular carcinomas, respectively. Histologically well-differentiated areas contained more numerous immunopositive cells than undifferentiated or immature ones. These results indicate that L-FABP immunoreactivity is a new candidate for a tumour cell marker in hepatic cell malignancies, although its biological role has not been elucidated.
Collapse
Affiliation(s)
- T Suzuki
- Second Department of Pathology, Fukushima Medical College, Japan
| | | | | |
Collapse
|
38
|
|
39
|
Paulussen RJ, Veerkamp JH. Intracellular fatty-acid-binding proteins. Characteristics and function. Subcell Biochem 1990; 16:175-226. [PMID: 2238003 DOI: 10.1007/978-1-4899-1621-1_7] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- R J Paulussen
- Department of Biochemistry, University of Nijmegen, The Netherlands
| | | |
Collapse
|
40
|
SCHOENTGEN F, PIGNEDE G, BONANNO LM, JOLLES P. Fatty-acid-binding protein from bovine brain. Amino acid sequence and some properties. ACTA ACUST UNITED AC 1989. [DOI: 10.1111/j.1432-1033.1989.tb15077.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
41
|
Sa G, Das T, Mukherjea M. Purification and characterization of fatty acid-binding proteins from human fetal lung. Exp Lung Res 1989; 15:619-34. [PMID: 2767006 DOI: 10.3109/01902148909069622] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Fatty acid-binding protein (FABP) was isolated, purified, and characterized from developing human fetal lung cytosol by gel filtration and ion-exchange chromatography. FABP exists in three immunochemically identical forms, DE-I, DE-II, and DE-III, having Mr 15,200 +/- 200 each and isoelectric pH 7.8, 6.9, and 5.4, respectively. DE-I is almost lipid-free, DE-II binds mainly long-chain unsaturated fatty acids, and DE-III is an arachidonic acid carrier. One mole of DE-II and DE-III each binds 1 mol of fatty acids noncovalently. Concentrations of all these FABPs increase gradually from early gestation to term. Defatted lung FABP reverses the inhibitory effect of palmitoyl coenzyme A (CoA) (PAL-CoA) on lung glucose-6-phosphate dehydrogenase (G6PD), a key enzyme of the hexose monophosphate (HMP) shunt pathway. This protein when added alone activates the enzyme, suggesting that the original submaximal activity is probably due to the presence of endogenous long-chain fatty acyl CoA esters in the cytosols. As FABP is present in relatively high concentration in most mammalian cells, the potent inhibitory effects of long-chain acyl CoA esters on the HMP shunt pathway in vitro are not seen in intact cells.
Collapse
Affiliation(s)
- G Sa
- Department of Biochemistry, University of Calcutta, College of Science, India
| | | | | |
Collapse
|
42
|
Levin MS, Pitt AJ, Schwartz AL, Edwards PA, Gordon JI. Developmental changes in the expression of genes involved in cholesterol biosynthesis and lipid transport in human and rat fetal and neonatal livers. BIOCHIMICA ET BIOPHYSICA ACTA 1989; 1003:293-300. [PMID: 2472835 DOI: 10.1016/0005-2760(89)90235-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Cloned cDNAs encoding a number of enzymes involved in cholesterol biosynthesis as well as extracellular and intracellular lipid transport were used to compare the developmental maturation of these biologic functions in the fetal and neonatal rat and human liver. The results of RNA blot hybridization analyses indicate that steady-state levels of rat HMG-CoA synthase, HMG-CoA reductase and prenyl transferase mRNAs are highest in late fetal life and undergo precipitous (up to 80-fold) co-ordinate reductions immediately after parturition. These changes reflect the ability of the fetal rat liver to produce large quantities of cholesterol as well as the repression of this function during the suckling period in response to exogenous dietary cholesterol. Striking co-ordinate patterns of HMG-CoA synthase, reductase and prenyl-transferase mRNA accumulation were also observed in four extrahepatic rat tissues (brain, lung, intestine and kidney) during the perinatal period. The concentrations of all three mRNAs in the 8-week-old human fetal liver are similar to those observed throughout subsequent intrauterine development with less than 2-fold changes noted between the 8th through 25th weeks of gestation. Analysis of the levels of human apo AI, apo AII, apo B and liver fatty acid binding protein mRNAs during this period and in newborn liver specimens also indicated less than 2-3-fold changes. These observations suggest that the 8-week human liver has achieved a high degree of biochemical differentiation with respect to functions involved in lipid metabolism/transport which may be comparable to that present in 19-21 day fetal rat liver. Further analysis of human and rat fetal liver RNAs using cloned cDNAs should permit construction of a developmental time scale correlating hepatic biochemical differentiation to be constructed between these two mammalian species.
