1
|
Petiti J, Revel L, Divieto C. Optimizing resazurin-based viability assays for P-MSC/TER308 cell line to enhance results reliability. BMC Res Notes 2025; 18:228. [PMID: 40405215 PMCID: PMC12100786 DOI: 10.1186/s13104-025-07298-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Accepted: 05/15/2025] [Indexed: 05/24/2025] Open
Abstract
OBJECTIVE The results of this research contribute to the LifeSaver project, which focuses on reducing neonatal and infant mortality resulting from preterm births. The project aims to create an in vitro system simulating prenatal conditions to screen and analyze chemicals and pharmaceuticals, establishing scientifically justified regulations for their use during pregnancy. Because several papers have recently identified data inconsistencies in pre-clinical studies, a key part of the project involves optimizing cellular cytotoxicity assays to enhance the reliability of pharmacological and toxicity screening for drugs and environmental contaminants. RESULTS The resazurin-based viability assay was chosen as the primary method due to its widespread adoption and simplicity in assessing drug cytotoxicity. This work describes the optimization of the resazurin-based viability assay on the P-MSC/TERT308 cell line, a placenta-derived mesenchymal stem cell used within the LifeSaver project. By applying our previously described and validated Standard Operating Procedure, we fine-tuned experimental parameters, consistently obtaining reliable results with measurement uncertainty of less than 10%.
Collapse
Affiliation(s)
- Jessica Petiti
- Division of Advanced Materials Metrology and Life Sciences, Istituto Nazionale di Ricerca Metrologica (INRIM), 10135, Turin, Italy.
| | - Laura Revel
- Division of Advanced Materials Metrology and Life Sciences, Istituto Nazionale di Ricerca Metrologica (INRIM), 10135, Turin, Italy
| | - Carla Divieto
- Division of Advanced Materials Metrology and Life Sciences, Istituto Nazionale di Ricerca Metrologica (INRIM), 10135, Turin, Italy
| |
Collapse
|
2
|
Twomey JD, George S, Zhang B. Fc gamma receptor polymorphisms in antibody therapy: implications for bioassay development to enhance product quality. Antib Ther 2025; 8:87-98. [PMID: 40177643 PMCID: PMC11959696 DOI: 10.1093/abt/tbaf003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 01/07/2025] [Accepted: 01/20/2025] [Indexed: 04/05/2025] Open
Abstract
The effectiveness of therapeutic antibodies is often associated with their Fc-mediated effector functions, such as antibody-dependent cellular cytotoxicity and antibody-dependent cellular phagocytosis. These functions rely on interactions between Fc gamma receptors (FcγRs) on immune cells and the Fc region of antibodies. Genetic variations in these receptors, known as FcγR polymorphisms, can influence therapeutic outcomes by altering receptor expression levels, affinity, and function. This review examines the impact of FcγR polymorphisms on antibody therapy, emphasizing their role in developing and optimizing functional bioassays to assess product quality. Understanding these polymorphisms is essential for refining bioassays, which are crucial for accurately characterizing antibody products and ensuring consistency in manufacturing processes.
Collapse
Affiliation(s)
- Julianne D Twomey
- Office of Pharmaceutical Quality Research, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, United States
| | - Sasha George
- Office of Pharmaceutical Quality Research, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, United States
| | - Baolin Zhang
- Office of Pharmaceutical Quality Research, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, United States
| |
Collapse
|
3
|
Williford E, Xue YP, Tang WK, Li R, Jones KV, Blake KS, Blaine HC, Lian X, Stallings CL, Tolia NH, Dantas G, Wencewicz TA. C10-Benzoate Esters of Anhydrotetracycline Inhibit Tetracycline Destructases and Recover Tetracycline Antibacterial Activity. ACS Infect Dis 2025; 11:738-749. [PMID: 39912785 PMCID: PMC11915366 DOI: 10.1021/acsinfecdis.4c00912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/20/2025] [Accepted: 01/22/2025] [Indexed: 02/07/2025]
Abstract
Tetracyclines (TCs) are an important class of antibiotics threatened by enzymatic inactivation. These tetracycline-inactivating enzymes, also known as tetracycline destructases (TDases), are a subfamily of class A flavin monooxygenases (FMOs) that catalyze hydroxyl group transfer and oxygen insertion (Baeyer-Villiger type) reactions on TC substrate scaffolds. Semisynthetic modification of TCs (e.g., tigecycline, omadacycline, eravacycline, and sarecycline) has proven effective in evading certain resistance mechanisms, such as ribosomal protection and efflux, but does not protect against TDase-mediated resistance. Here, we report the design, synthesis, and evaluation of a new series of 22 semisynthetic TDase inhibitors that explore D-ring substitution of anhydrotetracycline (aTC) including 14 C10-benzoate ester and eight C9-benzamides. Overall, the C10-benzoate esters displayed enhanced bioactivity and water solubility compared to the corresponding C9-benzamides featuring the same heterocyclic aryl side chains. The C10-benzoate ester derivatives of aTC were prepared in a high-yield one-step synthesis without the need for protecting groups. The C10-esters are water-soluble, stable toward hydrolysis, and display dose-dependent rescue of tetracycline antibiotic activity in E. coli expressing two types of tetracycline destructases, represented by TetX7 (Type 1) and Tet50 (Type 2). The best inhibitors recovered tetracycline antibiotic activity at concentrations as low as 2 μM, producing synergistic scores <0.5 in the fractional inhibitory concentration index (FICI) against TDase-expressing strains of E. coli and clinical P. aeruginosa. The C10-benzoate ester derivatives of aTC reported here are promising new leads for the development of tetracycline drug combination therapies to overcome TDase-mediated antibiotic resistance.
Collapse
Affiliation(s)
- Emily
E. Williford
- Department
of Chemistry, Washington University in St.
Louis, St. Louis, Missouri 63130, United States
| | - Yao-Peng Xue
- The
Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri 63108, United States
| | - Wai Kwan Tang
- Host−Pathogen
Interactions and Structural Vaccinology Section, Laboratory of Malaria
Immunology and Vaccinology, National Institute of Allergy and Infectious
Diseases, National Institutes of Health, Bethesda, Maryland 20814, United States
| | - Ruihao Li
- Department
of Chemistry, Washington University in St.
Louis, St. Louis, Missouri 63130, United States
| | - Katherine V. Jones
- Department
of Chemistry, Washington University in St.
Louis, St. Louis, Missouri 63130, United States
| | - Kevin S. Blake
- The
Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri 63108, United States
- Department
of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Helen C. Blaine
- Department
of Molecular Microbiology, Washington University
School of Medicine, St. Louis, Missouri 63110, United States
| | - Xiang Lian
- Department
of Chemistry, Washington University in St.
Louis, St. Louis, Missouri 63130, United States
| | - Christina L. Stallings
- Department
of Molecular Microbiology, Washington University
School of Medicine, St. Louis, Missouri 63110, United States
| | - Niraj H. Tolia
- Host−Pathogen
Interactions and Structural Vaccinology Section, Laboratory of Malaria
Immunology and Vaccinology, National Institute of Allergy and Infectious
Diseases, National Institutes of Health, Bethesda, Maryland 20814, United States
| | - Gautam Dantas
- The
Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri 63108, United States
- Department
of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, United States
- Department
of Molecular Microbiology, Washington University
School of Medicine, St. Louis, Missouri 63110, United States
- Department
of Biomedical Engineering, Washington University
in St. Louis, St. Louis, Missouri 63130, United States
- Department
of Pediatrics, Washington University School
of Medicine, St. Louis, Missouri 63110, United States
| | - Timothy A. Wencewicz
- Department
of Chemistry, Washington University in St.
