1
|
Chakraborty S, Mantripragada VT, Chakravarty A, Goswami D, Poddar A. Unraveling the complex interplay between abnormal hemorheology and shape asymmetry in flow through stenotic arteries. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 257:108437. [PMID: 39357092 DOI: 10.1016/j.cmpb.2024.108437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 10/04/2024]
Abstract
BACKGROUND AND OBJECTIVE Stenosis or narrowing of arteries due to the buildup of plaque is a common occurrence in atherosclerosis and coronary artery disease (CAD), limiting blood flow to the heart and posing substantial cardiovascular risk. While the role of geometric irregularities in arterial stenosis is well-documented, the complex interplay between the abnormal hemorheology and asymmetric shape in flow characteristics remains unexplored. METHODS This study investigates the influence of varying hematocrit (Hct) levels, often caused by conditions such as diabetes and anemia, on flow patterns in an idealized eccentric stenotic artery using computational fluid dynamics simulations. We consider three physiological levels of Hct, 25%, 45%, and 65%, representing anemia, healthy, and diabetic conditions, respectively. The numerical simulations are performed for different combinations of shape eccentricity and blood rheological parameters, and hemodynamic indicators such as wall shear stress (WSS), oscillatory shear index (OSI), are relative residence time (RRT) are calculated to assess the arterial health. RESULTS Our results reveal the significant influence of Hct level on stenosis progression. CAD patients with anemia are exposed to lower WSS and higher OSI, which may increase the propensity for plaque progression and rupture. However, for CAD patients with high Hct level - as is often the case in diabetes - the WSS at the minimal lumen area increases rapidly, which may also lead to plaque rupture and cause adverse events such as heart attacks. These disturbances promote endothelial dysfunction, inflammation, and thrombus formation, thereby intensifying cardiovascular risk. CONCLUSIONS Our findings underscore the significance of incorporating hemorheological parameters, such as Hct, into computational models for accurate assessment of flow dynamics. We envision that insights gained from this study will inform the development of tailored treatment strategies and interventions in CAD patients with common comorbidities such as diabetes and anemia, thus mitigating the adverse effects of abnormal hemorheology and reducing the ever-growing burden of cardiovascular diseases.
Collapse
Affiliation(s)
- Soumen Chakraborty
- Department of Mechanical Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand 826004, India
| | - Vishnu Teja Mantripragada
- Department of Fuel, Minerals and Metallurgical Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand 826004, India
| | - Aranyak Chakravarty
- School of Nuclear Studies and Application, Jadavpur University, Kolkata, West Bengal 700106, India
| | - Debkalpa Goswami
- Department of Cardiovascular Medicine, Heart, Vascular & Thoracic Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Antarip Poddar
- Department of Mechanical Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand 826004, India.
| |
Collapse
|
2
|
Chen X, Cao H, Li Y, Chen F, Peng Y, Zheng T, Chen M. Hemodynamic influence of mild stenosis morphology in different coronary arteries: a computational fluid dynamic modelling study. Front Bioeng Biotechnol 2024; 12:1439846. [PMID: 39157447 PMCID: PMC11327040 DOI: 10.3389/fbioe.2024.1439846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 07/02/2024] [Indexed: 08/20/2024] Open
Abstract
Introduction: Mild stenosis [degree of stenosis (DS) < 50%] is commonly labeled as nonobstructive lesion. Some lesions remain stable for several years, while others precipitate acute coronary syndromes (ACS) rapidly. The causes of ACS and the factors leading to diverse clinical outcomes remain unclear. Method: This study aimed to investigate the hemodynamic influence of mild stenosis morphologies in different coronary arteries. The stenoses were modeled with different morphologies based on a healthy individual data. Computational fluid dynamics analysis was used to obtain hemodynamic characteristics, including flow waveforms, fractional flow reserve (FFR), flow streamlines, time-average wall shear stress (TAWSS), and oscillatory shear index (OSI). Results: Numerical simulation indicated significant hemodynamic differences among different DS and locations. In the 20%-30% range, significant large, low-velocity vortexes resulted in low TAWSS (<4 dyne/cm2) around stenoses. In the 30%-50% range, high flow velocity due to lumen area reduction resulted in high TAWSS (>40 dyne/cm2), rapidly expanding the high TAWSS area (averagely increased by 0.46 cm2) in left main artery and left anterior descending artery (LAD), where high OSI areas remained extensive (>0.19 cm2). Discussion: While mild stenosis does not pose any immediate ischemic risk due to a FFR > 0.95, 20%-50% stenosis requires attention and further subdivision based on location is essential. Rapid progression is a danger for lesions with 20%-30% DS near the stenoses and in the proximal LAD, while lesions with 30%-50% DS can cause plaque injury and rupture. These findings support clinical practice in early assessment, monitoring, and preventive treatment.
Collapse
Affiliation(s)
- Xi Chen
- Department of Mechanics and Engineering, College Architecture and Environment, Sichuan University, Chengdu, China
| | - Haoyao Cao
- Department of Mechanics and Engineering, College Architecture and Environment, Sichuan University, Chengdu, China
- Yibin Institute of Industrial Technology, Sichuan University, Yibin, China
| | - Yiming Li
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China
| | - Fei Chen
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China
| | - Yong Peng
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China
| | - Tinghui Zheng
- Department of Mechanics and Engineering, College Architecture and Environment, Sichuan University, Chengdu, China
- Med-X Center for Informatics, Sichuan University, Chengdu, China
| | - Mao Chen
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
3
|
Hossain SS, Johnson MJ, Hughes TJR. A parametric study of the effect of 3D plaque shape on local hemodynamics and implications for plaque instability. Biomech Model Mechanobiol 2024; 23:1209-1227. [PMID: 38532042 PMCID: PMC11341608 DOI: 10.1007/s10237-024-01834-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 02/20/2024] [Indexed: 03/28/2024]
Abstract
The vast majority of heart attacks occur when vulnerable plaques rupture, releasing their lipid content into the blood stream leading to thrombus formation and blockage of a coronary artery. Detection of these unstable plaques before they rupture remains a challenge. Hemodynamic features including wall shear stress (WSS) and wall shear stress gradient (WSSG) near the vulnerable plaque and local inflammation are known to affect plaque instability. In this work, a computational workflow has been developed to enable a comprehensive parametric study detailing the effects of 3D plaque shape on local hemodynamics and their implications for plaque instability. Parameterized geometric 3D plaque models are created within a patient-specific coronary artery tree using a NURBS (non-uniform rational B-splines)-based vascular modeling pipeline. Realistic blood flow features are simulated by using a Navier-Stokes solver within an isogeometric finite-element analysis framework. Near wall hemodynamic quantities such as WSS and WSSG are quantified, and vascular distribution of an inflammatory marker (VCAM-1) is estimated. Results show that proximally skewed eccentric plaques have the most vulnerable combination of high WSS and high positive spatial WSSG, and the presence of multiple lesions increases risk of rupture. The computational tool developed in this work, in conjunction with clinical data, -could help identify surrogate markers of plaque instability, potentially leading to a noninvasive clinical procedure for the detection of vulnerable plaques before rupture.
Collapse
Affiliation(s)
- Shaolie S Hossain
- Molecular Cardiology Research Laboratories, The Texas Heart Institute, 6770 Bertner Avenue, Houston, TX, 77030, USA.
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, 201 E. 24th St, Austin, TX, 78712, USA.
| | - Michael J Johnson
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, 201 E. 24th St, Austin, TX, 78712, USA
| | - Thomas J R Hughes
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, 201 E. 24th St, Austin, TX, 78712, USA
| |
Collapse
|
4
|
Sakurada K, Shimonaga K, Tabata S, Sugasawa S, Niwa A, Kushi Y, Ozaki S, Ikedo T, Hamano E, Yamada K, Imamura H, Mori H, Koga M, Ihara M, Hatakeyama K, Iihara K, Kataoka H. Ulceration location is associated with clinical course in carotid stenosis. J Vasc Surg 2024:S0741-5214(24)01248-5. [PMID: 38852894 DOI: 10.1016/j.jvs.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 06/11/2024]
Abstract
OBJECTIVE Plaque ulceration in carotid artery stenosis is a risk factor for cerebral ischemic events; however, the characteristics that determine plaque vulnerability are not fully understood. We thus assessed the association between plaque ulceration sites and cerebrovascular ischemic attack. METHODS We retrospectively collected the clinical data of 72 consecutive patients diagnosed with carotid artery stenosis with plaque ulcers. After excluding patients with pseudo-occlusion, a history of previous carotid endarterectomy or carotid artery stenting before the ulcer was first discovered, follow-up data of less than 1 month, or carotid endarterectomy or carotid artery stenting performed within 1 month after the ulcer was first discovered, 60 patients were ultimately included. Patients were divided into proximal and distal groups based on the ulcer location relative to the most stenotic point. The primary endpoints were ipsilateral cerebrovascular ischemic events ("ischemic events"), such as amaurosis fugax, transient ischemic attack, or ischemic stroke due to carotid artery stenosis with plaque ulceration. The association between ulcer location and ischemic events was also assessed. RESULTS In the patients with plaque ulcer, more patients had proximal than distal plaque ulcers (39 vs 21; P = .028). The median follow-up duration was 3.8 years (interquartile range, 1.5-6.2 years). Nineteen patients (32%) experienced ischemic event. Ischemic events occurred more frequently in the distal than in the proximal group (18% vs 59%; P = .005). Kaplan-Meier curves demonstrated a significantly shorter event-free time in the distal group (log-rank P = .021). In univariate analysis, distal ulcer location was associated with ischemic events (odds ratio [OR], 2.94; 95% confidence interval [CI], 1.13-7.65; P = .03). Multivariate analysis using two different models also showed that distal ulcer location was independently associated with ischemic events (Model 1: OR, 3.85; 95% CI, 1.26-11.78; P = .03; Model 2: OR, 4.31; 95% CI, 1.49-12.49; P = .009). CONCLUSIONS Patients with carotid artery stenosis and plaque ulcers located distal to the most stenotic point are more likely to experience cerebrovascular ischemic attacks. Therefore, carotid plaques with ulcers located distal to the most stenotic point may be a potential indication for surgical treatment.
