1
|
Onwuha‐Ekpete L, Fields GB. Application of a triple‐helical peptide inhibitor of
MMP
‐2/
MMP
‐9 to examine T‐cell activation in experimental autoimmune encephalomyelitis. Pept Sci (Hoboken) 2022. [DOI: 10.1002/pep2.24262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Lillian Onwuha‐Ekpete
- The Institute for Human Health & Disease Intervention (I‐HEALTH) Florida Atlantic University Jupiter Florida USA
| | - Gregg B. Fields
- The Institute for Human Health & Disease Intervention (I‐HEALTH) Florida Atlantic University Jupiter Florida USA
- Department of Chemistry The Scripps Research Institute/Scripps Florida Jupiter Florida USA
| |
Collapse
|
2
|
Fields GB. Methods for the Construction of Collagen-Based Triple-Helical Peptides Designed as Matrix Metalloproteinase Inhibitors. Methods Mol Biol 2019; 1944:229-252. [PMID: 30840247 DOI: 10.1007/978-1-4939-9095-5_17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The triple-helical structure of collagen has been accurately reproduced in numerous chemical and recombinant model systems. Triple-helical peptides have found application for dissecting collagen-stabilizing forces, isolating receptor and protein binding sites in collagen, evaluating collagen-mediated cell signaling activities, mechanistic examination of collagenolytic proteases, and developing novel biomaterials and drug delivery vehicles. Due to their inherent stability to general proteolysis, triple-helical peptides present an opportunity as in vivo inhibitory agents. The present chapter provides methods for the construction of collagen-based triple-helical peptides designed as matrix metalloproteinase inhibitors.
Collapse
Affiliation(s)
- Gregg B Fields
- Department of Chemistry and Biochemistry, Florida Atlantic University, Jupiter, FL, USA.
- Department of Chemistry, Scripps Research, Jupiter, FL, USA.
| |
Collapse
|
3
|
Determining the Substrate Specificity of Matrix Metalloproteases using Fluorogenic Peptide Substrates. Methods Mol Biol 2018. [PMID: 28299736 DOI: 10.1007/978-1-4939-6863-3_8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2023]
Abstract
A continuous assay method, such as the one that utilizes an increase in fluorescence upon hydrolysis, allows for rapid and convenient kinetic evaluation of proteases. To better understand MMP behaviors toward native substrates, a variety of fluorescence resonance energy transfer (FRET)/intramolecular fluorescence energy transfer (IFET) triple-helical substrates have been constructed to examine the collagenolytic activity of MMP family members. Results of these studies have been valuable for providing insights into (a) the relative triple-helical peptidase activities of the various collagenolytic MMPs, (b) the collagen preferences of these MMPs, and (c) the relative roles of MMP domains and specific residues in efficient collagenolysis. The present chapter provides an overview of MMP FRET triple-helical substrates and describes how to construct and utilize these substrates.
Collapse
|
4
|
Stawikowski MJ, Fields GB. Tricine as a convenient scaffold for the synthesis of C-terminally branched collagen-model peptides. Tetrahedron Lett 2018; 59:130-134. [PMID: 29545652 PMCID: PMC5846494 DOI: 10.1016/j.tetlet.2017.12.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A novel and convenient method for the synthesis of C-terminally branched collagen-model peptides has been achieved using tricine (N-[tris(hydroxymethyl)methyl]glycine) as a branching scaffold and 1,2-diaminoethane or 1,4-diaminobutane as a linker. The peptide sequence was incorporated directly onto the linker and scaffold during solid-phase synthesis without additional manipulations. The resulting branched triple-helical peptides exhibited comparable thermal stabilities to the parent, unbranched sequence, and served as substrates for matrix metalloproteinase-1 (MMP-1). The tricine-based branch reported herein represents the simplest synthetic scaffold for the convenient synthesis of covalently linked homomeric collagen-model triple-helical peptides.
Collapse
Affiliation(s)
- Maciej J. Stawikowski
- Department of Chemistry and Biochemistry, Florida Atlantic University, 777 Glades Rd, Boca Raton, FL 33431
| | - Gregg B. Fields
- Department of Chemistry and Biochemistry, Florida Atlantic University, 777 Glades Rd, Boca Raton, FL 33431
- The Scripps Research Institute/Scripps Florida, 130 Scripps Way, Jupiter, FL 33458
| |
Collapse
|
5
|
Abstract
Peptide subunit vaccines enable the specific activation of an immune response without the shortcomings of killed or attenuated pathogens. However, peptide subunit vaccines tend to be less immunogenic than those based on whole organisms. To improve peptide immunogenicity, biomaterials-based platforms have been developed. One such platform, the peptide amphiphile micelle platform, has displayed a unique ability to dramatically improve observed immune responses. Here we describe the design, synthesis, characterization, and application of peptide amphiphile micelles to elicit a robust immune response.
Collapse
Affiliation(s)
- John C Barrett
- Institute for Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Matthew V Tirrell
- Institute for Molecular Engineering, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
6
|
Fields GB, Stawikowski MJ. Imaging Matrix Metalloproteinase Activity Implicated in Breast Cancer Progression. Methods Mol Biol 2016; 1406:303-29. [PMID: 26820965 DOI: 10.1007/978-1-4939-3444-7_25] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Proteolysis has been cited as an important contributor to cancer initiation and progression. One can take advantage of tumor-associated proteases to selectively deliver imaging agents. Protease-activated imaging systems have been developed using substrates designed for hydrolysis by members of the matrix metalloproteinase (MMP) family. We presently describe approaches by which one can optically image matrix metalloproteinase activity implicated in breast cancer progression, with consideration of selective versus broad protease probes.
Collapse
Affiliation(s)
- Gregg B Fields
- Department of Chemistry & Biochemistry, Florida Atlantic University, Jupiter, FL, 33458, USA. .,Department of Chemistry, The Scripps Research Institute/Scripps Florida, Jupiter, FL, 33458, USA. .,Departments of Chemistry and Biology, Torrey Pines Institute for Molecular Studies, Port St. Lucie, FL, 34987, USA.
| | - Maciej J Stawikowski
- Department of Chemistry & Biochemistry, Florida Atlantic University, Jupiter, FL, 33458, USA
| |
Collapse
|
7
|
Stawikowski MJ, Stawikowska R, Fields GB. Collagenolytic Matrix Metalloproteinase Activities toward Peptomeric Triple-Helical Substrates. Biochemistry 2015; 54:3110-21. [PMID: 25897652 DOI: 10.1021/acs.biochem.5b00110] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Although collagenolytic matrix metalloproteinases (MMPs) possess common domain organizations, there are subtle differences in their processing of collagenous triple-helical substrates. In this study, we have incorporated peptoid residues into collagen model triple-helical peptides and examined MMP activities toward these peptomeric chimeras. Several different peptoid residues were incorporated into triple-helical substrates at subsites P3, P1, P1', and P10' individually or in combination, and the effects of the peptoid residues were evaluated on the activities of full-length MMP-1, MMP-8, MMP-13, and MMP-14/MT1-MMP. Most peptomers showed little discrimination between MMPs. However, a peptomer containing N-methyl Gly (sarcosine) in the P1' subsite and N-isobutyl Gly (NLeu) in the P10' subsite was hydrolyzed efficiently only by MMP-13 [nomenclature relative to the α1(I)772-786 sequence]. Cleavage site analysis showed hydrolysis at the Gly-Gln bond, indicating a shifted binding of the triple helix compared to the parent sequence. Favorable hydrolysis by MMP-13 was not due to sequence specificity or instability of the substrate triple helix but rather was based on the specific interactions of the P7' peptoid residue with the MMP-13 hemopexin-like domain. A fluorescence resonance energy transfer triple-helical peptomer was constructed and found to be readily processed by MMP-13, not cleaved by MMP-1 and MMP-8, and weakly hydrolyzed by MT1-MMP. The influence of the triple-helical structure containing peptoid residues on the interaction between MMP subsites and individual substrate residues may provide additional information about the mechanism of collagenolysis, the understanding of collagen specificity, and the design of selective MMP probes.