Louis, St. Louis, Missouri 63130, United States
| |
Collapse
|
4
|
Martins AM, Gonçalves L, Simões S, Serra PA, Guedes RC, Ribeiro H, Marto J. Combining in vitro, in vivo, and in silico approaches to evaluate the effect of serotonergic-based topical therapies on mild to moderate psoriasis. Eur J Pharm Sci 2025; 206:107013. [PMID: 39814240 DOI: 10.1016/j.ejps.2025.107013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 01/11/2025] [Accepted: 01/12/2025] [Indexed: 01/18/2025]
Abstract
Psoriasis, a chronic inflammatory skin disease, poses a significant burden on patients' quality of life and healthcare systems. While mild-to-moderate cases are treated topically, usually combined with phototherapy, severe cases require systemic treatment with immunosuppressants, retinoids or biologics. However, all available treatments have drawbacks in terms of efficiency and side effects. Drawing from studies linking depression treatment to psoriasis improvement, we investigated whether topical formulations of selective serotonin reuptake inhibitors (SSRIs) could offer a viable therapy for psoriasis. Five SSRIs (sertraline, fluoxetine, paroxetine, escitalopram, fluvoxamine) were evaluated for their in vitro cytotoxicity, in human keratinocytes and THP-1 monocytes. Their anti-inflammatory action was tested using cell differentiation assays and immunoassays of pro-inflammatory cytokines in THP-1 monocytes. The results obtained with sertraline, escitalopram, and fluvoxamine suggested further evaluation in vivo. Anti-inflammatory effects were evaluated by skin parameter monitoring and histopathology, in an imiquimod-induced psoriasis-like inflammation mice model, and the best results were obtained for fluvoxamine. These findings were further supported by in silico molecular docking studies of the structural interaction between the serotonergic receptors and the drugs. Future research will focus on developing and characterizing of topical fluvoxamine formulations, like emulsions and penetration-enhancer vesicles, which offer advantages over the gels used herein.
Collapse
Affiliation(s)
- Ana M Martins
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisboa, Portugal.
| | - Lídia Gonçalves
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisboa, Portugal.
| | - Sandra Simões
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisboa, Portugal.
| | - Patrícia A Serra
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisboa, Portugal; Egas Moniz Interdisciplinary Research Center, Instituto Universitário Egas Moniz, Campus Universitário, Quinta da Granja, 2829-511 Monte de Caparica, Almada, Portugal.
| | - Rita C Guedes
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisboa, Portugal.
| | - Helena Ribeiro
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisboa, Portugal.
| | - Joana Marto
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisboa, Portugal.
| |
Collapse
|
5
|
Fischer NG, de Souza Araújo IJ, Daghrery A, Yu B, Dal-Fabbro R, Dos Reis-Prado AH, Silikas N, Rosa V, Aparicio C, Watts DC, Bottino MC. Guidance on biomaterials for periodontal tissue regeneration: Fabrication methods, materials and biological considerations. Dent Mater 2025; 41:283-305. [PMID: 39794220 DOI: 10.1016/j.dental.2024.12.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Accepted: 12/26/2024] [Indexed: 01/13/2025]
Abstract
Regeneration of the multiple tissues and interfaces in the periodontal complex necessitates multidisciplinary evaluation to establish structure/function relationships. This article, an initiative of the Academy of Dental Materials, provides guidance for performing chemical, structural, and mechanical characterization of materials for periodontal tissue regeneration, and outlines important recommendations on methods of testing bioactivity, biocompatibility, and antimicrobial properties of biomaterials/scaffolds for periodontal tissue engineering. First, we briefly summarize periodontal tissue engineering fabrication methods. We then highlight critical variables to consider when evaluating a material for periodontal tissue regeneration, and the fundamental tests used to investigate them. The recommended tests and designs incorporate relevant international standards and provide a framework for characterizing newly developed materials focusing on the applicability of those tests for periodontal tissue regeneration. The most common methods of biofabrication (electrospinning, injectable hydrogels, fused deposition modelling, melt electrowriting, and bioprinting) and their specific applications in periodontal tissue engineering are reviewed. The critical techniques for morphological, chemical, and mechanical characterization of different classes of materials used in periodontal regeneration are then described. The major advantages and drawbacks of each assay, sample sizes, and guidelines on specimen preparation are also highlighted. From a biological standpoint, fundamental methods for testing bioactivity, the biocompatibility of materials, and the experimental models for testing the antimicrobial potential are included in this guidance. In conclusion, researchers performing studies on periodontal tissue regeneration will have this guidance as a tool to assess essential properties and characteristics of their materials/scaffold-based strategies.
Collapse
Affiliation(s)
- Nicholas G Fischer
- Minnesota Dental Research Center for Biomaterials and Biomechanics, School of Dentistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Isaac J de Souza Araújo
- Department of Bioscience Research, College of Dentistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Arwa Daghrery
- Department of Restorative Dental Sciences, School of Dentistry, Jazan University, Jazan 82943, KSA; Department of Cariology, Restorative Sciences and Endodontics, University of Michigan, School of Dentistry, Ann Arbor, MI 48109, USA
| | - Baiqing Yu
- Faculty of Dentistry, National University of Singapore, Singapore
| | - Renan Dal-Fabbro
- Department of Cariology, Restorative Sciences and Endodontics, University of Michigan, School of Dentistry, Ann Arbor, MI 48109, USA
| | - Alexandre H Dos Reis-Prado
- Department of Cariology, Restorative Sciences and Endodontics, University of Michigan, School of Dentistry, Ann Arbor, MI 48109, USA; Department of Restorative Dentistry, School of Dentistry, Federal University of Minas Gerais (UFMG), Belo Horizonte 31270-901, Brazil
| | - Nikolaos Silikas
- Dental Biomaterials, Dentistry, The University of Manchester, Manchester, United Kingdom
| | - Vinicius Rosa
- Faculty of Dentistry, National University of Singapore, Singapore; ORCHIDS: Oral Care Health Innovations and Designs Singapore, National University of Singapore, Singapore
| | - Conrado Aparicio
- BOBI-Bioinspired Oral Biomaterials and Interfaces, UPC-Universitat Politènica de Catalunya, Barcelona 08010, Spain; Catalan Institute for Research and Advanced Studies (ICREA), Barcelona 08010, Spain; SCOI - Study and Control of Oral Infections, Faculty of Odontology, UIC Barcelona-Universitat Internacional de Catalunya, Sant Cugat del Vallès, Spain; IBEC - Institute for Bioengineering of Catalonia, Barcelona, Spain
| | - David C Watts
- School of Medical Sciences and Photon Science Institute, University of Manchester, United Kingdom
| | - Marco C Bottino
- Department of Cariology, Restorative Sciences and Endodontics, University of Michigan, School of Dentistry, Ann Arbor, MI 48109, USA; Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
6
|
Martins AJ, Perdigão L, Gonçalves C, Amado IR, Abreu CS, Vicente AA, Cunha RL, Pastrana LM, Cerqueira MA. Beta-carotene-loaded Oleogels: Morphological analysis, cytotoxicity assessment, in vitro digestion and intestinal permeability. Food Chem 2025; 465:142085. [PMID: 39571441 DOI: 10.1016/j.foodchem.2024.142085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/20/2024] [Accepted: 11/14/2024] [Indexed: 12/18/2024]
Abstract
Composition and structure of oleogels significantly influence their digestive behaviour, impacting triacylglycerol breakdown and the bioavailability of incorporated compounds. Texture profile analysis showed that sterol-based oleogels (STOs) exhibited 20 times higher hardness than beeswax-based oleogels (BWOs), which showed stronger cohesion due to elasticity sustained by adhesive forces. Tribological assessments revealed similar initial coefficients of friction (COF) for both oleogels. However, fluctuations were observed in BWOs and a gradual decrease in STOs over time, enhancing lubrication, while BWOs recorded higher adhesion. These findings provide insights into their distinct digestive behaviour, with both oleogels undergoing structural disintegration and STOs displaying a higher lipolysis degree. Non-cytotoxicity was confirmed under Caco-2 cells. β-carotene bioaccessibility was influenced by the oleogels' structural modification and values of 4.0 ± 0.7 % for STOs and 2.6 ± 1.1 % for BWOs were recorded. Results highlight the need to optimize formulations to improve bioactive's bioavailability, emphasizing the role of structured gels in modulating digestion dynamics.