Collapse
Affiliation(s)
- Kokyo Sakurada
- Department of Neurosurgery, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Koji Shimonaga
- Department of Neurosurgery, National Cerebral and Cardiovascular Center, Osaka, Japan.
| | - Shinya Tabata
- Department of Neurosurgery, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Shin Sugasawa
- Department of Neurosurgery, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Akihiro Niwa
- Department of Neurosurgery, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Yuji Kushi
- Department of Neurosurgery, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Saya Ozaki
- Department of Neurosurgery, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Taichi Ikedo
- Department of Neurosurgery, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Eika Hamano
- Department of Neurosurgery, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Kiyofumi Yamada
- Department of Neurosurgery, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Hirotoshi Imamura
- Department of Neurosurgery, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Hisae Mori
- Department of Neurosurgery, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Masatoshi Koga
- Division of Cerebrovascular Medicine, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Masafumi Ihara
- Division of Neurology, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Kinta Hatakeyama
- Department of Pathology, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Koji Iihara
- Department of Neurosurgery, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Hiroharu Kataoka
- Department of Neurosurgery, National Cerebral and Cardiovascular Center, Osaka, Japan
| |
Collapse
|
5
|
Carpenter HJ, Ghayesh MH, Zander AC, Psaltis PJ. On the nonlinear relationship between wall shear stress topology and multi-directionality in coronary atherosclerosis. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2023; 231:107418. [PMID: 36842347 DOI: 10.1016/j.cmpb.2023.107418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/01/2023] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND AND OBJECTIVE In this paper we investigate twelve multi-directional/topological wall shear stress (WSS) derived metrics and their relationships with the formation of coronary plaques in both computational fluid dynamics (CFD) and dynamic fluid-structure interaction (FSI) frameworks. While low WSS is one of the most established biomechanical markers associated with coronary atherosclerosis progression, alone it is limited. Multi-directional and topological WSS derived metrics have been shown to be important in atherosclerosis related mechanotransduction and near-wall transport processes. However, the relationships between these twelve WSS metrics and the influence of both FSI simulations and coronary dynamics is understudied. METHODS We first investigate the relationships between these twelve WSS derived metrics, stenosis percentage and lesion length through a parametric, transient CFD study. Secondly, we extend the parametric study to FSI, both with and without the addition of coronary dynamics, and assess their correlations. Finally, we present the case of a patient who underwent invasive coronary angiography and optical coherence tomography imaging at two time points 18 months apart. Associations between each of the twelve WSS derived metrics in CFD, static FSI and dynamic FSI simulations were assessed against areas of positive/negative vessel remodelling, and changes in plaque morphology. RESULTS 22-32% stenosis was the threshold beyond which adverse multi-directional/topological WSS results. Each metric produced a different relationship with changing stenoses and lesion length. Transient haemodynamics was impacted by coronary dynamics, with the topological shear variation index suppressed by up to 94%. These changes appear more critical at smaller stenosis levels, suggesting coronary dynamics could play a role in the earlier stages of atherosclerosis development. In the patient case, both dynamics and FSI vs CFD changes altered associations with measured changes in plaque morphology. An appendix of the linear fits between the various FSI- and CFD-based simulations is provided to assist in scaling CFD-based results to resemble the compliant walled characteristics of FSI more accurately. CONCLUSIONS These results highlight the potential for coronary dynamics to alter multi-directional/topological WSS metrics which could impact associations with changes in coronary atherosclerosis over time. These results warrant further investigation in a wider range of morphological settings and longitudinal cohort studies in the future.
Collapse
Affiliation(s)
- Harry J Carpenter
- School of Mechanical Engineering, University of Adelaide, Adelaide, South Australia 5005, Australia.
| | - Mergen H Ghayesh
- School of Mechanical Engineering, University of Adelaide, Adelaide, South Australia 5005, Australia.
| | - Anthony C Zander
- School of Mechanical Engineering, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Peter J Psaltis
- Vascular Research Centre, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia 5000, Australia; Adelaide Medical School, University of Adelaide, Adelaide, South Australia 5005, Australia; Department of Cardiology, Central Adelaide Local Health Network, Adelaide, South Australia 5000, Australia
| |
Collapse
|
6
|
He F, Wang X, Hua L, Guo T. Numerical investigation of arterial stenosis location affecting hemodynamics considering microcirculation function. Technol Health Care 2023; 31:435-445. [PMID: 36120796 DOI: 10.3233/thc-213165] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND In recent years, arterial stenosis has become one of the serious diseases threatening people's life and health. OBJECTIVE The main purpose of the present study is to examine the changes of hemodynamic parameters in different stenosis locations of arteries. METHODS An arterial stenosis model with fluid-structure interaction and microcirculation as the outlet boundary of seepage is adopted in this paper. Considering the interaction between blood and arterial wall, a numerical simulation is carried out using the finite element method. RESULTS The results show that hemodynamic parameters are sensitive to the change of stenosis location. The closer to the microcirculation zone the stenosis location, the lower the blood flow velocity, pressure and the wall shear stress. In addition, the velocity trend is transformed from the gradual increase to decrease with the increasing distance away from the inlet when the stenosis location moves to the microcirculation zone. CONCLUSION This work proves that the stenosis location has a great influence on hemodynamics based on microcirculation function. Microcirculation is an important factor that cannot be ignored in the numerical simulation of arterial hemodynamics. The numerical results could provide the potential of clinical preconditions for disease diagnosis and treatment.
Collapse
Affiliation(s)
- Fan He
- School of Science, Beijing University of Civil Engineering and Architecture, Beijing, China
| | - Xinyu Wang
- School of Science, Beijing University of Civil Engineering and Architecture, Beijing, China
| | - Lu Hua
- Thrombosis Center, National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tingting Guo
- Thrombosis Center, National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
7
|
Abstract
Arterial stenosis is a problem of immediate significance, as cardiovascular disease is the number one leading cause of death worldwide. Generally, the study of stenotic flow assumes a smooth, curved stenosis and artery. However, the real situation is unlikely to present an infinitely smooth-surfaced arterial stenosis. Here, the impact of surface roughness on the flow in an arterial stenosis was studied via a computational fluid dynamics analysis. A patient-specific geometry with a smooth surface was reconstructed, and a partially rough model was built by artificially adding random roughness only on the stenotic region of the smooth model. It was found that the flow was oscillatory downstream of the stenosis in the models. A slightly lower velocity near the wall and more oscillatory flows were observed due to the presence of the roughness in the stenotic region. However, the pressure distributions did not vary significantly between the smooth and rough models. The differences in the wall shear metrics were slight in the stenotic region and became larger in the downstream region of the models.
Collapse
|
8
|
Gatti V, Nauleau P, Karageorgos GM, Shim JJ, Ateshian GA, Konofagou EE. Modeling Pulse Wave Propagation Through a Stenotic Artery With Fluid Structure Interaction: A Validation Study Using Ultrasound Pulse Wave Imaging. J Biomech Eng 2021; 143:031005. [PMID: 33030208 PMCID: PMC7872000 DOI: 10.1115/1.4048708] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 09/01/2020] [Indexed: 11/08/2022]
Abstract
Pulse wave imaging (PWI) is an ultrasound-based method that allows spatiotemporal mapping of the arterial pulse wave propagation, from which the local pulse wave velocity (PWV) can be derived. Recent reports indicate that PWI can help the assessment of atherosclerotic plaque composition and mechanical properties. However, the effect of the atherosclerotic plaque's geometry and mechanics on the arterial wall distension and local PWV remains unclear. In this study, we investigated the accuracy of a finite element (FE) fluid-structure interaction (FSI) approach to predict the velocity of a pulse wave propagating through a stenotic artery with an asymmetrical plaque, as quantified with PWI method. Experiments were designed to compare FE-FSI modeling of the pulse wave propagation through a stenotic artery against PWI obtained with manufactured phantom arteries made of polyvinyl alcohol (PVA) material. FSI-generated spatiotemporal maps were used to estimate PWV at the plaque region and compared it to the experimental results. Velocity of the pulse wave propagation and magnitude of the wall distension were correctly predicted with the FE analysis. In addition, findings indicate that a plaque with a high degree of stenosis (>70%) attenuates the propagation of the pulse pressure wave. Results of this study support the validity of the FE-FSI methods to investigate the effect of arterial wall structural and mechanical properties on the pulse wave propagation. This modeling method can help to guide the optimization of PWI to characterize plaque properties and substantiate clinical findings.
Collapse
Affiliation(s)
- Vittorio Gatti
- Department of Biomedical Engineering, Columbia University, New York, NY 10027
| | - Pierre Nauleau
- Department of Biomedical Engineering, Columbia University, New York, NY 10027
| | | | - Jay J. Shim
- Department of Mechanical Engineering, Columbia University, New York, NY 10027
| | - Gerard A. Ateshian
- Department of Mechanical Engineering, Columbia University, New York, NY 10027
| | - Elisa E. Konofagou
- Department of Biomedical Engineering, Columbia University, New York, NY 10027; Department of Radiology, Columbia University, 351 Engineering Terrace, Mail Code 8904, New York, NY 10027
| |
Collapse
|
9
|
Hashemi J, Rai S, Ghafghazi S, Berson RE. Blood residence time to assess significance of coronary artery stenosis. Sci Rep 2020; 10:11658. [PMID: 32669566 PMCID: PMC7363809 DOI: 10.1038/s41598-020-68292-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 06/15/2020] [Indexed: 01/09/2023] Open
Abstract
Coronary artery stenosis is a narrowing of coronary lumen space caused by an atherosclerotic lesion. Fractional flow reserve (FFR) is the gold standard metric to assess physiological significance of coronary stenosis, but requires an invasive procedure. Computational modeling in conjunction with patient-specific imaging demonstrates formation of regions of recirculatory flow distal to a stenosis, increasing mean blood residence time relative to uninhibited flow. A new computational parameter, mean blood residence time (BloodRT), was computed for 100 coronary artery segments for which FFR was known. A threshold for BloodRT was determined to assess the physiological significance of a stenosis, analogous to diagnostic threshold for FFR. Model sensitivity and specificity of BloodRT for diagnosis of hemodynamically significant coronary stenosis was 98% and 96% respectively, compared with FFR. When applied to clinical practice, this could potentially allow practicing cardiologists to accurately assess the severity of coronary stenosis without resorting to invasive techniques.