Collapse
Affiliation(s)
- Maciej J Stawikowski
- †Florida Atlantic University, 5353 Parkside Drive, Jupiter, Florida 33458, United States.,‡Torrey Pines Institute for Molecular Studies, 11350 Southwest Village Parkway, Port St. Lucie, Florida 34987, United States
| | - Roma Stawikowska
- †Florida Atlantic University, 5353 Parkside Drive, Jupiter, Florida 33458, United States.,‡Torrey Pines Institute for Molecular Studies, 11350 Southwest Village Parkway, Port St. Lucie, Florida 34987, United States
| | - Gregg B Fields
- †Florida Atlantic University, 5353 Parkside Drive, Jupiter, Florida 33458, United States.,‡Torrey Pines Institute for Molecular Studies, 11350 Southwest Village Parkway, Port St. Lucie, Florida 34987, United States.,§The Scripps Research Institute/Scripps Florida, 130 Scripps Way, Jupiter, Florida 33458, United States
| |
Collapse
|
8
|
Bhowmick M, Stawikowska R, Tokmina-Roszyk D, Fields GB. Matrix metalloproteinase inhibition by heterotrimeric triple-helical Peptide transition state analogues. Chembiochem 2015; 16:1084-92. [PMID: 25766890 PMCID: PMC4415627 DOI: 10.1002/cbic.201402716] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Indexed: 01/01/2023]
Abstract
Matrix metalloproteinases (MMPs) have been implicated in numerous pathologies. An overall lack of selectivity has rendered active-site-targeted MMP inhibitors problematic. The present study describes MMP inhibitors that function by binding both secondary binding sites (exosites) and the active site. Heterotrimeric triple-helical peptide transition-state analogue inhibitors (THPIs) were assembled utilizing click chemistry. Three different heterotrimers were constructed, allowing for the inhibitory phosphinate moiety to be present uniquely in the leading, middle, or trailing strand of the triple helix. All heterotrimeric constructs had sufficient thermally stability to warrant analysis as inhibitors. The heterotrimeric THPIs were effective against MMP-13 and MT1-MMP, with Ki values spanning 100-400 nM. Unlike homotrimeric THPIs, the heterotrimeric THPIs offered complete selectivity between MT1-MMP and MMP-1. Exosite-based approaches such as this provide inhibitors with desired MMP selectivities.
Collapse
Affiliation(s)
- Manishabrata Bhowmick
- Departments of Chemistry and Biology, Torrey Pines Institute for Molecular Studies, 11350 SW Village Parkway, Port St. Lucie, FL 34987 USA
- Organix Inc., 240 Salem Street, Woburn, MA 01801 USA
| | - Roma Stawikowska
- Department of Chemistry & Biochemistry, Florida Atlantic University, 5353 Parkside Drive, Jupiter, FL 33458 USA
- Departments of Chemistry and Biology, Torrey Pines Institute for Molecular Studies, 11350 SW Village Parkway, Port St. Lucie, FL 34987 USA
| | - Dorota Tokmina-Roszyk
- Department of Chemistry & Biochemistry, Florida Atlantic University, 5353 Parkside Drive, Jupiter, FL 33458 USA
- Departments of Chemistry and Biology, Torrey Pines Institute for Molecular Studies, 11350 SW Village Parkway, Port St. Lucie, FL 34987 USA
| | - Gregg B. Fields
- Department of Chemistry & Biochemistry, Florida Atlantic University, 5353 Parkside Drive, Jupiter, FL 33458 USA
- Departments of Chemistry and Biology, Torrey Pines Institute for Molecular Studies, 11350 SW Village Parkway, Port St. Lucie, FL 34987 USA
- Department of Chemistry, The Scripps Research Institute/Scripps Florida, 130 Scripps Way, Jupiter, FL 33458 USA
| |
Collapse
|
9
|
Howes JM, Bihan D, Slatter DA, Hamaia SW, Packman LC, Knauper V, Visse R, Farndale RW. The recognition of collagen and triple-helical toolkit peptides by MMP-13: sequence specificity for binding and cleavage. J Biol Chem 2014; 289:24091-101. [PMID: 25008319 PMCID: PMC4148842 DOI: 10.1074/jbc.m114.583443] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Remodeling of collagen by matrix metalloproteinases (MMPs) is crucial to tissue homeostasis and repair. MMP-13 is a collagenase with a substrate preference for collagen II over collagens I and III. It recognizes a specific, well-known site in the tropocollagen molecule where its binding locally perturbs the triple helix, allowing the catalytic domain of the active enzyme to cleave the collagen α chains sequentially, at Gly775–Leu776 in collagen II. However, the specific residues upon which collagen recognition depends within and surrounding this locus have not been systematically mapped. Using our triple-helical peptide Collagen Toolkit libraries in solid-phase binding assays, we found that MMP-13 shows little affinity for Collagen Toolkit III, but binds selectively to two triple-helical peptides of Toolkit II. We have identified the residues required for the adhesion of both proMMP-13 and MMP-13 to one of these, Toolkit peptide II-44, which contains the canonical collagenase cleavage site. MMP-13 was unable to bind to a linear peptide of the same sequence as II-44. We also discovered a second binding site near the N terminus of collagen II (starting at helix residue 127) in Toolkit peptide II-8. The pattern of binding of the free hemopexin domain of MMP-13 was similar to that of the full-length enzyme, but the free catalytic subunit bound none of our peptides. The susceptibility of Toolkit peptides to proteolysis in solution was independent of the very specific recognition of immobilized peptides by MMP-13; the enzyme proved able to cleave a range of dissolved collagen peptides.
Collapse
Affiliation(s)
- Joanna-Marie Howes
- From the Department of Biochemistry, University of Cambridge, Downing Site, Cambridge CB2 1QW, United Kingdom
| | - Dominique Bihan
- From the Department of Biochemistry, University of Cambridge, Downing Site, Cambridge CB2 1QW, United Kingdom
| | - David A Slatter
- From the Department of Biochemistry, University of Cambridge, Downing Site, Cambridge CB2 1QW, United Kingdom
| | - Samir W Hamaia
- From the Department of Biochemistry, University of Cambridge, Downing Site, Cambridge CB2 1QW, United Kingdom
| | - Len C Packman
- From the Department of Biochemistry, University of Cambridge, Downing Site, Cambridge CB2 1QW, United Kingdom
| | - Vera Knauper
- the Cardiff University Dental School, Dental Drive, Cardiff CF14 4XY, United Kingdom, and
| | - Robert Visse
- the Kennedy Institute of Rheumatology, Hammersmith, London W6 8LH, United Kingdom
| | - Richard W Farndale
- From the Department of Biochemistry, University of Cambridge, Downing Site, Cambridge CB2 1QW, United Kingdom,
| |
Collapse
|
10
|
Lauer JL, Bhowmick M, Tokmina-Roszyk D, Lin Y, Van Doren SR, Fields GB. The role of collagen charge clusters in the modulation of matrix metalloproteinase activity. J Biol Chem 2014; 289:1981-92. [PMID: 24297171 PMCID: PMC3900948 DOI: 10.1074/jbc.m113.513408] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 11/28/2013] [Indexed: 12/22/2022] Open
Abstract
Members of the matrix metalloproteinase (MMP) family selectively cleave collagens in vivo. Several substrate structural features that direct MMP collagenolysis have been identified. The present study evaluated the role of charged residue clusters in the regulation of MMP collagenolysis. A series of 10 triple-helical peptide (THP) substrates were constructed in which either Lys-Gly-Asp or Gly-Asp-Lys motifs replaced Gly-Pro-Hyp (where Hyp is 4-hydroxy-L-proline) repeats. The stabilities of THPs containing the two different motifs were analyzed, and kinetic parameters for substrate hydrolysis by six MMPs were determined. A general trend for virtually all enzymes was that, as Gly-Asp-Lys motifs were moved from the extreme N and C termini to the interior next to the cleavage site sequence, kcat/Km values increased. Additionally, all Gly-Asp-Lys THPs were as good or better substrates than the parent THP in which Gly-Asp-Lys was not present. In turn, the Lys-Gly-Asp THPs were also always better substrates than the parent THP, but the magnitude of the difference was considerably less compared with the Gly-Asp-Lys series. Of the MMPs tested, MMP-2 and MMP-9 most greatly favored the presence of charged residues with preference for the Gly-Asp-Lys series. Lys-Gly-(Asp/Glu) motifs are more commonly found near potential MMP cleavage sites than Gly-(Asp/Glu)-Lys motifs. As Lys-Gly-Asp is not as favored by MMPs as Gly-Asp-Lys, the Lys-Gly-Asp motif appears advantageous over the Gly-Asp-Lys motif by preventing unwanted MMP hydrolysis. More specifically, the lack of Gly-Asp-Lys clusters may diminish potential MMP-2 and MMP-9 collagenolytic activity. The present study indicates that MMPs have interactions spanning the P23-P23' subsites of collagenous substrates.