Collapse
Affiliation(s)
- M S Levin
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | | | | | | | | |
Collapse
|
43
|
Storch J, Bass NM, Kleinfeld AM. Studies of the Fatty Acid-binding Site of Rat Liver Fatty Acid-binding Protein Using Fluorescent Fatty Acids. J Biol Chem 1989. [DOI: 10.1016/s0021-9258(18)81850-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
44
|
Das T, Sa G, Mukherjea M. Human fetal liver fatty acid binding proteins. Role on glucose-6-phosphate dehydrogenase activity. BIOCHIMICA ET BIOPHYSICA ACTA 1989; 1002:164-72. [PMID: 2495021 DOI: 10.1016/0005-2760(89)90283-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Fatty acid binding proteins (FABPs) may play an important role in the transport and metabolism of fatty acids during human embryogenesis. Three fractions of FABP, namely, DE-I, DE-II and DE-III, having Mr 14,200 Da each and pI values 7.8, 6.9 and 5.4, respectively, have been detected in human fetal liver. These proteins were purified by heat and butanol precipitation of fetal liver supernatant as well as by gel filtration and ion-exchange chromatography. Fetal liver FABPs are immunochemically identical to each other. Concentrations of DE-I, DE-II and DE-III increase gradually from early gestation to term. DE-I is almost lipid-free, DE-II binds long-chain fatty acids nonspecifically and DE-III transports mainly arachidonic acid. DE-II and DE-III protect glucose-6-phosphate dehydrogenase, which furnishes NADPH for fatty acid synthesis, from the feed-back inhibition exerted by added palmitoyl-CoA and oleate. In the absence of exogenous inhibitors, this enzyme is stimulated by FABPs. DE-I has no effect on such inhibition. Thus, FABPs play a regulatory role in critical aspects of cellular physiology during human embryogenesis.
Collapse
Affiliation(s)
- T Das
- Department of Biochemistry, University College of Science, Calcutta, India
| | | | | |
Collapse
|
45
|
Cistola DP, Sacchettini JC, Banaszak LJ, Walsh MT, Gordon JI. Fatty acid interactions with rat intestinal and liver fatty acid-binding proteins expressed in Escherichia coli. J Biol Chem 1989. [DOI: 10.1016/s0021-9258(19)81670-8] [Citation(s) in RCA: 87] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
46
|
Matarese V, Stone RL, Waggoner DW, Bernlohr DA. Intracellular fatty acid trafficking and the role of cytosolic lipid binding proteins. Prog Lipid Res 1989; 28:245-72. [PMID: 2701895 DOI: 10.1016/0163-7827(89)90001-5] [Citation(s) in RCA: 131] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- V Matarese
- Department of Biochemistry, University of Minnesota, St. Paul 55108
| | | | | | | |
Collapse
|
47
|
Peeters RA, in 't Groen MA, de Moel MP, van Moerkerk HT, Veerkamp JH. The binding affinity of fatty acid-binding proteins from human, pig and rat liver for different fluorescent fatty acids and other ligands. THE INTERNATIONAL JOURNAL OF BIOCHEMISTRY 1989; 21:407-18. [PMID: 2744209 DOI: 10.1016/0020-711x(89)90365-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
1. Two forms of fatty acid-binding proteins (FABPs) were isolated from human, pig and rat liver cytosols by gelfiltration and anion-exchange chromatography. 2. Both forms did not show physicochemical or chemical differences. They had an Mr of about 14.5 kDa for all species. pI Values were 5.8 for both forms of human and pig liver FABP and 6.4 for both forms of rat liver FABP. In contrast to heart FABPs no tryptophan was present in liver FABPs. 3. Liver FABPs show a much higher enhancement of fluorescence at binding of 11-dansylaminoundecanoic acid, 16-anthroyloxy-palmitic acid and 1-pyrene-dodecanoic acid than heart FABPs and additionally a blue shift in excitation and emission wavelengths with the first fatty acid. 4. The bulky side-chain did not affect fatty acid binding since binding constants of liver FABPs were comparable for these fluorescent fatty acids and oleic acid (0.3-0.7 microM). 5. A 1:1 binding stoichiometry was obtained for oleic acid binding with heart and liver FABPs. 6. Liver FABPs have a high binding affinity for C16-C22 saturated and unsaturated fatty acids, palmitoyl-CoA, bromo-substituted fatty acids, POCA, tetradecylglycidic acid and flavaspidic acid. 7. Fatty acid binding could be reduced to less than 50% by arginine modification with 2,3-butadione or by enzymatic degradation of FABPs with trypsin or pronase.