Collapse
Affiliation(s)
- Javad Hashemi
- Department of Chemical Engineering, University of Louisville, Louisville, KY, USA
| | - Shesh Rai
- Department of Bioinformatics and Biostatistics, University of Louisville, Louisville, KY, USA
| | - Shahab Ghafghazi
- Department of Medicine, University of Louisville, Louisville, KY, USA.
| | - R Eric Berson
- Department of Chemical Engineering, University of Louisville, Louisville, KY, USA.
| |
Collapse
|
10
|
Baratchi S, Zaldivia MTK, Wallert M, Loseff-Silver J, Al-Aryahi S, Zamani J, Thurgood P, Salim A, Htun NM, Stub D, Vahidi P, Duffy SJ, Walton A, Nguyen TH, Jaworowski A, Khoshmanesh K, Peter K. Transcatheter Aortic Valve Implantation Represents an Anti-Inflammatory Therapy Via Reduction of Shear Stress-Induced, Piezo-1-Mediated Monocyte Activation. Circulation 2020; 142:1092-1105. [PMID: 32697107 DOI: 10.1161/circulationaha.120.045536] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Aortic valve stenosis is an increasingly prevalent degenerative and inflammatory disease. Transcatheter aortic valve implantation (TAVI) has revolutionized its treatment, thereby avoiding its life-threatening/disabling consequences. Whether aortic valve stenosis is accelerated by inflammation and whether it is itself a cause of inflammation are unclear. We hypothesized that the large shear forces exerted on circulating cells, particularly on the largest circulating cells, monocytes, while passing through stenotic aortic valves result in proinflammatory effects that are resolved with TAVI. METHODS TAVI provides a unique opportunity to compare the activation status of monocytes under high shear stress (before TAVI) and under low shear stress (after TAVI). The activation status of monocytes was determined with a single-chain antibody, MAN-1, which is specific for the activated β2-integrin Mac-1. Monocyte function was further characterized by the adhesion of myocytes to stimulated endothelial cells, phagocytic activity, uptake of oxidized low-density lipoprotein, and cytokine expression. In addition, we designed a microfluidic system to recapitulate the shear rate conditions before and after TAVI. We used this tool in combination with functional assays, Ca2+ imaging, siRNA gene silencing, and pharmacological agonists and antagonists to identify the key mechanoreceptor mediating the shear stress sensitivity of monocytes. Last, we stained for monocytes in explanted stenotic aortic human valves. RESULTS The resolution of high shear stress through TAVI reduces Mac-1 activation, cellular adhesion, phagocytosis, oxidized low-density lipoprotein uptake, and expression of inflammatory markers in monocytes and plasma. Using microfluidics and pharmacological and genetic studies, we could recapitulate high shear stress effects on isolated human monocytes under highly controlled conditions, showing that shear stress-dependent calcium influx and monocyte adhesion are mediated by the mechanosensitive ion channel Piezo-1. We also demonstrate that the expression of this receptor is shear stress dependent and downregulated in patients receiving TAVI. Last, we show monocyte accumulation at the aortic side of leaflets of explanted aortic valves. CONCLUSIONS We demonstrate that high shear stress, as present in patients with aortic valve stenosis, activates multiple monocyte functions, and we identify Piezo-1 as the mainly responsible mechanoreceptor, representing a potentially druggable target. We demonstrate an anti-inflammatory effect and therefore a novel therapeutic benefit of TAVI.
Collapse
Affiliation(s)
- Sara Baratchi
- School of Health and Biomedical Sciences (S.B., S.A.-A., P.V., A.J., K.P.), RMIT University, Melbourne, Victoria, Australia
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (S.B., M.T.K.J., M.W., J.L.-S., A.S., N.M.H., D.S., K.P.)
| | - Maria T K Zaldivia
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (S.B., M.T.K.J., M.W., J.L.-S., A.S., N.M.H., D.S., K.P.)
| | - Maria Wallert
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (S.B., M.T.K.J., M.W., J.L.-S., A.S., N.M.H., D.S., K.P.)
| | - Julia Loseff-Silver
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (S.B., M.T.K.J., M.W., J.L.-S., A.S., N.M.H., D.S., K.P.)
| | - Sefaa Al-Aryahi
- School of Health and Biomedical Sciences (S.B., S.A.-A., P.V., A.J., K.P.), RMIT University, Melbourne, Victoria, Australia
| | - Jalal Zamani
- Department of Cardiology, Alfred Hospital, Melbourne, Victoria, Australia (J.Z., N.M.H., D.S., S.J.D., A.W., K.P.)
| | - Peter Thurgood
- School of Engineering (P.T., K.K.), RMIT University, Melbourne, Victoria, Australia
| | - Agus Salim
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (S.B., M.T.K.J., M.W., J.L.-S., A.S., N.M.H., D.S., K.P.)
- Department of Mathematics and Statistics, La Trobe University, Melbourne, Victoria, Australia (A.S.)
| | - Nay M Htun
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (S.B., M.T.K.J., M.W., J.L.-S., A.S., N.M.H., D.S., K.P.)
- Department of Cardiology, Alfred Hospital, Melbourne, Victoria, Australia (J.Z., N.M.H., D.S., S.J.D., A.W., K.P.)
| | - Dion Stub
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (S.B., M.T.K.J., M.W., J.L.-S., A.S., N.M.H., D.S., K.P.)
- Department of Cardiology, Alfred Hospital, Melbourne, Victoria, Australia (J.Z., N.M.H., D.S., S.J.D., A.W., K.P.)
- Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Victoria, Australia (D.S.)
| | - Parisa Vahidi
- School of Health and Biomedical Sciences (S.B., S.A.-A., P.V., A.J., K.P.), RMIT University, Melbourne, Victoria, Australia
| | - Stephen J Duffy
- Department of Cardiology, Alfred Hospital, Melbourne, Victoria, Australia (J.Z., N.M.H., D.S., S.J.D., A.W., K.P.)
| | - Antony Walton
- Department of Cardiology, Alfred Hospital, Melbourne, Victoria, Australia (J.Z., N.M.H., D.S., S.J.D., A.W., K.P.)
| | - Thanh Ha Nguyen
- Cardiology Department, Queen Elizabeth Hospital, University of Adelaide, Woodville, South Australia, Australia (T.H.N.)
| | - Anthony Jaworowski
- School of Health and Biomedical Sciences (S.B., S.A.-A., P.V., A.J., K.P.), RMIT University, Melbourne, Victoria, Australia
| | | | - Karlheinz Peter
- School of Health and Biomedical Sciences (S.B., S.A.-A., P.V., A.J., K.P.), RMIT University, Melbourne, Victoria, Australia
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (S.B., M.T.K.J., M.W., J.L.-S., A.S., N.M.H., D.S., K.P.)
- Department of Cardiology, Alfred Hospital, Melbourne, Victoria, Australia (J.Z., N.M.H., D.S., S.J.D., A.W., K.P.)
| |
Collapse
|
11
|
Shahzadi I, Bilal S. A significant role of permeability on blood flow for hybrid nanofluid through bifurcated stenosed artery: Drug delivery application. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2020; 187:105248. [PMID: 31821978 DOI: 10.1016/j.cmpb.2019.105248] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/19/2019] [Accepted: 11/29/2019] [Indexed: 06/10/2023]
Abstract
OBJECTIVE The prime objective of concerned article is to discuss the permeability impacts on blood flow by considering hybrid nanofluid through bifurcated stenosed artery. DESIGN/APPROACH The human body circulatory framework involves the arrangement of veins that fuse the bifurcation on parent, at apex and on regions of daughter artery with nanoparticles is viewed. Blood streaming is recognized as Newtonian along vessel segment. The walls of the stenosed bifurcated artery is considered to be permeable as well as compliant. Copper and its oxide as used as drug to minimize the stress and the lesions of the atherosclerotic artery. FINDINGS The theoretical investigation is carried out by invoking the experimental values of hybrid nanoparticles into the structured equations. Moreover, impacts of hemodynamics are also make sense of to inspect the progression of blood for atherosclerotic vein. Daughter and parent artery comparison is described through parabolic graph of velocity. Graphical illustration is utilized to present the theoretical results of this drug delivery model. Metallic nanoparticles justify their use in drug delivery. CONCLUSIONS The flow of blood is viewed as not quite the same as pressure between segments of atherosclerotic and non-atherosclerotic course. Bifurcation angle minimize the stress for daughter artery whereas trend is opposite for parent daughter. The change in compliant wall parameter reduces the circulating bolus size for parent daughter whereas for daughter artery the change in bolus shape is observed.
Collapse
Affiliation(s)
- Iqra Shahzadi
- Department of Mathematics, Air University, PAF Complex E-9, Islamabad, 44000, Pakistan.
| | - S Bilal
- Department of Mathematics, Air University, PAF Complex E-9, Islamabad, 44000, Pakistan
| |
Collapse
|
12
|
Wu X, von Birgelen C, Zhang S, Ding D, Huang J, Tu S. Simultaneous evaluation of plaque stability and ischemic potential of coronary lesions in a fluid-structure interaction analysis. Int J Cardiovasc Imaging 2019; 35:1563-1572. [PMID: 31053979 DOI: 10.1007/s10554-019-01611-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Accepted: 04/23/2019] [Indexed: 01/31/2023]
Abstract
The measurement of fractional flow reserve (FFR) and superficial wall stress (SWS) identifies inducible myocardial ischemia and plaque vulnerability, respectively. A simultaneous evaluation of both FFR and SWS is still lacking, while it may have a major impact on therapy. A new computational model of one-way fluid-structure interaction (FSI) was implemented and used to perform a total of 54 analyses in virtual coronary lesion models, based on plaque compositions, arterial remodeling patterns, and stenosis morphologies under physiological conditions. Due to a greater lumen dilation and more induced strain, FFR in the lipid-rich lesions (0.81 ± 0.15) was higher than that in fibrous lesions (0.79 ± 0.16, P = 0.001) and calcified lesions (0.79 ± 0.16, P = 0.001). Four types of lesions were further defined, based on the combination of cutoff values for FFR (0.80) and maximum relative SWS (30 kPa): The level of risk increased from (1) plaques with mild-to-moderate stenosis but negative remodeling for lipid-rich (Type A: non-ischemic, stable) to (2) lipid-rich plaques with mild-to-moderate stenosis and without-to-positive remodeling (Type B: non-ischemic, unstable) or plaques with severe stenosis but negative remodeling for lipid-rich (Type C: ischemic, stable) to (3) lipid-rich plaques with severe stenosis and without-to-positive remodeling (Type D: ischemic, unstable). The analysis of FSI to simultaneously evaluate inducible myocardial ischemia and plaque stability may be useful to identify coronary lesions at a high risk and to ultimately optimize treatment. Further research is warranted to assess whether a more aggressive treatment may improve the prognosis of patients with non-ischemic, intermediate, and unstable lesions.
Collapse
Affiliation(s)
- Xinlei Wu
- Biomedical Instrument Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Med-X Engineering Research Center, Shanghai Jiao Tong University, Shanghai, China
| | | | - Su Zhang
- Biomedical Instrument Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Med-X Engineering Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Daixin Ding
- Biomedical Instrument Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Med-X Engineering Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Jiayue Huang
- Biomedical Instrument Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Med-X Engineering Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Shengxian Tu
- Biomedical Instrument Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China. .,Shanghai Med-X Engineering Research Center, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
13
|
He F, Hua L, Gao LJ. A hemodynamic model with a seepage condition and fluid-structure interactions for blood flow in arteries with symmetric stenosis. J Biol Phys 2019; 45:183-192. [PMID: 31062132 DOI: 10.1007/s10867-019-09523-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 03/25/2019] [Indexed: 12/01/2022] Open
Abstract
To strengthen the detailed understanding of arterial stenosis, we construct a novel hemodynamic model. Frequently used symmetric stenosis is employed in this work. Being different from a traditional model, this numerical model adopts microcirculation resistance as an outlet boundary condition, which is called a seepage condition. Meanwhile, fluid-structure interactions are used in the numerical simulation considering the interrelationship of blood and arterial wall. Our results indicate that (i) the region upstream of stenosis experiences very high pressures during cardiac cycles, (ii) pressure drops much faster as the flow moves into the stenotic region, and (iii) high flow velocities and high shear stresses occur in the post-stenosis region. This work provides evidence that there is a strong effect of the function of microcirculation on stenosis. This contributes to evaluating potential stenotic behavior in arteries and is pivotal in guiding disease treatment.
