1
|
Maier FI, Klinger D, Grieshober M, Noschka R, Rodriguez A, Wiese S, Forssmann WG, Ständker L, Stenger S. Lysozyme: an endogenous antimicrobial protein with potent activity against extracellular, but not intracellular Mycobacterium tuberculosis. Med Microbiol Immunol 2024; 213:9. [PMID: 38900248 PMCID: PMC11189972 DOI: 10.1007/s00430-024-00793-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 06/05/2024] [Indexed: 06/21/2024]
Abstract
Endogenous antimicrobial peptides (AMPs) play a key role in the host defense against pathogens. AMPs attack pathogens preferentially at the site of entry to prevent invasive infection. Mycobacterium tuberculosis (Mtb) enters its host via the airways. AMPs released into the airways are therefore likely candidates to contribute to the clearance of Mtb immediately after infection. Since lysozyme is detectable in airway secretions, we evaluated its antimicrobial activity against Mtb. We demonstrate that lysozyme inhibits the growth of extracellular Mtb, including isoniazid-resistant strains. Lysozyme also inhibited the growth of non-tuberculous mycobacteria. Even though lysozyme entered Mtb-infected human macrophages and co-localized with the pathogen we did not observe antimicrobial activity. This observation was unlikely related to the large size of lysozyme (14.74 kDa) because a smaller lysozyme-derived peptide also co-localized with Mtb without affecting the viability. To evaluate whether the activity of lysozyme against extracellular Mtb could be relevant in vivo, we incubated Mtb with fractions of human serum and screened for antimicrobial activity. After several rounds of sub-fractionation, we identified a highly active fraction-component as lysozyme by mass spectrometry. In summary, our results identify lysozyme as an antimycobacterial protein that is detectable as an active compound in human serum. Our results demonstrate that the activity of AMPs against extracellular bacilli does not predict efficacy against intracellular pathogens despite co-localization within the macrophage. Ongoing experiments are designed to unravel peptide modifications that occur in the intracellular space and interfere with the deleterious activity of lysozyme in the extracellular environment.
Collapse
Affiliation(s)
- Felix Immanuel Maier
- Institute of Medical Microbiology and Infection and Hygiene, Ulm University, Ulm, Germany
| | - David Klinger
- Institute of Medical Microbiology and Infection and Hygiene, Ulm University, Ulm, Germany
| | - Mark Grieshober
- Institute of Medical Microbiology and Infection and Hygiene, Ulm University, Ulm, Germany
| | - Reiner Noschka
- Institute of Medical Microbiology and Infection and Hygiene, Ulm University, Ulm, Germany
| | - Armando Rodriguez
- Core Facility of Functional Peptidomics, Ulm University, Meyerhoferstraße 4, 89081, Ulm, Germany
- Core Unit Mass Spectrometry and Proteomics, Ulm University, Albert Einstein Allee 23, 89081, Ulm, Germany
| | - Sebastian Wiese
- Core Unit Mass Spectrometry and Proteomics, Ulm University, Albert Einstein Allee 23, 89081, Ulm, Germany
| | | | - Ludger Ständker
- Core Facility of Functional Peptidomics, Ulm University, Meyerhoferstraße 4, 89081, Ulm, Germany
| | - Steffen Stenger
- Institute of Medical Microbiology and Infection and Hygiene, Ulm University, Ulm, Germany.
| |
Collapse
|
2
|
Schrader M. Origins, Technological Advancement, and Applications of Peptidomics. Methods Mol Biol 2024; 2758:3-47. [PMID: 38549006 DOI: 10.1007/978-1-0716-3646-6_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
Peptidomics is the comprehensive characterization of peptides from biological sources instead of heading for a few single peptides in former peptide research. Mass spectrometry allows to detect a multitude of peptides in complex mixtures and thus enables new strategies leading to peptidomics. The term was established in the year 2001, and up to now, this new field has grown to over 3000 publications. Analytical techniques originally developed for fast and comprehensive analysis of peptides in proteomics were specifically adjusted for peptidomics. Although it is thus closely linked to proteomics, there are fundamental differences with conventional bottom-up proteomics. Fundamental technological advancements of peptidomics since have occurred in mass spectrometry and data processing, including quantification, and more slightly in separation technology. Different strategies and diverse sources of peptidomes are mentioned by numerous applications, such as discovery of neuropeptides and other bioactive peptides, including the use of biochemical assays. Furthermore, food and plant peptidomics are introduced similarly. Additionally, applications with a clinical focus are included, comprising biomarker discovery as well as immunopeptidomics. This overview extensively reviews recent methods, strategies, and applications including links to all other chapters of this book.
Collapse
Affiliation(s)
- Michael Schrader
- Department of Bioengineering Sciences, Weihenstephan-Tr. University of Applied Sciences, Freising, Germany.
| |
Collapse
|
3
|
Moderer T, Puşcalău-Gîrţu I, Haupt C, Baur J, Rodríguez-Alfonso A, Wiese S, Schmidt CQ, Malešević M, Forssmann WG, Ständker L, Fändrich M. Human lysozyme inhibits the fibrillation of serum amyloid a protein from systemic AA amyloidosis. Amyloid 2023; 30:424-433. [PMID: 37431668 DOI: 10.1080/13506129.2023.2232518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 06/28/2023] [Indexed: 07/12/2023]
Abstract
BACKGROUND Systemic AA amyloidosis is a world-wide occurring protein misfolding disease in humans and animals that arises from the formation of amyloid fibrils from serum amyloid A (SAA) protein and their deposition in multiple organs. OBJECTIVE To identify new agents that prevent fibril formation from SAA protein and to determine their mode of action. MATERIALS AND METHODS We used a cell model for the formation of amyloid deposits from SAA protein to screen a library of peptides and small proteins, which were purified from human hemofiltrate. To clarify the inhibitory mechanism the obtained inhibitors were characterised in cell-free fibril formation assays and other biochemical methods. RESULTS We identified lysozyme as an inhibitor of SAA fibril formation. Lysozyme antagonised fibril formation both in the cell model as well as in cell-free fibril formation assays. The protein binds SAA with a dissociation constant of 16.5 ± 0.6 µM, while the binding site on SAA is formed by segments of positively charged amino acids. CONCLUSION Our data imply that lysozyme acts in a chaperone-like fashion and prevents the aggregation of SAA protein through direct, physical interactions.
Collapse
Affiliation(s)
- Tim Moderer
- Institute of Protein Biochemistry, Ulm University, Ulm, Germany
| | | | - Christian Haupt
- Institute of Protein Biochemistry, Ulm University, Ulm, Germany
| | - Julian Baur
- Institute of Protein Biochemistry, Ulm University, Ulm, Germany
| | - Armando Rodríguez-Alfonso
- Core Facility for Functional Peptidomics, Ulm University Medical Center, Ulm, Germany
- Core Unit Mass Spectrometry and Proteomics, Ulm University Medical Center, Ulm, Germany
| | - Sebastian Wiese
- Core Unit Mass Spectrometry and Proteomics, Ulm University Medical Center, Ulm, Germany
| | - Christoph Q Schmidt
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, University of Ulm Medical Center, Ulm, Germany
| | - Miroslav Malešević
- Max Planck Research Unit for Enzymology of Protein Folding, Halle, Germany
| | | | - Ludger Ständker
- Core Facility for Functional Peptidomics, Ulm University Medical Center, Ulm, Germany
| | - Marcus Fändrich
- Institute of Protein Biochemistry, Ulm University, Ulm, Germany
| |
Collapse
|
4
|
Eberle J, Wiehe RS, Gole B, Mattis LJ, Palmer A, Ständker L, Forssmann WG, Münch J, Gebhardt JCM, Wiesmüller L. A Fibrinogen Alpha Fragment Mitigates Chemotherapy-Induced MLL Rearrangements. Front Oncol 2021; 11:689063. [PMID: 34222016 PMCID: PMC8249925 DOI: 10.3389/fonc.2021.689063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/03/2021] [Indexed: 11/25/2022] Open
Abstract
Rearrangements in the Mixed Lineage Leukemia breakpoint cluster region (MLLbcr) are frequently involved in therapy-induced leukemia, a severe side effect of anti-cancer therapies. Previous work unraveled Endonuclease G as the critical nuclease causing initial breakage in the MLLbcr in response to different types of chemotherapeutic treatment. To identify peptides protecting against therapy-induced leukemia, we screened a hemofiltrate-derived peptide library by use of an enhanced green fluorescent protein (EGFP)-based chromosomal reporter of MLLbcr rearrangements. Chromatographic purification of one active fraction and subsequent mass spectrometry allowed to isolate a C-terminal 27-mer of fibrinogen α encompassing amino acids 603 to 629. The chemically synthesized peptide, termed Fα27, inhibited MLLbcr rearrangements in immortalized hematopoietic cells following treatment with the cytostatics etoposide or doxorubicin. We also provide evidence for protection of primary human hematopoietic stem and progenitor cells from therapy-induced MLLbcr breakage. Of note, fibrinogen has been described to activate toll-like receptor 4 (TLR4). Dissecting the Fα27 mode-of action revealed association of the peptide with TLR4 in an antagonistic fashion affecting downstream NFκB signaling and pro-inflammatory cytokine production. In conclusion, we identified a hemofiltrate-derived peptide inhibitor of the genome destabilizing events causing secondary leukemia in patients undergoing chemotherapy.
