1
|
Wohlgemuth RP, Brashear SE, Smith LR. Alignment, cross linking, and beyond: a collagen architect's guide to the skeletal muscle extracellular matrix. Am J Physiol Cell Physiol 2023; 325:C1017-C1030. [PMID: 37661921 PMCID: PMC10635663 DOI: 10.1152/ajpcell.00287.2023] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/27/2023] [Accepted: 08/27/2023] [Indexed: 09/05/2023]
Abstract
The muscle extracellular matrix (ECM) forms a complex network of collagens, proteoglycans, and other proteins that produce a favorable environment for muscle regeneration, protect the sarcolemma from contraction-induced damage, and provide a pathway for the lateral transmission of contractile force. In each of these functions, the structure and organization of the muscle ECM play an important role. Many aspects of collagen architecture, including collagen alignment, cross linking, and packing density affect the regenerative capacity, passive mechanical properties, and contractile force transmission pathways of skeletal muscle. The balance between fortifying the muscle ECM and maintaining ECM turnover and compliance is highly dependent on the integrated organization, or architecture, of the muscle matrix, especially related to collagen. While muscle ECM remodeling patterns in response to exercise and disease are similar, in that collagen synthesis can increase in both cases, one outcome leads to a stronger muscle and the other leads to fibrosis. In this review, we provide a comprehensive analysis of the architectural features of each layer of muscle ECM: epimysium, perimysium, and endomysium. Further, we detail the importance of muscle ECM architecture to biomechanical function in the context of exercise or fibrosis, including disease, injury, and aging. We describe how collagen architecture is linked to active and passive muscle biomechanics and which architectural features are acutely dynamic and adapt over time. Future studies should investigate the significance of collagen architecture in muscle stiffness, ECM turnover, and lateral force transmission in the context of health and fibrosis.
Collapse
Affiliation(s)
- Ross P Wohlgemuth
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, California, United States
| | - Sarah E Brashear
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, California, United States
| | - Lucas R Smith
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, California, United States
- Department of Physical Medicine and Rehabilitation, University of California, Davis, California, United States
| |
Collapse
|
2
|
Finni T, de Brito Fontana H, Maas H. Force transmission and interactions between synergistic muscles. J Biomech 2023; 152:111575. [PMID: 37120913 DOI: 10.1016/j.jbiomech.2023.111575] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 03/31/2023] [Indexed: 05/02/2023]
Abstract
The classical view of muscles as independent motors has been challenged over the past decades. An alternative view has emerged in which muscles are not isolated but embedded in a three-dimensional connective tissue network that links them to adjacent muscles and other non-muscular structures in the body. Animal studies showing that the forces measured at the distal and proximal ends of a muscle are not equal have provided undisputable evidence that these connective tissue linkages are strong enough to serve as an extra pathway for muscular force transmission. In this historical review, we first introduce the terminology and anatomy related to these pathways of muscle force transmission and provide a definition for the term epimuscular force transmission. We then focus on important experimental evidence indicating mechanical interactions between synergistic muscles that may affect force transmission and/or influence the muscles' force generating capacity. We illustrate that there may exist different expressions of the highly relevant force-length properties depending on whether the force is measured at the proximal or distal tendon and depending on the dynamics of surrounding structures. Changes in length, activation level or disruption of the connective tissue of neighboring muscles, can affect how muscles interact and produce force on the skeleton. While most direct evidence is from animal experiments, studies on humans also suggest functional implications of the connective tissues surrounding muscles. These implications may explain how distant segments, which are not part of the same joint system, affect force generation at a given joint, and, in clinical conditions, explain observations from tendon transfer surgeries, where a muscle transferred to act as an antagonist continues to produce agonistic moments.
Collapse
Affiliation(s)
- Taija Finni
- Faculty of Sport and Health Sciences, Neuromuscular Research Center, University of Jyväskylä, Finland
| | - Heiliane de Brito Fontana
- Department of Morphological Sciences, School of Biological Sciences, Federal University of Santa Catarina, Brazil
| | - Huub Maas
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Movement Sciences, Vrije Universiteit Amsterdam, The Netherlands.
| |
Collapse
|
3
|
Tamartash H, Bahrpeyma F, Dizaji MM. Effect of Remote Myofascial Release on Lumbar Elasticity and Pain in Patients With Chronic Nonspecific Low Back Pain: A Randomized Clinical Trial. J Chiropr Med 2023; 22:52-59. [PMID: 36844993 PMCID: PMC9947999 DOI: 10.1016/j.jcm.2022.04.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 10/17/2022] Open
Abstract
Objective The purpose of this study was to evaluate the effects of myofascial release technique of a remote area on lumbar elasticity and low back pain (LBP) in patients with chronic nonspecific LBP. Methods For this clinical trial, 32 participants with nonspecific LBP were assigned to a myofascial release group (n = 16) or a remote release group (n = 16). Participants in the myofascial release group received 4 sessions of myofascial release to the lumbar region. The remote release group received 4 myofascial release sessions to the crural and hamstring fascia of the lower limbs. Low back pain severity and elastic modulus of the lumbar myofascial tissue were assessed before and after treatment by the Numeric Pain Scale and ultrasonography examinations. Results The mean pain and elastic coefficient in each group before and after myofascial release interventions were significantly different (P ≤ .0005). The results showed that the changes in mean pain and elastic coefficient of the 2 groups after myofascial release interventions were not significantly different from each other (F1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22 = 1.48, P = .230, 95% confidence interval) (effect size = 0.22). Conclusion The improvements in the outcome measures for both groups suggest that remote myofascial release was effective in patients with chronic nonspecific LBP. The remote myofascial release of the lower limbs reduced the elastic modulus of the lumbar fascia and LBP.
Collapse
Affiliation(s)
- Hassan Tamartash
- Department of Physiotherapy, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Farid Bahrpeyma
- Department of Physiotherapy, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | | |
Collapse
|
4
|
Centofanti A, Vermiglio G, Cutroneo G, Favaloro A, Picciolo G, Festa F, Anastasi GP. Dystrophin-Glycoprotein Complex Behavior in Sternocleidomastoid Muscle of High- and Low-Ranking Baboons: A Possible Phylogenetic Arrangement. J Funct Morphol Kinesiol 2022; 7:jfmk7030062. [PMID: 36135420 PMCID: PMC9502455 DOI: 10.3390/jfmk7030062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/20/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
The dystrophin-glycoprotein complex is a multimeric system made up of the sarcoglycan sub-complex, the sarcomplasmatic complex and the dystroglycans complex. The sarcoglycan sub-complex stabilizes the sarcolemma during muscle activity and plays a role in force transduction. This protein system is also expressed in the muscle of non-human primates such as chimpanzees and baboons, and its expression changes depending on social ranking. In fact, previous data have shown that all muscle fibers of masseter and sternocleidomastoid muscles of chimpanzees and high- ranking baboons always express sarcoglycans, while middle- and low-ranking baboons are characterized by fibers that are negative for the sarcoglycan sub-complex. Given this information, the aim of the present work was to evaluate the expression of other proteins such as laminin, beta dystroglycan and dystrophin in the sternocleidomastoid muscle of high- and low-ranking baboons. The samples were processed by immunohistochemistry; results show that in high-ranking baboons, all tested proteins were always expressed while in low-ranking baboons, fibers that were negative for sarcoglycans and beta dystroglycan have been observed. No negative fibers for laminin and dystrophin have been found in low-ranking baboons suggesting that only the transmembrane proteins of the dystrophin glycoprotein complex change in their expression and that could be correlated to a phylogenetic arrangement.
Collapse
Affiliation(s)
- Antonio Centofanti
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98124 Messina, Italy
| | - Giovanna Vermiglio
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98124 Messina, Italy
- Correspondence:
| | - Giuseppina Cutroneo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98124 Messina, Italy
| | - Angelo Favaloro
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98124 Messina, Italy
| | - Giacomo Picciolo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98124 Messina, Italy
| | - Felice Festa
- Department of Innovative Technologies in Medicine and Dentistry, University “G. D’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Giuseppe Pio Anastasi
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98124 Messina, Italy
| |
Collapse
|
5
|
Minato K, Yoshimoto Y, Kurosawa T, Watanabe K, Kawashima H, Ikemoto-Uezumi M, Uezumi A. Measurement of Lateral Transmission of Force in the Extensor Digitorum Longus Muscle of Young and Old Mice. Int J Mol Sci 2021; 22:ijms222212356. [PMID: 34830237 PMCID: PMC8623005 DOI: 10.3390/ijms222212356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/14/2021] [Accepted: 11/15/2021] [Indexed: 11/22/2022] Open
Abstract
The main function of skeletal muscles is to generate force. The force developed by myofiber contraction is transmitted to the tendon. There are two pathways of force transmission from myofibers to tendons: longitudinal transmission that depends on tension elicited via the myotendinous junction and lateral transmission that depends on shear elicited via the interface between the myofiber surface and surrounding connective tissue. Experiments using animal muscle and mathematical models indicated that lateral transmission is the dominant pathway in muscle force transmission. Studies using rat muscle showed that the efficiency of lateral force transmission declines with age. Here, the lateral transmission of force was measured using the extensor digitorum longus muscle from young and old mice. Dependence on longitudinal transmission increased in the old muscle, and there was a trend for lower efficiency of lateral force transmission in the old muscle compared to the young muscle. There was a noticeable increase in the connective tissue volume in the old muscle; however, there was no significant change in the expression of dystrophin, a critical molecule for the link between the myofiber cytoskeleton and extracellular matrix. This study demonstrates the measurement of lateral force transmission in mouse muscles and that alteration in force transmission property may underlie age-related muscle weakness.
Collapse
Affiliation(s)
- Keitaro Minato
- Muscle Aging and Regenerative Medicine, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi, Tokyo 173-0015, Japan; (K.M.); (Y.Y.); (T.K.); (M.I.-U.)
- Department of Regenerative and Transplant Medicine, Division of Orthopedic Surgery, Graduate School of Medical and Dental Sciences, Niigata University, 1-757 Asahimachi-Dori, Tyuo-Ku, Niigata 951-8510, Japan; (K.W.); (H.K.)
| | - Yuki Yoshimoto
- Muscle Aging and Regenerative Medicine, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi, Tokyo 173-0015, Japan; (K.M.); (Y.Y.); (T.K.); (M.I.-U.)
| | - Tamaki Kurosawa
- Muscle Aging and Regenerative Medicine, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi, Tokyo 173-0015, Japan; (K.M.); (Y.Y.); (T.K.); (M.I.-U.)
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medical Sciences, Graduate School of Agriculture and Life Sciences, Tokyo University, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Kei Watanabe
- Department of Regenerative and Transplant Medicine, Division of Orthopedic Surgery, Graduate School of Medical and Dental Sciences, Niigata University, 1-757 Asahimachi-Dori, Tyuo-Ku, Niigata 951-8510, Japan; (K.W.); (H.K.)
| | - Hiroyuki Kawashima
- Department of Regenerative and Transplant Medicine, Division of Orthopedic Surgery, Graduate School of Medical and Dental Sciences, Niigata University, 1-757 Asahimachi-Dori, Tyuo-Ku, Niigata 951-8510, Japan; (K.W.); (H.K.)
| | - Madoka Ikemoto-Uezumi
- Muscle Aging and Regenerative Medicine, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi, Tokyo 173-0015, Japan; (K.M.); (Y.Y.); (T.K.); (M.I.-U.)
| | - Akiyoshi Uezumi
- Muscle Aging and Regenerative Medicine, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi, Tokyo 173-0015, Japan; (K.M.); (Y.Y.); (T.K.); (M.I.-U.)
- Correspondence:
| |
Collapse
|
6
|
Garcia-Pelagio KP, Bloch RJ. Biomechanical Properties of the Sarcolemma and Costameres of Skeletal Muscle Lacking Desmin. Front Physiol 2021; 12:706806. [PMID: 34489727 PMCID: PMC8416993 DOI: 10.3389/fphys.2021.706806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 07/13/2021] [Indexed: 01/23/2023] Open
Abstract
Intermediate filaments (IFs), composed primarily by desmin and keratins, link the myofibrils to each other, to intracellular organelles, and to the sarcolemma. There they may play an important role in transfer of contractile force from the Z-disks and M-lines of neighboring myofibrils to costameres at the membrane, across the membrane to the extracellular matrix, and ultimately to the tendon (“lateral force transmission”). We measured the elasticity of the sarcolemma and the connections it makes at costameres with the underlying contractile apparatus of individual fast twitch muscle fibers of desmin-null mice. By positioning a suction pipet to the surface of the sarcolemma and applying increasing pressure, we determined the pressure at which the sarcolemma separated from nearby sarcomeres, Pseparation, and the pressure at which the isolated sarcolemma burst, Pbursting. We also examined the time required for the intact sarcolemma-costamere-sarcomere complex to reach equilibrium at lower pressures. All measurements showed the desmin-null fibers to have slower equilibrium times and lower Pseparation and Pbursting than controls, suggesting that the sarcolemma and its costameric links to nearby contractile structures were weaker in the absence of desmin. Comparisons to earlier values determined for muscles lacking dystrophin or synemin suggest that the desmin-null phenotype is more stable than the former and less stable than the latter. Our results are consistent with the moderate myopathy seen in desmin-null muscles and support the idea that desmin contributes significantly to sarcolemmal stability and lateral force transmission.