Collapse
Affiliation(s)
- Artur J Martins
- International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal.
| | - Lara Perdigão
- International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal; Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Catarina Gonçalves
- International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal
| | - Isabel R Amado
- International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal
| | - Cristiano S Abreu
- Center for Microelectromechanical Systems (CMEMS-UMinho), University of Minho, Guimarães, Portugal; Physics Department, Porto Superior Engineering Institute, ISEP, Porto 4200-072, Portugal
| | - António A Vicente
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Rosiane L Cunha
- Department of Food Engineering, Faculty of Food Engineering, University of Campinas, UNICAMP, CEP: 13083-862 Campinas, SP, Brazil
| | - Lorenzo M Pastrana
- International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal
| | - Miguel A Cerqueira
- International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal
| |
Collapse
|
7
|
Fischle A, Schreiber U, Haupt V, Schimang F, Schürmann L, Behrens M, Hübner F, Esselen M, Kalinin DV, Kalinina SA. Biological evaluation of semi-synthetic isoindolinone isomers produced by Stachybotrys chartarum. FRONTIERS IN FUNGAL BIOLOGY 2024; 5:1494795. [PMID: 39650337 PMCID: PMC11621054 DOI: 10.3389/ffunb.2024.1494795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 10/30/2024] [Indexed: 12/11/2024]
Abstract
The filamentous fungus Stachybotrys chartarum is rich in meroterpenoid secondary metabolites, some of which carry o-dialdehyde moieties, which are readily derivatized to isoindolinones by addition of primary amines. The structural diversity of phenylspirodrimanes, in particular, is linked to a wide range of biological activities, making them ideal candidates for semi-synthetic modification. In this study, acetoxystachybotrydial acetate was reacted with l-tryptophan and tryptamine, resulting in the detection of both regiospecific isomeric structures - a rare and significant finding that enabled the examination of four novel reaction products. Besides their successful purification, a detailed report on their isomer-specific behavior with regard to chromatographic retention, UV-spectral specificities, nuclear magnetic resonances, and mass spectrometric fragmentation is given. Furthermore, a comprehensive insight into each compounds' unique effect within the tested biological assays is provided, which include cytotoxicity, genotoxicity, their biological activity against serine proteases of the blood coagulation cascade, and in vitro hepatic metabolism, always in comparison to the non-derivatized substance. Ultimately, each isomer can be distinguished already during the purification process, which extends to the biological assays where we present one less cytotoxic, faster metabolized, and more active regio-isomeric phenylspirodrimane-derivative.
Collapse
Affiliation(s)
- Alica Fischle
- Instititue of Food Chemistry, University of Münster, Münster, Germany
- Graduate School of Natural Products, University of Münster, Münster, Germany
| | - Ulrich Schreiber
- Instititue of Food Chemistry, University of Münster, Münster, Germany
| | - Viola Haupt
- Instititue of Food Chemistry, University of Münster, Münster, Germany
| | - Felix Schimang
- Instititue of Food Chemistry, University of Münster, Münster, Germany
| | - Lina Schürmann
- Instititue of Food Chemistry, University of Münster, Münster, Germany
| | - Matthias Behrens
- Instititue of Food Chemistry, University of Münster, Münster, Germany
| | - Florian Hübner
- Instititue of Food Chemistry, University of Münster, Münster, Germany
| | - Melanie Esselen
- Instititue of Food Chemistry, University of Münster, Münster, Germany
| | - Dmitrii V. Kalinin
- Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, Münster, Germany
| | - Svetlana A. Kalinina
- Instititue of Food Chemistry, University of Münster, Münster, Germany
- Graduate School of Natural Products, University of Münster, Münster, Germany
| |
Collapse
|
8
|
Osmani Z, Islam MA, Wang F, Meira SR, Kulka M. Optimization of a rapid, sensitive, and high throughput molecular sensor to measure canola protoplast respiratory metabolism as a means of screening nanomaterial cytotoxicity. PLANT METHODS 2024; 20:165. [PMID: 39472941 PMCID: PMC11523603 DOI: 10.1186/s13007-024-01289-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 10/12/2024] [Indexed: 11/02/2024]
Abstract
Nanomaterial-mediated plant genetic engineering holds promise for developing new crop cultivars but can be hindered by nanomaterial toxicity to protoplasts. We present a fast, high-throughput method for assessing protoplast viability using resazurin, a non-toxic dye converted to highly fluorescent resorufin during respiration. Protoplasts isolated from hypocotyl canola (Brassica napus L.) were evaluated at varying temperatures (4, 10, 20, 30 ˚C) and time intervals (1-24 h). Optimal conditions for detecting protoplast viability were identified as 20,000 cells incubated with 40 µM resazurin at room temperature for 3 h. The assay was applied to evaluate the cytotoxicity of silver nanospheres, silica nanospheres, cholesteryl-butyrate nanoemulsion, and lipid nanoparticles. The cholesteryl-butyrate nanoemulsion and lipid nanoparticles exhibited toxicity across all tested concentrations (5-500 ng/ml), except at 5 ng/ml. Silver nanospheres were toxic across all tested concentrations (5-500 ng/ml) and sizes (20-100 nm), except for the larger size (100 nm) at 5 ng/ml. Silica nanospheres showed no toxicity at 5 ng/ml across all tested sizes (12-230 nm). Our results highlight that nanoparticle size and concentration significantly impact protoplast toxicity. Overall, the results showed that the resazurin assay is a precise, rapid, and scalable tool for screening nanomaterial cytotoxicity, enabling more accurate evaluations before using nanomaterials in genetic engineering.
Collapse
Affiliation(s)
- Zhila Osmani
- Faculty of Medicine, University of Alberta, Edmonton, Alberta, Canada
- Quantum and Nanotechnologies Research Centre, National Research Council Canada, University of Alberta, 11421 Saskatchewan Drive, Edmonton, Alberta, T6G 2M9, Canada
| | - Muhammad Amirul Islam
- Quantum and Nanotechnologies Research Centre, National Research Council Canada, University of Alberta, 11421 Saskatchewan Drive, Edmonton, Alberta, T6G 2M9, Canada
| | - Feng Wang
- Quantum and Nanotechnologies Research Centre, National Research Council Canada, University of Alberta, 11421 Saskatchewan Drive, Edmonton, Alberta, T6G 2M9, Canada
| | - Sabrina Rodrigues Meira
- Quantum and Nanotechnologies Research Centre, National Research Council Canada, University of Alberta, 11421 Saskatchewan Drive, Edmonton, Alberta, T6G 2M9, Canada
| | - Marianna Kulka
- Faculty of Medicine, University of Alberta, Edmonton, Alberta, Canada.