Collapse
Affiliation(s)
- Janelle L. Lauer
- From the Department of Biochemistry, University of Texas Health Science Center, San Antonio, Texas 78229
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Manishabrata Bhowmick
- From the Department of Biochemistry, University of Texas Health Science Center, San Antonio, Texas 78229
- Torrey Pines Institute for Molecular Studies, Port St. Lucie, Florida 34987 and
| | - Dorota Tokmina-Roszyk
- From the Department of Biochemistry, University of Texas Health Science Center, San Antonio, Texas 78229
- Torrey Pines Institute for Molecular Studies, Port St. Lucie, Florida 34987 and
| | - Yan Lin
- From the Department of Biochemistry, University of Texas Health Science Center, San Antonio, Texas 78229
| | - Steven R. Van Doren
- Department of Biochemistry, University of Missouri, Columbia, Missouri 65211
| | - Gregg B. Fields
- From the Department of Biochemistry, University of Texas Health Science Center, San Antonio, Texas 78229
- Torrey Pines Institute for Molecular Studies, Port St. Lucie, Florida 34987 and
| |
Collapse
|
11
|
Stabilization of collagen-model, triple-helical peptides for in vitro and in vivo applications. Methods Mol Biol 2013; 1081:167-94. [PMID: 24014440 PMCID: PMC4260935 DOI: 10.1007/978-1-62703-652-8_11] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The triple-helical structure of collagen has been accurately reproduced in numerous chemical and recombinant model systems. Triple-helical peptides and proteins have found application for dissecting collagen-stabilizing forces, isolating receptor- and protein-binding sites in collagen, mechanistic examination of collagenolytic proteases, and development of novel biomaterials. Introduction of native-like sequences into triple-helical constructs can reduce the thermal stability of the triple-helix to below that of the physiological environment. In turn, incorporation of nonnative amino acids and/or templates can enhance triple-helix stability. We presently describe approaches by which triple-helical structure can be modulated for use under physiological or near-physiological conditions.
Collapse
|
12
|
Akers WJ, Xu B, Lee H, Sudlow GP, Fields GB, Achilefu S, Edwards WB. Detection of MMP-2 and MMP-9 activity in vivo with a triple-helical peptide optical probe. Bioconjug Chem 2012; 23:656-63. [PMID: 22309692 DOI: 10.1021/bc300027y] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We report a novel activatable NIR fluorescent probe for in vivo detection of cancer-related matrix metalloproteinase (MMP) activity. The probe is based on a triple-helical peptide substrate (THP) with high specificity for MMP-2 and MMP-9 relative to other members of the MMP family. MMP-2 and MMP-9 (also known as gelatinases) are specifically associated with cancer cell invasion and cancer-related angiogenesis. At the center of each 5 kDa peptide strand is a gelatinase sensitive sequence flanked by 2 Lys residues conjugated with NIR fluorescent dyes. Upon self-assembly of the triple-helical structure, the 3 peptide chains intertwine, bringing the fluorophores into close proximity and reducing fluorescence via quenching. Upon enzymatic cleavage of the triple-helical peptide, 6 labeled peptide chains are released, resulting in an amplified fluorescent signal. The fluorescence yield of the probe increases 3.8-fold upon activation. Kinetic analysis showed a rate of LS276-THP hydrolysis by MMP-2 (k(cat)/K(M) = 30,000 s(-1) M(-1)) similar to that of MMP-2 catalysis of an analogous fluorogenic THP. Administration of LS276-THP to mice bearing a human fibrosarcoma xenografted tumor resulted in a tumor fluorescence signal more than 5-fold greater than that of muscle. This signal enhancement was reduced by treatment with the MMP inhibitor Ilomostat, indicating that the observed tumor fluorescence was indeed enzyme mediated. These results are the first to demonstrate that triple-helical peptides are suitable for highly specific in vivo detection of tumor-related MMP-2 and MMP-9 activity.
Collapse
Affiliation(s)
- Walter J Akers
- Mallinckrodt Institute of Radiology, Washington University, School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Bertini I, Fragai M, Luchinat C, Melikian M, Toccafondi M, Lauer JL, Fields GB. Structural basis for matrix metalloproteinase 1-catalyzed collagenolysis. J Am Chem Soc 2012; 134:2100-10. [PMID: 22239621 PMCID: PMC3298817 DOI: 10.1021/ja208338j] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The proteolysis of collagen triple-helical structure (collagenolysis) is a poorly understood yet critical physiological process. Presently, matrix metalloproteinase 1 (MMP-1) and collagen triple-helical peptide models have been utilized to characterize the events and calculate the energetics of collagenolysis via NMR spectroscopic analysis of 12 enzyme-substrate complexes. The triple-helix is bound initially by the MMP-1 hemopexin-like (HPX) domain via a four amino acid stretch (analogous to type I collagen residues 782-785). The triple-helix is then presented to the MMP-1 catalytic (CAT) domain in a distinct orientation. The HPX and CAT domains are rotated with respect to one another compared with the X-ray "closed" conformation of MMP-1. Back-rotation of the CAT and HPX domains to the X-ray closed conformation releases one chain out of the triple-helix, and this chain is properly positioned in the CAT domain active site for subsequent hydrolysis. The aforementioned steps provide a detailed, experimentally derived, and energetically favorable collagenolytic mechanism, as well as significant insight into the roles of distinct domains in extracellular protease function.
Collapse
Affiliation(s)
- Ivano Bertini
- Magnetic Resonance Center (CERM), University of Florence, Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy
- Department of Chemistry “Ugo Shiff”, University of Florence, Via della Lastruccia 3, 50019, Sesto Fiorentino, Italy
| | - Marco Fragai
- Magnetic Resonance Center (CERM), University of Florence, Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy
- Department of Chemistry “Ugo Shiff”, University of Florence, Via della Lastruccia 3, 50019, Sesto Fiorentino, Italy
| | - Claudio Luchinat
- Magnetic Resonance Center (CERM), University of Florence, Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy
- Department of Chemistry “Ugo Shiff”, University of Florence, Via della Lastruccia 3, 50019, Sesto Fiorentino, Italy
| | - Maxime Melikian
- Magnetic Resonance Center (CERM), University of Florence, Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy
| | - Mirco Toccafondi
- Magnetic Resonance Center (CERM), University of Florence, Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy
| | - Janelle L. Lauer
- Department of Biochemistry, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
- Department of Molecular Therapeutics, Scripps Florida, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Gregg B. Fields
- Department of Biochemistry, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
- Torrey Pines Institute for Molecular Studies, 11350 SW Village Parkway, Port St. Lucie, FL 34987 USA
| |
Collapse
|
14
|
Arnold LH, Butt LE, Prior SH, Read CM, Fields GB, Pickford AR. The interface between catalytic and hemopexin domains in matrix metalloproteinase-1 conceals a collagen binding exosite. J Biol Chem 2011; 286:45073-82. [PMID: 22030392 PMCID: PMC3247971 DOI: 10.1074/jbc.m111.285213] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Revised: 10/10/2011] [Indexed: 11/06/2022] Open
Abstract
Matrix metalloproteinase-1 (MMP-1) is an instigator of collagenolysis, the catabolism of triple helical collagen. Previous studies have implicated its hemopexin (HPX) domain in binding and possibly destabilizing the collagen substrate in preparation for hydrolysis of the polypeptide backbone by the catalytic (CAT) domain. Here, we use biophysical methods to study the complex formed between the MMP-1 HPX domain and a synthetic triple helical peptide (THP) that encompasses the MMP-1 cleavage site of the collagen α1(I) chain. The two components interact with 1:1 stoichiometry and micromolar affinity via a binding site within blades 1 and 2 of the four-bladed HPX domain propeller. Subsequent site-directed mutagenesis and assay implicates blade 1 residues Phe(301), Val(319), and Asp(338) in collagen binding. Intriguingly, Phe(301) is partially masked by the CAT domain in the crystal structure of full-length MMP-1 implying that transient separation of the domains is important in collagen recognition. However, mutation of this residue in the intact enzyme disrupts the CAT-HPX interface resulting in a drastic decrease in binding activity. Thus, a balanced equilibrium between these compact and dislocated states may be an essential feature of MMP-1 collagenase activity.