Collapse
Affiliation(s)
- Julia Eberle
- Department of Obstetrics and Gynecology, Ulm University, Ulm, Germany
| | | | - Boris Gole
- Department of Obstetrics and Gynecology, Ulm University, Ulm, Germany
| | - Liska Jule Mattis
- Department of Obstetrics and Gynecology, Ulm University, Ulm, Germany
| | - Anja Palmer
- Department of Physics, Institute of Biophysics, Ulm University, Ulm, Germany
| | - Ludger Ständker
- Core Facility Functional Peptidomics, Ulm University Medical Center, Ulm, Germany
| | - Wolf-Georg Forssmann
- Pharis Biotec GmbH and Peptide Research Group, Institute of Immunology and Rheumatology, Hannover Medical School, Hannover, Germany
| | - Jan Münch
- Core Facility Functional Peptidomics, Ulm University Medical Center, Ulm, Germany
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | | | - Lisa Wiesmüller
- Department of Obstetrics and Gynecology, Ulm University, Ulm, Germany
| |
Collapse
|
5
|
Hayn M, Blötz A, Rodríguez A, Vidal S, Preising N, Ständker L, Wiese S, Stürzel CM, Harms M, Gross R, Jung C, Kiene M, Jacob T, Pöhlmann S, Forssmann WG, Münch J, Sparrer KMJ, Seuwen K, Hahn BH, Kirchhoff F. Natural cystatin C fragments inhibit GPR15-mediated HIV and SIV infection without interfering with GPR15L signaling. Proc Natl Acad Sci U S A 2021; 118:e2023776118. [PMID: 33431697 PMCID: PMC7826402 DOI: 10.1073/pnas.2023776118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
GPR15 is a G protein-coupled receptor (GPCR) proposed to play a role in mucosal immunity that also serves as a major entry cofactor for HIV-2 and simian immunodeficiency virus (SIV). To discover novel endogenous GPR15 ligands, we screened a hemofiltrate (HF)-derived peptide library for inhibitors of GPR15-mediated SIV infection. Our approach identified a C-terminal fragment of cystatin C (CysC95-146) that specifically inhibits GPR15-dependent HIV-1, HIV-2, and SIV infection. In contrast, GPR15L, the chemokine ligand of GPR15, failed to inhibit virus infection. We found that cystatin C fragments preventing GPR15-mediated viral entry do not interfere with GPR15L signaling and are generated by proteases activated at sites of inflammation. The antiretroviral activity of CysC95-146 was confirmed in primary CD4+ T cells and is conserved in simian hosts of SIV infection. Thus, we identified a potent endogenous inhibitor of GPR15-mediated HIV and SIV infection that does not interfere with the physiological function of this GPCR.
Collapse
Affiliation(s)
- Manuel Hayn
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany
| | - Andrea Blötz
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany
| | - Armando Rodríguez
- Core Facility Functional Peptidomics, Ulm University Medical Center, 89081 Ulm, Germany
- Core Unit Mass Spectrometry and Proteomics, Ulm University Medical Center, 89081 Ulm, Germany
- PHARIS Biotec GmbH, 30625 Hannover, Germany
| | - Solange Vidal
- Novartis Institutes for Biomedical Research, 4056 Basel, Switzerland
| | - Nico Preising
- Core Facility Functional Peptidomics, Ulm University Medical Center, 89081 Ulm, Germany
| | - Ludger Ständker
- Core Facility Functional Peptidomics, Ulm University Medical Center, 89081 Ulm, Germany
| | - Sebastian Wiese
- Core Unit Mass Spectrometry and Proteomics, Ulm University Medical Center, 89081 Ulm, Germany
| | - Christina M Stürzel
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany
| | - Mirja Harms
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany
| | - Rüdiger Gross
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany
| | - Christoph Jung
- Institute of Electrochemistry, Ulm University, 89081 Ulm, Germany
| | - Miriam Kiene
- Infection Biology Unit, German Primate Center-Leibniz Institute for Primate Research, 37077 Göttingen, Germany
| | - Timo Jacob
- Institute of Electrochemistry, Ulm University, 89081 Ulm, Germany
| | - Stefan Pöhlmann
- Infection Biology Unit, German Primate Center-Leibniz Institute for Primate Research, 37077 Göttingen, Germany
- Faculty of Biology and Psychology, University Göttingen, 37073 Göttingen, Germany
| | | | - Jan Münch
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany
| | | | - Klaus Seuwen
- Novartis Institutes for Biomedical Research, 4056 Basel, Switzerland
| | - Beatrice H Hahn
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6076;
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6076
| | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany;
| |
Collapse
|
6
|
Noschka R, Gerbl F, Löffler F, Kubis J, Rodríguez AA, Mayer D, Grieshober M, Holch A, Raasholm M, Forssmann WG, Spellerberg B, Wiese S, Weidinger G, Ständker L, Stenger S. Unbiased Identification of Angiogenin as an Endogenous Antimicrobial Protein With Activity Against Virulent Mycobacterium tuberculosis. Front Microbiol 2021; 11:618278. [PMID: 33537017 PMCID: PMC7848861 DOI: 10.3389/fmicb.2020.618278] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/23/2020] [Indexed: 12/13/2022] Open
Abstract
Tuberculosis is a highly prevalent infectious disease with more than 1.5 million fatalities each year. Antibiotic treatment is available, but intolerable side effects and an increasing rate of drug-resistant strains of Mycobacterium tuberculosis (Mtb) may hamper successful outcomes. Antimicrobial peptides (AMPs) offer an alternative strategy for treatment of infectious diseases in which conventional antibiotic treatment fails. Human serum is a rich resource for endogenous AMPs. Therefore, we screened a library generated from hemofiltrate for activity against Mtb. Taking this unbiased approach, we identified Angiogenin as the single compound in an active fraction. The antimicrobial activity of endogenous Angiogenin against extracellular Mtb could be reproduced by synthetic Angiogenin. Using computational analysis, we identified the hypothetical active site and optimized the lytic activity by amino acid exchanges. The resulting peptide-Angie1-limited the growth of extra- and intracellular Mtb and the fast-growing pathogens Escherichia coli, Pseudomonas aeruginosa, and Klebsiella pneumoniae. Toward our long-term goal of evaluating Angie1 for therapeutic efficacy in vivo, we demonstrate that the peptide can be efficiently delivered into human macrophages via liposomes and is not toxic for zebrafish embryos. Taken together, we define Angiogenin as a novel endogenous AMP and derive the small, bioactive fragment Angie1, which is ready to be tested for therapeutic activity in animal models of tuberculosis and infections with fast-growing bacterial pathogens.
Collapse
Affiliation(s)
- Reiner Noschka
- Institute of Medical Microbiology and Hygiene, University Hospital Ulm, Ulm, Germany
| | - Fabian Gerbl
- Institute of Medical Microbiology and Hygiene, University Hospital Ulm, Ulm, Germany
| | - Florian Löffler
- Institute of Medical Microbiology and Hygiene, University Hospital Ulm, Ulm, Germany
| | - Jan Kubis
- Institute of Medical Microbiology and Hygiene, University Hospital Ulm, Ulm, Germany
| | - Armando A Rodríguez
- Core Unit Mass Spectrometry and Proteomics, Ulm University, Ulm, Germany.,Core Facility of Functional Peptidomics, Ulm University, Ulm, Germany
| | - Daniel Mayer
- Institute of Medical Microbiology and Hygiene, University Hospital Ulm, Ulm, Germany
| | - Mark Grieshober
- Institute of Medical Microbiology and Hygiene, University Hospital Ulm, Ulm, Germany
| | - Armin Holch
- Institute of Medical Microbiology and Hygiene, University Hospital Ulm, Ulm, Germany
| | - Martina Raasholm
- Institute of Biochemistry and Molecular Biology, Ulm University, Ulm, Germany
| | | | - Barbara Spellerberg
- Institute of Medical Microbiology and Hygiene, University Hospital Ulm, Ulm, Germany
| | - Sebastian Wiese
- Core Unit Mass Spectrometry and Proteomics, Ulm University, Ulm, Germany
| | - Gilbert Weidinger
- Institute of Biochemistry and Molecular Biology, Ulm University, Ulm, Germany
| | - Ludger Ständker
- Core Facility of Functional Peptidomics, Ulm University, Ulm, Germany
| | - Steffen Stenger
- Institute of Medical Microbiology and Hygiene, University Hospital Ulm, Ulm, Germany
| |
Collapse
|
7
|
Proteomic profiling of the thrombin-activated canine platelet secretome (CAPS). PLoS One 2019; 14:e0224891. [PMID: 31721811 PMCID: PMC6853320 DOI: 10.1371/journal.pone.0224891] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 10/23/2019] [Indexed: 11/27/2022] Open
Abstract
Domestic dogs share the same environment as humans, and they represent a valuable animal model to study naturally-occurring human disease. Platelet proteomics holds promise for the discovery of biomarkers that capture the contribution of platelets to the pathophysiology of many disease states, however, canine platelet proteomic studies are lacking. Our study objectives were to establish a protocol for proteomic identification and quantification of the thrombin-activated canine platelet secretome (CAPS), and to compare the CAPS proteins to human and murine platelet proteomic data. Washed platelets were isolated from healthy dogs, and stimulated with saline (control) or gamma-thrombin (releasate). Proteins were separated by SDS-page, trypsin-digested and analyzed by liquid chromatography and tandem mass spectrometry (MS). CAPS proteins were defined as those with a MS1-abundance ratio of two or more for releasate vs. unstimulated saline control. A total of 1,918 proteins were identified, with 908 proteins common to all dogs and 693 characterized as CAPS proteins. CAPS proteins were similar to human and murine platelet secretomes and were highly represented in hemostatic pathways. Differences unique to CAPS included replacement of platelet factor 4 with other cleavage products of platelet basic protein (e.g. interleukin-8), novel proteins (e.g. C-C motif chemokine 14), and proteins in relatively high (e.g. protease nexin-1) or low (e.g. von Willebrand factor) abundance. This study establishes the first in-depth platelet releasate proteome from healthy dogs with a reference database of 693 CAPS proteins. Similarities between CAPS and the human secretome confirm the utility of dogs as translational models of human disease, but we also identify differences unique to canine platelets. Our findings provide a resource for further investigations into disease-related CAPS profiles, and for comparative pathway analyses of platelet activation among species.