Collapse
Affiliation(s)
- Karla P Garcia-Pelagio
- Departamento de Fisica, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Robert J Bloch
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
7
|
Monti E, Waldvogel J, Ritzmann R, Freyler K, Albracht K, Helm M, De Cesare N, Pavan P, Reggiani C, Gollhofer A, Narici MV. Muscle in Variable Gravity: "I Do Not Know Where I Am, But I Know What to Do". Front Physiol 2021; 12:714655. [PMID: 34421657 PMCID: PMC8371909 DOI: 10.3389/fphys.2021.714655] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 07/13/2021] [Indexed: 11/24/2022] Open
Abstract
Purpose: Fascicle and sarcomere lengths are important predictors of muscle mechanical performance. However, their regulation during stretch-shortening cycle (SSC) activities in usual and challenging conditions is poorly understood. In this study, we aimed to investigate muscle fascicle and sarcomere behavior during drop jumps (a common SSC activity) in conditions of variable gravity. Methods: Fifteen volunteers performed repeated drop jumps in 1 g, hypo-gravity (0 to 1 g), and hyper-gravity (1 to 2 g) during a parabolic flight. Gastrocnemius medialis (GM) electromyographic activity and fascicle length (Lf) were measured at drop-off, ground contact (GC), minimum ankle joint angle (MAJ), and push-off. GM sarcomere number was estimated by dividing Lf, measured by ultrasound at rest, by published data on GM sarcomere length, and measured in vivo at the same joint angle. Changes in sarcomere length were estimated by dividing GM Lf in each jump phase by sarcomere number calculated individually. The sarcomere force-generating capacity in each jump phase was estimated from the sarcomere length-tension relationship previously reported in the literature. Results: The results showed that, regardless of the gravity level, GM sarcomeres operated in the ascending portion of their length-tension relationship in all the jump phases. Interestingly, although in hypo-gravity and hyper-gravity during the braking phase (GC-MAJ) GM fascicles and sarcomeres experienced a stretch (as opposed to the quasi-isometric behavior in 1 g), at MAJ they reached similar lengths as in 1 g, allowing sarcomeres to develop about the 70% of their maximum force. Conclusion: The observed fascicle behavior during drop jumping seems useful for anchoring the tendon, enabling storage of elastic energy and its release in the subsequent push-off phase for effectively re-bouncing in all gravity levels, suggesting that an innate neuromuscular wisdom enables to perform SSC movements also in challenging conditions.
Collapse
Affiliation(s)
- Elena Monti
- Department of Biomedical Science, University of Padova, Padova, Italy
| | - Janice Waldvogel
- Department of Sport and Sport Science, University of Freiburg, Freiburg, Germany
| | - Ramona Ritzmann
- Department of Sport and Sport Science, University of Freiburg, Freiburg, Germany.,Department of Biomechanics, Rennbahnklinik, Muttenz, Switzerland
| | - Kathrin Freyler
- Department of Sport and Sport Science, University of Freiburg, Freiburg, Germany
| | - Kirsten Albracht
- Institute of Movement and Neurosciences, German Sport University Cologne, Cologne, Germany.,Department of Medical Engineering and Technomathematics, Aachen University of Applied Sciences, Aachen, Germany
| | - Michael Helm
- Department of Sport and Sport Science, University of Freiburg, Freiburg, Germany
| | - Niccolò De Cesare
- Department of Industrial Engineering, University of Padova, Padova, Italy
| | - Piero Pavan
- Department of Industrial Engineering, University of Padova, Padova, Italy
| | - Carlo Reggiani
- Department of Biomedical Science, University of Padova, Padova, Italy
| | - Albert Gollhofer
- Department of Sport and Sport Science, University of Freiburg, Freiburg, Germany
| | | |
Collapse
|
8
|
Klotz T, Bleiler C, Röhrle O. A Physiology-Guided Classification of Active-Stress and Active-Strain Approaches for Continuum-Mechanical Modeling of Skeletal Muscle Tissue. Front Physiol 2021; 12:685531. [PMID: 34408657 PMCID: PMC8365610 DOI: 10.3389/fphys.2021.685531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/30/2021] [Indexed: 11/13/2022] Open
Abstract
The well-established sliding filament and cross-bridge theory explain the major biophysical mechanism responsible for a skeletal muscle's active behavior on a cellular level. However, the biomechanical function of skeletal muscles on the tissue scale, which is caused by the complex interplay of muscle fibers and extracellular connective tissue, is much less understood. Mathematical models provide one possibility to investigate physiological hypotheses. Continuum-mechanical models have hereby proven themselves to be very suitable to study the biomechanical behavior of whole muscles or entire limbs. Existing continuum-mechanical skeletal muscle models use either an active-stress or an active-strain approach to phenomenologically describe the mechanical behavior of active contractions. While any macroscopic constitutive model can be judged by it's ability to accurately replicate experimental data, the evaluation of muscle-specific material descriptions is difficult as suitable data is, unfortunately, currently not available. Thus, the discussions become more philosophical rather than following rigid methodological criteria. Within this work, we provide a extensive discussion on the underlying modeling assumptions of both the active-stress and the active-strain approach in the context of existing hypotheses of skeletal muscle physiology. We conclude that the active-stress approach resolves an idealized tissue transmitting active stresses through an independent pathway. In contrast, the active-strain approach reflects an idealized tissue employing an indirect, coupled pathway for active stress transmission. Finally the physiological hypothesis that skeletal muscles exhibit redundant pathways of intramuscular stress transmission represents the basis for considering a mixed-active-stress-active-strain constitutive framework.
Collapse
Affiliation(s)
- Thomas Klotz
- Chair for Continuum Biomechanics and Mechanobiology, Institute for Modelling and Simulation of Biomechanical Systems, University of Stuttgart, Stuttgart, Germany
- Stuttgart Center for Simulation Sciences (SC SimTech), University of Stuttgart, Stuttgart, Germany
| | - Christian Bleiler
- Chair for Continuum Biomechanics and Mechanobiology, Institute for Modelling and Simulation of Biomechanical Systems, University of Stuttgart, Stuttgart, Germany
- Stuttgart Center for Simulation Sciences (SC SimTech), University of Stuttgart, Stuttgart, Germany
| | - Oliver Röhrle
- Chair for Continuum Biomechanics and Mechanobiology, Institute for Modelling and Simulation of Biomechanical Systems, University of Stuttgart, Stuttgart, Germany
- Stuttgart Center for Simulation Sciences (SC SimTech), University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
9
|
Hoh JFY. Myosin heavy chains in extraocular muscle fibres: Distribution, regulation and function. Acta Physiol (Oxf) 2021; 231:e13535. [PMID: 32640094 DOI: 10.1111/apha.13535] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 07/02/2020] [Indexed: 12/13/2022]
Abstract
This review examines kinetic properties and distribution of the 11 isoforms of myosin heavy chain (MyHC) expressed in extraocular muscle (EOM) fibre types and the regulation and function of these MyHCs. Although recruitment and discharge characteristics of ocular motoneurons during fixation and eye movements are well documented, work directly linking these properties with motor unit contractile speed and MyHC composition is lacking. Recruitment of motor units according to Henneman's size principle has some support in EOMs but needs consolidation. Both neurogenic and myogenic mechanisms regulate MyHC expression as in other muscle allotypes. Developmentally, multiply-innervated (MIFs) and singly-innervated fibres (SIFs) are derived presumably from distinct myoblast lineages, ending up expressing MyHCs in the slow and fast ends of the kinetic spectrum respectively. They modulate the synaptic inputs of their motoneurons through different retrogradely transported neurotrophins, thereby specifying their tonic and phasic impulse patterns. Immunohistochemical analyses of EOMs regenerating in situ and in limb muscle beds suggest that the very impulse patterns driving various ocular movements equip effectors with appropriate MyHC compositions and speeds to accomplish their tasks. These experiments also suggest that satellite cells of SIFs and MIFs are distinct lineages expressing different MyHCs during regeneration. MyHC compositions and functional characteristics of orbital fibres show longitudinal variations that facilitate linear ocular rotation during saccades. Palisade endings on global MIFs are postulated to respond to active and passive tensions by triggering axon reflexes that play important roles during fixation, saccades and vergence. How EOMs implement Listings law during ocular rotation is discussed.
Collapse
Affiliation(s)
- Joseph F. Y. Hoh
- Discipline of Physiology and the Bosch Institute School of Medical Sciences Faculty of Medicine and Health The University of Sydney Sydney NSW Australia
| |
Collapse
|
10
|
Willingham TB, Kim Y, Lindberg E, Bleck CKE, Glancy B. The unified myofibrillar matrix for force generation in muscle. Nat Commun 2020; 11:3722. [PMID: 32709902 PMCID: PMC7381600 DOI: 10.1038/s41467-020-17579-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 07/07/2020] [Indexed: 12/15/2022] Open
Abstract
Human movement occurs through contraction of the basic unit of the muscle cell, the sarcomere. Sarcomeres have long been considered to be arranged end-to-end in series along the length of the muscle into tube-like myofibrils with many individual, parallel myofibrils comprising the bulk of the muscle cell volume. Here, we demonstrate that striated muscle cells form a continuous myofibrillar matrix linked together by frequently branching sarcomeres. We find that all muscle cells contain highly connected myofibrillar networks though the frequency of sarcomere branching goes down from early to late postnatal development and is higher in slow-twitch than fast-twitch mature muscles. Moreover, we show that the myofibrillar matrix is united across the entire width of the muscle cell both at birth and in mature muscle. We propose that striated muscle force is generated by a singular, mesh-like myofibrillar network rather than many individual, parallel myofibrils. Skeletal muscle cells have long been considered to be made primarily of many individual, parallel myofibrils. Here, the authors show that the striated muscle contractile machinery forms a highly branched, mesh-like myofibrillar matrix connected across the entire length and width of the muscle cell.
Collapse
Affiliation(s)
- T Bradley Willingham
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Yuho Kim
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Eric Lindberg
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Christopher K E Bleck
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Brian Glancy
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA. .,National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
11
|
Ferry A, Messéant J, Parlakian A, Lemaitre M, Roy P, Delacroix C, Lilienbaum A, Hovhannisyan Y, Furling D, Klein A, Li Z, Agbulut O. Desmin prevents muscle wasting, exaggerated weakness and fragility, and fatigue in dystrophic mdx mouse. J Physiol 2020; 598:3667-3689. [PMID: 32515007 DOI: 10.1113/jp279282] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 06/05/2020] [Indexed: 01/21/2023] Open
Abstract
KEY POINTS Desmin, similar to dystrophin, is associated with costameric structures bridging sarcomeres to the extracellular matrix. Deletion of the desmin gene in mdx mice [double knockout (DKO) mice] induces marked muscle weakness and fatigue resistance compared to mdx mice. Muscle fragility (higher susceptibility to contraction-induced injury) was also aggravated in DKO mice compared to mdx mice. By contrast to mdx mice, the DKO mice did not undergo muscle hypertrophy. Desmin cDNA transfer with adeno-associated virus in newborn mdx mice reduced muscle weakness. Overall, desmin plays important and beneficial roles in muscle wasting, performance and fragility in dystrophic muscle. ABSTRACT Duchenne muscular dystrophy (DMD) is a severe neuromuscular disease caused by dystrophin deficiency. Desmin, similar to dystrophin, is associated with costameric structures bridging sarcomeres to the extracellular matrix that contributes to muscle function. In the present study, we attempted to provide further insight into the roles of desmin, for which the expression is increased in the muscle from the mouse mdx DMD model. We show that a deletion of the desmin gene (Des) in mdx mice [double knockout (DKO) mice, mdx:desmin-/-] induces a marked muscle weakness; namely, a reduced absolute maximal force production and increased fatigue compared to that in mdx mice. Fragility (i.e. higher susceptibility to contraction-induced injury) was also aggravated in DKO mice compared to mdx mice, despite the promotion of supposedly less fragile muscle fibres in DKO mice, and this worsening of fragility was related to a decreased muscle excitability. Moreover, in contrast to mdx mice, the DKO mice did not undergo muscle hypertrophy, as indicated by smaller and fewer fibres, with a reduced percentage of centronucleated fibres, potentially explaining the severe muscle weakness. Notably, Desmin cDNA transfer with adeno-associated virus in newborn mdx mice improved specific maximal force normalized to muscle weight. Overall, desmin plays important and beneficial roles in muscle wasting, performance and fragility in dystrophic mdx mice, which differ, at least in part, from those observed in healthy muscle.