Collapse
Affiliation(s)
- Laurence H. Arnold
- From the Division of Molecular Structure, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, United Kingdom
| | - Louise E. Butt
- the Biophysics Laboratories, Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, Portsmouth PO1 2DY, United Kingdom, and
| | - Stephen H. Prior
- the Biophysics Laboratories, Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, Portsmouth PO1 2DY, United Kingdom, and
| | - Christopher M. Read
- the Biophysics Laboratories, Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, Portsmouth PO1 2DY, United Kingdom, and
| | - Gregg B. Fields
- the Torrey Pines Institute for Molecular Studies, Port St. Lucie, Florida 34987
| | - Andrew R. Pickford
- the Biophysics Laboratories, Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, Portsmouth PO1 2DY, United Kingdom, and
| |
Collapse
|
15
|
Abstract
Triple-helical peptides (THPs) have been utilized as collagen models since the 1960s. The original focus for THP-based research was to unravel the structural determinants of collagen. In the last two decades, virtually all aspects of collagen structural biochemistry have been explored with THP models. More specifically, secondary amino acid analogs have been incorporated into THPs to more fully understand the forces that stabilize triple-helical structure. Heterotrimeric THPs have been utilized to better appreciate the contributions of chain sequence diversity on collagen function. The role of collagen as a cell signaling protein has been dissected using THPs that represent ligands for specific receptors. The mechanisms of collagenolysis have been investigated using THP substrates and inhibitors. Finally, THPs have been developed for biomaterial applications. These aspects of THP-based research are overviewed herein.
Collapse
Affiliation(s)
- Gregg B Fields
- University of Texas Health Science Center, Department of Biochemistry, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA.
| |
Collapse
|
16
|
Abstract
A continuous assay method, such as the one that utilizes an increase in fluorescence upon hydrolysis, allows for rapid and convenient kinetic evaluation of proteases. To better understand MMP behaviors and to aid in the design of MMP inhibitors, a variety of sequence specificity, phage display, and combinatorial chemistry studies have been performed. Results of these studies have been valuable for defining the differences in MMPs and for creating quenched fluorescent substrates that utilize fluorescence resonance energy transfer (FRET)/intramolecular fluorescence energy transfer (IFET). FRET triple-helical substrates have been constructed to examine the collagenolytic activity of MMP family members. The present chapter provides an overview of MMP and related FRET substrates and describes how to construct and utilize these substrates.
Collapse
|
17
|
Lauer-Fields JL, Chalmers MJ, Busby SA, Minond D, Griffin PR, Fields GB. Identification of specific hemopexin-like domain residues that facilitate matrix metalloproteinase collagenolytic activity. J Biol Chem 2009; 284:24017-24. [PMID: 19574232 DOI: 10.1074/jbc.m109.016873] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Collagen serves as a structural scaffold and a barrier between tissues, and thus collagen catabolism (collagenolysis) is required to be a tightly regulated process in normal physiology. In turn, the destruction or damage of collagen during pathological states plays a role in tumor growth and invasion, cartilage degradation, or atherosclerotic plaque formation and rupture. Several members of the matrix metalloproteinase (MMP) family catalyze the hydrolysis of collagen triple helical structure. This study has utilized triple helical peptide (THP) substrates and inhibitors to dissect MMP-1 collagenolytic behavior. Analysis of MMP-1/THP interactions by hydrogen/deuterium exchange mass spectrometry followed by evaluation of wild type and mutant MMP-1 kinetics led to the identification of three noncatalytic regions in MMP-1 (residues 285-295, 302-316, and 437-457) and two specific residues (Ile-290 and Arg-291) that participate in collagenolysis. Ile-290 and Arg-291 contribute to recognition of triple helical structure and facilitate both the binding and catalysis of the triple helix. Evidence from this study and prior studies indicates that the MMP-1 catalytic and hemopexin-like domains collaborate in collagen catabolism by properly aligning the triple helix and coupling conformational states to facilitate hydrolysis. This study is the first to document the roles of specific residues within the MMP-1 hemopexin-like domain in substrate binding and turnover. Noncatalytic sites, such as those identified here, can ultimately be utilized to create THP inhibitors that target MMPs implicated in disease progression while sparing proteases with host-beneficial functions.
Collapse
Affiliation(s)
- Janelle L Lauer-Fields
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, Texas 78229, USA
| | | | | | | | | | | |
Collapse
|
18
|
Application of topologically constrained mini-proteins as ligands, substrates, and inhibitors. Methods Mol Biol 2008; 386:125-66. [PMID: 18604945 DOI: 10.1007/978-1-59745-430-8_5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
Protein-protein interactions are governed by a variety of structural features. The sequence specificities of such interactions are usually easier to establish than the "topological specificities," whereby interactions may be classified based on recognition of distinct three-dimensional structural motifs. Approaches to explore topological specificities have been based primarily on assembly of mini-proteins with well defined secondary, tertiary, and/or quarternary structures. The present chapter focuses on three approaches for constructing topologically well defined mini-proteins: template-assembled synthetic proteins (TASPs), disulfide-stabilized structures, and peptide-amphiphiles (PAs). Specific examples are given for applying each approach to explore topologically-dependent protein-protein interactions. TASPs are utilized to identify a metastatic melanoma receptor that binds to the alpha1(IV)1263-1277 region of basement membrane (type IV) collagen. A disulfide-stabilized structure incorporating a sarafotoxin (SRT) 6b model was examined as a matrix metalloproteinase (MMP)-3 inhibitor. PAs were developed as (a) fluorogenic triple-helical or polyPro II substrates for MMPs and aggrecanase members of the a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS) family and (b) glycosylated and nonglycosylated ligands for metastatic melanoma cells. Topologically constrained mini-proteins have proved to be quite versatile, helping to define critical primary, secondary, and tertiary structural elements that modulate enzyme and receptor functions.
Collapse
|
19
|
Rezler EM, Khan DR, Tu R, Tirrell M, Fields GB. Peptide-mediated targeting of liposomes to tumor cells. Methods Mol Biol 2008; 386:269-98. [PMID: 18604950 DOI: 10.1007/978-1-59745-430-8_10] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
One of the biggest obstacles for efficient drug delivery is specific cellular targeting. Liposomes have long been used for drug delivery, but do not possess targeting capabilities. This limitation may be circumvented by surface coating of colloidal delivery systems with peptides, proteins, carbohydrates, vitamins, or antibodies that target cell surface receptors or other biomolecules. Each of these coatings has significant drawbacks. One idealized system for drug delivery combines stabilized "protein module" ligands with a colloidal delivery vehicle. Prior studies have shown that peptide-amphiphiles, whereby both a peptide "head group" and a lipid-like "tail" are present in the same molecule, can be used to engineer collagen-like triple-helical or alpha-helical miniproteins. The tails serve to stabilize the head group structural elements. These peptide-amphiphiles can be designed to bind to specific cell surface receptors with high affinity. Structural stabilization of the integrated targeting ligand in the peptide-amphiphile system equates to prolonged in vivo stability through resistance to proteolytic degradation. Liposomes have been prepared incorporating a melanoma targeting peptide-amphiphile ligand, and shown to be stable with retention of peptide-amphiphile triple-helical structure. Encapsulated fluorescent dyes are selectively delivered to cells. In this chapter we describe the methods and techniques employed in the preparation and characterization of peptide-amphiphiles and peptide-amphiphile-targeted large and small unilamellar vesicles (LUVs and SUVs). Fluorescence microscopy is subsequently utilized to examine the targeting capabilities of peptide-amphiphile LUVs, which should allow for improved drug selectivity towards melanoma vs normal cells based on differences in the relative abundance of the targeted cell surface receptors.