Collapse
|
8
|
Abstract
Peptidomics is the comprehensive characterization of peptides from biological sources mainly by HPLC and mass spectrometry. Mass spectrometry allows the detection of a multitude of single peptides in complex mixtures. The term first appeared in full papers in the year 2001, after over 100 years of peptide research with a main focus on one or a few specific peptides. Within the last 15 years, this new field has grown to over 1200 publications. Mass spectrometry techniques, in combination with other analytical methods, were developed for the fast and comprehensive analysis of peptides in proteomics and specifically adjusted to implement peptidomics technologies. Although peptidomics is closely linked to proteomics, there are fundamental differences with conventional bottom-up proteomics. The development of peptidomics is described, including the most important implementations for its technological basis. Different strategies are covered which are applied to several important applications, such as neuropeptidomics and discovery of bioactive peptides or biomarkers. This overview includes links to all other chapters in the book as well as recent developments of separation, mass spectrometric, and data processing technologies. Additionally, some new applications in food and plant peptidomics as well as immunopeptidomics are introduced.
Collapse
|
9
|
Bosso M, Ständker L, Kirchhoff F, Münch J. Exploiting the human peptidome for novel antimicrobial and anticancer agents. Bioorg Med Chem 2017; 26:2719-2726. [PMID: 29122440 DOI: 10.1016/j.bmc.2017.10.038] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 10/28/2017] [Indexed: 12/22/2022]
Abstract
Infectious diseases and cancers are leading causes of death and pose major challenges to public health. The human peptidome encompasses millions of compounds that display an enormous structural and functional diversity and represents an excellent source for the discovery of endogenous agents with antimicrobial and/or anticancer activity. Here, we discuss how to exploit the human peptidome for novel antimicrobial and anticancer agents through the generation of peptide libraries from human body fluids and tissues and stepwise purification of bioactive compounds.
Collapse
Affiliation(s)
- Matteo Bosso
- Institute of Molecular Virology, Ulm University Medical Center, Meyerhofstrasse 1, 89081 Ulm, Germany
| | - Ludger Ständker
- Ulm Peptide Pharmaceuticals, Ulm University, Albert-Einstein-Allee 47, 89081 Ulm, Germany; Core Facility Functional Peptidomics, Ulm University Medical Center, Albert-Einstein-Allee 47, 89081 Ulm, Germany
| | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, Meyerhofstrasse 1, 89081 Ulm, Germany; Ulm Peptide Pharmaceuticals, Ulm University, Albert-Einstein-Allee 47, 89081 Ulm, Germany
| | - Jan Münch
- Institute of Molecular Virology, Ulm University Medical Center, Meyerhofstrasse 1, 89081 Ulm, Germany; Ulm Peptide Pharmaceuticals, Ulm University, Albert-Einstein-Allee 47, 89081 Ulm, Germany; Core Facility Functional Peptidomics, Ulm University Medical Center, Albert-Einstein-Allee 47, 89081 Ulm, Germany.
| |
Collapse
|
10
|
Zirafi O, Hermann PC, Münch J. Proteolytic processing of human serum albumin generates EPI-X4, an endogenous antagonist of CXCR4. J Leukoc Biol 2016; 99:863-8. [PMID: 26965637 DOI: 10.1189/jlb.2mr1115-521rr] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 02/11/2016] [Indexed: 12/14/2022] Open
Abstract
The chemokine receptor CXCR4 is an important G protein-coupled receptor. Signaling via CXCL12 regulates a number of important biologic processes, including immune responses, organogenesis, or hematopoiesis. Dysregulation of CXCR4 signaling is associated with a variety of diseases, such as cancer development and metastasis, immunodeficiencies, or chronic inflammation. Here, we review our findings on endogenous peptide inhibitor of CXCR4 as a novel antagonist of CXCR4. This peptide is a 16-residue fragment of human serum albumin and was isolated as an inhibitor of CXCR4-tropic human immunodeficiency virus type 1 from a blood-derived peptide library. Endogenous peptide inhibitor of CXCR4 binds the second extracellular loop of CXCR4, thereby preventing engagement of CXCL12 and antagonizing the receptor. Consequently, endogenous peptide inhibitor of CXCR4 inhibits CXCL12-mediated migration of CXCR4-expressing cells in vitro, mobilizes hematopoietic stem cells, and suppresses inflammatory responses in vivo. We discuss the generation of endogenous peptide inhibitor of CXCR4, its relevance as biomarker for disease, and its role in human immunodeficiency virus/acquired immunodeficiency syndrome pathogenesis and cancer. Furthermore, we discuss why optimized endogenous peptide inhibitor of CXCR4 derivatives might have advantages over other CXCR4 antagonists.
Collapse
Affiliation(s)
- Onofrio Zirafi
- Institute of Molecular Virology, University of Ulm, Ulm, Germany
| | - Patrick C Hermann
- Department of Internal Medicine I, University of Ulm, Ulm, Germany; and
| | - Jan Münch
- Institute of Molecular Virology, University of Ulm, Ulm, Germany; Ulm Peptide Pharmaceuticals, University of Ulm, Ulm, Germany
| |
Collapse
|
11
|
Gopal J, Muthu M, Chun SC, Wu HF. State-of-the-art nanoplatform-integrated MALDI-MS impacting resolutions in urinary proteomics. Proteomics Clin Appl 2015; 9:469-81. [PMID: 25736343 DOI: 10.1002/prca.201400182] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 12/26/2014] [Accepted: 02/26/2015] [Indexed: 12/17/2022]
Abstract
Urine proteomics has become a subject of interest, since it has led to a number of breakthroughs in disease diagnostics. Urine contains information not only from the kidney and the urinary tract but also from other organs, thus urinary proteome analysis allows for identification of biomarkers for both urogenital and systemic diseases. The following review gives a brief overview of the analytical techniques that have been in practice for urinary proteomics. MALDI-MS technique and its current application status in this area of clinical research have been discussed. The review comments on the challenges facing the conventional MALDI-MS technique and the upgradation of this technique with the introduction of nanotechnology. This review projects nano-based techniques such as nano-MALDI-MS, surface-assisted laser desorption/ionization, and nanostructure-initiator MS as the platforms that have the potential in trafficking MALDI-MS from the lab to the bedside.
Collapse
Affiliation(s)
- Judy Gopal
- Department of Molecular Biotechnology, Konkuk University, Seoul, Korea
| | - Manikandan Muthu
- Department of Molecular Biotechnology, Konkuk University, Seoul, Korea
| | - Se-Chul Chun
- Department of Molecular Biotechnology, Konkuk University, Seoul, Korea
| | - Hui-Fen Wu
- Department of Chemistry, National Sun Yat-Sen University, Kaohsiung, Taiwan.,School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan.,Institute of Medical Science and Technology, National Sun Yat-Sen University, Kaohsiung, Taiwan.,Doctoral Degree Program in Marine Biotechnology, National Sun Yat-Sen University and Academia Sinica, Kaohsiung, Taiwan.,Center for Nanosciences and Nanotechnology, National Sun Yat-Sen University, Kaohsiung, Taiwan
| |
Collapse
|
12
|
Discovery and characterization of an endogenous CXCR4 antagonist. Cell Rep 2015; 11:737-47. [PMID: 25921529 DOI: 10.1016/j.celrep.2015.03.061] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 03/10/2015] [Accepted: 03/25/2015] [Indexed: 11/23/2022] Open
Abstract
CXCL12-CXCR4 signaling controls multiple physiological processes and its dysregulation is associated with cancers and inflammatory diseases. To discover as-yet-unknown endogenous ligands of CXCR4, we screened a blood-derived peptide library for inhibitors of CXCR4-tropic HIV-1 strains. This approach identified a 16 amino acid fragment of serum albumin as an effective and highly specific CXCR4 antagonist. The endogenous peptide, termed EPI-X4, is evolutionarily conserved and generated from the highly abundant albumin precursor by pH-regulated proteases. EPI-X4 forms an unusual lasso-like structure and antagonizes CXCL12-induced tumor cell migration, mobilizes stem cells, and suppresses inflammatory responses in mice. Furthermore, the peptide is abundant in the urine of patients with inflammatory kidney diseases and may serve as a biomarker. Our results identify EPI-X4 as a key regulator of CXCR4 signaling and introduce proteolysis of an abundant precursor protein as an alternative concept for chemokine receptor regulation.
Collapse
|
13
|
Münch J, Ständker L, Forssmann WG, Kirchhoff F. Discovery of modulators of HIV-1 infection from the human peptidome. Nat Rev Microbiol 2014; 12:715-22. [PMID: 25110191 PMCID: PMC7097597 DOI: 10.1038/nrmicro3312] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Kirchhoff and colleagues discuss the discovery of novel antimicrobial peptides by systematic screening of complex peptide and protein libraries that have been derived from human bodily fluids and tissues, with a focus on the isolation of endogenous agents that affect HIV-1 infection. Almost all human proteins are subject to proteolytic degradation, which produces a broad range of peptides that have highly specific and sometimes unexpected functions. Peptide libraries that have been generated from human bodily fluids or tissues are a rich but mostly unexplored source of bioactive compounds that could be used to develop antimicrobial and immunomodulatory therapeutic agents. In this Innovation article, we describe the discovery, optimization and application of endogenous bioactive peptides from human-derived peptide libraries, with a particular focus on the isolation of endogenous inhibitors and promoters of HIV-1 infection.