Collapse
Affiliation(s)
- Arnaud Ferry
- Sorbonne Université, Centre de recherche en myologie, INSERM U974, Institut de Myologie, Paris, France.,Université de Paris, Institut des Sciences du Sport Santé de Paris, UFRSTAPS, Paris, France
| | - Julien Messéant
- Sorbonne Université, Centre de recherche en myologie, INSERM U974, Institut de Myologie, Paris, France
| | - Ara Parlakian
- Sorbonne Université, Institut de Biologie Paris-Seine (IBPS), UMR CNRS 8256, INSERM ERL U1164, Biological Adaptation and Ageing, Paris, France
| | - Mégane Lemaitre
- Sorbonne Université, Centre de recherche en myologie, INSERM U974, Institut de Myologie, Paris, France
| | - Pauline Roy
- Sorbonne Université, Centre de recherche en myologie, INSERM U974, Institut de Myologie, Paris, France
| | - Clément Delacroix
- Sorbonne Université, Centre de recherche en myologie, INSERM U974, Institut de Myologie, Paris, France
| | - Alain Lilienbaum
- Université de Paris, Unité de Biologie Fonctionnelle et Adaptative, CNRS UMR 8251, Paris, France
| | - Yeranuhi Hovhannisyan
- Sorbonne Université, Institut de Biologie Paris-Seine (IBPS), UMR CNRS 8256, INSERM ERL U1164, Biological Adaptation and Ageing, Paris, France
| | - Denis Furling
- Sorbonne Université, Centre de recherche en myologie, INSERM U974, Institut de Myologie, Paris, France
| | - Arnaud Klein
- Sorbonne Université, Centre de recherche en myologie, INSERM U974, Institut de Myologie, Paris, France
| | - Zhenlin Li
- Sorbonne Université, Institut de Biologie Paris-Seine (IBPS), UMR CNRS 8256, INSERM ERL U1164, Biological Adaptation and Ageing, Paris, France
| | - Onnik Agbulut
- Sorbonne Université, Institut de Biologie Paris-Seine (IBPS), UMR CNRS 8256, INSERM ERL U1164, Biological Adaptation and Ageing, Paris, France
| |
Collapse
|
12
|
Csapo R, Gumpenberger M, Wessner B. Skeletal Muscle Extracellular Matrix - What Do We Know About Its Composition, Regulation, and Physiological Roles? A Narrative Review. Front Physiol 2020; 11:253. [PMID: 32265741 PMCID: PMC7096581 DOI: 10.3389/fphys.2020.00253] [Citation(s) in RCA: 230] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 03/05/2020] [Indexed: 12/20/2022] Open
Abstract
Skeletal muscle represents the largest body-composition component in humans. In addition to its primary function in the maintenance of upright posture and the production of movement, it also plays important roles in many other physiological processes, including thermogenesis, metabolism and the secretion of peptides for communication with other tissues. Research attempting to unveil these processes has traditionally focused on muscle fibers, i.e., the contractile muscle cells. However, it is a frequently overlooked fact that muscle fibers reside in a three-dimensional scaffolding that consists of various collagens, glycoproteins, proteoglycans, and elastin, and is commonly referred to as extracellular matrix (ECM). While initially believed to be relatively inert, current research reveals the involvement of ECM cells in numerous important physiological processes. In interaction with other cells, such as fibroblasts or cells of the immune system, the ECM regulates muscle development, growth and repair and is essential for effective muscle contraction and force transmission. Since muscle ECM is highly malleable, its texture and, consequently, physiological roles may be affected by physical training and disuse, aging or various diseases, such as diabetes. With the aim to stimulate increased efforts to study this still poorly understood tissue, this narrative review summarizes the current body of knowledge on (i) the composition and structure of the ECM, (ii) molecular pathways involved in ECM remodeling, (iii) the physiological roles of muscle ECM, (iv) dysregulations of ECM with aging and disease as well as (v) the adaptations of muscle ECM to training and disuse.
Collapse
Affiliation(s)
- Robert Csapo
- Research Unit for Orthopaedic Sports Medicine and Injury Prevention, Institute for Sports Medicine, Alpine Medicine & Health Tourism, UMIT - Private University for Health Sciences, Medical Informatics and Technology, Hall, Austria
| | - Matthias Gumpenberger
- Research Unit for Orthopaedic Sports Medicine and Injury Prevention, Institute for Sports Medicine, Alpine Medicine & Health Tourism, UMIT - Private University for Health Sciences, Medical Informatics and Technology, Hall, Austria
| | - Barbara Wessner
- Department of Sports Medicine, Exercise Physiology and Prevention, Centre for Sport Science and University Sports, University of Vienna, Vienna, Austria
| |
Collapse
|
13
|
Röhrle O, Yavuz UŞ, Klotz T, Negro F, Heidlauf T. Multiscale modeling of the neuromuscular system: Coupling neurophysiology and skeletal muscle mechanics. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2019; 11:e1457. [PMID: 31237041 DOI: 10.1002/wsbm.1457] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 05/13/2019] [Accepted: 05/14/2019] [Indexed: 01/10/2023]
Abstract
Mathematical models and computer simulations have the great potential to substantially increase our understanding of the biophysical behavior of the neuromuscular system. This, however, requires detailed multiscale, and multiphysics models. Once validated, such models allow systematic in silico investigations that are not necessarily feasible within experiments and, therefore, have the ability to provide valuable insights into the complex interrelations within the healthy system and for pathological conditions. Most of the existing models focus on individual parts of the neuromuscular system and do not consider the neuromuscular system as an integrated physiological system. Hence, the aim of this advanced review is to facilitate the prospective development of detailed biophysical models of the entire neuromuscular system. For this purpose, this review is subdivided into three parts. The first part introduces the key anatomical and physiological aspects of the healthy neuromuscular system necessary for modeling the neuromuscular system. The second part provides an overview on state-of-the-art modeling approaches representing all major components of the neuromuscular system on different time and length scales. Within the last part, a specific multiscale neuromuscular system model is introduced. The integrated system model combines existing models of the motor neuron pool, of the sensory system and of a multiscale model describing the mechanical behavior of skeletal muscles. Since many sub-models are based on strictly biophysical modeling approaches, it closely represents the underlying physiological system and thus could be employed as starting point for further improvements and future developments. This article is categorized under: Physiology > Mammalian Physiology in Health and Disease Analytical and Computational Methods > Computational Methods Models of Systems Properties and Processes > Organ, Tissue, and Physiological Models.
Collapse
Affiliation(s)
- Oliver Röhrle
- Institute for Modelling and Simulation of Biomechanical Systems, University of Stuttgart, Stuttgart, Germany.,Stuttgart Center for Simulation Sciences (SC SimTech), University of Stuttgart, Stuttgart, Germany
| | - Utku Ş Yavuz
- Institute for Modelling and Simulation of Biomechanical Systems, University of Stuttgart, Stuttgart, Germany.,Biomedical Signals and Systems, Universiteit Twente, Enschede, The Netherlands
| | - Thomas Klotz
- Institute for Modelling and Simulation of Biomechanical Systems, University of Stuttgart, Stuttgart, Germany.,Stuttgart Center for Simulation Sciences (SC SimTech), University of Stuttgart, Stuttgart, Germany
| | - Francesco Negro
- Department of Clinical and Experimental Sciences, Universià degli Studi di Brescia, Brescia, Italy
| | - Thomas Heidlauf
- EPS5 - Simulation and System Analysis, Hofer pdc GmbH, Stuttgart, Germany
| |
Collapse
|
14
|
Hessel AL, Joumaa V, Eck S, Herzog W, Nishikawa KC. Optimal length, calcium sensitivity and twitch characteristics of skeletal muscles from mdm mice with a deletion in N2A titin. ACTA ACUST UNITED AC 2019; 222:jeb.200840. [PMID: 31097600 DOI: 10.1242/jeb.200840] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 05/13/2019] [Indexed: 12/11/2022]
Abstract
During isometric contractions, the optimal length of skeletal muscles increases with decreasing activation. The underlying mechanism for this phenomenon is thought to be linked to length dependence of Ca2+ sensitivity. Muscular dystrophy with myositis (mdm), a recessive titin mutation in mice, was used as a tool to study the role of titin in activation dependence of optimal length and length dependence of Ca2+ sensitivity. We measured the shift in optimal length between tetanic and twitch stimulation in mdm and wild-type muscles, and the length dependence of Ca2+ sensitivity at short and long sarcomere lengths in mdm and wild-type fiber bundles. The results indicate that the mdm mutation leads to a loss of activation dependence of optimal length without the expected change in length dependence of Ca2+ sensitivity, demonstrating that these properties are not linked, as previously suggested. Furthermore, mdm muscles produced maximum tetanic stress during sub-optimal filament overlap at lengths similar to twitch contractions in both genotypes, but the difference explains less than half of the observed reduction in active force of mdm muscles. Mdm muscles also exhibited increased electromechanical delay, contraction and relaxation times, and decreased rate of force development in twitch contractions. We conclude that the small deletion in titin associated with mdm in skeletal muscles alters force production, suggesting an important regulatory role for titin in active force production. The molecular mechanisms for titin's role in regulating muscle force production remain to be elucidated.
Collapse
Affiliation(s)
- Anthony L Hessel
- Center for Bioengineering Innovation and Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Venus Joumaa
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada, T2N 1N4
| | - Sydney Eck
- Center for Bioengineering Innovation and Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Walter Herzog
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada, T2N 1N4
| | - Kiisa C Nishikawa
- Center for Bioengineering Innovation and Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA
| |
Collapse
|
15
|
A micromechanical muscle model for determining the impact of motor unit fiber clustering on force transmission in aging skeletal muscle. Biomech Model Mechanobiol 2019; 18:1401-1413. [PMID: 31049781 PMCID: PMC6748884 DOI: 10.1007/s10237-019-01152-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 04/19/2019] [Indexed: 12/04/2022]
Abstract
This study used a micromechanical finite element muscle model to investigate the effects of the redistribution of spatial activation patterns in young and old muscle. The geometry consisted of a bundle of 19 active muscle fibers encased in endomysium sheets, surrounded by passive tissue to model a fascicle. Force was induced by activating combinations of the 19 active muscle fibers. The spacial clustering of muscle fibers modeled in this study showed unbalanced strains suggesting tissue damage at higher strain levels may occur during higher levels of activation and/or during dynamic conditions. These patterns of motor unit remodeling are one of the consequences of motor unit loss and reinnervation associated with aging. The results did not reveal evident quantitative changes in force transmission between old and young adults, but the patterns of stress and strain distribution were affected, suggesting an uneven distribution of the forces may occur within the fascicle that could provide a mechanism for muscle injury in older muscle.
Collapse
|
16
|
Abramowitz MK, Paredes W, Zhang K, Brightwell CR, Newsom JN, Kwon HJ, Custodio M, Buttar RS, Farooq H, Zaidi B, Pai R, Pessin JE, Hawkins M, Fry CS. Skeletal muscle fibrosis is associated with decreased muscle inflammation and weakness in patients with chronic kidney disease. Am J Physiol Renal Physiol 2018; 315:F1658-F1669. [PMID: 30280599 DOI: 10.1152/ajprenal.00314.2018] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Muscle dysfunction is an important cause of morbidity among patients with chronic kidney disease (CKD). Although muscle fibrosis is present in a CKD rodent model, its existence in humans and its impact on physical function are currently unknown. We examined isometric leg extension strength and measures of skeletal muscle fibrosis and inflammation in vastus lateralis muscle from CKD patients ( n = 10) and healthy, sedentary controls ( n = 10). Histochemistry and immunohistochemistry were used to assess muscle collagen and macrophage and fibro/adipogenic progenitor (FAP) cell populations, and RT-qPCR was used to assess muscle-specific inflammatory marker expression. Muscle collagen content was significantly greater in CKD compared with control (18.8 ± 2.1 vs. 11.7 ± 0.7% collagen area, P = 0.008), as was staining for collagen I, pro-collagen I, and a novel collagen-hybridizing peptide that binds remodeling collagen. Muscle collagen was inversely associated with leg extension strength in CKD ( r = -0.74, P = 0.01). FAP abundance was increased in CKD, was highly correlated with muscle collagen ( r = 0.84, P < 0.001), and was inversely associated with TNF-α expression ( r = -0.65, P = 0.003). TNF-α, CD68, CCL2, and CCL5 mRNA were significantly lower in CKD than control, despite higher serum TNF-α and IL-6. Immunohistochemistry confirmed fewer CD68+ and CD11b+ macrophages in CKD muscle. In conclusion, skeletal muscle collagen content is increased in humans with CKD and is associated with functional parameters. Muscle fibrosis correlated with increased FAP abundance, which may be due to insufficient macrophage-mediated TNF-α secretion. These data provide a foundation for future research elucidating the mechanisms responsible for this newly identified human muscle pathology.