Collapse
Affiliation(s)
- Evonne M Rezler
- Department of Chemistry & Biochemistry, Florida Atlantic University, Boca Raton, USA
| | | | | | | | | |
Collapse
|
20
|
Lauer-Fields JL, Cudic M, Wei S, Mari F, Fields GB, Brew K. Engineered sarafotoxins as tissue inhibitor of metalloproteinases-like matrix metalloproteinase inhibitors. J Biol Chem 2007; 282:26948-26955. [PMID: 17626018 DOI: 10.1074/jbc.m611612200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The sarafotoxins and endothelins are approximately 25-residue peptides that spontaneously fold into a defined tertiary structure with specific pairing of four cysteines into two disulfide bonds. Their structures show an interesting topological similarity to the core of the metalloproteinase interaction sites of the tissue inhibitors of metalloproteinases. Previous work indicates that sarafotoxins and endothelins can be engineered to eliminate or greatly reduce their vasopressive action and that their structural framework can withstand multiple sequence changes. When sarafotoxin 6b, which possesses modest matrix metalloproteinase inhibitory activity, was C-terminally truncated to remove its toxic vasopressive activity, the metalloproteinase inhibitory activity was essentially abolished. However, further changes, based on the sequences of peptides selected from libraries of sarafotoxin variants or suggested by analogy with tissue inhibitors of metalloproteinases, progressively enhanced the matrix metalloproteinase inhibitory activity. Peptide variants with multiple substitutions folded correctly and formed native disulfide bonds. Improvements in matrix metalloproteinase affinity have generated a peptide with micromolar K(i) values for matrix metalloproteinase-1 and -9 that are selective inhibitors of different metalloproteinases. Characterization of its solution structure indicates a close similarity to sarafotoxin but with a more extended C-terminal helix. The effects of N-acetylation and other changes, as well as docking studies, support the hypothesis that the engineered sarafotoxins bind to matrix metalloproteinases in a manner analogous to the tissue inhibitors of metalloproteinases.
Collapse
Affiliation(s)
- Janelle L Lauer-Fields
- College of Biomedical Science, Florida Atlantic University, Boca Raton, Florida 33431; Department of Chemistry & Biochemistry, Florida Atlantic University, Boca Raton, Florida 33431
| | - Mare Cudic
- Department of Chemistry & Biochemistry, Florida Atlantic University, Boca Raton, Florida 33431
| | - Shuo Wei
- College of Biomedical Science, Florida Atlantic University, Boca Raton, Florida 33431
| | - Frank Mari
- Department of Chemistry & Biochemistry, Florida Atlantic University, Boca Raton, Florida 33431
| | - Gregg B Fields
- Department of Chemistry & Biochemistry, Florida Atlantic University, Boca Raton, Florida 33431
| | - Keith Brew
- College of Biomedical Science, Florida Atlantic University, Boca Raton, Florida 33431.
| |
Collapse
|
21
|
Rezler EM, Khan DR, Lauer-Fields J, Cudic M, Baronas-Lowell D, Fields GB. Targeted drug delivery utilizing protein-like molecular architecture. J Am Chem Soc 2007; 129:4961-72. [PMID: 17397150 PMCID: PMC2519954 DOI: 10.1021/ja066929m] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Nanotechnology-based drug delivery systems (nanoDDSs) have seen recent popularity due to their favorable physical, chemical, and biological properties, and great efforts have been made to target nanoDDSs to specific cellular receptors. CD44/chondroitin sulfate proteoglycan (CSPG) is among the receptors overexpressed in metastatic melanoma, and the sequence to which it binds within the type IV collagen triple-helix has been identified. A triple-helical "peptide-amphiphile" (alpha1(IV)1263-1277 PA), which binds CD44/CSPG, has been constructed and incorporated into liposomes of differing lipid compositions. Liposomes containing distearoyl phosphatidylcholine (DSPC) as the major bilayer component, in combination with distearoyl phosphatidylglycerol (DSPG) and cholesterol, were more stable than analogous liposomes containing dipalmitoyl phosphatidylcholine (DPPC) instead of DSPC. When dilauroyl phosphatidylcholine (DLPC):DSPG:cholesterol liposomes were prepared, monotectic behavior was observed. The presence of the alpha1(IV)1263-1277 PA conferred greater stability to the DPPC liposomal systems and did not affect the stability of the DSPC liposomes. A positive correlation was observed for cellular fluorophore delivery by the alpha1(IV)1263-1277 PA liposomes and CD44/CSPG receptor content in metastatic melanoma and fibroblast cell lines. Conversely, nontargeted liposomes delivered minimal fluorophore to these cells regardless of the CD44/CSPG receptor content. When metastatic melanoma cells and fibroblasts were treated with exogeneous alpha1(IV)1263-1277, prior to incubation with alpha1(IV)1263-1277 PA liposomes, to potentially disrupt receptor/liposome interactions, a dose-dependent decrease in the amount of fluorophore delivered was observed. Overall, our results suggest that PA-targeted liposomes can be constructed and rationally fine-tuned for drug delivery applications based on lipid composition. The selectivity of alpha1(IV)1263-1277 PA liposomes for CD44/CSPG-containing cells represents a targeted-nanoDDS with potential for further development and application.
Collapse
Affiliation(s)
- Evonne M Rezler
- Department of Chemistry and Biochemistry, Florida Atlantic University, 777 Glades Road, Boca Raton, Florida 33431, USA
| | | | | | | | | | | |
Collapse
|
22
|
Minond D, Lauer-Fields JL, Cudic M, Overall CM, Pei D, Brew K, Moss ML, Fields GB. Differentiation of secreted and membrane-type matrix metalloproteinase activities based on substitutions and interruptions of triple-helical sequences. Biochemistry 2007; 46:3724-33. [PMID: 17338550 PMCID: PMC2569894 DOI: 10.1021/bi062199j] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The turnover of the collagen triple-helical structure (collagenolysis) is a tightly regulated process in normal physiology and has been ascribed to a small number of proteases. Several members of the matrix metalloproteinase (MMPs) family possess collagenolytic activity, and the mechanisms by which these enzymes process triple helices are beginning to be unraveled. The present study has utilized two triple-helical sequences to compare the cleavage-site specificities of 10 MMPs. One substrate featured a continuous Gly-Xxx-Yyy sequence (Pro-Leu-Gly approximately Met-Arg-Gly), while the other incorporated an interruption in the Gly-Xxx-Yyy repeat (Pro-Val-Asn approximately Phe-Arg-Gly). Both sequences were selectively cleaved by MMP-13 while in linear form, but neither proved to be selective within a triple helix. This suggests that the conformational presentation of substrate sequences to a MMP active site is critical for enzyme specificity, in that activities differ when sequences are presented from an unwound triple helix versus an independent single strand. Differences in specificity between secreted and membrane-type (MT) MMPs were also observed for both sequences, where MMP-2 and MT-MMPs showed an ability to hydrolyze a triple helix at an additional site (Gly-Gln bond). Interruption of the triple helix had different effects on secreted MMPs and MT-MMPs, because MT-MMPs could not hydrolyze the Asn-Phe bond but instead cleaved the triple helix closer to the C terminus at a Gly-Gln bond. It is possible that MT-MMPs have a requirement for Gly in the P1 subsite to be able to efficiently process a triple-helical molecule. Analysis of individual kinetic parameters and activation energies indicated different substrate preferences within secreted MMPs, because MMP-13 preferred the interrupted sequence, while MMP-8 showed little discrimination between non-interrupted and interrupted triple helices. On the basis of the present and prior studies, we can assign unique triple-helical peptidase behaviors to the collagenolytic MMPs. Such differences may be significant for understanding MMP mechanisms of action and aid in the development of selective MMP inhibitors.