Collapse
Affiliation(s)
- Jan Münch
- 1] Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany. [2] Ulm Peptide Pharmaceuticals, Ulm University, 89081 Ulm, Germany
| | - Ludger Ständker
- 1] Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany. [2] Ulm Peptide Pharmaceuticals, Ulm University, 89081 Ulm, Germany
| | - Wolf-Georg Forssmann
- 1] Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany. [2] Pharis Biotec GmbH, 30625 Hannover, Germany
| | - Frank Kirchhoff
- 1] Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany. [2] Ulm Peptide Pharmaceuticals, Ulm University, 89081 Ulm, Germany
| |
Collapse
|
14
|
Schrader M, Schulz-Knappe P, Fricker LD. Historical perspective of peptidomics. EUPA OPEN PROTEOMICS 2014. [DOI: 10.1016/j.euprot.2014.02.014] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
15
|
Borst EM, Ständker L, Wagner K, Schulz TF, Forssmann WG, Messerle M. A peptide inhibitor of cytomegalovirus infection from human hemofiltrate. Antimicrob Agents Chemother 2013; 57:4751-60. [PMID: 23856778 PMCID: PMC3811406 DOI: 10.1128/aac.00854-13] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 07/10/2013] [Indexed: 12/18/2022] Open
Abstract
Naturally occurring substances with antimicrobial activity can serve as a starting point for the rational design of new drugs to treat infectious diseases. Here, we screened a library of peptides derived from human hemofiltrate for inhibitory effects on human cytomegalovirus (CMV) infection. We isolated a previously unknown derivative of the neutrophil-activating peptide 2, which we termed CYVIP, for CMV-inhibiting peptide. The peptide blocked infection with human and mouse CMV as well as with herpes simplex virus type 1 in different cell types. We found that CYVIP interferes with virus attachment to the cell surface, and structure-activity relationship studies revealed that positively charged lysine and arginine residues of CYVIP are essential for its inhibitory activity. The N-terminal 29 amino acids of the peptide were sufficient for inhibition, and substitution with an acidic residue further improved its activity. The target structure of CYVIP on the cell surface seems to be the sulfate residues of heparan sulfate proteoglycans, which are known to serve as herpesvirus attachment receptors. Our data suggest that O-sulfation of heparan sulfate is required for binding of CYVIP, and furthermore, that the initial interaction of CMV particles with cells takes place preferentially via 6-O-linked sulfate groups. These findings about CYVIP's mode of action lay the basis for further development of antivirals interfering with attachment of CMV to cells, a crucial step of the infection cycle.
Collapse
Affiliation(s)
| | - Ludger Ständker
- Center of Pharmacology and Clinic of Immunology, Research Group of Peptide Chemistry
| | | | - Thomas F. Schulz
- Department of Virology
- German Centre for Infection Research, Hannover Medical School, Hannover, Germany
| | - Wolf-Georg Forssmann
- Center of Pharmacology and Clinic of Immunology, Research Group of Peptide Chemistry
| | - Martin Messerle
- Department of Virology
- German Centre for Infection Research, Hannover Medical School, Hannover, Germany
| |
Collapse
|
16
|
Bugert JJ. Hightech in der Infektiologie: Diagnose und Therapie. LEXIKON DER INFEKTIONSKRANKHEITEN DES MENSCHEN 2012. [PMCID: PMC7123441 DOI: 10.1007/978-3-642-17158-1_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Jeden Tag sterben weltweit etwa 13 Millionen Menschen an den Folgen viraler, bakterieller oder parasitärer Erkrankungen.
Collapse
|
17
|
Abstract
Urine-based proteomic profiling is a novel approach that may result in the discovery of noninvasive biomarkers for diagnosing patients with different diseases, with the aim to ultimately improve clinical outcomes. Given new and emerging analytical technologies and data mining algorithms, the urine peptidome has become a rich resource to uncover naturally occurring peptide biomarkers for both systemic and renal diseases. However, significant analytical hurdles remain in sample collection and storage, experimental design, data analysis, and statistical inference. This study summarizes, focusing on our experiences and perspectives, the progress in addressing these challenges to enable high-throughput urine peptidomics-based biomarker discovery.
Collapse
|
18
|
Richter R, Casarosa P, Ständker L, Münch J, Springael JY, Nijmeijer S, Forssmann WG, Vischer HF, Vakili J, Detheux M, Parmentier M, Leurs R, Smit MJ. Significance of N-Terminal Proteolysis of CCL14a to Activity on the Chemokine Receptors CCR1 and CCR5 and the Human Cytomegalovirus-Encoded Chemokine Receptor US28. THE JOURNAL OF IMMUNOLOGY 2009; 183:1229-37. [DOI: 10.4049/jimmunol.0802145] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
19
|
Bugert J. Hightech im Dienste der Infektiologie. LEXIKON DER INFEKTIONSKRANKHEITEN DES MENSCHEN 2009. [PMCID: PMC7121986 DOI: 10.1007/978-3-540-39026-8_471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
20
|
Schiffer E, Mischak H, Vanholder RC. Biomarkers for Renal Disease and Uremic Toxins. Clin Proteomics 2008. [DOI: 10.1002/9783527622153.ch25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
21
|
Mischak H, Julian BA, Novak J. High-resolution proteome/peptidome analysis of peptides and low-molecular-weight proteins in urine. Proteomics Clin Appl 2007; 1:792. [PMID: 20107618 PMCID: PMC2811330 DOI: 10.1002/prca.200700043] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2007] [Indexed: 11/09/2022]
Abstract
All organisms contain thousands of proteins and peptides in their body fluids. A deeper insight into the functional relevance of these polypeptides under different physiological and pathophysiological conditions and the discovery of specific peptide biomarkers would greatly enhance diagnosis and therapy of specific diseases. The low-molecular-weight proteome, also termed peptidome, provides a rich source of information. Due to its unique features, the technical challenges differ somewhat from those in "common" proteomics. In this manuscript, we focus on the low-molecular-weight urinary proteome. We review the methodological aspects of sample collection, preparation, analysis, and subsequent data evaluation. In the second part of this review, we summarize the recent progress in the definition and identification of clinically relevant polypeptide markers.
Collapse
Affiliation(s)
| | | | - Jan Novak
- University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
22
|
Münch J, Ständker L, Adermann K, Schulz A, Schindler M, Chinnadurai R, Pöhlmann S, Chaipan C, Biet T, Peters T, Meyer B, Wilhelm D, Lu H, Jing W, Jiang S, Forssmann WG, Kirchhoff F. Discovery and Optimization of a Natural HIV-1 Entry Inhibitor Targeting the gp41 Fusion Peptide. Cell 2007; 129:263-75. [PMID: 17448989 DOI: 10.1016/j.cell.2007.02.042] [Citation(s) in RCA: 199] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2006] [Revised: 12/12/2006] [Accepted: 02/08/2007] [Indexed: 11/15/2022]
Abstract
A variety of molecules in human blood have been implicated in the inhibition of HIV-1. However, it remained elusive which circulating natural compounds are most effective in controlling viral replication in vivo. To identify natural HIV-1 inhibitors we screened a comprehensive peptide library generated from human hemofiltrate. The most potent fraction contained a 20-residue peptide, designated VIRUS-INHIBITORY PEPTIDE (VIRIP), corresponding to the C-proximal region of alpha1-antitrypsin, the most abundant circulating serine protease inhibitor. We found that VIRIP inhibits a wide variety of HIV-1 strains including those resistant to current antiretroviral drugs. Further analysis demonstrated that VIRIP blocks HIV-1 entry by interacting with the gp41 fusion peptide and showed that a few amino acid changes increase its antiretroviral potency by two orders of magnitude. Thus, as a highly specific natural inhibitor of the HIV-1 gp41 fusion peptide, VIRIP may lead to the development of another class of antiretroviral drugs.
Collapse
Affiliation(s)
- Jan Münch
- Institute of Virology, University of Ulm, 89081 Ulm, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Fliser D, Novak J, Thongboonkerd V, Argilés A, Jankowski V, Girolami MA, Jankowski J, Mischak H. Advances in urinary proteome analysis and biomarker discovery. J Am Soc Nephrol 2007; 18:1057-71. [PMID: 17329573 DOI: 10.1681/asn.2006090956] [Citation(s) in RCA: 205] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Noninvasive diagnosis of kidney diseases and assessment of the prognosis are still challenges in clinical nephrology. Definition of biomarkers on the basis of proteome analysis, especially of the urine, has advanced recently and may provide new tools to solve those challenges. This article highlights the most promising technological approaches toward deciphering the human proteome and applications of the knowledge in clinical nephrology, with emphasis on the urinary proteome. The data in the current literature indicate that although a thorough investigation of the entire urinary proteome is still a distant goal, clinical applications are already available. Progress in the analysis of human proteome in health and disease will depend more on the standardization of data and availability of suitable bioinformatics and software solutions than on new technological advances. It is predicted that proteomics will play an important role in clinical nephrology in the very near future and that this progress will require interactive dialogue and collaboration between clinicians and analytical specialists.
Collapse
Affiliation(s)
- Danilo Fliser
- Mosaiques Diagnostics and Therapeutics AG, Mellendorfer Strasse 7-9, D-30625 Hannover, Germany
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Richter R, Forssmann U, Henschler R, Escher S, Frimpong-Boateng A, Forssmann WG. Increase of expression and activation of chemokine CCL15 in chronic renal failure. Biochem Biophys Res Commun 2006; 345:1504-12. [PMID: 16737685 DOI: 10.1016/j.bbrc.2006.05.057] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2006] [Accepted: 05/10/2006] [Indexed: 11/19/2022]
Abstract
Chemokines are believed to be involved in the pathogenesis of chronic renal failure (CRF). In CRF, significantly increased CCL15-IR plasma concentrations were detected. Whereas in plasma of healthy individuals one predominant CCL15-IR molecule with a M(w) of 15kDa [high molecular weight (HMW-CCL15-IR)] was identified, CRF plasma contains increased concentrations of truncated CCL15-IR molecules [intermediate molecular weight (IMW-CCL15-IR)]. HMW-CCL15-IR isolated from hemofiltrate revealed an M(w) of 10141.3, corresponding to deglycosylated CCL15(1-92) carrying a N-terminal pyrrolidone carboxylic acid. CCL15(12-92) was identified as a major component of IMW-CCL15-IR in CRF plasma. Compared to CCL15(1-92), in monocytes CCL15(12-92) causes stronger induction of intracellular calcium flux, chemotactic activity, and adhesion to fibronectin. Intracellular calcium flux assays revealed that, in comparison to peripheral blood mononuclear cells (PBMC) of healthy donors, PBMCs of CRF patients demonstrated an increased sensitivity to CCL15. Our results point to an involvement of the CCL15-CCR1 axis in the pathophysiology of CRF.