Collapse
Affiliation(s)
| | - William Paredes
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York
| | - Kehao Zhang
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York
| | - Camille R Brightwell
- Department of Nutrition and Metabolism, University of Texas Medical Branch , Galveston, Texas
| | - Julia N Newsom
- Department of Nutrition and Metabolism, University of Texas Medical Branch , Galveston, Texas
| | - Hyok-Joon Kwon
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers-The State University of New Jersey , New Brunswick, New Jersey
| | - Matthew Custodio
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York
| | - Rupinder S Buttar
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York
| | - Hina Farooq
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York
| | - Bushra Zaidi
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York
| | - Rima Pai
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York
| | - Jeffrey E Pessin
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York.,Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York
| | - Meredith Hawkins
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York
| | - Christopher S Fry
- Department of Nutrition and Metabolism, University of Texas Medical Branch , Galveston, Texas
| |
Collapse
|
17
|
Profeta VL, Turvey MT. Bernstein’s levels of movement construction: A contemporary perspective. Hum Mov Sci 2018; 57:111-133. [DOI: 10.1016/j.humov.2017.11.013] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 11/24/2017] [Accepted: 11/27/2017] [Indexed: 01/13/2023]
|
18
|
LI JING, ZHANG WEI, ZHANG YANLONG, BAI JING, WANG ZHANXI, QIN XIANSHENG, AI QIANG, WANG HONGBO. LINEAR ELECTROMAGNETIC ARRAY ARTIFICIAL MUSCLE DESIGN AND SIMULATION FOR A QUADRUPED ROBOT. J MECH MED BIOL 2017. [DOI: 10.1142/s0219519417400206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A linear electromagnetic array-type artificial muscle structure and its biological neural control model are proposed to improve the multiped robot driving performance. From the standpoint of engineering bionics, based on the microstructure of skeletal muscle, the simplified array mode of skeletal muscle and the linear electromagnetic array artificial muscle are proposed. And in order to calculate the output force displacement performance of the artificial muscle actuator, an artificial muscle nerve stimulation conduction control mode is designed by simulating the biological neural control model. Taking a quadruped robot as the application object, the dynamic characteristics of the artificial muscle are simulated and successfully verified.
Collapse
Affiliation(s)
- JING LI
- School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an 710072, P. R. China
| | - WEI ZHANG
- School of Natural and Applied Sciences, Northwestern Polytechnical University, Xi’an 710072, P. R. China
| | - YANLONG ZHANG
- School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an 710072, P. R. China
| | - JING BAI
- School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an 710072, P. R. China
| | - ZHANXI WANG
- School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an 710072, P. R. China
| | - XIANSHENG QIN
- School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an 710072, P. R. China
| | - QIANG AI
- School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an 710072, P. R. China
| | - HONGBO WANG
- School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an 710072, P. R. China
| |
Collapse
|
19
|
Heidlauf T, Klotz T, Rode C, Siebert T, Röhrle O. A continuum-mechanical skeletal muscle model including actin-titin interaction predicts stable contractions on the descending limb of the force-length relation. PLoS Comput Biol 2017; 13:e1005773. [PMID: 28968385 PMCID: PMC5638554 DOI: 10.1371/journal.pcbi.1005773] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 10/12/2017] [Accepted: 09/12/2017] [Indexed: 11/18/2022] Open
Abstract
Contractions on the descending limb of the total (active + passive) muscle force-length relationship (i. e. when muscle stiffness is negative) are expected to lead to vast half-sarcomere-length inhomogeneities. This is however not observed in experiments-vast half-sarcomere-length inhomogeneities can be absent in myofibrils contracting in this range, and initial inhomogeneities can even decrease. Here we show that the absence of half-sarcomere-length inhomogeneities can be predicted when considering interactions of the semi-active protein titin with the actin filaments. Including a model of actin-titin interactions within a multi-scale continuum-mechanical model, we demonstrate that stability, accurate forces and nearly homogeneous half-sarcomere lengths can be obtained on the descending limb of the static total force-length relation. This could be a key to durable functioning of the muscle because large local stretches, that might harm, for example, the transverse-tubule system, are avoided.
Collapse
Affiliation(s)
- Thomas Heidlauf
- Institute of Applied Mechanics (CE), University of Stuttgart, Stuttgart, Germany
- Stuttgart Research Centre for Simulation Technology (SRC SimTech), University of Stuttgart, Stuttgart, Germany
| | - Thomas Klotz
- Institute of Applied Mechanics (CE), University of Stuttgart, Stuttgart, Germany
- Stuttgart Research Centre for Simulation Technology (SRC SimTech), University of Stuttgart, Stuttgart, Germany
| | - Christian Rode
- Institute of Motion Science, Friedrich-Schiller-University, Jena, Germany
| | - Tobias Siebert
- Department of Sport and Motion Science, University of Stuttgart, Stuttgart, Germany
| | - Oliver Röhrle
- Institute of Applied Mechanics (CE), University of Stuttgart, Stuttgart, Germany
- Stuttgart Research Centre for Simulation Technology (SRC SimTech), University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
20
|
Spatial variation and inconsistency between estimates of onset of muscle activation from EMG and ultrasound. Sci Rep 2017; 7:42011. [PMID: 28176821 PMCID: PMC5296741 DOI: 10.1038/srep42011] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 01/09/2017] [Indexed: 12/23/2022] Open
Abstract
Delayed onset of muscle activation can be a descriptor of impaired motor control. Activation onset can be estimated from electromyography (EMG)-registered muscle excitation and from ultrasound-registered muscle motion, which enables non-invasive measurements in deep muscles. However, in voluntary activation, EMG- and ultrasound-detected activation onsets may not correspond. To evaluate this, ten healthy men performed isometric elbow flexion at 20% to 70% of their maximal force. Utilising a multi-channel electrode transparent to ultrasound, EMG and M(otion)-mode ultrasound were recorded simultaneously over the biceps brachii muscle. The time intervals between automated and visually estimated activation onsets were correlated with the regional variation of EMG and muscle motion onset, contraction level and speed. Automated and visual onsets indicated variable time intervals between EMG- and motion onset, median (interquartile range) 96 (121) ms and 48 (72) ms, respectively. In 17% (computed analysis) or 23% (visual analysis) of trials, motion onset was detected before local EMG onset. Multi-channel EMG and M-mode ultrasound revealed regional differences in activation onset, which decreased with higher contraction speed (Spearman ρ ≥ 0.45, P < 0.001). In voluntary activation the heterogeneous motor unit recruitment together with immediate motion transmission may explain the high variation of the time intervals between local EMG- and ultrasound-detected activation onset.
Collapse
|
21
|
Hashimoto H, Tamaki T, Hirata M, Uchiyama Y, Sato M, Mochida J. Reconstitution of the complete rupture in musculotendinous junction using skeletal muscle-derived multipotent stem cell sheet-pellets as a "bio-bond". PeerJ 2016; 4:e2231. [PMID: 27547541 PMCID: PMC4957990 DOI: 10.7717/peerj.2231] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Accepted: 06/16/2016] [Indexed: 01/11/2023] Open
Abstract
Background. Significant and/or complete rupture in the musculotendinous junction (MTJ) is a challenging lesion to treat because of the lack of reliable suture methods. Skeletal muscle-derived multipotent stem cell (Sk-MSC) sheet-pellets, which are able to reconstitute peripheral nerve and muscular/vascular tissues with robust connective tissue networks, have been applied as a “bio-bond”. Methods. Sk-MSC sheet-pellets, derived from GFP transgenic-mice after 7 days of expansion culture, were detached with EDTA to maintain cell–cell connections. A completely ruptured MTJ model was prepared in the right tibialis anterior (TA) of the recipient mice, and was covered with sheet-pellets. The left side was preserved as a contralateral control. The control group received the same amount of the cell-free medium. The sheet-pellet transplantation (SP) group was further divided into two groups; as the short term (4–8 weeks) and long term (14–18 weeks) recovery group. At each time point after transplantation, tetanic tension output was measured through the electrical stimulation of the sciatic nerve. The behavior of engrafted GFP+ tissues and cells was analyzed by fluorescence immunohistochemistry. Results. The SP short term recovery group showed average 64% recovery of muscle mass, and 36% recovery of tetanic tension output relative to the contralateral side. Then, the SP long term recovery group showed increased recovery of average muscle mass (77%) and tetanic tension output (49%). However, the control group showed no recovery of continuity between muscle and tendon, and demonstrated increased muscle atrophy, with coalescence to the tibia during 4–8 weeks after operation. Histological evidence also supported the above functional recovery of SP group. Engrafted Sk-MSCs primarily formed the connective tissues and muscle fibers, including nerve-vascular networks, and bridged the ruptured tendon–muscle fiber units, with differentiation into skeletal muscle cells, Schwann cells, vascular smooth muscle, and endothelial cells. Discussion. This bridging capacity between tendon and muscle fibers of the Sk-MSC sheet-pellet, as a “bio-bond,” represents a possible treatment for various MTJ ruptures following surgery.
Collapse
Affiliation(s)
- Hiroyuki Hashimoto
- Department of Orthopaedic, Tokai University School of Medicine, Isehara, Japan; Muscle Physiology and Cell Biology Unit, Tokai University School of Medicine, Isehara, Japan
| | - Tetsuro Tamaki
- Muscle Physiology and Cell Biology Unit, Tokai University School of Medicine, Isehara, Japan; Department of Human Structure and Function, Tokai University School of Medicine, Isehara, Japan
| | - Maki Hirata
- Department of Orthopaedic, Tokai University School of Medicine, Isehara, Japan; Muscle Physiology and Cell Biology Unit, Tokai University School of Medicine, Isehara, Japan
| | - Yoshiyasu Uchiyama
- Department of Orthopaedic, Tokai University School of Medicine, Isehara, Japan; Muscle Physiology and Cell Biology Unit, Tokai University School of Medicine, Isehara, Japan
| | - Masato Sato
- Department of Orthopaedic, Tokai University School of Medicine , Isehara , Japan
| | - Joji Mochida
- Department of Orthopaedic, Tokai University School of Medicine , Isehara , Japan
| |
Collapse
|
22
|
Siebert T, Rode C, Till O, Stutzig N, Blickhan R. Force reduction induced by unidirectional transversal muscle loading is independent of local pressure. J Biomech 2016; 49:1156-1161. [PMID: 26976226 DOI: 10.1016/j.jbiomech.2016.02.053] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 02/19/2016] [Accepted: 02/29/2016] [Indexed: 10/22/2022]
Abstract
Transversal unidirectional compression applied to muscles via external loading affects muscle contraction dynamics in the longitudinal direction. A recent study reported decreasing longitudinal muscle forces with increasing transversal load applied with a constant contact area (i.e., leading to a simultaneous increase in local pressure). To shed light on these results, we examine whether the decrease in longitudinal force depends on the load, the local pressure, or both. To this end, we perform isometric experiments on rat M. gastrocnemius medialis without and with transversal loading (i) changing the local pressure from 1.1-3.2Ncm(-2) (n=9) at a constant transversal load (1.62N) and (ii) increasing the transversal load (1.15-3.45N) at a constant local pressure of 2.3Ncm(-2) (n=7). While we did not note changes in the decrease in longitudinal muscle force in the first experiment, the second experiment resulted in an almost-linear reduction of longitudinal force between 7.5±0.6% and 14.1±1.7%. We conclude that the observed longitudinal force reduction is not induced by local effects such as malfunction of single muscle compartments, but that similar internal stress conditions and myofilament configurations occur when the local pressure changes given a constant load. The decreased longitudinal force may be explained by increased internal pressure and a deformed myofilament lattice that is likely associated with the decomposition of cross-bridge forces on the one hand and the inhibition of cross-bridges on the other hand.
Collapse
Affiliation(s)
- Tobias Siebert
- Institute of Sport and Motion Science, University of Stuttgart, Stuttgart, Germany.
| | - Christian Rode
- Department of Motion Science, Friedrich-Schiller University Jena, Jena, Germany
| | - Olaf Till
- Department of Motion Science, Friedrich-Schiller University Jena, Jena, Germany
| | - Norman Stutzig
- Institute of Sport and Motion Science, University of Stuttgart, Stuttgart, Germany
| | - Reinhard Blickhan
- Department of Motion Science, Friedrich-Schiller University Jena, Jena, Germany
| |
Collapse
|
23
|
Hughes DC, Wallace MA, Baar K. Effects of aging, exercise, and disease on force transfer in skeletal muscle. Am J Physiol Endocrinol Metab 2015; 309:E1-E10. [PMID: 25968577 PMCID: PMC4490334 DOI: 10.1152/ajpendo.00095.2015] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 05/08/2015] [Indexed: 11/22/2022]
Abstract
The loss of muscle strength and increased injury rate in aging skeletal muscle has previously been attributed to loss of muscle protein (cross-sectional area) and/or decreased neural activation. However, it is becoming clear that force transfer within and between fibers plays a significant role in this process as well. Force transfer involves a secondary matrix of proteins that align and transmit the force produced by the thick and thin filaments along muscle fibers and out to the extracellular matrix. These specialized networks of cytoskeletal proteins aid in passing force through the muscle and also serve to protect individual fibers from injury. This review discusses the cytoskeleton proteins that have been identified as playing a role in muscle force transmission, both longitudinally and laterally, and where possible highlights how disease, aging, and exercise influence the expression and function of these proteins.