Collapse
Affiliation(s)
- R A Peeters
- Department of Biochemistry, University of Nijmegen, The Netherlands
| | | | | | | | | |
Collapse
|
48
|
Weise MJ, Carnegie PR. An approach to searching protein sequences for superfamily relationships or chance similarities relevant to the molecular mimicry hypothesis: application to the basic proteins of myelin. J Neurochem 1988; 51:1267-73. [PMID: 2458435 DOI: 10.1111/j.1471-4159.1988.tb03096.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A rapid method for similarity searches (FASTP program) was used to identify similarities between a protein database and the human basic proteins from myelin [P2 protein and 17.2K, 18.5K, and 21.5K variants of myelin basic protein (MBP)]. From similarity scores, we concluded that none of the presently known proteins are in a family containing the MBPs. No new members were found for the lipid-binding family of which P2 is a member. Sequence similarities deemed relevant to the molecular mimicry hypothesis for virus-induced autoimmunity were identified in FASTP data with the aid of microcomputer programs. Several MBP/viral protein similarities were found that have not been reported previously. Of note because of their association with demyelinating conditions were proteins from visna and vaccinia. Similarity with visna was specific to the 21.5K and 20.2K MBPs. The most interesting new possibility for mimicry involving the P2 protein was between the influenza A NS2 protein and a sequence region of P2 thought to be neuritogenic in animals and mitogenic for lymphocytes from some patients with Guillain-Barré syndrome (GBS). This may have relevance for some cases of GBS associated with the 1976 U.S.A. swine flu vaccination program. Because FASTP reports only the best similarities between proteins, searches with FASTP may not have detected all the examples of mimicry present in the database. Searches might also be more effective if similarities could be scored on immunological rather than structural relatedness.
Collapse
Affiliation(s)
- M J Weise
- Department of Neurology, Medical University of South Carolina, Charleston 29425
| | | |
Collapse
|
49
|
Paulussen RJ, van der Logt CP, Veerkamp JH. Characterization and binding properties of fatty acid-binding proteins from human, pig, and rat heart. Arch Biochem Biophys 1988; 264:533-45. [PMID: 3401011 DOI: 10.1016/0003-9861(88)90319-0] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Fatty acid-binding proteins (FABPs) were isolated from the cytosols of hearts of man, pig, and rat by gel filtration and anion-exchange chromatography. The heart FABPs had a Mr of about 15,000 (pig, rat) and 15,500 (man); pI values were 5.2, 4.9, and 5.0 for human, pig, and rat heart, respectively. In contrast to liver FABPs, tryptophan was present in the heart FABPs. Binding characteristics for long-chain fatty acids determined with the radiochemical Lipidex assay were comparable for all three proteins. Heart FABPs also bind palmitoyl-CoA and -carnitine with an affinity comparable to that for palmitic acid. Other ligands investigated, heme, bilirubin, cholesterol, retinoids, and prostaglandins, could not compete with oleic acid for binding by human heart FABP. Binding parameters of FABP for oleic acid from multilamellar liposomes were comparable to those from the Lipidex binding assay. Immunological interspecies cross-reactivity with antisera against the heart FABPs was much higher between man and pig than between rat and man or pig. None of the antisera reacted with liver FABPs. The IgG fraction of anti-human heart FABP serum inhibited fatty acid binding to human heart FABP.
Collapse
Affiliation(s)
- R J Paulussen
- Department of Biochemistry, University of Nijmegen, The Netherlands
| | | | | |
Collapse
|
50
|
Wahlberg P, Fex G, Biörklund A, Tropé C, Willén R. Quantitation and localization of cellular retinol-binding protein in squamous-cell carcinomas of the cervix uteri and of the oral cavity. Int J Cancer 1988; 41:771-6. [PMID: 3366495 DOI: 10.1002/ijc.2910410523] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The concentration of cellular retinol-binding protein (CRBP) was determined by radioimmunoassay in biopsies of normal mucosa and squamous-cell carcinomas of cervix uteri from 30 women. The tumour tissues contained significantly higher concentrations of CRBP (median = 120 micrograms/g protein) than normal mucosa (median = 32 micrograms/g protein). The distribution of CRBP in normal mucosa and squamous-cell carcinomas from cervix uteri and from oral cavity was evaluated by immunohistochemical techniques. In tissue sections of normal epithelium from the cervix uteri and the oral cavity, the maturing keratinocytes in the prickle-cell layers were moderately or strongly stained when antiserum against CRBP was used, while the proliferating cells in the basal-cell layer were stained only lightly if at all. Squamous-cell carcinomas of the cervix uteri and the oral cavity presented much the same picture. The observed difference in CRBP concentration between squamous-cell carcinomas and normal squamous-cell mucosa may therefore be more quantitative than qualitative.
Collapse
Affiliation(s)
- P Wahlberg
- Department of Oto-Rhino-Laryngology, University Hospital, Lund, Sweden
| | | | | | | | | |
Collapse
|