Collapse
Affiliation(s)
- Fan He
- Department of Mechanics, School of Science, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China.
| | - Lu Hua
- Key Laboratory of Clinical Trial Research in Cardiovascular Drugs, Ministry of Health, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Li-Jian Gao
- Key Laboratory of Clinical Trial Research in Cardiovascular Drugs, Ministry of Health, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| |
Collapse
|
14
|
Shape factor and sphericity features examination of Cu and Cu-Al2O3/blood through atherosclerotic artery under the impact of wall characteristic. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.08.122] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
15
|
Choi W, Park SH, Huh HK, Lee SJ. Hemodynamic characteristics of flow around a deformable stenosis. J Biomech 2017; 61:216-223. [PMID: 28835343 DOI: 10.1016/j.jbiomech.2017.07.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 06/06/2017] [Accepted: 07/22/2017] [Indexed: 10/19/2022]
|
16
|
Agujetas R, Ferrera C, Marcos AC, Alejo JP, Montanero JM. Numerical and experimental analysis of the transitional flow across a real stenosis. Biomech Model Mechanobiol 2017; 16:1447-1458. [PMID: 28343259 DOI: 10.1007/s10237-017-0898-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 03/15/2017] [Indexed: 11/25/2022]
Abstract
In this paper, we present a numerical study of the pulsatile transitional flow crossing a severe real stenosis located right in front of the bifurcation between the right subclavian and right common carotid arteries. The simulation allows one to determine relevant features of this subject-specific flow, such as the pressure waves in the right subclavian and right common carotid arteries. We explain the subclavian steal syndrome suffered by the patient in terms of the drastic pressure drop in the right subclavian artery. This pressure drop is caused by both the diverging part of the analyzed stenosis and the reverse flow in the bifurcation induced by another stenosis in the right internal carotid artery.
Collapse
Affiliation(s)
- R Agujetas
- Depto. de Ingeniería Mecánica, Energética y de los Materiales and Instituto de Computación Científica Avanzada (ICCAEx), Universidad de Extremadura, 06006, Badajoz, Spain
| | - C Ferrera
- Depto. de Ingeniería Mecánica, Energética y de los Materiales and Instituto de Computación Científica Avanzada (ICCAEx), Universidad de Extremadura, 06006, Badajoz, Spain
| | - A C Marcos
- Depto. de Expresión Gráfica, Universidad de Extremadura, 06006, Badajoz, Spain
| | - J P Alejo
- Servicio de Radiología, Hospital Infanta Cristina, 06006, Badajoz, Spain
| | - J M Montanero
- Depto. de Ingeniería Mecánica, Energética y de los Materiales and Instituto de Computación Científica Avanzada (ICCAEx), Universidad de Extremadura, 06006, Badajoz, Spain.
| |
Collapse
|
17
|
Kolodgie FD, Yahagi K, Mori H, Romero ME, Trout HH, Finn AV, Virmani R. High-risk carotid plaque: lessons learned from histopathology. Semin Vasc Surg 2017; 30:31-43. [DOI: 10.1053/j.semvascsurg.2017.04.008] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
18
|
BAHRAMIAN FERESHTEH, MOHAMMADI HADI. MODELING BLOOD FLOW IN AN ECCENTRIC STENOSED ARTERY USING LARGE EDDY SIMULATION AND PARALLEL COMPUTING. J MECH MED BIOL 2015. [DOI: 10.1142/s0219519415500864] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Computational fluid dynamics (CFD) is an excellent computational tool to assess the hemodynamics and detailed blood-flow structure for cardiovascular applications. Modeling turbulence for cardiovascular applications can be achieved (to some extent) using available numerical models such as Reynolds average Navier–Stokes (RANS), the large eddy simulation (LES) and the direct numerical solution (DNS). In order to develop an efficient model which is as accurate as DNS and as quick as RANS, our laboratory's focus is on LES. In this study, we develop an efficient numerical model which is based on LES and structured but non-orthogonal finite volumes. Using the proposed model, the detailed flow structure and turbulent features of the blood stream in a complicated geometry is captured. The aim of this study is to model blood-flow through an eccentric stenosis accurately and quickly. The results are similar to those obtained using DNS but in a fraction of the CPU time. The computational tools implemented in this study are based on a FORTRAN based in-house code coupled with parallel computing using SHARCNET. The developed model is a significant computational tool which can be used to assess the hemodynamic properties for cardiovascular applications, e.g., prosthetic heart valves and atherosclerosis.
Collapse
Affiliation(s)
- FERESHTEH BAHRAMIAN
- Biomedical Engineering Graduate Program, Faculty of Applied, Science University of British Columbia, Vancouver, BC, Canada
| | - HADI MOHAMMADI
- School of Engineering, Faculty of Applied Science University of British, Columbia, Okanagan, Kelowna, BC, Canada
| |
Collapse
|
19
|
Torres Rojas AM, Meza Romero A, Pagonabarraga I, Travasso RDM, Corvera Poiré E. Obstructions in Vascular Networks: Relation Between Network Morphology and Blood Supply. PLoS One 2015; 10:e0128111. [PMID: 26086774 PMCID: PMC4472785 DOI: 10.1371/journal.pone.0128111] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 04/22/2015] [Indexed: 11/19/2022] Open
Abstract
We relate vascular network structure to hemodynamics after vessel obstructions. We consider tree-like networks with a viscoelastic fluid with the rheological characteristics of blood. We analyze the network hemodynamic response, which is a function of the frequencies involved in the driving, and a measurement of the resistance to flow. This response function allows the study of the hemodynamics of the system, without the knowledge of a particular pressure gradient. We find analytical expressions for the network response, which explicitly show the roles played by the network structure, the degree of obstruction, and the geometrical place in which obstructions occur. Notably, we find that the sequence of resistances of the network without occlusions strongly determines the tendencies that the response function has with the anatomical place where obstructions are located. We identify anatomical sites in a network that are critical for its overall capacity to supply blood to a tissue after obstructions. We demonstrate that relatively small obstructions in such critical sites are able to cause a much larger decrease on flow than larger obstructions placed in non-critical sites. Our results indicate that, to a large extent, the response of the network is determined locally. That is, it depends on the structure that the vasculature has around the place where occlusions are found. This result is manifest in a network that follows Murray’s law, which is in reasonable agreement with several mammalian vasculatures. For this one, occlusions in early generation vessels have a radically different effect than occlusions in late generation vessels occluding the same percentage of area available to flow. This locality implies that whenever there is a tissue irrigated by a tree-like in vivo vasculature, our model is able to interpret how important obstructions are for the irrigation of such tissue.
Collapse
Affiliation(s)
- Aimee M. Torres Rojas
- Departamento de Física y Química Teórica, Facultad de Química, Universidad Nacional Autónoma de México, México D.F., Mexico
| | - Alejandro Meza Romero
- Departamento de Física y Química Teórica, Facultad de Química, Universidad Nacional Autónoma de México, México D.F., Mexico
| | | | - Rui D. M. Travasso
- Centro de Física da Universidade de Coimbra, Departamento de Física, Faculdade de Ciências e Tecnologia, Universidade de Coimbra, Coimbra, Portugal
| | - Eugenia Corvera Poiré
- Departamento de Física y Química Teórica, Facultad de Química, Universidad Nacional Autónoma de México, México D.F., Mexico
- Departament de Física Fonamental, Universitat de Barcelona, Barcelona, Spain
- * E-mail:
| |
Collapse
|
20
|
Pal A, Anupindi K, Delorme Y, Ghaisas N, Shetty DA, Frankel SH. Large eddy simulation of transitional flow in an idealized stenotic blood vessel: evaluation of subgrid scale models. J Biomech Eng 2014; 136:1870273. [PMID: 24801556 DOI: 10.1115/1.4027610] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 05/07/2014] [Indexed: 11/08/2022]
Abstract
In the present study, we performed large eddy simulation (LES) of axisymmetric, and 75% stenosed, eccentric arterial models with steady inflow conditions at a Reynolds number of 1000. The results obtained are compared with the direct numerical simulation (DNS) data (Varghese et al., 2007, "Direct Numerical Simulation of Stenotic Flows. Part 1. Steady Flow," J. Fluid Mech., 582, pp. 253-280). An inhouse code (WenoHemo) employing high-order numerical methods for spatial and temporal terms, along with a 2nd order accurate ghost point immersed boundary method (IBM) (Mark, and Vanwachem, 2008, "Derivation and Validation of a Novel Implicit Second-Order Accurate Immersed Boundary Method," J. Comput. Phys., 227(13), pp. 6660-6680) for enforcing boundary conditions on curved geometries is used for simulations. Three subgrid scale (SGS) models, namely, the classical Smagorinsky model (Smagorinsky, 1963, "General Circulation Experiments With the Primitive Equations," Mon. Weather Rev., 91(10), pp. 99-164), recently developed Vreman model (Vreman, 2004, "An Eddy-Viscosity Subgrid-Scale Model for Turbulent Shear Flow: Algebraic Theory and Applications," Phys. Fluids, 16(10), pp. 3670-3681), and the Sigma model (Nicoud et al., 2011, "Using Singular Values to Build a Subgrid-Scale Model for Large Eddy Simulations," Phys. Fluids, 23(8), 085106) are evaluated in the present study. Evaluation of SGS models suggests that the classical constant coefficient Smagorinsky model gives best agreement with the DNS data, whereas the Vreman and Sigma models predict an early transition to turbulence in the poststenotic region. Supplementary simulations are performed using Open source field operation and manipulation (OpenFOAM) ("OpenFOAM," http://www.openfoam.org/) solver and the results are inline with those obtained with WenoHemo.
Collapse
|
21
|
Demirel S, Chen D, Mei Y, Partovi S, von Tengg-Kobligk H, Dadrich M, Böckler D, Kauczor HU, Müller-Eschner M. Comparison of morphological and rheological conditions between conventional and eversion carotid endarterectomy using computational fluid dynamics – a pilot study. Vascular 2014; 23:474-82. [DOI: 10.1177/1708538114552836] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Purpose: To compare postoperative morphological and rheological conditions after eversion carotid endarterectomy versus conventional carotid endarterectomy using computational fluid dynamics. Basic methods: Hemodynamic metrics (velocity, wall shear stress, time-averaged wall shear stress and temporal gradient wall shear stress) in the carotid arteries were simulated in one patient after conventional carotid endarterectomy and one patient after eversion carotid endarterectomy by computational fluid dynamics analysis based on patient specific data. Principal findings: Systolic peak of the eversion carotid endarterectomy model showed a gradually decreased pressure along the stream path, the conventional carotid endarterectomy model revealed high pressure (about 180 Pa) at the carotid bulb. Regions of low wall shear stress in the conventional carotid endarterectomy model were much larger than that in the eversion carotid endarterectomy model and with lower time-averaged wall shear stress values (conventional carotid endarterectomy: 0.03–5.46 Pa vs. eversion carotid endarterectomy: 0.12–5.22 Pa). Conclusions: Computational fluid dynamics after conventional carotid endarterectomy and eversion carotid endarterectomy disclosed differences in hemodynamic patterns. Larger studies are necessary to assess whether these differences are consistent and might explain different rates of restenosis in both techniques.