Collapse
Affiliation(s)
- David C Hughes
- Department of Neurobiology, Physiology and Behavior, University of California Davis, Davis, California
| | - Marita A Wallace
- Department of Neurobiology, Physiology and Behavior, University of California Davis, Davis, California
| | - Keith Baar
- Department of Neurobiology, Physiology and Behavior, University of California Davis, Davis, California
| |
Collapse
|
24
|
Reconstruction of muscle fascicle architecture from iodine-enhanced microCT images: A combined texture mapping and streamline approach. J Theor Biol 2015; 382:34-43. [PMID: 26141643 DOI: 10.1016/j.jtbi.2015.06.034] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 05/08/2015] [Accepted: 06/20/2015] [Indexed: 01/09/2023]
Abstract
Skeletal muscle models are used to investigate motion and force generation in both biological and bioengineering research. Yet, they often lack a realistic representation of the muscle's internal architecture which is primarily composed of muscle fibre bundles, known as fascicles. Recently, it has been shown that fascicles can be resolved with micro-computed tomography (µCT) following staining of the muscle tissue with iodine potassium iodide (I2KI). Here, we present the reconstruction of the fascicular spatial arrangement and geometry of the superficial masseter muscle of a dog based on a combination of pattern recognition and streamline computation. A cadaveric head of a dog was incubated in I2KI and µCT-scanned. Following segmentation of the masseter muscle a statistical pattern recognition algorithm was applied to create a vector field of fascicle directions. Streamlines were then used to transform the vector field into a realistic muscle fascicle representation. The lengths of the reconstructed fascicles and the pennation angles in two planes (frontal and sagittal) were extracted and compared against a tracked fascicle field obtained through cadaver dissection. Both fascicle lengths and angles were found to vary substantially within the muscle confirming the complex and heterogeneous nature of skeletal muscle described by previous studies. While there were significant differences in the pennation angle between the experimentally derived and µCT-reconstructed data, there was congruence in the fascicle lengths. We conclude that the presented approach allows for embedding realistic fascicle information into finite element models of skeletal muscles to better understand the functioning of the musculoskeletal system.
Collapse
|
25
|
Cutroneo G, Centofanti A, Speciale F, Rizzo G, Favaloro A, Santoro G, Bruschetta D, Milardi D, Micali A, Di Mauro D, Vermiglio G, Anastasi G, Trimarchi F. Sarcoglycan complex in masseter and sternocleidomastoid muscles of baboons: an immunohistochemical study. Eur J Histochem 2015; 59:2509. [PMID: 26150161 PMCID: PMC4503974 DOI: 10.4081/ejh.2015.2509] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Revised: 04/21/2015] [Accepted: 04/21/2015] [Indexed: 11/23/2022] Open
Abstract
The sarcoglycan complex consists of a group of single-pass transmembrane glycoproteins that are essential to maintain the integrity of muscle membranes. Any mutation in each sarcoglycan gene causes a series of recessive autosomal dystrophin-positive muscular dystrophies. Negative fibres for sarcoglycans have never been found in healthy humans and animals. In this study, we have investigated whether the social ranking has an influence on the expression of sarcoglycans in the skeletal muscles of healthy baboons. Biopsies of masseter and sternocleidomastoid muscles were processed for confocal immunohistochemical detection of sarcoglycans. Our findings showed that baboons from different social rankings exhibited different sarcoglycan expression profiles. While in dominant baboons almost all muscles were stained for sarcoglycans, only 55% of muscle fibres showed a significant staining. This different expression pattern is likely to be due to the living conditions of these primates. Sarcoglycans which play a key role in muscle activity by controlling contractile forces may influence the phenotype of muscle fibres, thus determining an adaptation to functional conditions. We hypothesize that this intraspecies variation reflects an epigenetic modification of the muscular protein network that allows baboons to adapt progressively to a different social status.
Collapse
|
26
|
Koutakis P, Miserlis D, Myers SA, Kim JKS, Zhu Z, Papoutsi E, Swanson SA, Haynatzki G, Ha DM, Carpenter LA, McComb RD, Johanning JM, Casale GP, Pipinos II. Abnormal accumulation of desmin in gastrocnemius myofibers of patients with peripheral artery disease: associations with altered myofiber morphology and density, mitochondrial dysfunction and impaired limb function. J Histochem Cytochem 2015; 63:256-69. [PMID: 25575565 DOI: 10.1369/0022155415569348] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Patients with peripheral artery disease (PAD) develop a myopathy in their ischemic lower extremities, which is characterized by myofiber degeneration, mitochondrial dysfunction and impaired limb function. Desmin, a protein of the cytoskeleton, is central to maintenance of the structure, shape and function of the myofiber and its organelles, especially the mitochondria, and to translation of sarcomere contraction into muscle contraction. In this study, we investigated the hypothesis that disruption of the desmin network occurs in gastrocnemius myofibers of PAD patients and correlates with altered myofiber morphology, mitochondrial dysfunction, and impaired limb function. Using fluorescence microscopy, we evaluated desmin organization and quantified myofiber content in the gastrocnemius of PAD and control patients. Desmin was highly disorganized in PAD but not control muscles and myofiber content was increased significantly in PAD compared to control muscles. By qPCR, we found that desmin gene transcripts were increased in the gastrocnemius of PAD patients as compared with control patients. Increased desmin and desmin gene transcripts in PAD muscles correlated with altered myofiber morphology, decreased mitochondrial respiration, reduced calf muscle strength and decreased walking performance. In conclusion, our studies identified disruption of the desmin system in gastrocnemius myofibers as an index of the myopathy and limitation of muscle function in patients with PAD.
Collapse
Affiliation(s)
- Panagiotis Koutakis
- Department of Surgery (PK, DM, JKK, ZZ, EP, SAS, DMH, LAC, JMJ, GPC, IIP)
| | - Dimitrios Miserlis
- Department of Surgery (PK, DM, JKK, ZZ, EP, SAS, DMH, LAC, JMJ, GPC, IIP)
| | - Sara A Myers
- Nebraska Biomechanics Core Facility, University of Nebraska at Omaha, Nebraska (SAM)
| | - Julian Kyung-Soo Kim
- Department of Surgery (PK, DM, JKK, ZZ, EP, SAS, DMH, LAC, JMJ, GPC, IIP)
| | - Zhen Zhu
- Department of Surgery (PK, DM, JKK, ZZ, EP, SAS, DMH, LAC, JMJ, GPC, IIP)
| | - Evlampia Papoutsi
- Department of Surgery (PK, DM, JKK, ZZ, EP, SAS, DMH, LAC, JMJ, GPC, IIP)
| | - Stanley A Swanson
- Department of Surgery (PK, DM, JKK, ZZ, EP, SAS, DMH, LAC, JMJ, GPC, IIP)
| | - Gleb Haynatzki
- Department of Biostatistics, College of Public Health (GH)
| | - Duy M Ha
- Department of Surgery (PK, DM, JKK, ZZ, EP, SAS, DMH, LAC, JMJ, GPC, IIP)
| | - Lauren A Carpenter
- Department of Surgery (PK, DM, JKK, ZZ, EP, SAS, DMH, LAC, JMJ, GPC, IIP)
| | | | - Jason M Johanning
- Department of Surgery (PK, DM, JKK, ZZ, EP, SAS, DMH, LAC, JMJ, GPC, IIP),Department of Surgery and VA Research Service, VA Nebraska-Western Iowa Health Care System, Omaha, Nebraska (JMJ, IIP)
| | - George P Casale
- Department of Surgery (PK, DM, JKK, ZZ, EP, SAS, DMH, LAC, JMJ, GPC, IIP)
| | - Iraklis I Pipinos
- Department of Surgery (PK, DM, JKK, ZZ, EP, SAS, DMH, LAC, JMJ, GPC, IIP),Department of Surgery and VA Research Service, VA Nebraska-Western Iowa Health Care System, Omaha, Nebraska (JMJ, IIP)
| |
Collapse
|
27
|
Lacourpaille L, Hug F, Guével A, Péréon Y, Magot A, Hogrel JY, Nordez A. New insights on contraction efficiency in patients with Duchenne muscular dystrophy. J Appl Physiol (1985) 2014; 117:658-62. [PMID: 25103971 DOI: 10.1152/japplphysiol.00544.2014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The decrease in muscle strength in patients with Duchenne muscular dystrophy (DMD) is mainly explained by a decrease in the number of active contractile elements. Nevertheless, it is possible that other electrochemical and force transmission processes may contribute. The present study aimed to quantify the effect of DMD on the relative contribution of electrochemical and force transmission components of the electromechanical delay (i.e., time lag between the onset of muscle activation and force production) in humans using very high frame rate ultrasound. Fourteen patients with DMD and thirteen control subjects underwent two electrically evoked contractions of the biceps brachii with the ultrasound probe over the muscle belly. The electromechanical delay was significantly longer in DMD patients compared with controls (18.5 ± 3.9 vs. 12.5 ± 1.4 ms, P < 0.0001). More precisely, DMD patients exhibited a longer delay between the onset of muscle fascicles motion and force production (13.6 ± 3.1 vs. 7.9 ± 2.0 ms, P < 0.0001). This delay was correlated to the chronological age of the DMD patients (r = 0.66; P = 0.01), but not of the controls (r = -0.45; P = 0.10). No significant difference was found for the delay between the onset of muscle stimulation and the onset of muscle fascicle motion. These results highlight the role of the alteration of muscle force transmission (delay between the onset of fascicle motion and force production) in the impairments of the contraction efficiency in patients with DMD.
Collapse
Affiliation(s)
- Lilian Lacourpaille
- Laboratory Motricité, Interactions, Performance (EA 4334), Unite de Formation et de Recherche Sciences et Techniques des Activités Physiques et Sportives, University of Nantes, Nantes, France
| | - François Hug
- Laboratory Motricité, Interactions, Performance (EA 4334), Unite de Formation et de Recherche Sciences et Techniques des Activités Physiques et Sportives, University of Nantes, Nantes, France; National Health and Medical Research Council, Centre of Clinical Research Excellence in Spinal Pain, Injury and Health, School of Health and Rehabilitation Sciences, University of Queensland, Brisbane, Queensland, Australia;
| | - Arnaud Guével
- Laboratory Motricité, Interactions, Performance (EA 4334), Unite de Formation et de Recherche Sciences et Techniques des Activités Physiques et Sportives, University of Nantes, Nantes, France
| | - Yann Péréon
- Centre de Référence Maladies Neuromusculaires Nantes-Angers, University of Nantes, Centre Hospitalier Universitaire, Nantes, France; Atlantic Gene Therapies, Nantes, France; and
| | - Armelle Magot
- Centre de Référence Maladies Neuromusculaires Nantes-Angers, University of Nantes, Centre Hospitalier Universitaire, Nantes, France; Atlantic Gene Therapies, Nantes, France; and
| | | | - Antoine Nordez
- Laboratory Motricité, Interactions, Performance (EA 4334), Unite de Formation et de Recherche Sciences et Techniques des Activités Physiques et Sportives, University of Nantes, Nantes, France
| |
Collapse
|
28
|
Abstract
Movement is accomplished by the controlled activation of motor unit populations. Our understanding of motor unit physiology has been derived from experimental work on the properties of single motor units and from computational studies that have integrated the experimental observations into the function of motor unit populations. The article provides brief descriptions of motor unit anatomy and muscle unit properties, with more substantial reviews of motoneuron properties, motor unit recruitment and rate modulation when humans perform voluntary contractions, and the function of an entire motor unit pool. The article emphasizes the advances in knowledge on the cellular and molecular mechanisms underlying the neuromodulation of motoneuron activity and attempts to explain the discharge characteristics of human motor units in terms of these principles. A major finding from this work has been the critical role of descending pathways from the brainstem in modulating the properties and activity of spinal motoneurons. Progress has been substantial, but significant gaps in knowledge remain.
Collapse
Affiliation(s)
- C J Heckman
- Northwestern University, Evanston, Illinois, USA.
| | | |
Collapse
|
29
|
Abstract
Striated respiratory muscles are necessary for lung ventilation and to maintain the patency of the upper airway. The basic structural and functional properties of respiratory muscles are similar to those of other striated muscles (both skeletal and cardiac). The sarcomere is the fundamental organizational unit of striated muscles and sarcomeric proteins underlie the passive and active mechanical properties of muscle fibers. In this respect, the functional categorization of different fiber types provides a conceptual framework to understand the physiological properties of respiratory muscles. Within the sarcomere, the interaction between the thick and thin filaments at the level of cross-bridges provides the elementary unit of force generation and contraction. Key to an understanding of the unique functional differences across muscle fiber types are differences in cross-bridge recruitment and cycling that relate to the expression of different myosin heavy chain isoforms in the thick filament. The active mechanical properties of muscle fibers are characterized by the relationship between myoplasmic Ca2+ and cross-bridge recruitment, force generation and sarcomere length (also cross-bridge recruitment), external load and shortening velocity (cross-bridge cycling rate), and cross-bridge cycling rate and ATP consumption. Passive mechanical properties are also important reflecting viscoelastic elements within sarcomeres as well as the extracellular matrix. Conditions that affect respiratory muscle performance may have a range of underlying pathophysiological causes, but their manifestations will depend on their impact on these basic elemental structures.