- Quantum and Nanotechnologies Research Centre, National Research Council Canada, University of Alberta, 11421 Saskatchewan Drive, Edmonton, Alberta, T6G 2M9, Canada.
| |
Collapse
|
9
|
Gettler J, Markovič M, Koóš P, Gracza T. Recent Advances in the Research on Luotonins A, B, and E. Molecules 2024; 29:3522. [PMID: 39124927 PMCID: PMC11314610 DOI: 10.3390/molecules29153522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 07/24/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
This digest review summarises the most recent progress in the study on luotonins A, B and E. The literature covered in this overview spans from January 2012 to April 2024 and presents synthetic methodologies for the assembly of the quinolinopyrrolo-quinazoline scaffold, the structural motifs present in luotonins A, B, and E, and the evaluation of the biological activities of their derivatives and structural analogues.
Collapse
Affiliation(s)
| | - Martin Markovič
- Department of Organic Chemistry, Institute of Organic Chemistry, Catalysis and Petrochemistry, Slovak University of Technology, Radlinského 9, SK-812 37 Bratislava, Slovakia; (J.G.); (T.G.)
| | - Peter Koóš
- Department of Organic Chemistry, Institute of Organic Chemistry, Catalysis and Petrochemistry, Slovak University of Technology, Radlinského 9, SK-812 37 Bratislava, Slovakia; (J.G.); (T.G.)
| | | |
Collapse
|
10
|
Avnet S, Pompo GD, Borciani G, Fischetti T, Graziani G, Baldini N. Advantages and limitations of using cell viability assays for 3D bioprinted constructs. Biomed Mater 2024; 19:025033. [PMID: 38306683 DOI: 10.1088/1748-605x/ad2556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 02/02/2024] [Indexed: 02/04/2024]
Abstract
Bioprinting shows promise for bioengineered scaffolds and three-dimensional (3D) disease models, but assessing the viability of embedded cells is challenging. Conventional assays are limited by the technical problems that derive from using multi-layered bioink matrices dispersing cells in three dimensions. In this study, we tested bioprinted osteogenic bioinks as a model system. Alginate- or gelatin-based bioinks were loaded with/without ceramic microparticles and osteogenic cells (bone tumor cells, with or without normal bone cells). Despite demonstrating 80%-90% viability through manual counting and live/dead staining, this was time-consuming and operator-dependent. Moreover, for the alginate-bioprinted scaffold, cell spheroids could not be distinguished from single cells. The indirect assay (alamarBlue), was faster but less accurate than live/dead staining due to dependence on hydrogel permeability. Automated confocal microscope acquisition and cell counting of live/dead staining was more reproducible, reliable, faster, efficient, and avoided overestimates compared to manual cell counting by optical microscopy. Finally, for 1.2 mm thick 3D bioprints, dual-photon confocal scanning with vital staining greatly improved the precision of the evaluation of cell distribution and viability and cell-cell interactions through thez-axis. In summary, automated confocal microscopy and cell counting provided superior accuracy for the assessment of cell viability and interactions in 3D bioprinted models compared to most commonly and currently used techniques.
Collapse
Affiliation(s)
- Sofia Avnet
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum-Università di Bologna, Bologna, Italy
| | - Gemma Di Pompo
- Biomedical Science Technologies, and Nanobiotechnology Lab, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Giorgia Borciani
- Biomedical Science Technologies, and Nanobiotechnology Lab, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Tiziana Fischetti
- Biomedical Science Technologies, and Nanobiotechnology Lab, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Gabriela Graziani
- Biomedical Science Technologies, and Nanobiotechnology Lab, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Nicola Baldini
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum-Università di Bologna, Bologna, Italy
- Biomedical Science Technologies, and Nanobiotechnology Lab, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| |
Collapse
|
11
|
Trainor N, Purpura KA, Middleton K, Fargo K, Hails L, Vicentini-Hogan M, McRobie C, Daniels R, Densham P, Gardin P, Fouks M, Brayer H, Malka RG, Rodin A, Ogen T, Besser MJ, Smith T, Leonard D, Bryan A. Automated production of gene-modified chimeric antigen receptor T cells using the Cocoon Platform. Cytotherapy 2023; 25:1349-1360. [PMID: 37690020 DOI: 10.1016/j.jcyt.2023.07.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/29/2023] [Accepted: 07/29/2023] [Indexed: 09/11/2023]
Abstract
Autologous cell-based therapeutics have gained increasing attention in recent years because of their efficacy at treating diseases with limited therapeutic options. Chimeric antigen receptor (CAR) T-cell therapy has demonstrated clinical success in hematologic oncology indications, providing critically ill patients with a potentially curative therapy. Although engineered cell therapies such as CAR T cells provide new options for patients with unmet needs, the high cost and complexity of manufacturing may hinder clinical and commercial translation. The Cocoon Platform (Lonza, Basel, Switzerland) addresses many challenges, such as high labor demand, process consistency, contamination risks and scalability, by enabling efficient, functionally closed and automated production, whether at clinical or commercial scale. This platform is customizable and easy to use and requires minimal operator interaction, thereby decreasing process variability. We present two processes that demonstrate the Cocoon Platform's capabilities. We employed different T-cell activation methods-OKT3 and CD3/CD28 Dynabeads (Thermo Fisher Scientific, Waltham, MA, USA)-to generate final cellular products that meet the critical quality attributes of a clinical autologous CAR T-cell product. This study demonstrates a manufacturing solution for addressing challenges with manual methods of production and facilitating the scale-up of autologous cell therapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Hadar Brayer
- Ella Lemelbaum Institute for Immuno-Oncology, Sheba Medical Center, Ramat Gan, Israel
| | - Rivka Gal Malka
- Wohl Institute for Translational Medicine/Advanced Biotherapy Center Good Manufacturing Practice Facility, Sheba Medical Center, Ramat Gan, Israel
| | - Anastasia Rodin
- Wohl Institute for Translational Medicine/Advanced Biotherapy Center Good Manufacturing Practice Facility, Sheba Medical Center, Ramat Gan, Israel
| | - Tal Ogen
- Wohl Institute for Translational Medicine/Advanced Biotherapy Center Good Manufacturing Practice Facility, Sheba Medical Center, Ramat Gan, Israel
| | - Michal J Besser
- Ella Lemelbaum Institute for Immuno-Oncology, Sheba Medical Center, Ramat Gan, Israel; Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel; Davidoff Center, Rabin Medical Center, Petah Tikva, Israel
| | - Tim Smith
- Octane Biotech Inc, Kingston, Canada
| | | | - Adam Bryan
- Lonza Walkersville, Inc, Walkersville, Maryland, USA
| |
Collapse
|
12
|
Kundik A, Musimbi ZD, Krücken J, Hildebrandt T, Kornilov O, Hartmann S, Ebner F. Quantifying metabolic activity of Ascaris suum L3 using resazurin reduction. Parasit Vectors 2023; 16:243. [PMID: 37468906 DOI: 10.1186/s13071-023-05871-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 07/04/2023] [Indexed: 07/21/2023] Open
Abstract
BACKGROUND Helminth infections are an important public health problem in humans and have an even greater impact on domestic animal and livestock welfare. Current readouts for anthelmintic drug screening assays are stage development, migration, or motility that can be subjective, laborious, and low in throughput. The aim of this study was to apply and optimize a fluorometric technique using resazurin for evaluating changes in the metabolic activity of Ascaris suum third-stage larvae (L3), a parasite of high economic relevance in swine. METHODS Ascaris suum L3 were mechanically hatched from 6- to 8-week embryonated and sucrose-gradient-enriched eggs. Resazurin dye and A. suum L3 were titrated in 96-well microtiter plates, and resazurin reduction activity was assessed by fluorometry after 24 h of incubation. Fluorescence microscopy was used to localize the resazurin reduction site within the larvae. Finally, we exposed A. suum L3 to various stress conditions including heat, methanol, and anthelmintics, and investigated their impact on larval metabolism through resazurin reduction activity. RESULTS We show that the non-fluorescent dye resazurin is reduced inside vital A. suum L3 to fluorescent resorufin and released into the culture media. Optimal assay parameters are 100-1000 L3 per well, a resazurin concentration of 7.5 µg/ml, and incubation at 37 °C/5% CO2 for 24 h. An intact L2 sheath around the L3 of A. suum completely prevents the uptake of resazurin, while in unsheathed L3, the most intense fluorescence signal is observed along the larval midgut. L3 exposed to methanol or heat show a gradually decreased resazurin reduction activity. In addition, 24 h exposure to ivermectin at 0.625 µM, mebendazole at 5 µM, and thiabendazole from 10 to 100 µM significantly decreased larval metabolic activity by 55%, 73%, and 70% to 89%, respectively. CONCLUSIONS Together, our results show that both metabolic stressors and anthelmintic drugs significantly and reproducibly reduce the resazurin reduction activity of A. suum L3, making the proposed assay a sensitive and easy-to-use method to evaluate metabolic activity of A. suum L3 in vitro.