Collapse
|
25
|
Richter R, Bistrian R, Escher S, Forssmann WG, Vakili J, Henschler R, Spodsberg N, Frimpong-Boateng A, Forssmann U. Quantum proteolytic activation of chemokine CCL15 by neutrophil granulocytes modulates mononuclear cell adhesiveness. THE JOURNAL OF IMMUNOLOGY 2005; 175:1599-608. [PMID: 16034099 DOI: 10.4049/jimmunol.175.3.1599] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Monocyte infiltration into inflammatory sites is generally preceded by neutrophils. We show here that neutrophils may support this process by activation of CCL15, a human chemokine circulating in blood plasma. Neutrophils were found to release CCL15 proteolytic activity in the course of hemofiltration of blood from renal insufficiency patients. Processing of CCL15 immunoreactivity (IR) in the pericellular space is suggested by a lack of proteolytic activity in blood and blood filtrate, but a shift of the retention time (t(R)) of CCL15-IR, detected by chromatographic separation of CCL15-IR in blood and hemofiltrate. CCL15 molecules with N-terminal deletions of 23 (delta23) and 26 (delta26) aa were identified as main proteolytic products in hemofiltrate. Neutrophil cathepsin G was identified as the principal protease to produce delta23 and delta26 CCL15. Also, elastase displays CCL15 proteolytic activity and produces a delta21 isoform. Compared with full-length CCL15, delta23 and delta26 isoforms displayed a significantly increased potency to induce calcium fluxes and chemotactic activity on monocytes and to induce adhesiveness of mononuclear cells to fibronectin. Thus, our findings indicate that activation of monocytes by neutrophils is at least in part induced by quantum proteolytic processing of circulating or endothelium-bound CCL15 by neutrophil cathepsin G.
Collapse
|
26
|
Abstract
Progress in the field of proteomics, the branch of biology that studies the full set of proteins derived from a given genome, is moving fast. Two-dimensional gel electrophoresis (2DG) separation of complex protein mixtures and the subsequent analysis of isolated protein spots by mass spectrometry allow fast and accurate identification of proteins. The comparison of spots from different samples separated on customized 2D gels allows the detection of punctual differences in their mobility and facilitates tracing back differences in protein expression, presence of isoforms, splice variants and posttranslational modifications by mass spectrometry. In spite of significant analytical challenges owing to the high complexity of the proteome and the challenge deriving from the necessity to process huge amounts of raw data generated by mass spectrometric profiling, proteomics has evolved to an indispensable tool in life sciences. A restricted window of the proteome that consists of peptides and small proteins not easily manageable by conventional gel electrophoresis prompted the development of separation methods based on liquid chromatography. This new research field termed peptidomics already contributed, together with proteomics to enlarge our knowledge about biological processes and supported by sophisticated bioinformatics tools, to the discovery of new diagnostic and therapeutic targets. The technological capabilities of biophysical separation, mass spectrometry and bioinformatics form the basis of discovery programs that aim at mining the proteome starting from microgram amounts of protein extracts derived from body fluids and tissues. Proteomics and peptidomics have a great potential to speed up allergy and asthma research, where disease- and tissue-specific samples are easy to obtain.
Collapse
Affiliation(s)
- R Crameri
- Swiss Institute of Allergy and Asthma Research (SIAF), Davos, Switzerland
| |
Collapse
|
27
|
Adermann K, John H, Ständker L, Forssmann WG. Exploiting natural peptide diversity: novel research tools and drug leads. Curr Opin Biotechnol 2005; 15:599-606. [PMID: 15560988 DOI: 10.1016/j.copbio.2004.10.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
During the course of evolution, nature has developed a vast number of peptides in all living and past species that display an exceeding diversity of structure and biological effects, such as hormonal and enzyme-controlling activity, communication between cells, and participation in host defence. Sensitive mass spectrometric technologies have been introduced and facilitate access to new natural peptides, even in trace amounts, and allow the quantitative determination of the peptide status of cells, organs and whole organisms (peptidomics). Among the large number of new biologically active peptides identified from an increasing variety of natural sources, regulators of ion channels, chemoattractants, protease inhibitors, metabolism-related hormones, cytotoxins, and antimicrobials have been found. These novel peptides serve as research tools and have potential as diagnostic biomarkers and for the development of peptide and peptidometic drugs.
Collapse
Affiliation(s)
- Knut Adermann
- IPF Pharmaceuticals GmbH, Feodor-Lynen-Strasse 31, 30625 Hannover, Germany.
| | | | | | | |
Collapse
|
28
|
Fukutomi T, Kodera Y, Kogo T, Furudate SI, Omori A, Maeda T. A simple method for peptide purification as a basis for peptidome analysis. ACTA ACUST UNITED AC 2005. [DOI: 10.2198/jelectroph.49.15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
29
|
Schebek-Fürstenberg V, Ständker L, Oppermann M, Müller-Wiefel DE, Hahn W, Blum WF, Braulke T, Kübler B. IGF-binding protein-3 fragments in plasma of a child with acute renal failure. Pediatr Nephrol 2004; 19:1418-25. [PMID: 15368120 DOI: 10.1007/s00467-004-1622-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The insulin-like growth factors (IGF) -I and -II promote cellular growth and differentiation of various organs. Their growth-stimulating effects are modulated by a family of six IGF-binding proteins (IGFBPs). Altered patterns of intact and fragmented IGFBPs have been reported in serum and urine of children with chronic renal failure (CRF), and it has been suggested that this may contribute to the growth failure observed in these patients. In the present study, a rapid and comprehensive method is presented to analyze IGFBPs and IGFBP fragments in the plasma of a child with acute renal failure (ARF) who had undergone plasmapheresis. The plasma IGF-I and IGFBP-3 levels were drastically reduced. Plasmapheresis filtrate (3 l) was fractionated by cation-exchange chromatography and reversed-phase high-performance liquid chromatography. The fractions obtained were tested by ligand and immunoblotting. In addition to IGFBP-1 and -4 fragments, the majority of IGF-binding polypeptides were IGFBP-3 immunoreactive. N-terminal sequence analysis of a 17-kDa polypeptide revealed the isolation of a C-terminal fragment of IGFBP-3 starting with Lys 160. The IGF-II-binding polypeptide pattern in the ARF plasma resembles the pattern in hemofiltrate from CRF patients, suggesting that similar or identical proteases are involved in IGFBP-3 fragmentation and common mechanisms may lead to the accumulation of the fragments in both diseases.
Collapse
Affiliation(s)
- Victoria Schebek-Fürstenberg
- Department of Biochemistry, Children's Hospital, University Hospital Hamburg Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
30
|
John H, Radtke K, Ständker L, Forssmann WG. Identification and characterization of novel endogenous proteolytic forms of the human angiogenesis inhibitors restin and endostatin. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2004; 1747:161-70. [PMID: 15698950 DOI: 10.1016/j.bbapap.2004.10.013] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/26/2004] [Revised: 10/27/2004] [Accepted: 10/27/2004] [Indexed: 10/26/2022]
Abstract
Restin and endostatin are C-terminal fragments of the noncollagenous domains of collagen XV and collagen XVIII exhibiting high sequence homology. Both polypeptides are distinguished by strong anti-angiogenic activity in vivo restricting the growth of solid tumors and metastasis. They are therefore currently being tested in clinical trials as anti-cancer drugs. We present the identification of new endogenous variants of both angiogenesis inhibitors isolated from a human hemofiltrate peptide library. Using an immunological screening approach with time-resolved rare earth metal fluorometry, immunoreactive compounds were purified chromatographically and characterized by mass spectrometry. We discovered four novel proteolytic products of restin as well as four variants of endostatin. Two endostatin products were characterized as short internal fragments (R176-L215 and R176-S219) of the entire molecule containing the recently identified beta1 integrin receptor binding site, which plays a major role in endothelial cell migration and angiogenesis. Two additional forms contain mucin-type O-glycosylations. The O-glycosylated variants possess an oligosaccharide unit consisting of one N-acetylgalactosamine (GalNAc), one N-acetylneuraminic acid (NANA) and two galactose residues (Gal) occurring as sialo-(V117-S311-GalNAc-Gal2-NANA) and asialoglycopeptides (V117-S311-GalNAc-Gal2). The four restin variants (R(I)-R(IV)) were identified with identical C- but different N-termini and no posttranslational modification (R(I): P66-A254, R(II): P75-A254, R(III): Y81-A254 and R(IV): A89-A254). Following a differential peptide mass fingerprint approach by reflector mode MALDI-TOFMS, the disulfide patterns of these circulating restins were determined as Cys1-Cys4 and Cys2-Cys3. These endogenous circulating collagen fragments will help to understand the physiological processing of the therapeutic proteins.
Collapse
Affiliation(s)
- Harald John
- IPF PharmaCeuticals GmbH, Feodor-Lynen-Str. 31, D-30625 Hannover, Germany.
| | | | | | | |
Collapse
|
31
|
Meder W, Wendland M, Busmann A, Kutzleb C, Spodsberg N, John H, Richter R, Schleuder D, Meyer M, Forssmann WG. Characterization of human circulating TIG2 as a ligand for the orphan receptor ChemR23. FEBS Lett 2004; 555:495-9. [PMID: 14675762 DOI: 10.1016/s0014-5793(03)01312-7] [Citation(s) in RCA: 148] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The orphan receptor ChemR23 is a G-protein coupled receptor (GPCR) with homology to neuropeptide and chemoattractant receptors. Tazarotene, a synthetic retinoid activating retinoic acid receptor (RAR), up-regulates tazarotene-induced gene-2 (TIG2). The function and molecular target of this protein are now described. By means of reverse pharmacology screening using a peptide library generated from human hemofiltrate, we have isolated and identified TIG2 as the natural ligand of ChemR23 and report the specific molecular form of the bioactive, circulating TIG2, representing the amino-acid residues 21 to 154 of the 163 amino acid-containing prepropeptide. Based on the expression pattern of ChemR23 and TIG2, the physiological role in bone development, immune and inflammatory responses and the maintenance of skin is now being investigated.