Collapse
Affiliation(s)
- S Demirel
- Department of Vascular and Endovascular Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - D Chen
- Department of Biomedical Engineering, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Y Mei
- Department of Biomedical Engineering, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - S Partovi
- Department of Radiology, University Hospitals Case Medical Center, Case Western Reserve University, Cleveland, USA
| | - H von Tengg-Kobligk
- Institute of Diagnostic, Interventional and Pediatric Radiology, University Hospital Bern, Inselspital, Bern, Switzerland
- Department of Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg, Germany
| | - M Dadrich
- Department of Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg, Germany
- Department of Radiology, German Cancer Research Center (dkfz), Heidelberg, Germany
| | - D Böckler
- Department of Vascular and Endovascular Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - HU Kauczor
- Department of Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg, Germany
| | - M Müller-Eschner
- Department of Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg, Germany
- Department of Radiology, German Cancer Research Center (dkfz), Heidelberg, Germany
| |
Collapse
|
22
|
Boghosian ME, Cassel KW. A pressure-gradient mechanism for vortex shedding in constricted channels. PHYSICS OF FLUIDS (WOODBURY, N.Y. : 1994) 2013; 25:123603. [PMID: 24399860 PMCID: PMC3880383 DOI: 10.1063/1.4841576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 11/22/2013] [Indexed: 06/03/2023]
Abstract
Numerical simulations of the unsteady, two-dimensional, incompressible Navier-Stokes equations are performed for a Newtonian fluid in a channel having a symmetric constriction modeled by a two-parameter Gaussian distribution on both channel walls. The Reynolds number based on inlet half-channel height and mean inlet velocity ranges from 1 to 3000. Constriction ratios based on the half-channel height of 0.25, 0.5, and 0.75 are considered. The results show that both the Reynolds number and constriction geometry have a significant effect on the behavior of the post-constriction flow field. The Navier-Stokes solutions are observed to experience a number of bifurcations: steady attached flow, steady separated flow (symmetric and asymmetric), and unsteady vortex shedding downstream of the constriction depending on the Reynolds number and constriction ratio. A sequence of events is described showing how a sustained spatially growing flow instability, reminiscent of a convective instability, leads to the vortex shedding phenomenon via a proposed streamwise pressure-gradient mechanism.
Collapse
Affiliation(s)
- M E Boghosian
- Mechanical, Materials and Aerospace Engineering Department, Fluid Dynamic Research Center, Illinois Institute of Technology, Chicago, Illinois 60616, USA
| | - K W Cassel
- Mechanical, Materials and Aerospace Engineering Department, Fluid Dynamic Research Center, Illinois Institute of Technology, Chicago, Illinois 60616, USA
| |
Collapse
|
23
|
On the Characterization of a Non-Newtonian Blood Analog and Its Response to Pulsatile Flow Downstream of a Simplified Stenosis. Ann Biomed Eng 2013; 42:97-109. [DOI: 10.1007/s10439-013-0893-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 08/10/2013] [Indexed: 11/25/2022]
|
24
|
Chen WL, Chen T, Lin CH, Chen PJ, Kan CD. Phonographic signal with a fractional-order chaotic system: a novel and simple algorithm for analyzing residual arteriovenous access stenosis. Med Biol Eng Comput 2013; 51:1011-9. [PMID: 23645205 DOI: 10.1007/s11517-013-1077-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 04/19/2013] [Indexed: 11/26/2022]
Affiliation(s)
- Wei-Ling Chen
- Department of Biomedical Engineering, National Cheng Kung University, No 1, University Road, Tainan City, 701 Taiwan, ROC.
| | | | | | | | | |
Collapse
|
25
|
“Snake Fang” Sign without Carotid Stenosis on Duplex Ultrasonography Indicates High Risk of Artery-to-Artery Embolic Stroke. J Neuroimaging 2012; 24:407-10. [DOI: 10.1111/j.1552-6569.2012.00764.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Revised: 07/22/2012] [Accepted: 08/05/2012] [Indexed: 01/08/2023] Open
|
26
|
Banerjee MK, Ganguly R, Datta A. Effect of Pulsatile Flow Waveform and Womersley Number on the Flow in Stenosed Arterial Geometry. ACTA ACUST UNITED AC 2012. [DOI: 10.5402/2012/853056] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The salient hemodynamic flow features in a stenosed artery depend not only on the degree of stenosis, but also on its location in the circulatory system and the physiological condition of the body. The nature of pulsatile flow waveform and local Womersley number vary in different regions of the arterial system and at different physiological state, which affects the local hemodynamic wall parameters, for example, the wall shear stress (WSS) and oscillatory shear index (OSI). Herein, we have numerically investigated the effects of different waveforms and Womersley numbers on the flow pattern and hemodynamic parameters in an axisymmetric stenosed arterial geometry with 50% diametral occlusion. Temporal evolution of the streamlines and hemodynamic parameters are investigated, and the time-averaged hemodynamic wall parameters are compared. Presence of the stenosis is found to increase the OSI of the flow even at the far-downstream side of the artery. At larger Womersley numbers, the instantaneous flow field in the stenosed region is found to have a stronger influence on the flow profiles of the previous time levels. The study delineates how an approximation in the assumption of inlet pulsatility profile may lead to significantly different prediction of hemodynamic wall parameters.
Collapse
Affiliation(s)
- Moloy Kumar Banerjee
- Department of Mechanical Engineering, Future Institute of Engineering and Management, Kolkata 700150, India
| | - Ranjan Ganguly
- Department of Power Engineering, Jadavpur University, Kolkata 700098, India
| | - Amitava Datta
- Department of Power Engineering, Jadavpur University, Kolkata 700098, India
| |
Collapse
|
27
|
WANG XIAOHONG, LI XIAOYANG. THE INFLUENCE OF WALL COMPLIANCE ON FLOW PATTERN IN A CURVED ARTERY EXPOSED TO A DYNAMIC PHYSIOLOGICAL ENVIRONMENT: AN ELASTIC WALL MODEL VERSUS A RIGID WALL MODEL. J MECH MED BIOL 2012. [DOI: 10.1142/s0219519412005095] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Plenty of well-established medical research works have shown that many vascular diseases such as stenosis and atherosclerosis are prone to appear in curved arteries. In this paper, we investigated the influence of wall compliance on flow pattern in curved arteries exposed to dynamic physiological environments in order to understand the hemodynamic mechanism and provide a basis for clinical research in related areas. Representative curved arteries with elastic and rigid walls are constructed by computers. The fluid-structure interaction (FSI) effect is considered in our calculations. Physiological velocity profile is assigned as the inlet boundary condition. No-slip boundary condition is applied at the blood-wall interface. Our results show that the maximum axial velocity in the rigid wall model is larger than that in the elastic wall model. Wall compliance also has a remarkable effect on backflow patterns. Significant differences in pressure distribution are found between the elastic and rigid wall models. Blood strain rate distribution patterns in the two models were also compared. It was interesting to discover that in the straight part of the artery, the flexible wall made the counter-rotating vortices induced by the curvature gradually disappear along a downstream direction. However, for the flow feature in the rigid wall model, strong vortices existed throughout the entire straight part of the artery. It revealed that the increment of wall rigidity results in a reduction in wall movement capacity, thus affecting the physiological function of the arterial wall, making it incapable of effectively regulating the flow pattern inside the artery. The current work indicates that the influence of wall compliance on flow pattern in curved artery is significant.
Collapse
Affiliation(s)
- XIAOHONG WANG
- Biomechanical Research Laboratory, College of Mechanical Engineering and Applied Electronics Technology, Beijing University of Technology, No. 100 Pingleyuan, Chaoyang District, Beijing, P. R. China
| | - XIAOYANG LI
- Biomechanical Research Laboratory, College of Mechanical Engineering and Applied Electronics Technology, Beijing University of Technology, No. 100 Pingleyuan, Chaoyang District, Beijing, P. R. China
| |
Collapse
|
28
|
McCormick SM, Seil JT, Smith DS, Tan F, Loth F. Transitional Flow in a Cylindrical Flow Chamber for Studies at the Cellular Level. Cardiovasc Eng Technol 2012. [PMID: 23205152 PMCID: PMC3505516 DOI: 10.1007/s13239-012-0107-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Fluid shear stress is an important regulator of vascular and endothelial cell (EC) functions. Its effect is dependent not only on magnitude but also on flow type. Although laminar flow predominates in the vasculature, transitional flow can occur and is thought to play a role in vascular diseases. While a great deal is known about the mechanisms and signaling cascades through which laminar shear stress regulates cells, little is known on how transitional shear stress regulates cells. To better understand the response of endothelial cells to transitional shear stress, a novel cylindrical flow chamber was designed to expose endothelial cells to a transitional flow environment similar to that found in vivo. The velocity profiles within the transitional flow chamber at Reynolds numbers 2200 and 3000 were measured using laser Doppler anemometry (LDA). At both Reynolds numbers, the velocity profiles are blunt (non-parabolic) with fluctuations larger than 5% of the velocity at the center of the pipe indicating the flows are transitional. Based on near wall velocity measurements and well established data for flow at these Reynolds numbers, the wall shear stress was estimated to be 3–4 and 5–6 dynes/cm2 for Reynolds number 2200 and 3000, respectively. In contrast to laminar shear stress, no cell alignment was observed under transitional shear stress at both Reynolds numbers. However, transitional shear stress at the higher Reynolds number caused cell elongation similar to that of laminar shear stress at 3 dynes/cm2. The fluctuating component of the wall shear stress may be responsible for these differences. The transitional flow chamber will facilitate cellular studies to identify the mechanisms through which transitional shear stress alters EC biology, which will assist in the development of vascular therapeutic treatments.