Collapse
Affiliation(s)
- Arkadi Kundik
- Institute of Immunology, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Zaneta D Musimbi
- Institute of Immunology, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Jürgen Krücken
- Institute for Parasitology and Tropical Veterinary Medicine, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | | | | | - Susanne Hartmann
- Institute of Immunology, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Friederike Ebner
- Institute of Immunology, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany.
- Chair of Infection Pathogenesis, Department of Molecular Life Sciences, School of Life Sciences, Technical University Munich, Munich, Germany.
| |
Collapse
|
13
|
Palaniappan U, Kannaiyan J, Paulraj B, Karuppiah P, Basavarajappa S, Syed A, Elgorban AM, Zaghloul NS, Veeramanikandan V. Combining Mesenchymal Stem Cells Derived from Wharton's Jelly and Amniotic Biomaterial Scaffolds for Cell Delivery. ACS OMEGA 2023; 8:24351-24361. [PMID: 37457470 PMCID: PMC10339331 DOI: 10.1021/acsomega.3c01689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 06/09/2023] [Indexed: 07/18/2023]
Abstract
Therapies based on mesenchymal stem cells have incredible potential for tissue regeneration. Tracking cells and keeping them at the injury site are creating challenges. The cells can be sown into a biocompatible scaffold as a possible remedy. Tissue engineering construction is a difficult, multistep process that requires many variables to be optimized, including the stem cell source, molecular components, scaffold architecture, and a suitable in vivo animal model. In order to locate a suitable regenerative scaffold for delivering stromal cells to regions with greater healing potential, we assessed whether human Wharton's Jelly-derived mesenchymal stem cells (WJMSCs) responded on biological membranes. WJMSCs were isolated, characterized, and seeded onto an amniotic membrane-based scaffold. Results obtained in vitro revealed that the seeded scaffolds had a significant impact on a number of critical variables, including seeding effectiveness, cellular dispersion, adhesion, survival, and metabolic activity. The research sheds light on a fresh facet of material behavior and paves the way for the creation of scaffold materials that support tissue regeneration and repair. Furthermore, the methods used herein can be utilized to test other scaffold materials to increase their healing potential with WJMSCs.
Collapse
Affiliation(s)
- Umamagesh Palaniappan
- PG
and Research Centre in Microbiology, MGR College, Hosur 635130, Tamil Nadu, India
- Department
of Microbiology, Sri Kailash Women’s
College, Periyeri, Thalaivasal,
Attur - 636 112, Tamil
Nadu, India
| | - Jaianand Kannaiyan
- Research
and Development, CellCure Therapeutics, Coimbatore 625014, Tamil Nadu, India
- Research
and Development, Bogar BioBee Stores Pvt.
Ltd, Coimbatore 641046, Tamil Nadu, India
| | - Balaji Paulraj
- PG
and Research Centre in Biotechnology, MGR
College, Hosur 635130, Tamil Nadu, India
| | - Ponmurugan Karuppiah
- Department
of Botany and Microbiology, College of Science,
King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Santhosh Basavarajappa
- Department
of Dental Health, Dental Biomaterials Research Chair, College of Applied
Medical Sciences, King Saud University, Riyadh 11433, Saudi Arabia
| | - Asad Syed
- Department
of Botany and Microbiology, College of Science,
King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Abdallah M. Elgorban
- Department
of Botany and Microbiology, College of Science,
King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Nouf S. Zaghloul
- Bristol
Centre for Functional Nanomaterials, HH Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1FD, U.K.
| | | |
Collapse
|
14
|
Kumar P, Mathew S, Gamage R, Bodkin F, Doyle K, Rossetti I, Wagnon I, Zhou X, Raju R, Gyengesi E, Münch G. From the Bush to the Brain: Preclinical Stages of Ethnobotanical Anti-Inflammatory and Neuroprotective Drug Discovery-An Australian Example. Int J Mol Sci 2023; 24:11086. [PMID: 37446262 DOI: 10.3390/ijms241311086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/29/2023] [Accepted: 07/01/2023] [Indexed: 07/15/2023] Open
Abstract
The Australian rainforest is a rich source of medicinal plants that have evolved in the face of dramatic environmental challenges over a million years due to its prolonged geographical isolation from other continents. The rainforest consists of an inherent richness of plant secondary metabolites that are the most intense in the rainforest. The search for more potent and more bioavailable compounds from other plant sources is ongoing, and our short review will outline the pathways from the discovery of bioactive plants to the structural identification of active compounds, testing for potency, and then neuroprotection in a triculture system, and finally, the validation in an appropriate neuro-inflammatory mouse model, using some examples from our current research. We will focus on neuroinflammation as a potential treatment target for neurodegenerative diseases including multiple sclerosis (MS), Parkinson's (PD), and Alzheimer's disease (AD) for these plant-derived, anti-inflammatory molecules and highlight cytokine suppressive anti-inflammatory drugs (CSAIDs) as a better alternative to conventional nonsteroidal anti-inflammatory drugs (NSAIDs) to treat neuroinflammatory disorders.