Collapse
Affiliation(s)
- W Meder
- IPF PharmaCeuticals GmbH, Feodor-Lynen-Str. 31, D-30625, Hannover, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Minamino N, Tanaka J, Kuwahara H, Kihara T, Satomi Y, Matsubae M, Takao T. Determination of endogenous peptides in the porcine brain: possible construction of peptidome, a fact database for endogenous peptides. J Chromatogr B Analyt Technol Biomed Life Sci 2003; 792:33-48. [PMID: 12828995 DOI: 10.1016/s1570-0232(03)00280-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Peptides play crucial roles in many physiological events. However, a database for endogenous peptides has not yet been developed, because the peptides are easily degraded by proteolytic enzymes during extraction and purification. In this study, we demonstrated that the data for endogenous peptides could be collected by minimizing the proteolytic degradation. We separated porcine brain peptides into 5250 fractions by 2-dimensional chromatography (first ion-exchange and second reversed-phase high-performance liquid chromatography), and 75 fractions of average peptide contents were analyzed in detail by mass spectrometers and a protein sequencer. Based on the analysis data obtained in this study, more than 10000 peptides were deduced to be detected, and more than 1000 peptides to be identified starting from 2 g of brain tissue. Thus, we deduce that it is possible to construct a database for endogenous peptides starting from a gram level of tissue by using 2-dimensional high-performance liquid chromatography coupled with a mass spectrometer.
Collapse
Affiliation(s)
- Naoto Minamino
- Department of Pharmacology, National Cardiovascular Center Research Institute, 5-7-1 Fujishirodai, Suita, Osaka 565-8565, Japan.
| | | | | | | | | | | | | |
Collapse
|
33
|
Ständker L, Kübler B, Obendorf M, Braulke T, Forssmann WG, Mark S. In vivo processed fragments of IGF binding protein-2 copurified with bioactive IGF-II. Biochem Biophys Res Commun 2003; 304:708-13. [PMID: 12727212 DOI: 10.1016/s0006-291x(03)00658-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Proteolysis of insulin-like growth factor binding proteins (IGFBPs), the major carrier of insulin-like growth factors (IGFs) in the circulation, is an essential mechanism to regulate the bioavailability and half-live of IGFs. Screening for peptides in human hemofiltrate, stimulating the survival of PC-12 cells, resulted in the isolation of C-terminal IGFBP-2 fragments and intact IGF-II co-eluting during the chromatographic purification procedure. The IGFBP-2 fragments exhibited molecular masses of 12.7 and 12.9kDa and started with Gly169 and Gly167, respectively. The fragments were able to bind both IGFs. The stimulatory effect of the purified fraction on the survival of the PC-12 cells could be assigned exclusively to IGF-II, since it was abolished by the addition of neutralizing IGF-II antibodies. We suggest that in the circulation IGF-II is not only complexed with intact IGFBP but also with processed IGFBP-2 fragments not impairing the biological activity of IGF-II.
Collapse
Affiliation(s)
- Ludger Ständker
- IPF PharmaCeuticals GmbH(IPF), Feodor Lynen Strasse 31, Hannover D-30625, Germany.
| | | | | | | | | | | |
Collapse
|
34
|
Lauber T, Schulz A, Schweimer K, Adermann K, Marx UC. Homologous proteins with different folds: the three-dimensional structures of domains 1 and 6 of the multiple Kazal-type inhibitor LEKTI. J Mol Biol 2003; 328:205-19. [PMID: 12684009 DOI: 10.1016/s0022-2836(03)00245-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We have determined the solution structures of recombinant domain 1 and native domain 6 of the multi-domain Kazal-type serine proteinase inhibitor LEKTI using multi-dimensional NMR spectroscopy. While two of the 15 potential inhibitory LEKTI domains contain three disulfide bonds typical of Kazal-type inhibitors, the remaining 13 domains have only two of these disulfide bridges. Therefore, they may represent a novel type of serine proteinase inhibitor. The first and the sixth LEKTI domain, which have been isolated from human blood ultrafiltrate, belong to this group. In spite of sharing the same disulfide pattern and a sequence identity of about 35% from the first to the fourth cysteine, the two proteins show different structures in this region. The three-dimensional structure of domain 6 consists of two helices and a beta-hairpin structure, and closely resembles the three-dimensional fold of classical Kazal-type serine proteinase inhibitors including the inhibitory binding loop. Domain 6 has been shown to be an efficient, but non-permanent serine proteinase inhibitor. The backbone geometry of its canonical loop is not as well defined as the remaining structural elements, providing a possible explanation for its non-permanent inhibitory activity. We conclude that domain 6 belongs to a subfamily of classical Kazal-type inhibitors, as the third disulfide bond and a third beta-strand are missing. The three-dimensional structure of domain 1 shows three helices and a beta-hairpin, but the central part of the structure differs remarkably from that of domain 6. The sequence adopting hairpin structure in domain 6 exhibits helical conformation in domain 1, and none of the residues within the putative P3 to P3' stretch features backbone angles that resemble those of the canonical loop of known proteinase inhibitors. No proteinase has been found to be inhibited by domain 1. We conclude that domain 1 adopts a new protein fold and is no canonical serine proteinase inhibitor.
Collapse
Affiliation(s)
- Thomas Lauber
- Lehrstuhl für Biopolymere, Universität Bayreuth, Universitätstrasse 30, D-95440 Bayreuth, Germany
| | | | | | | | | |
Collapse
|
35
|
Krause A, Sillard R, Kleemeier B, Klüver E, Maronde E, Conejo-García JR, Forssmann WG, Schulz-Knappe P, Nehls MC, Wattler F, Wattler S, Adermann K. Isolation and biochemical characterization of LEAP-2, a novel blood peptide expressed in the liver. Protein Sci 2003; 12:143-52. [PMID: 12493837 PMCID: PMC2312392 DOI: 10.1110/ps.0213603] [Citation(s) in RCA: 146] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The human genome contains numerous genes whose protein products are unknown in terms of structure, interaction partner, expression, and function. To unravel the function of these orphan genes, it is of particular value to isolate native forms of protein and peptide products derived from these genes. From human blood ultrafiltrate, we characterized a novel gene-encoded, cysteine-rich, and cationic peptide that we termed liver-expressed antimicrobial peptide 2 (LEAP-2). We identified several circulating forms of LEAP-2 differing in their amino-terminal length, all containing a core structure with two disulfide bonds formed by cysteine residues in relative 1-3 and 2-4 positions. Molecular cloning of the cDNA showed that LEAP-2 is synthesized as a 77-residue precursor, which is predominantly expressed in the liver and highly conserved among mammals. This makes it a unique peptide that does not exhibit similarity with any known human peptide regarding its primary structure, disulfide motif, and expression. Analysis of the LEAP-2 gene resulted in the identification of an alternative promoter and at least four different splicing variants, with the two dominating transcripts being tissue-specifically expressed. The largest native LEAP-2 form of 40 amino acid residues is generated from the precursor at a putative cleavage site for a furin-like endoprotease. In contrast to smaller LEAP-2 variants, this peptide exhibited dose-dependent antimicrobial activity against selected microbial model organisms. LEAP-2 shares some characteristic properties with classic peptide hormones and it is expected that the isolation of this novel peptide will help to unravel its physiological role.
Collapse
|
36
|
John H, Schulz S, Forssmann WG, Ständker L. Time-resolved fluorometric assay for the detection of endostatin in chromatographically separated extracts of natural peptides. J Immunol Methods 2002; 268:233-7. [PMID: 12215391 DOI: 10.1016/s0022-1759(02)00209-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We present a heterogeneous non-competitive immunological detection assay for peptide and protein antigens from crude extracts of biological sources. This time-resolved fluoroimmunoassay (TR-FIA) has been designed in a solid-phase mode using 96-well microtiter plates. Using the rare-earth metal europium as a fluorescent marker, a highly sensitive, selective and efficient procedure was developed. This technique prevents from interferences of intrinsic protein fluorescence which is highly important for antigen measurement in complex matrices. The TR-FIA has been applied for the detection of circulating forms of the potential anti-tumor agent endostatin, a C-terminal fragment of collagen XVIII, and its close homolog collagen XV (restin) from hemofiltrate. Endostatin was detected with a limit of detection of 3 ng (150 fmol/well) and a broad dynamic range from 10-1000 ng/well.
Collapse
Affiliation(s)
- Harald John
- IPF PharmaCeuticals GmbH, Feodor-Lynen-Str. 31, D-30625 Hanover, Germany.
| | | | | | | |
Collapse
|
37
|
Kübler B, Draeger C, John H, Andag U, Scharf JG, Forssmann WG, Braulke T, Ständker L. Isolation and characterization of circulating fragments of the insulin-like growth factor binding protein-3. FEBS Lett 2002; 518:124-8. [PMID: 11997031 DOI: 10.1016/s0014-5793(02)02673-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Proteolysis of insulin-like growth factor binding protein-3 (IGFBP-3), the major carrier of IGFs in the circulation, is an essential mechanism to regulate IGF bioavailability. To analyze naturally occurring IGFBP-3 fragments a peptide library established from human hemofiltrate was screened. Three IGFBP-3 fragments were detected with apparent molecular masses of 34, 16, and 11 kDa. Mass spectrometric and sequence analysis identified the 16 and 11 kDa peptides as glycosylated and non-glycosylated N-terminal fragments spanning residues Gly1-Ala98 of IGFBP-3. Both the circulating forms and those secreted from IGFBP-3(1-98) overexpressing cells bound IGF. Additionally, two smaller fragments (IGFBP-3(139-157) and IGFBP-3(139-159)) were identified in the hemofiltrate. The data indicate that proteolysis of circulating IGFBP-3 occurs in the variable domain at residues alanine 98, phenylalanine 138, glutamine 157, and tyrosine 159.