Collapse
Affiliation(s)
- Susan M. McCormick
- Section of Vascular Surgery and Endovascular Therapy, Department of Surgery, University of Chicago, MC 5028, 5841 S. Maryland Ave., Chicago, IL 60637 USA
| | - Justin T. Seil
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL USA
| | - David S. Smith
- Engineering Health and Sciences Division, College of Du Page, Chicago, IL USA
| | - Francis Tan
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL USA
| | - Francis Loth
- Departments of Mechanical and Biomedical Engineering, University of Akron, Akron, OH USA
| |
Collapse
|
29
|
Belzacq T, Avril S, Leriche E, Delache A. Mechanical action of the blood onto atheromatous plaques: influence of the stenosis shape and morphology. Comput Methods Biomech Biomed Engin 2012; 17:527-38. [PMID: 22757631 DOI: 10.1080/10255842.2012.697898] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
The vulnerability of atheromatous plaques in the carotid artery may be related to several factors, the most important being the degree of severity of the endoluminal stenosis and the thickness of the fibrous cap. It has recently been shown that the plaque length can also affect the mechanical response significantly. However, in their study on the effect of the plaque length, the authors did not consider the variations of the plaque morphology and the shape irregularities that may exist independently of the plaque length. These aspects are developed in this paper. The mechanical interactions between the blood flow and an atheromatous plaque are studied through a numerical model considering fluid-structure interaction. The simulation is achieved using the arbitrary Lagrangian-Eulerian scheme in the COMSOL TM commercial finite element package. The stenosis severity and the plaque length are, respectively, set to 45% and 15 mm. Different shapes of the stenosis are modelled, considering irregularities made of several bumps over the plaque. The resulting flow patterns, wall shear stresses, plaque deformations and stresses in the fibrous cap reveal that the effects of the blood flow are amplified if the slope upstream stenosis is steep or if the plaque morphology is irregular with bumps. More specifically, the maximum stress in the fibrous cap is 50% larger for a steep slope than for a gentle slope. These results offer new perspectives for considering the shape of plaques in the evaluation of the vulnerability.
Collapse
Affiliation(s)
- Tristan Belzacq
- a Ecole Nationale Supérieure des Mines, Centre Ingénierie et Santé , CNRS UMR 5146, 158 Cours Fauriel, 42023 Saint-Etienne Cedex 2 , France
| | | | | | | |
Collapse
|
30
|
Bernad SI, Bernad ES, Craina M, Sargan I, Totoran A, Brisan C. Particle depositions and related hemodynamic parameters in the multiple stenosed right coronary artery. J Clin Med Res 2012; 4:177-89. [PMID: 22719804 PMCID: PMC3376876 DOI: 10.4021/jocmr843w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2012] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND Blood flow analysis of the human right coronary artery (RCA) has been carried out to investigate the effects of serial stenosis on coronary hemodynamics. A 3-D model of a serial stenosed RCA was reconstructed based on multislice computerized tomography images. METHODS A velocity waveform in the proximal RCA and a pressure waveform in the distal RCA of a patient with a severe stenosis were acquired with a catheter delivered wire probe and applied as boundary conditions. The numerical analysis examines closely the effect of a multiple serial stenosis on the hemodynamic characteristics such as flow separation, wall shear stress (WSS) and particle depositions. RESULTS AND CONCLUSIONS Energy loss associated with such flow expansion after each constriction will be large and consequently the pressure drop will be higher. Overall pressure drop increased from 1700 Pa (12.75 mmHg) at the end diastole to 11000 Pa (82.5 mmHg) at the peak systole. At the peak systole the WSS values reached 110 Pa in the stenosis with 28% diameter reduction and 210 Pa in the stenosis with 54% diameter reduction, which is high enough to damage the endothelial cells. However at the end of one cardiac cycle a percent of 1.4% (15 from 1063 particles release at the inlet section) remain inside the stenosed RCA.
Collapse
Affiliation(s)
- Sandor I. Bernad
- Centre for Fundamental and Advanced Research, Romanian Academy - Timisoara Branch, Timisoara, Romania
| | - Elena S. Bernad
- “Bega” Education and Research Hospital, University of Medicine and Pharmacy “Victor Babes” Timisoara, Romania
| | - Marius Craina
- “Bega” Education and Research Hospital, University of Medicine and Pharmacy “Victor Babes” Timisoara, Romania
| | - Izabella Sargan
- Department of Anatomy, University of Medicine and Pharmacy “Victor Babes” Timisoara, Romania
| | - Alin Totoran
- Department of Biomedical Engineering, Politehnica University of Timisoara, Romania
| | - Cosmin Brisan
- “Bega” Education and Research Hospital, University of Medicine and Pharmacy “Victor Babes” Timisoara, Romania
| |
Collapse
|
31
|
Hayase H, Tokunaga K, Nakayama T, Sugiu K, Nishida A, Arimitsu S, Hishikawa T, Ono S, Ohta M, Date I. Computational fluid dynamics of carotid arteries after carotid endarterectomy or carotid artery stenting based on postoperative patient-specific computed tomography angiography and ultrasound flow data. Neurosurgery 2012; 68:1096-101; discussion 1101. [PMID: 21221041 DOI: 10.1227/neu.0b013e318208f1a0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND There are significant differences in the postoperative morphological and hemodynamic conditions of the carotid arteries between carotid artery stenting (CAS) and endarterectomy (CEA). OBJECTIVE To compare the postoperative rheological conditions after CAS with those after CEA with patch angioplasty (patch CEA) through the use of computational fluid dynamics (CFD) based on patient-specific data. METHODS The rheological conditions in the carotid arteries were simulated in 2 patients after CAS and in 2 patients after patch CEA by CFD calculations. Three-dimensional reconstruction of the carotid arteries was performed with the images obtained with computed tomography angiography. The streamlines and wall shear stress (WSS) were calculated by a supercomputer. Adequate boundary conditions were determined by comparing the simulation results with ultrasound flow data. RESULTS CFD was successfully calculated for all patients. The differences between the flow velocities of ultrasound data and those of the simulation results were limited. In the streamline analysis, the maximum flow velocities in the internal carotid artery after patch CEA were around two-thirds of those after CAS. Rotational slow flow was observed in the internal carotid artery bulb after patch CEA. WSS analysis found regional low WSS near the outer wall of the bulb. High WSS was observed at the distal end of the arteriotomy after patch CEA and at the residual stenosis after CAS. CONCLUSION CFD of postoperative carotid arteries disclosed the differences in streamlines and WSS between CAS and patch CEA. CFD may allow us to obtain adequate rheological conditions conducive to achieving the best clinical results.
Collapse
Affiliation(s)
- Hitoshi Hayase
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Vahidi B, Fatouraee N. Large deforming buoyant embolus passing through a stenotic common carotid artery: a computational simulation. J Biomech 2012; 45:1312-22. [PMID: 22365500 DOI: 10.1016/j.jbiomech.2012.01.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Revised: 01/13/2012] [Accepted: 01/16/2012] [Indexed: 11/25/2022]
Abstract
Arterial embolism is responsible for the death of lots of people who suffers from heart diseases. The major risk of embolism in upper limbs is that the ruptured particles are brought into the brain, thus stimulating neurological symptoms or causing the stroke. We presented a computational model using fluid-structure interactions (FSI) to investigate the physical motion of a blood clot inside the human common carotid artery. We simulated transportation of a buoyant embolus in an unsteady flow within a finite length tube having stenosis. Effects of stenosis severity and embolus size on arterial hemodynamics were investigated. To fulfill realistic nonlinear property of a blood clot, a rubber/foam model was used. The arbitrary Lagrangian-Eulerian formulation (ALE) and adaptive mesh method were used inside fluid domain to capture the large structural interfacial movements. The problem was solved by simultaneous solution of the fluid and the structure equations. Stress distribution and deformation of the clot were analyzed and hence, the regions of the embolus prone to lysis were localized. The maximum magnitude of arterial wall shear stress during embolism occurred at a short distance proximal to the throat of the stenosis. Through embolism, arterial maximum wall shear stress is more sensitive to stenosis severity than the embolus size whereas role of embolus size is more significant than the effect of stenosis severity on spatial and temporal gradients of wall shear stress downstream of the stenosis and on probability of clot lysis due to clot stresses while passing through the stenosis.
Collapse
Affiliation(s)
- Bahman Vahidi
- Department of Life Science Engineering, University of Tehran, Tehran, Iran
| | | |
Collapse
|
33
|
Wang X, Li X. A fluid?structure interaction study on the biomechanical behaviour of a curved artery with flexible wall. J Med Eng Technol 2011; 35:402-9. [PMID: 22004005 DOI: 10.3109/03091902.2011.619625] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Research has shown that thrombus, stenosis, aneurysm, atherosclerosis and other vascular diseases are likely to occur in curved arteries such as aortic arch, coronary artery and cerebral artery. It is found that fatigue damage and failure of arteries are closely associated with the dynamic physiological environment where the arteries are situated. Based on these considerations, the behaviour of curved arteries subjected to a physiological environment is presented in this paper. The fluid-structure interaction (FSI) effect is considered. Wall stress distribution and its variation over time are investigated. Artery deformation regularity throughout the cardiac cycle has been analysed. It is believed that this study may provide insights into clinical research in the future.
Collapse
Affiliation(s)
- Xiaohong Wang
- Biomechanical Research Laboratory, College of Mechanical Engineering and Applied Electronics Technology, Beijing University of Technology, No. 100 Pingleyuan, Chaoyang District, Beijing, PR China.
| | | |
Collapse
|
34
|
Cicha I, Wörner A, Urschel K, Beronov K, Goppelt-Struebe M, Verhoeven E, Daniel WG, Garlichs CD. Carotid plaque vulnerability: a positive feedback between hemodynamic and biochemical mechanisms. Stroke 2011; 42:3502-10. [PMID: 21998063 DOI: 10.1161/strokeaha.111.627265] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Rupture of atherosclerotic plaques is one of the main causes of ischemic strokes. The aim of this study was to investigate carotid plaque vulnerability markers in relation to blood flow direction and the mechanisms leading to plaque rupture at the upstream side of carotid stenoses. METHODS Frequency and location of rupture, endothelial erosion, neovascularization, and hemorrhage were determined in longitudinal sections of 80 human carotid specimens. Plaques were immunohistochemically analyzed for markers of vulnerability. Plaque geometry was measured to reconstruct shape profiles of ruptured versus stable plaques and to perform computational fluid dynamics analyses. RESULTS In 86% of ruptured plaques, rupture was observed upstream. In this region, neovascularization and hemorrhage were increased, along with increased immunoreactivity of vascular endothelial and connective tissue growth factor, whereas endothelial erosion was more frequent downstream. Proteolytic enzymes, mast cell chymase and cathepsin L, and the proapoptotic protein Bax showed significantly higher expression upstream as compared with the downstream shoulder of atherosclerotic lesions. Comparison of geometric profiles for ruptured and stable plaques showed increased longitudinal asymmetry of fibrous cap and lipid core thickness in ruptured plaques. The specific geometry of plaques ruptured upstream induced increased levels of shear stress and increased pressure drop between the upstream and the downstream plaque shoulders. CONCLUSIONS Vulnerability of the upstream plaque region is associated with enhanced neovascularization, hemorrhage, and cap thinning induced by proteolytic and proapoptotic mechanisms. These processes are reflected in structural plaque characteristics, analyses of which could improve the efficacy of vascular diagnostics and prevention.