Collapse
Affiliation(s)
- Payaal Kumar
- Pharmacology Unit, School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
| | - Shintu Mathew
- Pharmacology Unit, School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
| | - Rashmi Gamage
- Pharmacology Unit, School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
| | - Frances Bodkin
- Pharmacology Unit, School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
| | - Kerrie Doyle
- Indigenous Health Unit, School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
| | - Ilaria Rossetti
- Pharmacology Unit, School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
| | - Ingrid Wagnon
- Pharmacology Unit, School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
| | - Xian Zhou
- NICM Health Research Institute, Western Sydney University, Westmead, NSW 2145, Australia
| | - Ritesh Raju
- Pharmacology Unit, School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
| | - Erika Gyengesi
- Pharmacology Unit, School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
| | - Gerald Münch
- Pharmacology Unit, School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
- NICM Health Research Institute, Western Sydney University, Westmead, NSW 2145, Australia
| |
Collapse
|
15
|
Atanasoff‐Kardjalieff AK, Seidl B, Steinert K, Daniliuc CG, Schuhmacher R, Humpf H, Kalinina S, Studt‐Reinhold L. Biosynthesis of the Isocoumarin Derivatives Fusamarins is Mediated by the PKS8 Gene Cluster in Fusarium. Chembiochem 2023; 24:e202200342. [PMID: 36137261 PMCID: PMC10947347 DOI: 10.1002/cbic.202200342] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/19/2022] [Indexed: 11/11/2022]
Abstract
Fusarium mangiferae causes the mango malformation disease (MMD) on young mango trees and seedlings resulting in economically significant crop losses. In addition, F. mangiferae produces a vast array of secondary metabolites (SMs), including mycotoxins that may contaminate the harvest. Their production is tightly regulated at the transcriptional level. Here, we show that lack of the H3 K9-specific histone methyltransferase, FmKmt1, influences the expression of the F. mangiferae polyketide synthase (PKS) 8 (FmPKS8), a so far cryptic PKS. By a combination of reverse genetics, untargeted metabolomics, bioinformatics and chemical analyses including structural elucidation, we determined the FmPKS8 biosynthetic gene cluster (BGC) and linked its activity to the production of fusamarins (FMN), which can be structurally classified as dihydroisocoumarins. Functional characterization of the four FMN cluster genes shed light on the biosynthetic pathway. Cytotoxicity assays revealed moderate toxicities with IC50 values between 1 and 50 μM depending on the compound.
Collapse
Affiliation(s)
- Anna K. Atanasoff‐Kardjalieff
- Institute of Microbial GeneticsDepartment of Applied Genetics and Cell BiologyUniversity of Natural Resources and Life SciencesViennaKonrad-Lorenz Strasse 243430Tulln an der DonauAustria
| | - Bernhard Seidl
- Institute of Bioanalytics and Agro-MetabolomicsDepartment of Agrobiotechnology (IFA-Tulln)University of Natural Resources and Life SciencesViennaKonrad-Lorenz Strasse 203430Tulln an der DonauAustria
| | - Katharina Steinert
- Institute of Food ChemistryWestfälische Wilhelms-Universität MünsterCorrensstraße 4548149MünsterGermany
| | - Constantin G. Daniliuc
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität MünsterCorrensstraße 4048149MünsterGermany
| | - Rainer Schuhmacher
- Institute of Bioanalytics and Agro-MetabolomicsDepartment of Agrobiotechnology (IFA-Tulln)University of Natural Resources and Life SciencesViennaKonrad-Lorenz Strasse 203430Tulln an der DonauAustria
| | - Hans‐Ulrich Humpf
- Institute of Food ChemistryWestfälische Wilhelms-Universität MünsterCorrensstraße 4548149MünsterGermany
| | - Svetlana Kalinina
- Institute of Food ChemistryWestfälische Wilhelms-Universität MünsterCorrensstraße 4548149MünsterGermany
| | - Lena Studt‐Reinhold
- Institute of Microbial GeneticsDepartment of Applied Genetics and Cell BiologyUniversity of Natural Resources and Life SciencesViennaKonrad-Lorenz Strasse 243430Tulln an der DonauAustria
| |
Collapse
|
16
|
Li G, Nikkhoi SK, Hatefi A. Stem cell-assisted enzyme/prodrug therapy makes drug-resistant ovarian cancer cells vulnerable to natural killer cells through upregulation of NKG2D ligands. Med Oncol 2023; 40:110. [PMID: 36862260 PMCID: PMC10794068 DOI: 10.1007/s12032-023-01975-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/10/2023] [Indexed: 03/03/2023]
Abstract
Cancer stem-like cells (CSCs) are believed to be responsible for cancer recurrence and metastasis. Therefore, a therapeutic approach is needed to eliminate both rapidly proliferating differentiated cancer cells and slow-growing drug-resistant CSCs. Using established ovarian cancer cells lines as well as ovarian cancer cells isolated from a patient with high-grade drug-resistant ovarian carcinoma, we demonstrate that ovarian CSCs consistently express lower levels of NKG2D ligands (MICA/B and ULBPs) on their surfaces, a mechanism by which they evade natural killer (NK) cells' surveillance. Here, we discovered that exposure of ovarian cancer (OC) cells to SN-38 followed by 5-FU not only acts synergistically to kill the OC cells, but also makes the CSCs vulnerable to NK92 cells through upregulation of NKG2D ligands. Since systemic administration of these two drugs is marred by intolerance and instability, we engineered and isolated an adipose-derived stem cell (ASC) clone, which stably expresses carboxylesterase-2 and yeast cytosine deaminase enzymes to convert irinotecan and 5-FC prodrugs into SN-38 and 5-FU cytotoxic drugs, respectively. Co-incubation of ASCs and prodrugs with drug-resistant OC cells not only led to the death of the drug-resistant OC cells but also made them significantly vulnerable to NK92 cells. This study provides proof of principle for a combined ASC-directed targeted chemotherapy with NK92-assisted immunotherapy to eradicate drug-resistant OC cells.
Collapse
Affiliation(s)
- Geng Li
- Department of Pharmaceutics, Rutgers University, 160 Frelinghuysen Road, Piscataway, NJ, 08854-8020, USA
| | | | - Arash Hatefi
- Department of Pharmaceutics, Rutgers University, 160 Frelinghuysen Road, Piscataway, NJ, 08854-8020, USA.
- Cancer Pharmacology Program, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, 08901, USA.
| |
Collapse
|
17
|
Zipperer A, Scheurer J, Kretschmer D. Cytotoxicity Assays as Predictors of the Safety and Efficacy of Antimicrobial Agents. Methods Mol Biol 2023; 2601:153-167. [PMID: 36445583 DOI: 10.1007/978-1-0716-2855-3_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The development of safe antimicrobial agents is important for the effective treatment of pathogens. From a multitude of discovered inhibitory compounds, only a few antimicrobial agents are able to enter the market. Many antimicrobials are, on the one hand, quite effective in killing pathogens but, on the other hand, cytotoxic to eukaryotic cells. Cell health can be monitored by various methods. Plasma membrane integrity, DNA synthesis, enzyme activity, and reducing conditions within the cell are known indicators of cell viability and cell death. For a comprehensive overview, methods to analyze cytotoxic and hemolytic effects, e.g., lactate dehydrogenase release, cell proliferation analysis, cell viability analysis based on the activity of different intracellular enzymes, and hemolysis assay of antimicrobial compounds on human cells, are described in this updated chapter.