Collapse
Affiliation(s)
- Gary C Sieck
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | | | | | | |
Collapse
|
30
|
Orizio C, Celichowski J, Toscani F, Calabretto C, Bissolotti L, Gobbo M. Extra-torque of human tibialis anterior during electrical stimulation with linearly varying frequency and amplitude trains. J Electromyogr Kinesiol 2013; 23:1375-83. [PMID: 24012223 DOI: 10.1016/j.jelekin.2013.07.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 07/11/2013] [Accepted: 07/12/2013] [Indexed: 10/26/2022] Open
Abstract
This work aimed to characterise the whole human muscle input/output law during electrical stimulation with triangular varying frequency and amplitude trains through combined analysis of torque, mechanomyogram (MMG) and electromyogram (EMG). The tibialis anterior (TA) of ten subjects (age 23-35 years) was investigated during static contraction obtained through neuromuscular electrical stimulation. After potentiation, TA underwent two 15s stimulation patterns: (a) frequency triangle (FT): 2 > 35 > 2 Hz at Vmax (amplitude providing full motor unit recruitment); (b) amplitude triangle (AT): Vmin > Vmax > Vmin (Vmin providing TA least mechanical response) at 35 Hz. 2 > 35 Hz or Vmin > Vmax as well as 35 > 2 Hz or Vmax > Vmin were defined as up-going ramp (UGR) and down-going ramp (DGR), respectively. TA torque, MMG and EMG were detected by a load cell, an optical laser distance sensor and a probe with two silver bar electrodes, respectively. For both FT and AT, only the two mechanical signals resulted always larger in DGR than in UGR, during AT extra-torque and extra-MMG were present even in the first 1/3 of the amplitude range where EMG data presented no significant differences between DGR and UGR. Our data suggest that extra-torque and extra-displacement are evident for both FT and AT, being mainly attributed to an intrinsic muscle property.
Collapse
Affiliation(s)
- C Orizio
- Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa, 11, 25123 Brescia, Italy; Laboratory of Neuromuscular Rehabilitation (LaRiN), University of Brescia - Institute "Casa di Cura Domus Salutis", Institute "Domus Salutis", Via Lazzaretto, 3, 25123 Brescia, Italy.
| | | | | | | | | | | |
Collapse
|
31
|
Dommerholt J, Bron C, Franssen J. Myofascial Trigger Points: An Evidence-Informed Review. J Man Manip Ther 2013. [DOI: 10.1179/106698106790819991] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
32
|
Crossland H, Kazi AA, Lang CH, Timmons JA, Pierre P, Wilkinson DJ, Smith K, Szewczyk NJ, Atherton PJ. Focal adhesion kinase is required for IGF-I-mediated growth of skeletal muscle cells via a TSC2/mTOR/S6K1-associated pathway. Am J Physiol Endocrinol Metab 2013; 305:E183-93. [PMID: 23695213 PMCID: PMC3725543 DOI: 10.1152/ajpendo.00541.2012] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Focal adhesion kinase (FAK) is an attachment complex protein associated with the regulation of muscle mass through as-of-yet unclear mechanisms. We tested whether FAK is functionally important for muscle hypertrophy, with the hypothesis that FAK knockdown (FAK-KD) would impede cell growth associated with a trophic stimulus. C₂C₁₂ skeletal muscle cells harboring FAK-targeted (FAK-KD) or scrambled (SCR) shRNA were created using lentiviral transfection techniques. Both FAK-KD and SCR myotubes were incubated for 24 h with IGF-I (10 ng/ml), and additional SCR cells (±IGF-1) were incubated with a FAK kinase inhibitor before assay of cell growth. Muscle protein synthesis (MPS) and putative FAK signaling mechanisms (immunoblotting and coimmunoprecipitation) were assessed. IGF-I-induced increases in myotube width (+41 ± 7% vs. non-IGF-I-treated) and total protein (+44 ± 6%) were, after 24 h, attenuated in FAK-KD cells, whereas MPS was suppressed in FAK-KD vs. SCR after 4 h. These blunted responses were associated with attenuated IGF-I-induced FAK Tyr³⁹⁷ phosphorylation and markedly suppressed phosphorylation of tuberous sclerosis complex 2 (TSC2) and critical downstream mTOR signaling (ribosomal S6 kinase, eIF4F assembly) in FAK shRNA cells (all P < 0.05 vs. IGF-I-treated SCR cells). However, binding of FAK to TSC2 or its phosphatase Shp-2 was not affected by IGF-I or cell phenotype. Finally, FAK-KD-mediated suppression of cell growth was recapitulated by direct inhibition of FAK kinase activity in SCR cells. We conclude that FAK is required for IGF-I-induced muscle hypertrophy, signaling through a TSC2/mTOR/S6K1-dependent pathway via means requiring the kinase activity of FAK but not altered FAK-TSC2 or FAK-Shp-2 binding.
Collapse
MESH Headings
- Algorithms
- Animals
- Blotting, Western
- Cells, Cultured
- Focal Adhesion Protein-Tyrosine Kinases/antagonists & inhibitors
- Focal Adhesion Protein-Tyrosine Kinases/genetics
- Focal Adhesion Protein-Tyrosine Kinases/physiology
- Genetic Vectors
- Immunoprecipitation
- Insulin-Like Growth Factor I/physiology
- Lentivirus/genetics
- Mice
- Muscle Fibers, Skeletal/drug effects
- Muscle Fibers, Skeletal/physiology
- Muscle Fibers, Skeletal/ultrastructure
- Muscle, Skeletal/cytology
- Muscle, Skeletal/growth & development
- Phosphorylation/drug effects
- RNA Interference
- RNA, Small Interfering/genetics
- Ribosomal Protein S6 Kinases, 90-kDa/metabolism
- Ribosomal Protein S6 Kinases, 90-kDa/physiology
- Signal Transduction/physiology
- TOR Serine-Threonine Kinases/metabolism
- TOR Serine-Threonine Kinases/physiology
- Tuberous Sclerosis Complex 2 Protein
- Tumor Suppressor Proteins/metabolism
- Tumor Suppressor Proteins/physiology
Collapse
Affiliation(s)
- Hannah Crossland
- Medical Research Council-Arthritis Research United Kingdom Centre of Excellence for Musculoskeletal Ageing Research, School of Graduate Entry Medicine and Health, University of Nottingham, Royal Derby Hospital, Derby, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Carvalhais VODC, Ocarino JDM, Araújo VL, Souza TR, Silva PLP, Fonseca ST. Myofascial force transmission between the latissimus dorsi and gluteus maximus muscles: an in vivo experiment. J Biomech 2013; 46:1003-7. [PMID: 23394717 DOI: 10.1016/j.jbiomech.2012.11.044] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2012] [Revised: 10/10/2012] [Accepted: 11/24/2012] [Indexed: 11/17/2022]
Abstract
There are extensive connections between the latissimus dorsi (LD) and gluteus maximus (GMax) muscles and the thoracolumbar fascia (TLF), which suggests a possible pathway for myofascial force transmission. The present study was designed to provide empirical evidence of myofascial force transmission from LD to contralateral GMax through TFL in vivo. To accomplish this goal, we evaluated whether active or passive tensioning of the LD results in increased passive tension of the contralateral GMax, indexed by changes in the hip resting position (RP) or passive stiffness. The hip RP was defined as the angular position in which the passive joint torque equals zero, and passive hip stiffness was calculated as the change in passive torque per change in joint angle. Thirty-seven subjects underwent an assessment of their passive hip torque against medial rotation by means of an isokinetic dynamometer. These measures were carried out under three test conditions: (1) control, (2) passive LD tensioning and (3) active LD tensioning. Electromyography was used to monitor the activity of the hip muscles and the LD under all conditions. Repeated measures analyses of variance demonstrated that passive LD tensioning shifted the hip RP towards lateral rotation (p=0.009) but did not change the passive hip stiffness (p>0.05). Active LD tensioning shifted the hip RP towards lateral rotation (p<0.001) and increased the passive hip stiffness (p≤0.004). The results demonstrated that manipulation of the LD tension modified the passive hip variables, providing evidence of myofascial force transmission in vivo.
Collapse
Affiliation(s)
- Viviane Otoni do Carmo Carvalhais
- Department of Physical Therapy, Universidade Federal de Minas Gerais (UFMG), Av. Presidente Antônio Carlos, 6627-Campus Pampulha, CEP 31270-901, Belo Horizonte, MG, Brazil.
| | | | | | | | | | | |
Collapse
|
34
|
The muscular force transmission system: Role of the intramuscular connective tissue. J Bodyw Mov Ther 2013; 17:95-102. [DOI: 10.1016/j.jbmt.2012.06.001] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Revised: 05/29/2012] [Accepted: 06/07/2012] [Indexed: 01/14/2023]
|
35
|
The anisotropic mechanical behaviour of passive skeletal muscle tissue subjected to large tensile strain. J Mech Behav Biomed Mater 2012; 17:209-20. [PMID: 23127635 DOI: 10.1016/j.jmbbm.2012.09.001] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Revised: 08/21/2012] [Accepted: 09/07/2012] [Indexed: 11/23/2022]
Abstract
The passive mechanical properties of muscle tissue are important for many biomechanics applications. However, significant gaps remain in our understanding of the three-dimensional tensile response of passive skeletal muscle tissue to applied loading. In particular, the nature of the anisotropy remains unclear and the response to loading at intermediate fibre directions and the Poisson's ratios in tension have not been reported. Accordingly, tensile tests were performed along and perpendicular to the muscle fibre direction as well as at 30°, 45° and 60° to the muscle fibre direction in samples of Longissimus dorsi muscle taken from freshly slaughtered pigs. Strain was measured using an optical non-contact method. The results show the transverse or cross fibre (TT') direction is broadly linear and is the stiffest (77 kPa stress at a stretch of 1.1), but that failure occurs at low stretches (approximately λ=1.15). In contrast the longitudinal or fibre direction (L) is nonlinear and much less stiff (10 kPa stress at a stretch of 1.1) but failure occurs at higher stretches (approximatelyλ=1.65). An almost sinusoidal variation in stress response was observed at intermediate angles. The following Poisson's ratios were measured: VLT=VLT'=0.47, VTT'=0.28 and VTL=0.74. These observations have not been previously reported and they contribute significantly to our understanding of the three dimensional deformation response of skeletal muscle tissue.
Collapse
|
36
|
Röhrle O, Davidson JB, Pullan AJ. A physiologically based, multi-scale model of skeletal muscle structure and function. Front Physiol 2012; 3:358. [PMID: 22993509 PMCID: PMC3440711 DOI: 10.3389/fphys.2012.00358] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 08/20/2012] [Indexed: 11/28/2022] Open
Abstract
Models of skeletal muscle can be classified as phenomenological or biophysical. Phenomenological models predict the muscle's response to a specified input based on experimental measurements. Prominent phenomenological models are the Hill-type muscle models, which have been incorporated into rigid-body modeling frameworks, and three-dimensional continuum-mechanical models. Biophysically based models attempt to predict the muscle's response as emerging from the underlying physiology of the system. In this contribution, the conventional biophysically based modeling methodology is extended to include several structural and functional characteristics of skeletal muscle. The result is a physiologically based, multi-scale skeletal muscle finite element model that is capable of representing detailed, geometrical descriptions of skeletal muscle fibers and their grouping. Together with a well-established model of motor-unit recruitment, the electro-physiological behavior of single muscle fibers within motor units is computed and linked to a continuum-mechanical constitutive law. The bridging between the cellular level and the organ level has been achieved via a multi-scale constitutive law and homogenization. The effect of homogenization has been investigated by varying the number of embedded skeletal muscle fibers and/or motor units and computing the resulting exerted muscle forces while applying the same excitatory input. All simulations were conducted using an anatomically realistic finite element model of the tibialis anterior muscle. Given the fact that the underlying electro-physiological cellular muscle model is capable of modeling metabolic fatigue effects such as potassium accumulation in the T-tubular space and inorganic phosphate build-up, the proposed framework provides a novel simulation-based way to investigate muscle behavior ranging from motor-unit recruitment to force generation and fatigue.
Collapse
Affiliation(s)
- O Röhrle
- Institute of Applied Mechanics (Civil Engineering), University of Stuttgart Stuttgart, Germany ; Cluster of Excellence for Simulation Technology, University of Stuttgart Stuttgart, Germany
| | | | | |
Collapse
|
37
|
Zhang C, Gao Y. Finite element analysis of mechanics of lateral transmission of force in single muscle fiber. J Biomech 2012; 45:2001-6. [PMID: 22682257 PMCID: PMC3843153 DOI: 10.1016/j.jbiomech.2012.04.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Revised: 03/22/2012] [Accepted: 04/26/2012] [Indexed: 11/19/2022]
Abstract
Most of the myofibers in long muscles of vertebrates terminate within fascicles without reaching either end of the tendon, thus force generated in myofibers has to be transmitted laterally through the extracellular matrix (ECM) to adjacent fibers; which is defined as the lateral transmission of force in skeletal muscles. The goal of this study was to determine the mechanisms of lateral transmission of force between the myofiber and ECM. In this study, a 2D finite element model of single muscle fiber was developed to study the effects of mechanical properties of the endomysium and the tapered ends of myofiber on lateral transmission of force. Results showed that most of the force generated is transmitted near the end of the myofiber through shear to the endomysium, and the force transmitted to the end of the model increases with increased stiffness of ECM. This study also demonstrated that the tapered angle of the myofiber ends can reduce the stress concentration near the myofiber end while laterally transmitting force efficiently.