Collapse
Affiliation(s)
- Iwona Cicha
- Laboratory of Molecular Cardiology, Department of Cardiology and Angiology, University of Erlangen-Nuremberg, Schwabachanlage 10, 91054 Erlangen, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Wang X, Li X. Biomechanical behaviors of curved artery with flexible wall: a numerical study using fluid-structure interaction method. Comput Biol Med 2011; 41:1014-21. [PMID: 21943789 DOI: 10.1016/j.compbiomed.2011.08.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Revised: 08/08/2011] [Accepted: 08/27/2011] [Indexed: 11/26/2022]
Abstract
Studies showed that vascular diseases were prone to occur in curved arteries. In this paper, biomechanical behaviors of curved artery with flexible wall subjected to physiological flow were presented. Fluid-structure interaction effect was considered. The Von Mises stress variation and distribution patterns, the influence of artery curvature and flexibility on peak wall Von Mises stress, diameter change and cross sectional shape variation of the curved artery in the cardiac cycle were studied in detail. We believe that the findings may provide important implications for individualized treatment for patients with cardiovascular disease.
Collapse
Affiliation(s)
- Xiaohong Wang
- Biomechanical Research Laboratory, Center of Engineering Mechanics, Beijing University of Technology, No.100 Pingleyuan, Chaoyang District, Beijing, PR China.
| | | |
Collapse
|
36
|
McGah PM, Leotta DF, Beach KW, Riley JJ, Aliseda A. A longitudinal study of remodeling in a revised peripheral artery bypass graft using 3D ultrasound imaging and computational hemodynamics. J Biomech Eng 2011; 133:041008. [PMID: 21428682 PMCID: PMC3205960 DOI: 10.1115/1.4003622] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We report a study of the role of hemodynamic shear stress in the remodeling and failure of a peripheral artery bypass graft. Three separate scans of a femoral to popliteal above-knee bypass graft were taken over the course of a 16 month period following a revision of the graft. The morphology of the lumen is reconstructed from data obtained by a custom 3D ultrasound system. Numerical simulations are performed with the patient-specific geometries and physiologically realistic flow rates. The ultrasound reconstructions reveal two significant areas of remodeling: a stenosis with over 85% reduction in area, which ultimately caused graft failure, and a poststenotic dilatation or widening of the lumen. Likewise, the simulations reveal a complicated hemodynamic environment within the graft. Preliminary comparisons with in vivo velocimetry also showed qualitative agreement with the flow dynamics observed in the simulations. Two distinct flow features are discerned and are hypothesized to directly initiate the observed in vivo remodeling. First, a flow separation occurs at the stenosis. A low shear recirculation region subsequently develops distal to the stenosis. The low shear region is thought to be conducive to smooth muscle cell proliferation and intimal growth. A poststenotic jet issues from the stenosis and subsequently impinges onto the lumen wall. The lumen dilation is thought to be a direct result of the high shear stress and high frequency pressure fluctuations associated with the jet impingement.
Collapse
Affiliation(s)
- Patrick M McGah
- Department of Mechanical Engineering, University of Washington, Seattle, WA 98195, USA.
| | | | | | | | | |
Collapse
|
37
|
Cummins M, Rossmann JS. Hemodynamics of ulcerated plaques: before and after. J Biomech Eng 2010; 132:104503. [PMID: 20887021 DOI: 10.1115/1.4002372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The hemodynamics and fluid mechanical forces in blood vessels have long been implicated in the deposition and growth of atherosclerotic plaque. Detailed information about the hemodynamics in vessels affected by significant plaque deposits can also provide insight into the mechanisms and likelihood of plaque weakening and rupture. In the current study, the governing equations are solved in their finite volume formulation in several patient-specific stenotic geometries. Of specific interest are the flow patterns and forces near ulcerations in the plaque. The flow patterns and forces in vessels with ulcerated plaques are compared with those in stenotic vessels without evidence of ulceration and to the hemodynamics in the same vessels as they likely appeared prior to ulceration. Hemodynamics "before" and "after" hemorrhage may suggest fluid mechanical and morphological factors of diagnostic and predictive value. Recirculation zones, vortex shedding, and secondary flows are captured by both laminar and turbulent solutions. The forces on vessel walls are shown to correlate with unstable plaque deposits. Performing before and after studies of vessels in long-term radiology studies may illuminate mechanisms of hemorrhage and other vessel remodeling.
Collapse
Affiliation(s)
- Megan Cummins
- Department of Biology, Lafayette College, Easton, PA 18042, USA
| | | |
Collapse
|
38
|
Ding SF, Ni M, Liu XL, Qi LH, Zhang M, Liu CX, Wang Y, Lv HX, Zhang Y. A causal relationship between shear stress and atherosclerotic lesions in apolipoprotein E knockout mice assessed by ultrasound biomicroscopy. Am J Physiol Heart Circ Physiol 2010; 298:H2121-9. [PMID: 20382850 DOI: 10.1152/ajpheart.00308.2009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The present study was undertaken to examine the hemodynamic state using the latest ultrasound biomicroscopy (UBM) technique and to investigate the effect of local shear stress on the development of atherosclerosis in the constrictive collar-treated carotid arteries of apolipoprotein E-deficient (apoE(-/-)) mice. Fifty-six male apoE(-/-) mice fed a high-lipid diet were divided into an interventional group (n = 48) and the control group (n = 8). Constrictive and nonconstrictive collars were placed around the carotid artery of the mice in the interventional group and the control group, respectively. The carotid lumen diameters and flow velocities were measured by UBM, and shear stress in the lesion region was calculated. Histopathology and electron microscopy were performed to observe the morphological changes in the carotid artery. In the region proximal to the constrictive collar, shear stress was significantly reduced 2 days after collar placement and remained low over time compared with the baseline level. In contrast, within the constrictive collar region, shear stress was increased significantly. Although endothelial permeability was enhanced in both regions, monocyte chemotaxis protein-1 (MCP-1) expression, macrophage infiltration, and atherosclerotic lesions were more prominent in the region proximal to the constrictive collar. Moreover, increased MCP-1 expression was observed as early as 2 days after constrictive collar placement, which preceded the morphological changes of the vessel wall. In conclusion, UBM offers a noninvasive and reliable technique for measuring shear stress in apoE(-/-) mice. Persistent low shear stress promotes endothelial permeability and enhances MCP-1 expression and macrophage recruitment, which were essential in the pathogenesis of atherosclerosis in apoE(-/-) mice.
Collapse
Affiliation(s)
- Shi Fang Ding
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Kang MJ, Ji HS, Lee SJ. In-vitro study on haemodiluted blood flow in a sinusoidal microstenosis. Proc Inst Mech Eng H 2010; 224:17-25. [PMID: 20225454 DOI: 10.1243/09544119jeim644] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In-vitro experiments were carried out to investigate the haemodynamic and haemorheological behaviours of haemodiluted blood flow through a microstenosis using a micro-particle image velocimetry (PIV) technique. The micro-PIV system employed in this study consisted of a two-head neodymium:yttrium-aluminium-garnet (Nd:YAG) laser, a cooled charge-coupled device camera, and a delay generator. To simulate blood flow in a stenosed vascular vessel, a polydimethylsiloxane (PDMS) microchannel with a sinusoidal throat of 80 per cent severity was employed. The width and depth of the microchannel were 100 microm and 50 microm, respectively. To compare the flow characteristics in the microstenosis, the same experiments were repeated in a straight microchannel under the same flow conditions. Using a syringe pump, human blood with 5 per cent haematocrit was supplied into the microstenosis channel. The flow characteristics and transport of blood cells through the microstenosis were investigated with various flowrates. The mean velocity fields were nearly symmetric with respect to the channel centreline. In the contraction section, the oncoming blood flow was accelerated rapidly, and the maximum velocity at the throat was almost 4.99 times faster than that of the straight microchannel without stenosis. In the diffusion section, the blood cells show rolling, deformation, twisting, and tumbling motion due to the flow-choking characteristics at the stenotic region. The results from this study will provide useful basic data for comparison with those obtained by clinical researchers.
Collapse
Affiliation(s)
- M J Kang
- Seoul Central Technology Appraisal Institute, KIBO Technology Fund, Seoul, Republic of Korea
| | | | | |
Collapse
|
40
|
Molla MM, Paul MC, Roditi G. LES of additive and non-additive pulsatile flows in a model arterial stenosis. Comput Methods Biomech Biomed Engin 2010. [DOI: 10.1080/10255840903062545] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
41
|
Tokunaga K, Sugiu K, Hayase H, Nishida A, Date I. SIGNIFICANT DIFFERENCES IN THE POSTOPERATIVE MORPHOLOGICAL AND HEMODYNAMIC CONDITIONS OF CAROTID ARTERIES OF PATIENTS UNDERGOING STENTING OR ENDARTERECTOMY WITH PATCH ANGIOPLASTY. Neurosurgery 2009; 65:884-8; discussion 888-9. [DOI: 10.1227/01.neu.0000358952.12917.df] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Abstract
OBJECTIVE
Carotid endarterectomy with a patch graft (Patch CEA) has been our standard treatment for patients with carotid artery stenosis, but carotid artery stenting (CAS) has emerged as an alternative. The purpose of this study was to compare the postoperative changes in the configurations and the flow velocities of carotid arteries after CAS or Patch CEA.
METHODS
Thirty-one patients undergoing CAS or Patch CEA were included. The pre- and postoperative shapes of the carotid arteries were evaluated by angiography and ultrasonography. Doppler waveforms were recorded in the middle portion of the common carotid artery and in the internal carotid artery bulb to measure flow velocities, including peak systolic, mean, and end-diastolic velocities.
RESULTS
Eighteen patients were treated by CAS, and Patch CEA was performed for 13 patients. Preoperatively, there were no differences in the degrees of stenosis or the flow velocities between the 2 groups. The averages of the diameters of the postoperative internal carotid artery bulbs were 4.5 mm in the CAS group and 7.0 mm in the Patch CEA group (P < 0.01). The averages of peak systolic, mean, and end-diastolic velocities measured in the internal carotid artery were 80, 42, and 25 cm/s, respectively, in the CAS group, and were significantly greater than those (53, 28, and 16 cm/s, respectively) in the Patch CEA group (P < 0.01).
CONCLUSION
Significant differences in postoperative morphological and hemodynamic conditions between CAS and Patch CEA were observed. The impact of these differences will be determined by further studies.