Collapse
Affiliation(s)
- Dmitriy Minond
- Department of Chemistry & Biochemistry, Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431-0991
| | - Janelle L. Lauer-Fields
- Department of Chemistry & Biochemistry, Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431-0991
| | - Mare Cudic
- Department of Chemistry & Biochemistry, Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431-0991
| | - Christopher M. Overall
- University of British Columbia Centre for Blood Research and the Canadian Institutes for Health Research Group in Matrix Dynamics and the Departments of Biochemistry and Molecular Biology, Oral Biological and Medical Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Duanqing Pei
- Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455
| | - Keith Brew
- College of Biomedical Sciences, Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431-0991
| | - Marcia L. Moss
- BioZyme, Inc., 1513 Old White Oak Church Road, Apex, NC 27523-9299
| | - Gregg B. Fields
- Department of Chemistry & Biochemistry, Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431-0991
- Correspondence should be addressed to this author at the Department of Chemistry & Biochemistry, Florida Atlantic University, 777 Glades Road, Boca Raton, Florida 33431-0991. Tel: 561-297-2093; Fax: 561-297-2759; E-mail:
| |
Collapse
|
23
|
Baronas‐Lowell D, Lauer‐Fields JL, Fields GB. Defining the Roles of Collagen and Collagen‐Like Proteins Within the Proteome. J LIQ CHROMATOGR R T 2007. [DOI: 10.1081/jlc-120023245] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Diane Baronas‐Lowell
- a Department of Chemistry and Biochemistry , Florida Atlantic University , 777 Glades Road, Boca Raton , Florida , 33431‐0991 , USA
| | - Janelle L. Lauer‐Fields
- a Department of Chemistry and Biochemistry , Florida Atlantic University , 777 Glades Road, Boca Raton , Florida , 33431‐0991 , USA
| | - Gregg B. Fields
- a Department of Chemistry and Biochemistry , Florida Atlantic University , 777 Glades Road, Boca Raton , Florida , 33431‐0991 , USA
| |
Collapse
|
24
|
Lauer-Fields JL, Minond D, Sritharan T, Kashiwagi M, Nagase H, Fields GB. Substrate Conformation Modulates Aggrecanase (ADAMTS-4) Affinity and Sequence Specificity. J Biol Chem 2007; 282:142-50. [PMID: 17095512 DOI: 10.1074/jbc.m605236200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protease-substrate interactions are governed by a variety of structural features. Although the substrate sequence specificities of numerous proteases have been established, "topological specificities," whereby proteases may be classified based on recognition of distinct three-dimensional structural motifs, have not. The aggrecanase members of the ADAMTS (a disintegrin and metalloproteinase with thrombospondin motifs) family cleave a variety of proteins but do not seem to possess distinct sequence specificities. In the present study, the topological substrate specificity of ADAMTS-4 (aggrecanase-1) was examined using triple-helical or single-stranded poly(Pro) II helical peptides. Substrate topology modulated the affinity and sequence specificity of ADAMTS-4 with K(m) values indicating a preference for triple-helical structure. In turn, non-catalytic ADAMTS-4 domains were critical for hydrolysis of triple-helical and poly(Pro) II helical substrates. Comparison of ADAMTS-4 with MMP-1 (collagenase 1), MMP-13 (collagenase 3), trypsin, and thermolysin using triple-helical peptide (THP) and single-stranded peptide (SSP) substrates demonstrated that all five proteases possessed efficient "triple-helical peptidase" activity and fell into one of two categories: (k(cat)/K(m))(SSP) > (k(cat)/K(m))(THP) (thermolysin, trypsin, and MMP-13) or (k(cat)/K(m))(THP) > or = (k(cat)/K(m))(SSP) and (K(m))(SSP) > (K(m))(THP) (MMP-1 and ADAMTS-4). Overall these results suggest that topological specificity may be a guiding principle for protease behavior and can be utilized to design specific substrates and inhibitors. The triple-helical and single-stranded poly(Pro) II helical peptides represent the first synthetic substrates successfully designed for aggrecanases.
Collapse
Affiliation(s)
- Janelle L Lauer-Fields
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton, Florida 33431-0991, USA
| | | | | | | | | | | |
Collapse
|
25
|
Minond D, Lauer-Fields JL, Cudic M, Overall CM, Pei D, Brew K, Visse R, Nagase H, Fields GB. The Roles of Substrate Thermal Stability and P2 and P1′ Subsite Identity on Matrix Metalloproteinase Triple-helical Peptidase Activity and Collagen Specificity. J Biol Chem 2006; 281:38302-13. [PMID: 17065155 DOI: 10.1074/jbc.m606004200] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The hydrolysis of collagen (collagenolysis) is one of the committed steps in extracellular matrix turnover. Within the matrix metalloproteinase (MMP) family distinct preferences for collagen types are seen. The substrate determinants that may guide these specificities are unknown. In this study, we have utilized 12 triple-helical substrates in combination with 10 MMPs to better define the contributions of substrate sequence and thermal stability toward triple helicase activity and collagen specificity. In general, MMP-13 was found to be distinct from MMP-8 and MT1-MMP(Delta279-523), in that enhanced substrate thermal stability has only a modest effect on activity, regardless of sequence. This result correlates to the unique collagen specificity of MMP-13 compared with MMP-8 and MT1-MMP, in that MMP-13 hydrolyzes type II collagen efficiently, whereas MMP-8 and MT1-MMP are similar in their preference for type I collagen. In turn, MMP-1 was the least efficient of the collagenolytic MMPs at processing increasingly thermal stable triple helices and thus favors type III collagen, which has a relatively flexible cleavage site. Gelatinases (MMP-2 and MMP-9(Delta444-707)) appear incapable of processing more stable helices and are thus mechanistically distinct from collagenolytic MMPs. The collagen specificity of MMPs appears to be based on a combination of substrate sequence and thermal stability. Analysis of the hydrolysis of triple-helical peptides by an MMP mutant indicated that Tyr(210) functions in triple helix binding and hydrolysis, but not in processing triple helices of increasing thermal stabilities. Further exploration of MMP active sites and exosites, in combination with substrate conformation, may prove valuable for additional dissection of collagenolysis and yield information useful in the design of more selective MMP inhibitors.
Collapse
Affiliation(s)
- Dmitriy Minond
- Department of Chemistry and Biochemistry, Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431-0991, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Grasso G, Fragai M, Rizzarelli E, Spoto G, Yeo KJ. In situ AP/MALDI-MS characterization of anchored matrix metalloproteinases. JOURNAL OF MASS SPECTROMETRY : JMS 2006; 41:1561-9. [PMID: 17094173 DOI: 10.1002/jms.1126] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Several different procedures are available for the immobilization of proteins on solid supports, as many advantages derive from this approach, such as the possibility to develop new protein solid-state assays. Enzymes that are anchored on gold surfaces can interact with several different molecules in a tag-free environment, opening the way to surface plasmon resonance (SPR) investigations. Nevertheless, it is often important to know the identity of the affinity-retained analyte, and mass spectrometric analysis, via its unique molecular mass identification, represents a very valuable complementary method. There are many pieces of evidence to suggest that matrix metalloproteinases (MMPs) are involved in normal and pathological processes, including embryogenesis, wound healing, inflammation, arthritis and cancer, but presumably also exhibiting other functions. The search for new inhibitors of MMPs has prompted research towards the development of new solid-state assays for the rapid evaluation of MMP activity. We have already reported the possibility of measuring the activity of MMP-1 anchored on solid support by coupling SPR with ESI-MS analysis. In this work, we show the in situ atmospheric pressure (AP) MALDI-MS characterization of MMPs anchored on a gold chip with known surface coverage. The study extends the MS analysis to different proteins, and sequence coverage is reported for different digestion and MS procedures.