Collapse
Affiliation(s)
- Chi Zhang
- Sibley School of Mechanical and Aerospace Engineering, 220 Upson Hall, Cornell University, Ithaca, NY 14853, USA
| | - Yingxin Gao
- Sibley School of Mechanical and Aerospace Engineering, 220 Upson Hall, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
38
|
Infantolino BW, Neuberger T, Challis JH. The arrangement of fascicles in whole muscle. Anat Rec (Hoboken) 2012; 295:1174-80. [PMID: 22549927 DOI: 10.1002/ar.22484] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Accepted: 03/30/2012] [Indexed: 11/10/2022]
Abstract
The architecture of the muscle fascicles, here meaning their lengths and their arrangement relative to one another, has important implications for the force a muscle can produce. Therefore, quantifying this architectural arrangement and understanding the implications of the architecture are important for understanding muscle function in vivo. There were two purposes of this study: (1) to assess, via blunt dissection, the number and the length of all the fascicles comprising the First Dorsal Interosseous (FDI) muscle and (2) to visually identify, via magnetic resonance imaging (MRI), the arrangement of the fascicles comprising the FDI. Simple blunt dissection of all the fascicles comprising four FDI muscles and their subsequent measurement demonstrated that the fascicles comprising the whole muscle were not as long as the muscle belly from which they were extracted. Muscle fascicles are surrounded by connective tissue hence the paths of the fascicles in two whole FDI muscles were identified via MRI by tracking the connective tissue surrounding the fascicles. The fascicles had a spiral pattern along the length of each muscle, within both muscles many of the fascicles were arranged in series with other fascicles. These architectural features of the fascicles of the FDI have important implications for the force-length and force-velocity properties of the whole muscle.
Collapse
|
39
|
Curzi D, Salucci S, Marini M, Esposito F, Agnello L, Veicsteinas A, Burattini S, Falcieri E. How physical exercise changes rat myotendinous junctions: an ultrastructural study. Eur J Histochem 2012; 56:e19. [PMID: 22688300 DOI: 10.4081/ejh.2012.19] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Revised: 02/16/2012] [Accepted: 03/02/2012] [Indexed: 11/23/2022] Open
Abstract
Myotendinous junctions can be easily injured by overloading or trauma, and exercise training may be a way of increasing their resistance to mechanical stress. To this end, we examined herein the morphological changes induced by moderate exercise training in the myotendinous junctions of extensor digitorum longus and gastrocnemius muscles in rats. Twelve Sprague-Dawley rats were used in this investigation. Six of them were trained to run on a treadmill for 1 h/day, 3 days/week over 10 weeks in order for them to achieve a running rate of 25 m/min at the end of the training period. Six age-matched sedentary rats were used as controls. The rats were sacrificed 24 h after the final training session, and the extensor digitorum longum (EDL) and the gastrocnemium were excised; the myotendinous junctions (MTJ) were then prepared and observed with electron microscopy. Digitation branching was evaluated by counting the bifurcations in the MTJ protrusions. Our observations indicate that exercise does indeed induce changes in MTJ morphology. In both muscles the number of bifurcated interdigitations increased significantly, as well as, in gastrocnemius, the branching of the finger-like processes. It was demonstrated that the MTJ is able to adapt to an increase in tensile force by enlarging the muscle-tendon contact area and, consequently, mechanical resistance.
Collapse
Affiliation(s)
- D Curzi
- DiSTeVA, University of Urbino Carlo Bò, Italy
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Influences of desmin and keratin 19 on passive biomechanical properties of mouse skeletal muscle. J Biomed Biotechnol 2012; 2012:704061. [PMID: 22287836 PMCID: PMC3263816 DOI: 10.1155/2012/704061] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2011] [Accepted: 09/10/2011] [Indexed: 11/17/2022] Open
Abstract
In skeletal muscle fibers, forces must be transmitted between the plasma membrane and the intracellular contractile lattice, and within this lattice between adjacent myofibrils. Based on their prevalence, biomechanical properties and localization, desmin and keratin intermediate filaments (IFs) are likely to participate in structural connectivity and force transmission. We examined the passive load-bearing response of single fibers from the extensor digitorum longus (EDL) muscles of young (3 months) and aged (10 months) wild-type, desmin-null, K19-null, and desmin/K19 double-null mice. Though fibers are more compliant in all mutant genotypes compared to wild-type, the structural response of each genotype is distinct, suggesting multiple mechanisms by which desmin and keratin influence the biomechanical properties of myofibers. This work provides additional insight into the influences of IFs on structure-function relationships in skeletal muscle. It may also have implications for understanding the progression of desminopathies and other IF-related myopathies.
Collapse
|
41
|
HUIJING PETERA. INTRA-, EXTRA- AND INTERMUSCULAR MYOFASCIAL FORCE TRANSMISION OF SYNERGISTS AND ANTAGONISTS: EFFECTS OF MUSCLE LENGTH AS WELL AS RELATIVE POSITION. J MECH MED BIOL 2011. [DOI: 10.1142/s0219519402000496] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The concepts of intramuscular myofascial force transmission is reintroduced and reviewed on the basis of experiments involving tenotomy and aponeurotomy of dissected rat EDL muscle studied in situ. Results from experiments with measurements of force of EDL muscle, of which the muscle belly was not dissected (i.e. the muscle is surrounded by its natural connective tissue milieu) are discussed. In such experiments, force was measured at proximal as well as distal EDL tendons. Examples of experimental evidence for both extramuscular and intermuscular myofascial force transmission within the rat anterior crural compartment are presented. Evidence is presented also for differential effects of proximal and distal lengthening on myofascial force transmission from EDL, even for the case in which symmetric length changes were imposed on the muscle. It is shown that myofascial force transmission effects are not limited to synergists located within one compartment, but do also play a very substantial role in the interaction between antagonist muscles in neighbouring anterior crural and peroneal compartments.
Collapse
Affiliation(s)
- PETER A. HUIJING
- Instituut voor Fundamentele en Toegepaste Bewegingswetenschappen, Faculteit Bewegingswetenschappen, Vrije Universiteit, Amsterdam, The Netherlands
- Integrated Biomedical Engineering for Restoration of Human Function, Instituut voor Biomedische Technologie, Department of Biomechanical Engineering, Universiteit Twente, Enschede, The Netherlands
| |
Collapse
|
42
|
Abstract
Mammalian skeletal muscle comprises different fiber types, whose identity is first established during embryonic development by intrinsic myogenic control mechanisms and is later modulated by neural and hormonal factors. The relative proportion of the different fiber types varies strikingly between species, and in humans shows significant variability between individuals. Myosin heavy chain isoforms, whose complete inventory and expression pattern are now available, provide a useful marker for fiber types, both for the four major forms present in trunk and limb muscles and the minor forms present in head and neck muscles. However, muscle fiber diversity involves all functional muscle cell compartments, including membrane excitation, excitation-contraction coupling, contractile machinery, cytoskeleton scaffold, and energy supply systems. Variations within each compartment are limited by the need of matching fiber type properties between different compartments. Nerve activity is a major control mechanism of the fiber type profile, and multiple signaling pathways are implicated in activity-dependent changes of muscle fibers. The characterization of these pathways is raising increasing interest in clinical medicine, given the potentially beneficial effects of muscle fiber type switching in the prevention and treatment of metabolic diseases.
Collapse
Affiliation(s)
- Stefano Schiaffino
- Venetian Institute of Molecular Medicine, Department of Biomedical Sciences, University of Padova, Consiglio Nazionale delle Ricerche Institute of Neurosciences, and Department of Human Anatomy and Physiology, University of Padova, Padova, Italy
| | - Carlo Reggiani
- Venetian Institute of Molecular Medicine, Department of Biomedical Sciences, University of Padova, Consiglio Nazionale delle Ricerche Institute of Neurosciences, and Department of Human Anatomy and Physiology, University of Padova, Padova, Italy
| |
Collapse
|
43
|
Gokhin DS, Fowler VM. Cytoplasmic gamma-actin and tropomodulin isoforms link to the sarcoplasmic reticulum in skeletal muscle fibers. ACTA ACUST UNITED AC 2011; 194:105-20. [PMID: 21727195 PMCID: PMC3135406 DOI: 10.1083/jcb.201011128] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Tropomodulins, cytoplasmic γ-actin, and small ankyrin 1.5 mechanically stabilize the sarcoplasmic reticulum and maintain myofibril alignment in skeletal muscle fibers. The sarcoplasmic reticulum (SR) serves as the Ca2+ reservoir for muscle contraction. Tropomodulins (Tmods) cap filamentous actin (F-actin) pointed ends, bind tropomyosins (Tms), and regulate F-actin organization. In this paper, we use a genetic targeting approach to examine the effect of Tmod1 deletion on the organization of cytoplasmic γ-actin (γcyto-actin) in the SR of skeletal muscle. In wild-type muscle fibers, γcyto-actin and Tmod3 defined an SR microdomain that was distinct from another Z line–flanking SR microdomain containing Tmod1 and Tmod4. The γcyto-actin/Tmod3 microdomain contained an M line complex composed of small ankyrin 1.5 (sAnk1.5), γcyto-actin, Tmod3, Tm4, and Tm5NM1. Tmod1 deletion caused Tmod3 to leave its SR compartment, leading to mislocalization and destabilization of the Tmod3–γcyto-actin–sAnk1.5 complex. This was accompanied by SR morphological defects, impaired Ca2+ release, and an age-dependent increase in sarcomere misalignment. Thus, Tmod3 regulates SR-associated γcyto-actin architecture, mechanically stabilizes the SR via a novel cytoskeletal linkage to sAnk1.5, and maintains the alignment of adjacent myofibrils.
Collapse
Affiliation(s)
- David S Gokhin
- Department of Cell Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | |
Collapse
|
44
|
Sharafi B, Blemker SS. A mathematical model of force transmission from intrafascicularly terminating muscle fibers. J Biomech 2011; 44:2031-9. [PMID: 21676398 DOI: 10.1016/j.jbiomech.2011.04.038] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2010] [Revised: 04/04/2011] [Accepted: 04/29/2011] [Indexed: 11/24/2022]
Abstract
Many long skeletal muscles are comprised of fibers that terminate intrafascicularly. Force from terminating fibers can be transmitted through shear within the endomysium that surrounds fibers or through tension within the endomysium that extends from fibers to the tendon; however, it is unclear which pathway dominates in force transmission from terminating fibers. The purpose of this work was to develop mathematical models to (i) compare the efficacy of lateral (through shear) and longitudinal (through tension) force transmission in intrafascicularly terminating fibers, and (ii) determine how force transmission is affected by variations in the structure and properties of fibers and the endomysium. The models demonstrated that even though the amount of force that can be transmitted from an intrafascicularly terminating fiber is dependent on fiber resting length (the unstretched length at which passive stress is zero), endomysium shear modulus, and fiber volume fraction (the fraction of the muscle cross-sectional area that is occupied by fibers), fibers that have values of resting length, shear modulus, and volume fraction within physiologic ranges can transmit nearly all of their peak isometric force laterally through shearing of the endomysium. By contrast, the models predicted only limited force transmission ability through tension within the endomysium that extends from the fiber to the tendon. Moreover, when fiber volume fraction decreases to unhealthy ranges (less than 50%), the force-transmitting potential of terminating fibers through shearing of the endomysium decreases significantly. The models presented here support the hypothesis that lateral force transmission through shearing of the endomysium is an effective mode of force transmission in terminating fibers.