Collapse
Affiliation(s)
- Bernd Kübler
- Children's Hospital-Biochemistry, University of Hamburg, Martinistr. 52, D-20246, Hamburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Forssmann U, Mägert H, Adermann K, Escher SE, Forssmann W. Hemofiltrate CC chemokines with unique biochemical properties: HCC‐1/CCL14a and HCC‐2/CCL15. J Leukoc Biol 2001. [DOI: 10.1189/jlb.70.3.357] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Ulf Forssmann
- IPF PharmaCeuticals GmbH, Institute of the Medical School of Hanover, Section of Pharmacology, D‐30625 Hanover, Germany
| | - Hans‐Jürgen Mägert
- IPF PharmaCeuticals GmbH, Institute of the Medical School of Hanover, Section of Pharmacology, D‐30625 Hanover, Germany
| | - Knut Adermann
- IPF PharmaCeuticals GmbH, Institute of the Medical School of Hanover, Section of Pharmacology, D‐30625 Hanover, Germany
| | - Sylvia E. Escher
- IPF PharmaCeuticals GmbH, Institute of the Medical School of Hanover, Section of Pharmacology, D‐30625 Hanover, Germany
| | - Wolf‐Georg Forssmann
- IPF PharmaCeuticals GmbH, Institute of the Medical School of Hanover, Section of Pharmacology, D‐30625 Hanover, Germany
| |
Collapse
|
39
|
Badock V, Steinhusen U, Bommert K, Otto A. Prefractionation of protein samples for proteome analysis using reversed-phase high-performance liquid chromatography. Electrophoresis 2001; 22:2856-64. [PMID: 11565780 DOI: 10.1002/1522-2683(200108)22:14<2856::aid-elps2856>3.0.co;2-u] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We describe an approach for fractionating complex protein samples prior to two-dimensional gel electrophoresis using reversed-phase high-performance liquid chromatography. Whole lysates of cells and tissue were prefractionated by reversed-phase chromatography and elution with a five-step gradient of increasing acetonitrile concentrations. The proteins obtained at each step were subsequently separated by high-resolution two-dimensional gel electrophoresis (2-DE). The reproducibility of this prefractionation technique proved to be optimal for comparing 2-DE gels from two different cell states. In addition, this method is suitable for enriching low-abundance proteins barely detectable by silver staining to amounts that can be detected by Coomassie blue and further analyzed by mass spectrometry.
Collapse
Affiliation(s)
- V Badock
- Max-Delbruck-Center for Molecular Medicine, Department of Protein Chemistry, Berlin, Germany
| | | | | | | |
Collapse
|
40
|
Neitz S, Jürgens M, Kellmann M, Schulz-Knappe P, Schrader M. Screening for disulfide-rich peptides in biological sources by carboxyamidomethylation in combination with differential matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2001; 15:1586-1592. [PMID: 11544597 DOI: 10.1002/rcm.413] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Peptides with biological functions often contain disulfide bridges connecting two cysteine residues. In an attempt to screen biological fluids for peptides containing cysteine residues, we have developed a sensitive and specific method to label cysteines selectively and detect the resulting molecular mass shift by differential mass spectrometry. First, reduction of disulfide bridges and carboxyamidomethylation of free thiols is adjusted to quantitatively achieve cysteine alkylation for complex peptide extracts. In a second step, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) before and after chemical derivatization is performed, followed by differential analysis to determine shifted peaks; shifted peaks belong to cysteine-containing peptides, other peaks remain unchanged. The number of cysteines can then be determined by the resulting molecular mass shift. Free, reduced cysteines are shifted by 57 u, two oxidized cysteines involved in disulfide bridges (cystine) result in a shift to higher mass per disulfide bridge of 116 u. Disulfide bridges connecting different amino acid chains like insulin break up during reduction. In this case, two peaks with lower molecular masses result from a single one in the unmodified sample. With this technique, we were able to identify cysteine-containing peptides and short fragments of proteins present in human blood filtrate.
Collapse
Affiliation(s)
- S Neitz
- BioVisioN GmbH & Co. KG, Feodor-Lynen-Str. 5, 30625 Hannover, Germany
| | | | | | | | | |
Collapse
|
41
|
|
42
|
Detheux M, Ständker L, Vakili J, Münch J, Forssmann U, Adermann K, Pöhlmann S, Vassart G, Kirchhoff F, Parmentier M, Forssmann WG. Natural proteolytic processing of hemofiltrate CC chemokine 1 generates a potent CC chemokine receptor (CCR)1 and CCR5 agonist with anti-HIV properties. J Exp Med 2000; 192:1501-8. [PMID: 11085751 PMCID: PMC2193185 DOI: 10.1084/jem.192.10.1501] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Hemofiltrate CC chemokine (HCC)-1 is a recently described human chemokine that is constitutively expressed in numerous tissues and is present at high concentrations in normal plasma. Using a cell line expressing CC chemokine receptor (CCR)5 as a bioassay, we isolated from human hemofiltrate an HCC-1 variant lacking the first eight amino acids. HCC-1[9-74] was a potent agonist of CCR1, CCR3, and CCR5 and promoted calcium flux and chemotaxis of T lymphoblasts, monocytes, and eosinophils. It also blocked entry of HIV-1 strains using CCR5 as coreceptor. Limited tryptic digestion of HCC-1 generated the active variant. Conditioned media from several tumor cell lines activated HCC-1 with a high efficiency, and this activity could be inhibited by serine protease inhibitors. Our results indicate that HCC-1 represents a nonfunctional precursor that can be rapidly converted to the active chemokine by proteolytic processing. This process represents an additional mechanism by which tumor cells might generate chemoattractant molecules and recruit inflammatory cells. It might also affect HIV-1 replication in infected individuals and play an important role in AIDS pathogenesis.
Collapse
Affiliation(s)
- M Detheux
- Euroscreen S.A., B-1070 Brussels, Belgium
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Richter R, Schulz-Knappe P, John H, Forssmann WG. Posttranslationally processed forms of the human chemokine HCC-1. Biochemistry 2000; 39:10799-805. [PMID: 10978165 DOI: 10.1021/bi992488q] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
HCC-1 is the only CC-chemokine known so far which circulates in nanomolar concentrations in human plasma. Its physiological function is not well defined. Posttranslational processing of HCC-1 was shown to modulate its biological properties. In this study several different processed forms of HCC-1 were isolated. Western blot analysis of human plasma extracts revealed a HCC-1 immunoreactive double band at 8-10 kDa indicating the presence of two distinct HCC-1 peptides. These peptides were isolated from a peptide library of human blood filtrate and represent predominantly HCC-1 (1-74) and glycosylated HCC-1 (1-74). Glycosylated HCC-1 exhibits a molecular mass of 9621 Da due to O-glycosylation at position 7 (Ser-7) with two N-acetylneuraminic acids and the disaccharide N-acetylgalactosamine galactose. Furthermore N-terminally truncated HCC-1 (3-74) and HCC-1 (4-74) were identified in the peptide library. In hemofiltrate approximately 3% of total HCC-1 represents HCC-1 (3-74) and approximately 1% represents HCC-1 (4-74) whereas the major products are nonglycosylated HCC-1 (1-74) and glycosylated HCC-1 (1-74). Our data imply that HCC-1 (1-74), HCC-1 (3-74), HCC-1 (4-74) and glycosylated HCC-1 (1-74) circulate in human blood. The N-terminal processing and modification of HCC-1 might be of importance in displaying its full biological activity.
Collapse
Affiliation(s)
- R Richter
- Lower Saxony Institute for Peptide Research, Feodor-Lynen Strasse 31, D-30625 Hannover, Germany.
| | | | | | | |
Collapse
|
44
|
Krause A, Neitz S, Mägert HJ, Schulz A, Forssmann WG, Schulz-Knappe P, Adermann K. LEAP-1, a novel highly disulfide-bonded human peptide, exhibits antimicrobial activity. FEBS Lett 2000; 480:147-50. [PMID: 11034317 DOI: 10.1016/s0014-5793(00)01920-7] [Citation(s) in RCA: 855] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We report the isolation and characterization of a novel human peptide with antimicrobial activity, termed LEAP-1 (liver-expressed antimicrobial peptide). Using a mass spectrometric assay detecting cysteine-rich peptides, a 25-residue peptide containing four disulfide bonds was identified in human blood ultrafiltrate. LEAP-1 expression was predominantly detected in the liver, and, to a much lower extent, in the heart. In radial diffusion assays, Gram-positive Bacillus megaterium, Bacillus subtilis, Micrococcus luteus, Staphylococcus carnosus, and Gram-negative Neisseria cinerea as well as the yeast Saccharomyces cerevisiae dose-dependently exhibited sensitivity upon treatment with synthetic LEAP-1. The discovery of LEAP-1 extends the known families of mammalian peptides with antimicrobial activity by its novel disulfide motif and distinct expression pattern.
Collapse
Affiliation(s)
- A Krause
- Niedersächsisches Institut für Peptid-Forschung, Hannover, Germany
| | | | | | | | | | | | | |
Collapse
|
45
|
Ständker L, Braulke T, Mark S, Mostafavi H, Meyer M, Höning S, Giménez-Gallego G, Forssmann WG. Partial IGF affinity of circulating N- and C-terminal fragments of human insulin-like growth factor binding protein-4 (IGFBP-4) and the disulfide bonding pattern of the C-terminal IGFBP-4 domain. Biochemistry 2000; 39:5082-8. [PMID: 10819974 DOI: 10.1021/bi992513s] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Within the IGF axis, the insulin-like growth factor-binding proteins (IGFBPs) are known to play a pivotal role in cell proliferation and differentiation. Defined proteolysis of the IGFBPs is proposed to be an essential mechanism for regulating IGF bioavailability. The generated IGFBP fragments in part exhibit different IGF-dependent and -independent biological activities. Characterizing naturally occurring forms of IGFBPs in human plasma, we identified both a N- and a C-terminal fragment of IGFBP-4 by means of immunoreactivity screening. As a source for peptide isolation, we used large amounts of human hemofiltrate obtained from patients with chronic renal failure. Purification of the IGFBP-4 peptides from hemofiltrate was performed by consecutive cation-exchange and reverse-phase chromatographic steps. Mass spectrometric and sequence analysis revealed an M(r) of 13 233 for the purified N-terminal fragment spanning residues Asp(1)-Phe(122) of IGFBP-4 and an M(r) of 11 344 for the C-terminal fragment extending from Lys(136) to Glu(237). Proteolytic digestion and subsequent biochemical analysis showed that the six cysteines of the C-terminal IGFBP-4 fragment are linked between residues 153-183, 194-205, and 207-228 (disulfide bonding pattern, 1-2, 3-4, and 5-6). Plasmon resonance spectroscopy, ligand blot analysis, and saturation and displacement studies demonstrated a very low affinity of the C-terminal IGFBP-4 fragment for the IGFs (IGF-II, K(d) = 690 nM; IGF-I, K(d) > 60 nM), whereas the N-terminal fragment retained significant IGF binding properties (IGF-II, K(d) = 17 nM; IGF-I, K(d) = 5 nM). This study provides the first molecular characterization of circulating human IGFBP-4 fragments formed in vivo exhibiting an at least 5-fold decrease in the affinity of the N-terminal IGFBP-4 fragment for the IGFs and a very low IGF binding capacity of the C-terminal fragment.