Collapse
Affiliation(s)
- Giuseppe Grasso
- Consorzio Interuniversitario di Ricerca in Chimica dei Metalli nei Sistemi Biologici, Via C. Ulpiani 27, Bari, Italy
| | | | | | | | | |
Collapse
|
27
|
Lombard C, Saulnier J, Wallach J. Assays of matrix metalloproteinases (MMPs) activities: a review. Biochimie 2005; 87:265-72. [PMID: 15781313 DOI: 10.1016/j.biochi.2005.01.007] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2004] [Accepted: 01/13/2005] [Indexed: 11/22/2022]
Abstract
Measurement of matrix metalloproteinase (MMP) activity often remains a challenge, mainly in complex media. Two sets of methods are currently used. The first one measures the hydrolysis of natural protein substrates (labeled or not) and includes the popular zymography. These techniques which are quite sensitive, cannot generally be carried out on a continuous basis. The second one takes mainly advantage of the increase of fluorescence, which is associated to the hydrolysis of initially quenched fluorogenic peptide substrates. Quite recently, another group, which is a compromise between the other two, has been developed. It measures the hydrolysis of synthetic triple-helical peptide substrates. These different methods are described and discussed.
Collapse
Affiliation(s)
- Carine Lombard
- Laboratoire de biochimie analytique et synthèse bioorganique, UFR Chimie-Biochimie, Université Claude-Bernard Lyon 1, 69622 Villeurbanne cedex, France
| | | | | |
Collapse
|
28
|
Bhide VM, Laschinger CA, Arora PD, Lee W, Hakkinen L, Larjava H, Sodek J, McCulloch CA. Collagen Phagocytosis by Fibroblasts Is Regulated by Decorin. J Biol Chem 2005; 280:23103-13. [PMID: 15811857 DOI: 10.1074/jbc.m410060200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Decorin is a small, leucine-rich proteoglycan that binds to collagen and regulates fibrillogenesis. We hypothesized that decorin binding to collagen inhibits phagocytosis of collagen fibrils. To determine the effects of decorin on collagen degradation, we analyzed phagocytosis of collagen and collagen/decorin-coated fluorescent beads by Rat-2 and gingival fibroblasts. Collagen beads bound to gingival cells by alpha2beta1 integrins. Binding and internalization of decorin/collagen-coated beads decreased dose-dependently with increasing decorin concentration (p < 0.001). Inhibition of binding was sustained over 5 h (p < 0.001) and was attributed to interactions between decorin and collagen and not to decorin-collagen receptor interactions. Both the non-glycosylated decorin core protein and the thermally denatured decorin significantly inhibited collagen bead binding (approximately 50 and 89%, respectively; p < 0.05). Mimetic peptides corresponding to leucine-rich repeats 1-3, encompassed by a collagen-binding approximately 11-kDa cyanogen bromide fragment of decorin and leucine-rich repeats 4 and 5, previously shown to bind to collagen, were tested for their ability to inhibit collagen bead binding. Although the synthetic peptide 3 alone exhibited saturable binding to collagen, neither peptides 3 nor 1 and 2 markedly inhibited phagocytosis. Leucine-rich repeat 3 bound to a triple helical peptide containing the alpha2 integrin-binding site of collagen. When collagen beads were co-incubated with peptides 3 and 4, inhibition of collagen phagocytosis (55%) was equivalent to intact native/recombinant core protein. Thus a novel collagen binding domain in decorin acts cooperatively with leucine-rich repeat 4 to mask the alpha2beta1 integrin-binding site on collagen, an important sequence for the phagocytosis of collagen fibrils.
Collapse
Affiliation(s)
- Vinay M Bhide
- Canadian Institutes of Health Research Group in Matrix Dynamics, Faculty of Dentistry, University of Toronto, Ontario
| | | | | | | | | | | | | | | |
Collapse
|
29
|
|
30
|
Baronas-Lowell D, Lauer-Fields JL, Borgia JA, Sferrazza GF, Al-Ghoul M, Minond D, Fields GB. Differential modulation of human melanoma cell metalloproteinase expression by alpha2beta1 integrin and CD44 triple-helical ligands derived from type IV collagen. J Biol Chem 2004; 279:43503-13. [PMID: 15292257 DOI: 10.1074/jbc.m405979200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tumor cell binding to components of the basement membrane is well known to trigger intracellular signaling pathways. Signaling ultimately results in the modulation of gene expression, facilitating metastasis. Type IV collagen is the major structural component of the basement membrane and is known to be a polyvalent ligand, possessing sequences bound by the alpha1beta1, alpha2beta1, and alpha3beta1 integrins, as well as cell surface proteoglycan receptors, such as CD44/chondroitin sulfate proteoglycan (CSPG). The role of alpha2beta1 integrin and CD44/CSPG receptor binding on human melanoma cell activation has been evaluated herein using triple-helical peptide ligands incorporating the alpha1(IV)382-393 and alpha1(IV)1263-1277 sequences, respectively. Gene expression and protein production of matrix metalloproteinases-1 (MMP-1), -2, -3, -13, and -14 were modulated with the alpha2beta1-specific sequence, whereas the CD44-specific sequence yielded significant stimulation of MMP-8 and lower levels of modulation of MMP-1, -2, -13, and -14. Analysis of enzyme activity confirmed different melanoma cell proteolytic potentials based on engagement of either the alpha2beta1 integrin or CD44/CSPG. These results are indicative of specific activation events that tumor cells undergo upon binding to select regions of basement membrane collagen. Based on the present study, triple-helical peptide ligands provide a general approach for monitoring the regulation of proteolysis in cellular systems.
Collapse
Affiliation(s)
- Diane Baronas-Lowell
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton 33431-0991, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Lauer-Fields JL, Kele P, Sui G, Nagase H, Leblanc RM, Fields GB. Analysis of matrix metalloproteinase triple-helical peptidase activity with substrates incorporating fluorogenic L- or D-amino acids. Anal Biochem 2003; 321:105-15. [PMID: 12963061 DOI: 10.1016/s0003-2697(03)00460-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The consequences of improper regulation of collagen turnover include diseases such as tumor cell metastasis and arthritis. Several fluorogenic triple-helical peptide (fTHP) substrates have been constructed presently to examine collagenolytic behavior. These substrates incorporate L- or D-2-amino-3-(7-methoxy-4-coumaryl)propionic acid (Amp) or L- or D-2-amino-3-(6,7-dimethoxy-4-coumaryl)propionic acid (Adp) as the fluorophore and N-2,4-dinitrophenyl (Dnp) as the quencher. The desired sequences were C6-(Gly-Pro-Hyp)5-Gly-Pro-[Amp/Adp]-Gly-Pro-Gln-Gly approximately Leu-Arg-Gly-Gln-Lys(Dnp)-Gly-Val-Arg-(Gly-Pro-Hyp)5-NH2. All four fTHPs formed stable triple-helices. Matrix metalloproteinase-2 (MMP-2) rates of hydrolysis for all fTHPs were considerably more rapid than corresponding MMP-1 rates. Evaluation of individual kinetic parameters indicated that MMP-2 bound to the fTHPs more efficiently than MMP-1. Comparison to a triple-helical substrate incorporating the same sequence but with a different fluorophore [Lys((7-methoxycoumarin-4-yl)acetyl); Lys(Mca)] demonstrated that the shorter side chain of Amp or Adp was better tolerated by MMP-1 and MMP-2. Adp may well be the fluorophore of choice for fTHPs, as (a) fTHPs incorporating Adp were obtained in significantly higher yields than the Amp-containing fTHPs, (b) Adp has a larger Stokes shift than either Amp or Lys(Mca) and thus has less chance of self-quenching, (c) Adp has a relatively high quantum yield, (d) the Adp/Dnp pair is compatible with multiwell plate reader formats, and (e) MMPs better tolerate Adp than Lys(Mca).