Collapse
Affiliation(s)
- Koji Tokunaga
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Kenji Sugiu
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hitoshi Hayase
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Ayumi Nishida
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Isao Date
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
42
|
Using fuzzy logic for morphological classification of IVUS-based plaques in diseased coronary artery in the context of flow-dynamics. Soft comput 2009. [DOI: 10.1007/s00500-009-0401-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
43
|
Mühlthaler H, Quatember B, Fraedrich G, Mühlthaler M, Pfeifer B, Greiner A, Schocke MFH. Quantification of blood flow velocity in stenosed arteries by the use of finite elements: an observer-independent noninvasive method. Magn Reson Imaging 2008; 26:1152-9. [PMID: 18687550 DOI: 10.1016/j.mri.2008.01.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2007] [Revised: 11/28/2007] [Accepted: 01/07/2008] [Indexed: 11/25/2022]
Abstract
Interventions for peripheral arterial disease should be designed to treat a physiological rather than an anatomic defect. Thus, for vascular surgeons, functional information about stenoses is as important as the anatomic one. In case of finding a stenosis by the use of magnetic resonance angiography, it would be a matter of particular interest to derive automatically and directly objective information about the hemodynamic influence on blood flow, caused by patient-specific stenoses. We developed a methodology to noninvasively perform numerical simulations of a patient's hemodynamic state on the basis of magnetic resonance images and by the means of the finite element method. We performed patient-specific three-dimensional simulation studies of the increase in systolic blood flow velocity due to stenoses using the commercial computational fluid dynamic software package FIDAP 8.52. The generation of a mesh defining the flow domain with a stenosis and some simulation results are shown.
Collapse
Affiliation(s)
- Hannes Mühlthaler
- Department of Surgery, Division of Vascular Surgery, Medical University Innsbruck, 6020 Innsbruck, Austria.
| | | | | | | | | | | | | |
Collapse
|
44
|
Li ZY, Gillard JH. Simulation of the interaction between blood flow and atherosclerotic plaque. ACTA ACUST UNITED AC 2008; 2007:1699-702. [PMID: 18002302 DOI: 10.1109/iembs.2007.4352636] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
It has been well accepted that over 50% of cerebral ischemic events are the result of rupture of vulnerable carotid atheroma and subsequent thrombosis. Such strokes are potentially preventable by carotid interventions. Selection of patients for intervention is currently based on the severity of carotid luminal stenosis. It has been, however, widely accepted that luminal stenosis alone may not be an adequate predictor of risk. To evaluate the effects of degree of luminal stenosis and plaque morphology on plaque stability, we used a coupled nonlinear time-dependent model with flow-plaque interaction simulation to perform flow and stress/strain analysis for stenotic artery with a plaque. The Navier-Stokes equations in the Arbitrary Lagrangian-Eulerian (ALE) formulation were used as the governing equations for the fluid. The Ogden strain energy function was used for both the fibrous cap and the lipid pool. The plaque Principal stresses and flow conditions were calculated for every case when varying the fibrous cap thickness from 0.1 to 2 mm and the degree of luminal stenosis from 10% to 90%. Severe stenosis led to high flow velocities and high shear stresses, but a low or even negative pressure at the throat of the stenosis. Higher degree of stenosis and thinner fibrous cap led to larger plaque stresses, and a 50% decrease of fibrous cap thickness resulted in a 200% increase of maximum stress. This model suggests that fibrous cap thickness is critically related to plaque vulnerability and that, even within presence of moderate stenosis, may play an important role in the future risk stratification of those patients when identified in vivo using high resolution MR imaging.
Collapse
Affiliation(s)
- Zhi-Yong Li
- Department of Radiology and Engineering, University of Cambridge, Cambridge, UK.
| | | |
Collapse
|
45
|
Kolachalama V, Bressloff N, Nair P, Shearman C. Predictive Haemodynamics in a One-Dimensional Human Carotid Artery Bifurcation. Part II: Application to Graft Design. IEEE Trans Biomed Eng 2008; 55:1176-84. [DOI: 10.1109/tbme.2007.912398] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
46
|
Varghese SS, Frankel SH, Fischer PF. Modeling Transition to Turbulence in Eccentric Stenotic Flows. J Biomech Eng 2008; 130:014503. [PMID: 18298194 DOI: 10.1115/1.2800832] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Mean flow predictions obtained from a host of turbulence models were found to be in poor agreement with recent direct numerical simulation results for turbulent flow distal to an idealized eccentric stenosis. Many of the widely used turbulence models, including a large eddy simulation model, were unable to accurately capture the poststenotic transition to turbulence. The results suggest that efforts toward developing more accurate turbulence models for low-Reynolds number, separated transitional flows are necessary before such models can be used confidently under hemodynamic conditions where turbulence may develop.
Collapse
Affiliation(s)
- Sonu S. Varghese
- School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, IN 47907
| | - Steven H. Frankel
- School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, IN 47907
| | | |
Collapse
|
47
|
Liu B. The influences of stenosis on the downstream flow pattern in curved arteries. Med Eng Phys 2007; 29:868-76. [PMID: 17081795 DOI: 10.1016/j.medengphy.2006.09.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2006] [Revised: 09/10/2006] [Accepted: 09/19/2006] [Indexed: 10/24/2022]
Abstract
The influence of stenosis on the pulsatile blood flow pattern in curved arteries with stenosis at inner wall was investigated by computer simulations. Numerical calculations were performed with various values of physiological parameters to examine the effect of a stenosis on the hemodynamic characteristics such as secondary flow, flow separation, wall shear stress (WSS) and pressure drop. The results demonstrated that when the severity of a stenosis at the inner wall of a curved artery reaches a certain level, the flow pattern in the downstream of the artery shows a dramatic change compared to that of a curved artery with no stenosis. According to previous studies, a flow separation occurs at the inner wall of the bend in a curved artery. The present work reports an analysis of such a flow separation area at the inner wall of the post stenosis region in curved arteries with a stenosis. In addition, another area of flow separation with low and oscillating WSS and blood pressure at the outer wall in a downstream tube was also found and investigated. The observed characteristic change of the flow downstream may suggest a formation of a new plaque at the outer wall downstream.
Collapse
Affiliation(s)
- Biyue Liu
- Department of Mathematics, Monmouth University, West Long Branch, NJ 07764, USA.
| |
Collapse
|
48
|
Yilmaz A, Lipfert B, Cicha I, Schubert K, Klein M, Raithel D, Daniel WG, Garlichs CD. Accumulation of immune cells and high expression of chemokines/chemokine receptors in the upstream shoulder of atherosclerotic carotid plaques. Exp Mol Pathol 2007; 82:245-55. [PMID: 17222820 DOI: 10.1016/j.yexmp.2006.10.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2006] [Revised: 09/29/2006] [Accepted: 10/06/2006] [Indexed: 01/03/2023]
Abstract
The presence of immune cells is important for plaque destabilization. Disturbed flow conditions were shown to enhance the recruitment of circulating immune cells. Thus, we analyzed in 54 atherosclerotic carotid plaques the frequency of different immune cells, HLA-DR, chemokines, and chemokine receptors, comparing the upstream with the downstream plaque shoulder. The presence of neovascularization and intraplaque hemorrhages was investigated by CD34 immunostaining and Mallory's iron stain. Immunohistochemical analyses were performed to detect smooth muscle cells (SMC: actin), macrophages (CD68), T cells (CD3), dendritic cells (DC: fascin), mature DC (CD83), and the expression of HLA-DR, chemokine receptors (CCR-2, CCR-6), and chemokines (MCP-1, MIP-3alpha). Significantly more SMC were detected downstream than upstream (p<0.001). In contrast, significantly more macrophages (p=0.01), DC (p=0.03), mature DC (p=0.007), and a higher expression of HLA-DR (p=0.004), CCR-2 (p=0.002), CCR-6 (p<0.001), MCP-1 (p=0.04), and MIP-3alpha (p=NS) were observed upstream than downstream. Immune cells were strongly associated with neovascularization. The abundance of SMC downstream provides an explanation for distal plaque growth. Enhanced recruitment of immune cells through neovessels into the upstream shoulder might be contributing to plaque destabilization.
Collapse
Affiliation(s)
- Atilla Yilmaz
- Medical Clinic II, University of Erlangen-Nuremberg Ulmenweg 18, 91054 Erlangen, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Birchall D, Zaman A, Hacker J, Davies G, Mendelow D. Analysis of haemodynamic disturbance in the atherosclerotic carotid artery using computational fluid dynamics. Eur Radiol 2006; 16:1074-83. [PMID: 16402252 DOI: 10.1007/s00330-005-0048-6] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2005] [Revised: 09/12/2005] [Accepted: 09/29/2005] [Indexed: 10/25/2022]
Abstract
Computational fluid dynamics (CFD) provides a means for the quantitative analysis of haemodynamic disturbances in vivo, but most work has used phantoms or idealised geometry. Our purpose was to use CFD to analyse flow in carotid atherosclerosis using patient-specific geometry and flow data. Eight atherosclerotic carotid arteries and one healthy control artery were imaged with magnetic resonance angiography (MRA) and duplex ultrasound, and the data used to construct patient-specific computational models used for CFD and wall shear stress (WSS) analysis. There is a progressive change in three-dimensional (3-D) velocity profile and WSS profile with increasing severity of stenosis, characterised by increasing restriction of areas of low WSS, change in oscillation patterns, and progressive rise in WSS within stenoses and downstream jets. Areas of turbulent, retrograde flow and of low WSS are demonstrated in the lee of the stenoses. This study presents the largest CFD analysis of abnormal haemodynamics at the atheromatous carotid bifurcation using patient-specific data and provides the basis for further investigation of causal links between haemodynamic variables and atherogenesis and formation of unstable plaque. We propose that this provides a means for the prospective assessment of relative stroke risk in patients with carotid atherosclerosis.
Collapse
Affiliation(s)
- Daniel Birchall
- Division of Neuroradiology, Regional Neurosciences Centre, Newcastle General Hospital, Westgate Road, Newcastle-upon-Tyne, NE4 6BE, UK.
| | | | | | | | | |
Collapse
|
50
|
Lorthois S, Stroud-Rossman J, Berger S, Jou LD, Saloner D. Numerical simulation of magnetic resonance angiographies of an anatomically realistic stenotic carotid bifurcation. Ann Biomed Eng 2005; 33:270-83. [PMID: 15868718 DOI: 10.1007/s10439-005-1730-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Magnetic Resonance Angiography (MRA) has become a routine imaging modality for the clinical evaluation of obstructive vascular disease. However, complex circulatory flow patterns, which redistribute the Magnetic Resonance (MR) signal in a complicated way, may generate flow artifacts and impair image quality. Numerical simulation of MRAs is a useful tool to study the mechanisms of artifactual signal production. The present study proposes a new approach to perform such simulations, applicable to complex anatomically realistic vascular geometries. Both the Navier-Stokes and the Bloch equations are solved on the same mesh to obtain the distribution of modulus and phase of the magnetization. The simulated angiography is subsequently constructed by a simple geometric procedure mapping the physical plane into the MRA image plane. Steady bidimensional numerical simulations of MRAs of an anatomically realistic severely stenotic carotid artery bifurcation are presented, for both time-of-flight and contrast-enhanced imaging modalities. These simulations are validated by qualitative comparison with flow phantom experiments performed under comparable conditions.
Collapse
Affiliation(s)
- Sylvie Lorthois
- Institut de Mécanique des Fluides de Toulouse, Groupe d'Etude sur les Milieux Poreux, Allés du Professeur Camille Soula, 31400 Toulouse Cedex, France.
| | | | | | | | | |
Collapse
|