Collapse
Affiliation(s)
- L Ständker
- The Lower Saxony Institute for Peptide Research (IPF), Feodor-Lynen Strasse 31, D-30625 Hannover, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
46
|
John H, Preissner KT, Forssmann WG, Ständker L. Novel glycosylated forms of human plasma endostatin and circulating endostatin-related fragments of collagen XV. Biochemistry 1999; 38:10217-24. [PMID: 10441114 DOI: 10.1021/bi990787+] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Circulating elongated forms of the angiogenesis inhibitor and potential anti-cancer drug endostatin were isolated from human blood filtrate. Immunoreactive endostatin was identified by a polyclonal rabbit antiserum raised against an N-terminal epitope of the polypeptide and purified by consecutive chromatographic steps and immunoblotting. N- and C-terminal sequence analyses of the isolated molecules revealed different forms of endostatin starting with V(117)HLRPAR. lacking the last and final three residues of the noncollagenous domain 1 (NC-1) of collagen XVIII, respectively. These polypetides are found to be O-glycosylated at T(125) (residue 9) with a glycan structure of the mucin type consisting of galactose N-acetylgalactosamine and N-acetylneuraminic acid residues. Carbohydrate analyses were performed via the semiquantitative HPLC-electrospray ionization mass spectrometry (ESMS) technique after exoglycosidase hydrolysis. Circulating endostatins are present as sialoglycoprotein (22 000 and 21 841 Da +/- 0.02%) and asialoglycoprotein structures (21 710 and 21 549 Da +/- 0.02%), while the two completely deglycosylated forms are obtained only after enzymatic incubation. The described glycosylated endostatins may represent intermediates in the proteolytic pathway of the NC-1 domain of collagen XVIII resulting in bioactive endostatins. Furthermore, immunoreactive endostatin-related C-terminal fragments of human collagen XV are found in the hemofiltrate. These polypeptides exhibit the N-terminal sequences P(66)HLLPPP. and Y(81)EKPALH. of the collagen XV NC-1 domain. ESMS and immunoblotting analyses reveal three glycosylated polypeptides with a molecular mass ranging from 16 to 21 kDa. Due to the high degree of homology between collagen XV and collagen XVIII as well as their analoqous proteolytic processing, functional similarities of collagen XVIII- and XV-related fragments should be revealed in future experiments.
Collapse
Affiliation(s)
- H John
- Lower Saxony Institute for Peptide Research (IPF), Hannover, Germany
| | | | | | | |
Collapse
|
47
|
Mark S, Forssmann WG, Ständker L. Strategy for identifying circulating fragments of insulin-like growth factor binding proteins in a hemofiltrate peptide bank. J Chromatogr A 1999; 852:197-205. [PMID: 10480244 DOI: 10.1016/s0021-9673(99)00356-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
A differentiated strategy was established to isolate circulating forms of the six human insulin-like growth factor binding proteins (IGFBPs). As starting material we used our peptide bank, a comprehensive blood plasma peptidoma generated from human blood filtrate. The peptides were initially identified in the fractions of the hemofiltrate peptide bank by their immunoreactivity, their capacity to bind the insulin-like growth factors (IGFs), and their molecular masses determined by polyacrylamide gel electrophoresis and matrix-assisted laser desorption ionization-mass spectrometry (MALDI-MS). Fractions revealing both immunoreactivity and IGF-binding capacity were analyzed by direct sequencing of immunoreactive bands from a Coomassie-stained gel. Further purification of the IGFBP peptides was performed by consecutive chromatographic steps guided by sensitive MALDI-MS. Using this strategy, different fragments of IGFBP-3, -4, and -5 were identified and a fragment of IGFBP-4 was purified to homogeneity.
Collapse
Affiliation(s)
- S Mark
- The Lower Saxony Institute for Peptide Research (IPF), Hannover, Germany
| | | | | |
Collapse
|
48
|
Seiler P, Ständker L, Mark S, Hahn W, Forssmann WG, Meyer M. Application of a peptide bank from porcine brain in isolation of regulatory peptides. J Chromatogr A 1999; 852:273-83. [PMID: 10480252 DOI: 10.1016/s0021-9673(99)00466-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Over the past years, the introduction of biological assay systems, random peptide sequencing and orphan receptor screening has led to the isolation and identification of new regulatory peptides with potential clinical impact. We have developed a method for separating peptides into about 300 fractions from large amounts of porcine brain tissue. The preparation of this peptide bank consists of three steps including ultrafiltration followed by cation-exchange separation and reversed-phase chromatography. These fractions represent the peptide bank with desalted and lyophilized peptides from brain tissue. Molecular masses of the peptides in the fractions are determined by matrix-assisted laser desorption ionization MS and a mass data bank is subsequently generated. For systematic analysis of the peptides, a subsequent two-step purification procedure is followed by Edman sequencing resulting in the identification of different peptides. A survival assay with a neuronal cell line revealing the stimulatory and inhibitory activities is applied as a model to test the 300 fractions. This primary screen indicates that the biological activities of the extracted peptides are easily characterized and, moreover, can be related to the biochemical entities. We conclude that the established peptide bank is an efficient and useful tool for the isolation of regulatory brain peptides applying different purification strategies.
Collapse
Affiliation(s)
- P Seiler
- Lower Saxony Institute for Peptide Research, Hannover, Germany
| | | | | | | | | | | |
Collapse
|
49
|
Richter R, Schulz-Knappe P, Schrader M, Ständker L, Jürgens M, Tammen H, Forssmann WG. Composition of the peptide fraction in human blood plasma: database of circulating human peptides. JOURNAL OF CHROMATOGRAPHY. B, BIOMEDICAL SCIENCES AND APPLICATIONS 1999; 726:25-35. [PMID: 10348167 DOI: 10.1016/s0378-4347(99)00012-2] [Citation(s) in RCA: 151] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
A database was established from human hemofiltrate (HF) that consisted of a mass database and a sequence database, with the aim of analyzing the composition of the peptide fraction in human blood. To establish a mass database, all 480 fractions of a peptide bank generated from HF were analyzed by MALDI-TOF mass spectrometry. Using this method, over 20000 molecular masses representing native, circulating peptides were detected. Estimation of repeatedly detected masses suggests that approximately 5000 different peptides were recorded. More than 95% of the detected masses are smaller than 15000, indicating that HF predominantly contains peptides. The sequence database contains over 340 entries from 75 different protein and peptide precursors. 55% of the entries are fragments from plasma proteins (fibrinogen A 13%, albumin 10%, beta2-microglobulin 8.5%, cystatin C 7%, and fibrinogen B 6%). Seven percent of the entries represent peptide hormones, growth factors and cytokines. Thirty-three percent belong to protein families such as complement factors, enzymes, enzyme inhibitors and transport proteins. Five percent represent novel peptides of which some show homology to known peptide and protein families. The coexistence of processed peptide fragments, biologically active peptides and peptide precursors suggests that HF reflects the peptide composition of plasma. Interestingly, protein modules such as EGF domains (meprin Aalpha-fragments), somatomedin-B domains (vitronectin fragments), thyroglobulin domains (insulin like growth factor-binding proteins), and Kazal-type inhibitor domains were identified. Alignment of sequenced fragments to their precursor proteins and the analysis of their cleavage sites revealed that there are different processing pathways of plasma proteins in vivo.
Collapse
Affiliation(s)
- R Richter
- Lower Saxony Institute for Peptide Research, Hannover, Germany
| | | | | | | | | | | | | |
Collapse
|
50
|
Adermann K, Wattler F, Wattler S, Heine G, Meyer M, Forssmann WG, Nehls M. Structural and phylogenetic characterization of human SLURP-1, the first secreted mammalian member of the Ly-6/uPAR protein superfamily. Protein Sci 1999; 8:810-9. [PMID: 10211827 PMCID: PMC2144295 DOI: 10.1110/ps.8.4.810] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Members of the Ly-6/uPAR protein family share one or several repeat units of the Ly-6/uPAR domain that is defined by a distinct disulfide bonding pattern between 8 or 10 cysteine residues. The Ly-6/uPAR protein family can be divided into two subfamilies. One comprises GPI-anchored glycoprotein receptors with 10 cysteine residues. The other subfamily includes the secreted single-domain snake and frog cytotoxins, and differs significantly in that its members generally possess only eight cysteines and no GPI-anchoring signal sequence. We report the purification and structural characterization of human SLURP-1 (secreted mammalian Ly-6/uPAR related protein 1) from blood and urine peptide libraries. SLURP-1 is encoded by the ARS (component B)-81/s locus, and appears to be the first mammalian member of the Ly-6/uPAR family lacking a GPI-anchoring signal sequence. A phylogenetic analysis based on the SLURP-1 primary protein structure revealed a closer relationship to the subfamily of cytotoxins. Since the SLURP-1 gene maps to the same chromosomal region as several members of the Ly-6/uPAR subfamily of glycoprotein receptors, it is suggested that both biologically distinct subfamilies might have co-evolved from local chromosomal duplication events.
Collapse
Affiliation(s)
- K Adermann
- Lower Saxony Institute for Peptide Research (IPF), Hannover, Germany
| | | | | | | | | | | | | |
Collapse
|