Collapse
Affiliation(s)
- Janelle L Lauer-Fields
- Department of Chemistry and Biochemistry, Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431-0991, USA
| | | | | | | | | | | |
Collapse
|
32
|
Abstract
The matrix metalloproteinase (MMP)/matrixin family has been implicated in both normal tissue remodeling and a variety of diseases associated with abnormal turnover of extracellular matrix components. The mechanism by which MMPs catabolize collagen (collagenolysis) is still largely unknown. Substrate flexibility, MMP active sites, and MMP exosites all contribute to collagen degradation. It has recently been demonstrated that the ability to cleave a triple helix (triple-helical peptidase activity) can be distinguished from the ability to cleave collagen (collagenolytic activity). This suggests that the ability to cleave a triple helix is not the limiting factor for collagenolytic activity-the ability to properly orient and potentially destabilize collagen is. For the MMP family, the catalytic domain can unwind and cleave a triple-helical structure, while the C-terminal hemopexin-like domain appears to be responsible for properly orienting collagen and destabilizing it to some degree. It is also possible that exosites within the catalytic and/or C-terminal hemopexin-like domain may exclude some MMPs from cleaving collagen. Overall, it appears that many proteases of distinct mechanisms possess triple-helical peptidase activity, and that convergent evolution led to a few proteases possessing collagenolytic activity. Proper orientation and distortion of the triple helix may be the key factor for collagenolysis.
Collapse
Affiliation(s)
- Janelle L Lauer-Fields
- Department of Chemistry and Biochemistry, Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431, USA
| | | | | |
Collapse
|
33
|
Lauer-Fields JL, Sritharan T, Stack MS, Nagase H, Fields GB. Selective hydrolysis of triple-helical substrates by matrix metalloproteinase-2 and -9. J Biol Chem 2003; 278:18140-5. [PMID: 12642591 DOI: 10.1074/jbc.m211330200] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The role of proteases in the tumor cell invasion process is multifaceted. Members of the matrix metalloproteinase (MMP) family have been implicated in primary and metastatic tumor growth, angiogenesis, and degradation of extracellular matrix (ECM) components. Differentiating between the up-regulation of MMP production and the presence of activated MMPs can be difficult but may well dictate which MMPs are critical to invasion. Because the hydrolysis of collagens is one of the committed steps in ECM turnover, we have investigated selective MMP action on collagenous substrates as a means to evaluate active MMPs. Two triple-helical peptide (THP) models of the MMP-9 cleavage site in type V collagen, alpha1(V)436-450 THP and alpha1(V)436-447 fTHP, were hydrolyzed by MMP-2 and MMP-9 at the Gly-Val bond, analogous to the bond cleaved by MMP-9 in the corresponding native collagen. Kinetic analyses showed k(cat)/K(m) values of 14,002 and 5,449 s(-1)m(-1) for MMP-2 and -9 hydrolysis of alpha1(V)436-447 fTHP, respectively. These values, along with individual k(cat) and K(m) values, are comparable with collagen hydrolysis by MMP-2 and -9. Neither THP was hydrolyzed by MMP-1, -3, -13, or -14. alpha1(V)436-447 fTHP and a general fluorogenic THP were used to screen for triple-helical peptidase activity in alpha(2)beta(1) integrin-stimulated melanoma cells. Binding of the alpha(2)beta(1) integrin resulted in the production of substantial triple-helical peptidase activity, the majority (>95%) of which was non-MMP-2/-9. THPs were found to provide highly selective substrates for members of the MMP family and can be used to evaluate active MMP production in cellular systems.
Collapse
Affiliation(s)
- Janelle L Lauer-Fields
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton, Florida 33431-0991, USA
| | | | | | | | | |
Collapse
|
34
|
Federman S, Miller LM, Sagi I. Following matrix metalloproteinases activity near the cell boundary by infrared micro-spectroscopy. Matrix Biol 2002; 21:567-77. [PMID: 12475641 DOI: 10.1016/s0945-053x(02)00089-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Matrix Metalloproteinases (MMPs) are cell-secreted soluble and membrane-tethered enzymes that degrade extracellular matrix (ECM) proteins. These proteases play a key role in diverse physiological and pathological processes, including embryonic development, wound repair, inflammatory diseases and cancer. Yet, there is insufficient knowledge on the mode by which cell-produced MMPs conduct their action on the ECM. Specifically, the localization and the mode of the degradation within the pericellular space are of great interest. To provide new insights to these questions we utilized Fourier transform infrared (FTIR) micro-spectroscopy to follow proteolytic processes, induced by invasive cancer cells, on insoluble collagen-based matrices. Here we show that FTIR micro-spectroscopy have a great potential for monitoring degradation events near cells. Using this tool we demonstrate that the net proteolysis is unevenly distributed around the cell boundary. The degradation patterns show different levels of proteolytic activity by MMPs within the pericellular space. In addition, our spectral analysis suggests that the enzymatic proteolysis of the collagen-based matrices induces unwinding of the triple helical structures of the macromolecules within the collagen network.
Collapse
Affiliation(s)
- Silvina Federman
- Department of Structural Biology, The Weizmann Institute of Science, 76100, Rehovot, Israel
| | | | | |
Collapse
|
35
|
Lauer-Fields JL, Fields GB. Triple-helical peptide analysis of collagenolytic protease activity. Biol Chem 2002; 383:1095-105. [PMID: 12437092 DOI: 10.1515/bc.2002.118] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Matrix metalloproteinase (MMP) family members are involved in the physiological remodeling of tissues and embryonic development as well as pathological destruction of extracellular matrix components. To study the mechanisms of MMP action on collagenous substrates, non-fluorogenic and fluorogenic triple-helical peptide models of MMP-1 cleavage sites in interstitial collagens have been constructed. Triple-helical peptides were assembled by either (a) covalent branching or (b) self-association driven by hydrophobic interactions. Fluorogenic triple-helical peptide (fTHP) substrates contained the fluorophore/quencher pair of (7-methoxycoumarin-4-yl)acetyl (Mca) and N-2,4-dinitrophenyl (Dnp) in the P5 and P5' positions, respectively. Investigation of MMP family hydrolysis of THPs showed kcat/Km values in the order of MMP-13 > MMP-1 approximately MMP-1(delta243-450) approximately MMP-2 >> MMP-3. Studies on the effect of temperature on fTHP and an analogous fluorogenic single-stranded peptide (fSSP) hydrolysis by MMP-1 showed that the activation energies between these two substrates differed by 3.4-fold, similar to the difference in activation energies for MMP-1 hydrolysis of type I collagen and gelatin. The general proteases trypsin and thermolysin were also studied for triple-helical peptidase activity. Both of these enzymes exhibited similar activation energies to MMP-1 for hydrolysis of fTHP versus fSSP. These results suggest that 'triple-helical peptidase' activity can be distinguished from 'collagenolytic' activity, and that mechanistically distinct enzymes convergently evolved to develop collagenolytic activity.
Collapse
Affiliation(s)
- Janelle L Lauer-Fields
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton 33431-0991, USA
| | | |
Collapse
|
36
|
Abstract
A continuous assay method, such as one that utilizes an increase in fluorescence upon hydrolysis, allows for rapid and convenient kinetic evaluation of proteases. To better understand MMP behaviors and to aid in the design of MMP inhibitors, a variety of sequence specificity, phage display, and combinatorial chemistry studies have been performed. Results of these studies have been valuable for defining the differences in MMPs and for creating quenched fluorescent substrates that utilize fluorescence resonance energy transfer (FRET)/intramolecular fluorescence energy transfer (IFET). FRET triple-helical substrates have been constructed to examine the collagenolytic activity of MMP family members. The present chapter provides an overview of MMP and related FRET substrates and describes how to construct and utilize these substrates.
Collapse
Affiliation(s)
- Gregg B. Fields
- Department of Chemistry & Biochemistry, Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431 U.S.A. Phone 561-297-2093, Fax 561-297-2759
| |
Collapse
|
37
|
Current literature in mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2000; 35:1474-1485. [PMID: 11180639 DOI: 10.1002/1096-9888(200012)35:12<1474::aid-jms985>3.0.co;2-u] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
|