Collapse
Affiliation(s)
- Alexander Zipperer
- Infection Biology, Interfaculty Institute for Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, Tübingen, Germany
| | - Jasmin Scheurer
- Department of Dermatology, Division of Dermatooncology, University of Tübingen, Tübingen, Germany
| | - Dorothee Kretschmer
- Infection Biology, Interfaculty Institute for Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, Tübingen, Germany.
| |
Collapse
|
18
|
Steinert K, Berg N, Kalinin DV, Jagels A, Würthwein EU, Humpf HU, Kalinina S. Semisynthetic Approach toward Biologically Active Derivatives of Phenylspirodrimanes from S. chartarum. ACS OMEGA 2022; 7:45215-45230. [PMID: 36530258 PMCID: PMC9753195 DOI: 10.1021/acsomega.2c05681] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/27/2022] [Indexed: 06/17/2023]
Abstract
The phenylspirodrimanes (PSDs) from Stachybotrys chartarum represent a structurally diverse group of meroterpenoids, which, on the one hand, exhibit a structural exclusivity since their occurrence is not known for any other species and, on the other hand, offer access to chemically and biologically active compounds. In this study, phenylspirodrimanes 1-3 were isolated from S. chartarum and their water-mediated Cannizzaro-type transformation was investigated using quantum chemical DFT calculations substantiated by LC-MS and NMR experiments. Considering the inhibitory activity of PSDs against proteolytic enzymes and their modulatory effect on plasminogen, PSDs 1-3 were used as a starting material for the synthesis of their corresponding biologically active lactams. To access the library of the PSD derivatives and screen them against physiologically relevant serine proteases, a microscale semisynthetic approach was developed. This allowed us to generate the library of 35 lactams, some of which showed the inhibitory activity against physiologically relevant serine proteases such as thrombin, FXIIa, FXa, and trypsin. Among them, the agmatine-derived lactam 16 showed the highest inhibitory activity against plasma coagulation factors and demonstrated the anticoagulant activity in two plasma coagulation tests. The semisynthetic lactams were significantly less toxic compared to their parental natural PSDs.
Collapse
Affiliation(s)
- Katharina Steinert
- Institut
für Lebensmittelchemie, Westfälische
Wilhelms-Universität Münster, Corrensstraße 45, 48149 Münster, Germany
| | - Nina Berg
- Institut
für Lebensmittelchemie, Westfälische
Wilhelms-Universität Münster, Corrensstraße 45, 48149 Münster, Germany
| | - Dmitrii V. Kalinin
- Institut
für Pharmazeutische und Medizinische Chemie, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| | - Annika Jagels
- The
Whitney Laboratory for Marine Bioscience, Department of Chemistry, University of Florida, St. Augustine, Florida 32080, United States
| | - Ernst-Ulrich Würthwein
- Organisch-Chemisches
Institut and Center for Multiscale Theory and Computation (CMTC), Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149 Münster, Germany
| | - Hans-Ulrich Humpf
- Institut
für Lebensmittelchemie, Westfälische
Wilhelms-Universität Münster, Corrensstraße 45, 48149 Münster, Germany
| | - Svetlana Kalinina
- Institut
für Lebensmittelchemie, Westfälische
Wilhelms-Universität Münster, Corrensstraße 45, 48149 Münster, Germany
| |
Collapse
|
19
|
Khan F, Ali H, Musharraf SG. Tenofovir disoproxil fumarate-mediated γ-globin induction is correlated with the suppression of trans-acting factors in CD34 + progenitor cells: A role in the reactivation of fetal hemoglobin. Eur J Pharmacol 2022; 927:175036. [PMID: 35618038 DOI: 10.1016/j.ejphar.2022.175036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 05/07/2022] [Accepted: 05/12/2022] [Indexed: 11/19/2022]
Abstract
Sickle-cell disease (SCD) and β-thalassemia are public health issues that affect people all over the world. Fetal hemoglobin (HbF) induction is a molecular intervention, including hydroxyurea, which has made an effort to improve current treatment. Tenofovir disoproxil fumarate (TDF) is formerly reported with improving levels of hemoglobin, mean corpuscular hemoglobin (MCH), and mean corpuscular volume (MCV). Hence, in this preclinical investigation, human peripheral whole blood-derived CD34+ progenitor cells were cultured to prove the efficacy of TDF on erythroid proliferation, differentiation, γ-globin gene expression regulation, and ultimately HbF production. We observed that TDF increased the proliferation of immature erythroid cells, delayed the terminal erythroid maturation without cytotoxicity as correlated with other HbF inducers. Here, the presented data show that TDF can induce HbF expression by up-regulating the γ-globin gene transcription up to 7.1 ± 0.46-fold and subsequently increased the F-cells (10.79 ± 1.9-fold) population in terminally differentiated erythroid cells. Furthermore, our findings demonstrated that TDF-mediated γ-globin gene induction and HbF production was associated with down-fold regulation of BCL11A and SOX6, and their corresponding trans-acting regulators, FOP, KLF1, and GATA1. Collectively, our findings suggest TDF as an effective inducer of HbF in CD34+ cells and pave the way to put forward the assessment of TDF as a new potential therapy in treating β-hemoglobinopathies.
Collapse
Affiliation(s)
- Faisal Khan
- Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Hamad Ali
- Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan; Department of Basic Medical Sciences, Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad 44000, Pakistan
| | - Syed Ghulam Musharraf
- Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan; H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan.
| |
Collapse
|
20
|
Wang Y, Huang Y, Cheng E, Liu X, Zhang Y, Yang J, Young JTF, Brown GW, Yang X, Shang Y. LSD1 is required for euchromatic origin firing and replication timing. Signal Transduct Target Ther 2022; 7:102. [PMID: 35414135 PMCID: PMC9005705 DOI: 10.1038/s41392-022-00927-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 01/31/2022] [Accepted: 02/13/2022] [Indexed: 11/08/2022] Open
Abstract
The chromatin-based rule governing the selection and activation of replication origins remains to be elucidated. It is believed that DNA replication initiates from open chromatin domains; thus, replication origins reside in open and active chromatin. However, we report here that lysine-specific demethylase 1 (LSD1), which biochemically catalyzes H3K4me1/2 demethylation favoring chromatin condensation, interacts with the DNA replication machinery in human cells. We find that LSD1 level peaks in early S phase, when it is required for DNA replication by facilitating origin firing in euchromatic regions. Indeed, euchromatic zones enriched in H3K4me2 are the preferred sites for the pre-replicative complex (pre-RC) binding. Remarkably, LSD1 deficiency leads to a genome-wide switch of replication from early to late. We show that LSD1-engaged DNA replication is mechanistically linked to the loading of TopBP1-Interacting Checkpoint and Replication Regulator (TICRR) onto the pre-RC and subsequent recruitment of CDC45 during origin firing. Together, these results reveal an unexpected role for LSD1 in euchromatic origin firing and replication timing, highlighting the importance of epigenetic regulation in the activation of replication origins. As selective inhibitors of LSD1 are being exploited as potential cancer therapeutics, our study supports the importance of leveraging an appropriate level of LSD1 to curb the side effects of anti-LSD1 therapy.
Collapse
Affiliation(s)
- Yue Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, 311121, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Yunchao Huang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Edith Cheng
- Department of Biochemistry and Donnelly Centre, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Xinhua Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Yu Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Jianguo Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Jordan T F Young
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Ave., Toronto, ON, M5G 1×5, Canada
| | - Grant W Brown
- Department of Biochemistry and Donnelly Centre, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Xiaohan Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China.
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Ave., Toronto, ON, M5G 1×5, Canada.
| | - Yongfeng Shang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China.
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, 311121, China.