Collapse
Affiliation(s)
- Bahar Sharafi
- Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, VA 22904-4746, USA
| | | |
Collapse
|
45
|
Gnocchi VF, Scharner J, Huang Z, Brady K, Lee JS, White RB, Morgan JE, Sun YB, Ellis JA, Zammit PS. Uncoordinated transcription and compromised muscle function in the lmna-null mouse model of Emery- Emery-Dreyfuss muscular dystrophy. PLoS One 2011; 6:e16651. [PMID: 21364987 PMCID: PMC3043058 DOI: 10.1371/journal.pone.0016651] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Accepted: 12/23/2010] [Indexed: 12/15/2022] Open
Abstract
LMNA encodes both lamin A and C: major components of the nuclear lamina. Mutations in LMNA underlie a range of tissue-specific degenerative diseases, including those that affect skeletal muscle, such as autosomal-Emery-Dreifuss muscular dystrophy (A-EDMD) and limb girdle muscular dystrophy 1B. Here, we examine the morphology and transcriptional activity of myonuclei, the structure of the myotendinous junction and the muscle contraction dynamics in the lmna-null mouse model of A-EDMD. We found that there were fewer myonuclei in lmna-null mice, of which ∼50% had morphological abnormalities. Assaying transcriptional activity by examining acetylated histone H3 and PABPN1 levels indicated that there was a lack of coordinated transcription between myonuclei lacking lamin A/C. Myonuclei with abnormal morphology and transcriptional activity were distributed along the length of the myofibre, but accumulated at the myotendinous junction. Indeed, in addition to the presence of abnormal myonuclei, the structure of the myotendinous junction was perturbed, with disorganised sarcomeres and reduced interdigitation with the tendon, together with lipid and collagen deposition. Functionally, muscle contraction became severely affected within weeks of birth, with specific force generation dropping as low as ∼65% and ∼27% of control values in the extensor digitorum longus and soleus muscles respectively. These observations illustrate the importance of lamin A/C for correct myonuclear function, which likely acts synergistically with myotendinous junction disorganisation in the development of A-EDMD, and the consequential reduction in force generation and muscle wasting.
Collapse
MESH Headings
- Animals
- Cell Nucleus/metabolism
- Cell Nucleus/pathology
- Cell Nucleus/physiology
- Chromatin Assembly and Disassembly/genetics
- Chromatin Assembly and Disassembly/physiology
- Disease Models, Animal
- Growth and Development/genetics
- Intercellular Junctions/metabolism
- Intercellular Junctions/pathology
- Intercellular Junctions/ultrastructure
- Lamin Type A/genetics
- Lamin Type A/metabolism
- Lamin Type A/physiology
- Mice
- Mice, Knockout
- Muscle Fibers, Skeletal/metabolism
- Muscle Fibers, Skeletal/pathology
- Muscle Fibers, Skeletal/physiology
- Muscle Fibers, Skeletal/ultrastructure
- Muscle Weakness/genetics
- Muscle Weakness/pathology
- Muscles/metabolism
- Muscles/pathology
- Muscles/physiopathology
- Muscular Dystrophy, Emery-Dreifuss/genetics
- Muscular Dystrophy, Emery-Dreifuss/metabolism
- Muscular Dystrophy, Emery-Dreifuss/pathology
- Muscular Dystrophy, Emery-Dreifuss/physiopathology
- RNA Processing, Post-Transcriptional/genetics
- RNA Processing, Post-Transcriptional/physiology
- Transcription, Genetic/physiology
- Weight Loss/genetics
Collapse
Affiliation(s)
- Viola F. Gnocchi
- The Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London, United Kingdom
| | - Juergen Scharner
- The Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London, United Kingdom
| | - Zhe Huang
- The Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London, United Kingdom
| | - Ken Brady
- Centre for Ultrastructural Imaging, King's College London, New Hunt's House, Guy's Campus, London, United Kingdom
| | - Jaclyn S. Lee
- The Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London, United Kingdom
| | - Robert B. White
- The Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London, United Kingdom
| | - Jennifer E. Morgan
- The Dubowitz Neuromuscular Centre, Institute of Child Health, University College, London, United Kingdom
| | - Yin-Biao Sun
- The Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London, United Kingdom
| | - Juliet A. Ellis
- The Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London, United Kingdom
| | - Peter S. Zammit
- The Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London, United Kingdom
- * E-mail:
| |
Collapse
|
46
|
The role of extracellular matrix composition in structure and function of bioengineered skeletal muscle. Biomaterials 2011; 32:3575-83. [PMID: 21324402 DOI: 10.1016/j.biomaterials.2011.01.062] [Citation(s) in RCA: 200] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Accepted: 01/24/2011] [Indexed: 11/22/2022]
Abstract
One of the obstacles to the potential clinical utility of bioengineered skeletal muscle is its limited force generation capacity. Since engineered muscle, unlike most native muscle tissue, is composed of relatively short myofibers, we hypothesized that, its force production and transmission would be profoundly influenced by cell-matrix interactions. To test this hypothesis, we systematically varied the matrix protein type (collagen I/fibrin/Matrigel) and concentration in engineered, hydrogel-based neonatal rat skeletal muscle bundles and assessed the resulting tissue structure, generation of contractile force, and intracellular Ca(2+) handling. After two weeks of culture, the muscle bundles consisted of highly aligned and cross-striated myofibers and exhibited standard force-length and force-frequency relationships achieving tetanus at 40 Hz. The use of 2 mg/ml fibrin (control) yielded isometric tetanus amplitude of 1.4 ± 0.3 mN as compared to 0.9 ± 0.4 mN measured in collagen I-based bundles. Higher fibrin and Matrigel concentrations synergistically yielded further increase in active force generation to 2.8 ± 0.5 mN without significantly affecting passive mechanical properties, tetanus-to-twitch ratio, and twitch kinetics. Optimized matrix composition yielded significant cellular hypertrophy (protein/DNA ratio = 11.4 ± 4.1 vs. 6.5 ± 1.9 μg/μg in control) and a prolonged Ca(2+) transient half-width (Ca(50) = 232.8 ± 33.3 vs. 101.7 ± 19.8 ms). The use of growth-factor-reduced Matrigel, instead of standard Matrigel did not alter the obtained results suggesting enhanced cell-matrix interactions rather than growth factor supplementation as an underlying cause for the measured increase in contractile force. In summary, biomaterial-based manipulation of cell-matrix interactions represents an important target for improving contractile force generation in engineered skeletal muscle.
Collapse
|
47
|
Lovering RM, O'Neill A, Muriel JM, Prosser BL, Strong J, Bloch RJ. Physiology, structure, and susceptibility to injury of skeletal muscle in mice lacking keratin 19-based and desmin-based intermediate filaments. Am J Physiol Cell Physiol 2011; 300:C803-13. [PMID: 21209367 DOI: 10.1152/ajpcell.00394.2010] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Intermediate filaments, composed of desmin and of keratins, play important roles in linking contractile elements to each other and to the sarcolemma in striated muscle. Our previous results show that the tibialis anterior (TA) muscles of mice lacking keratin 19 (K19) lose costameres, accumulate mitochondria under the sarcolemma, and generate lower specific tension than controls. Here we compare the physiology and morphology of TA muscles of mice lacking K19 with muscles lacking desmin or both proteins [double knockout (DKO)]. K19-/- mice and DKO mice showed a threefold increase in the levels of creatine kinase (CK) in the serum. The absence of desmin caused a larger change in specific tension (-40%) than the absence of K19 (-19%) and played the predominant role in contractile function (-40%) and decreased tolerance to exercise in the DKO muscle. By contrast, the absence of both proteins was required to obtain a significantly greater loss of contractile torque after injury (-48%) compared with wild type (-39%), as well as near-complete disruption of costameres. The DKO muscle also showed a significantly greater misalignment of myofibrils than either mutant alone. In contrast, large subsarcolemmal gaps and extensive accumulation of mitochondria were only seen in K19-null TA muscles, and the absence of both K19 and desmin yielded milder phenotypes. Our results suggest that keratin filaments containing K19- and desmin-based intermediate filaments can play independent, complementary, or antagonistic roles in the physiology and morphology of fast-twitch skeletal muscle.
Collapse
Affiliation(s)
- Richard M Lovering
- Department of Physiology, University of Maryland, Baltimore, 21201, USA.
| | | | | | | | | | | |
Collapse
|
48
|
Lawler JM, Kim JH, Kwak HB, Barnes WS. Redox modulation of diaphragm contractility: Interaction between DHPR and RyR channels. Free Radic Biol Med 2010; 49:1969-77. [PMID: 20920578 PMCID: PMC3005760 DOI: 10.1016/j.freeradbiomed.2010.09.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Revised: 08/28/2010] [Accepted: 09/24/2010] [Indexed: 10/19/2022]
Abstract
Previous reports indicate that reactive oxygen species (ROS) may modulate contractility in skeletal muscle. Although Ca(2+)-sensitivity of the contractile apparatus appears to be a primary site of regulation, dihydropyridine receptor (DHPR or L-type Ca(2+) channels) and calcium efflux in isolated sarcoplasmic reticulum (SR) vesicles appear to be redox sensitive as well. However, DHPR as a target is poorly understood in intact muscles at body temperature, particularly in the diaphragm, a muscle more dependent on external Ca(2+) than locomotor muscles. Previously, we reported that oxidant challenge via xanthine oxidase (XO) alters the K(+) contractures in diaphragm fiber bundles, suggestive of a role of L-type Ca(2+) channels. Contractility of isolated rat diaphragm fiber bundles revealed a biphasic response to ROS challenge that was dose and time dependent. Potentiation of twitch and low-frequency diaphragm fiber bundle contractility with 0.02 U•ml(-1) XO was reversible or partially preventable with washout, dithiothreitol, and the SOD/catalase mimetic EUK-134. The RyR antagonist ruthenium red inhibited xanthine oxidase-induced potentiation, while the RyR agonist caffeine elevated diaphragm twitch and low-frequency tension in a non-additive manner by 55% when introduced simultaneously with ROS challenge. The DHPR antagonist nitrendipine (15 μM) inhibited elevation in low-frequency diaphragm tension produced by ROS challenge. Caffeine threshold tension curves were shifted to the left with 0.02 U•ml(-1) XO, but this effect was partially reversed with 15 μM nitrendipine. These results are consistent with the hypothesis that DHPR redox state and RyR function are modulated in an interactive manner, affecting contractility in intact diaphragm fiber bundles.
Collapse
Affiliation(s)
- John M Lawler
- Department of Health and Kinesiology, Interdisciplinary Faculty of Nutrition, Texas A&M University, College Station, TX 77843-4243, USA.
| | | | | | | |
Collapse
|
49
|
Yang PJ, Temenoff JS. Engineering orthopedic tissue interfaces. TISSUE ENGINEERING PART B-REVIEWS 2010; 15:127-41. [PMID: 19231983 DOI: 10.1089/ten.teb.2008.0371] [Citation(s) in RCA: 194] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
While a wide variety of approaches to engineering orthopedic tissues have been proposed, less attention has been paid to the interfaces, the specialized areas that connect two tissues of different biochemical and mechanical properties. The interface tissue plays an important role in transitioning mechanical load between disparate tissues. Thus, the relatively new field of interfacial tissue engineering presents new challenges--to not only consider the regeneration of individual orthopedic tissues, but also to design the biochemical and cellular composition of the linking tissue. Approaches to interfacial tissue engineering may be distinguished based on if the goal is to recreate the interface itself, or generate an entire integrated tissue unit (such as an osteochondral plug). As background for future efforts in engineering orthopedic interfaces, a brief review of the biology and mechanics of each interface (cartilage-bone, ligament-bone, meniscus-bone, and muscle-tendon) is presented, followed by an overview of the state-of-the-art in engineering each tissue, including advances and challenges specific to regenerating the interfaces.
Collapse
Affiliation(s)
- Peter J Yang
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, USA
| | | |
Collapse
|
50
|
Li T, Wiggins LM, von Bartheld CS. Insulin-like growth factor-1 and cardiotrophin 1 increase strength and mass of extraocular muscle in juvenile chicken. Invest Ophthalmol Vis Sci 2009; 51:2479-86. [PMID: 20007833 DOI: 10.1167/iovs.09-4414] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Insulin-like growth factor 1 (IGF1) and cardiotrophin 1 (CT1) are known to increase the strength of extraocular muscles in adult and embryonic animals, but no information is available for the early postnatal period, when strabismus treatment in humans is most urgent. Here the authors sought to determine whether these trophic factors strengthen juvenile maturing extraocular muscles and gain insight into mechanisms of force increase. METHODS After two injections of IGF1, CT1, or both with different dosages in posthatch chickens, the authors quantified five parameters of the superior oblique extraocular muscle at 2 weeks of age: contractile force, muscle mass, total myofiber area, myofiber diameter, and number of proliferating satellite cells labeled by bromodeoxyuridine. RESULTS Treatment with IGF1, CT1, and combination of IGF1 and CT1 significantly increased contractile force by 14% to 22%. CT1 and combination treatment significantly increased muscle mass by 10% to 24%. IGF1/CT1 combination treatment did not have additive effects on strengthening muscles, compared with single-drug treatments. Myofiber area increased significantly with IGF1 and CT1 treatment in proximal, but not distal, parts of the muscle and this was due to increased fiber numbers or length (IGF1) or increased diameters of global layer myofibers (CT1). Trophic factors increased the number of proliferating (bromodeoxyuridine-labeled) satellite cells in proximal and middle segments of muscles. CONCLUSIONS Exogenous IGF1 and CT1 strengthen extraocular muscles during maturation. They predominantly remodel the proximal segment of juvenile extraocular muscles. This information about muscle plasticity may aid the design of pharmacologic treatment of strabismus in children during the "critical period" of oculomotor maturation.
Collapse
Affiliation(s)
- Tian Li
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557, USA
| | | | | |
Collapse
|