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
21
|
Lünne F, Köhler J, Stroh C, Müller L, Daniliuc CG, Mück-Lichtenfeld C, Würthwein EU, Esselen M, Humpf HU, Kalinina SA. Insights into Ergochromes of the Plant Pathogen Claviceps purpurea. JOURNAL OF NATURAL PRODUCTS 2021; 84:2630-2643. [PMID: 34553942 DOI: 10.1021/acs.jnatprod.1c00264] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Claviceps purpurea is an ergot fungus known for its neurotropic alkaloids, which have been identified as the main cause of ergotism, a livestock and human disease triggered by ergot consumption. Tetrahydroxanthone dimers, the so-called ergopigments, presumably also contribute to this toxic effect. Overexpression of the cluster-specific transcription factor responsible for the formation of these pigments in C. purpurea led to the isolation of three new metabolites (8-10). The new pigments were characterized utilizing HRMS, NMR techniques, and CD spectroscopy and shown to be xanthone dimers. Secalonic acid A and its 2,4'- and 4,4'-linked isomers were also isolated, and their absolute configuration was investigated. The contribution of secalonic acid A, its isomers, and new metabolites to the toxicity of C. purpurea was investigated in HepG2 and CCF-STTG1 cells. Along with cytotoxic properties, secalonic acid A was found to inhibit topoisomerase I and II activity.
Collapse
Affiliation(s)
- Friederike Lünne
- Institut für Lebensmittelchemie, Westfälische Wilhelms-Universität Münster, Corrensstraße 45, 48149 Münster, Germany
| | - Jens Köhler
- Institut für Pharmazeutische und Medizinische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstraße 48, 48149 Münster, Germany
| | - Christina Stroh
- Institut für Lebensmittelchemie, Westfälische Wilhelms-Universität Münster, Corrensstraße 45, 48149 Münster, Germany
| | - Lena Müller
- Institut für Lebensmittelchemie, Westfälische Wilhelms-Universität Münster, Corrensstraße 45, 48149 Münster, Germany
| | - Constantin G Daniliuc
- Organisch-chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149 Münster, Germany
| | - Christian Mück-Lichtenfeld
- Organisch-chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149 Münster, Germany
- Center for Multiscale Theory and Computation, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149 Münster, Germany
| | - Ernst-Ulrich Würthwein
- Organisch-chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149 Münster, Germany
- Center for Multiscale Theory and Computation, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149 Münster, Germany
| | - Melanie Esselen
- Institut für Lebensmittelchemie, Westfälische Wilhelms-Universität Münster, Corrensstraße 45, 48149 Münster, Germany
| | - Hans-Ulrich Humpf
- Institut für Lebensmittelchemie, Westfälische Wilhelms-Universität Münster, Corrensstraße 45, 48149 Münster, Germany
| | - Svetlana A Kalinina
- Institut für Lebensmittelchemie, Westfälische Wilhelms-Universität Münster, Corrensstraße 45, 48149 Münster, Germany
| |
Collapse
|
22
|
Adenosine 5'-Monophosphate Protects from Hypoxia by Lowering Mitochondrial Metabolism and Oxygen Demand. Shock 2021; 54:237-244. [PMID: 31460871 DOI: 10.1097/shk.0000000000001440] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Ischemia and reperfusion injury following severe trauma or cardiac arrest are major causes of organ damage in intensive care patients. The brain is particularly vulnerable because hypoxia rapidly damages neurons due to their heavy reliance on oxidative phosphorylation. Therapeutic hypothermia can reduce ischemia-induced brain damage, but cooling procedures are slow and technically difficult to perform in critical care settings. It has been previously reported that injection of naturally occurring adenosine 5'-monophosphate (AMP) can rapidly induce hypothermia in mice. We studied the underlying mechanisms and found that AMP transiently reduces the heart rate, respiratory rate, body temperature, and the consciousness of adult male and female C57BL/6J mice. Adding AMP to mouse or human neuronal cell cultures dose-dependently reduced the membrane potential (ΔΨm) and Ca signaling of mitochondria in these cells. AMP treatment increased intracellular AMP levels and activated AMP-activated protein kinase, which resulted in the inhibition of mammalian target of rapamycin complex 1 (mTORC1) and of mitochondrial and cytosolic Ca signaling in resting and stimulated neurons. Pretreatment with an intraperitoneal injection of AMP almost doubled the survival time of mice under hypoxic (6% O2) or anoxic (<1% O2) conditions when compared to untreated mice. These findings suggest that AMP induces a hypometabolic state that slows mitochondrial respiration, reduces oxygen demand, and delays the processes that damage mitochondria in the brain and other organs following hypoxia and reperfusion. Further examination of these mechanisms may lead to new treatments that preserve organ function in critical care patients.
Collapse
|
23
|
Mohtar N, Parumasivam T, Gazzali AM, Tan CS, Tan ML, Othman R, Fazalul Rahiman SS, Wahab HA. Advanced Nanoparticle-Based Drug Delivery Systems and Their Cellular Evaluation for Non-Small Cell Lung Cancer Treatment. Cancers (Basel) 2021; 13:3539. [PMID: 34298753 PMCID: PMC8303683 DOI: 10.3390/cancers13143539] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/18/2021] [Accepted: 06/23/2021] [Indexed: 12/12/2022] Open
Abstract
Lung cancers, the number one cancer killer, can be broadly divided into small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC), with NSCLC being the most commonly diagnosed type. Anticancer agents for NSCLC suffer from various limitations that can be partly overcome by the application of nanomedicines. Nanoparticles is a branch within nanomedicine that can improve the delivery of anticancer drugs, whilst ensuring the stability and sufficient bioavailability following administration. There are many publications available in the literature exploring different types of nanoparticles from different materials. The effectiveness of a treatment option needs to be validated in suitable in vitro and/or in vivo models. This includes the developed nanoparticles, to prove their safety and efficacy. Many researchers have turned towards in vitro models that use normal cells or specific cells from diseased tissues. However, in cellular works, the physiological dynamics that is available in the body could not be mimicked entirely, and hence, there is still possible development of false positive or false negative results from the in vitro models. This article provides an overview of NSCLC, the different nanoparticles available to date, and in vitro evaluation of the nanoparticles. Different types of cells suitable for in vitro study and the important precautions to limit the development of false results are also extensively discussed.
Collapse
Affiliation(s)
- Noratiqah Mohtar
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Gelugor 11800, Penang, Malaysia; (N.M.); (T.P.); (A.M.G.); (C.S.T.); (M.L.T.); (H.A.W.)
| | - Thaigarajan Parumasivam
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Gelugor 11800, Penang, Malaysia; (N.M.); (T.P.); (A.M.G.); (C.S.T.); (M.L.T.); (H.A.W.)
| | - Amirah Mohd Gazzali
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Gelugor 11800, Penang, Malaysia; (N.M.); (T.P.); (A.M.G.); (C.S.T.); (M.L.T.); (H.A.W.)
| | - Chu Shan Tan
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Gelugor 11800, Penang, Malaysia; (N.M.); (T.P.); (A.M.G.); (C.S.T.); (M.L.T.); (H.A.W.)
| | - Mei Lan Tan
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Gelugor 11800, Penang, Malaysia; (N.M.); (T.P.); (A.M.G.); (C.S.T.); (M.L.T.); (H.A.W.)
| | - Rozana Othman
- Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Center for Natural Products Research and Drug Discovery (CENAR), Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Siti Sarah Fazalul Rahiman
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Gelugor 11800, Penang, Malaysia; (N.M.); (T.P.); (A.M.G.); (C.S.T.); (M.L.T.); (H.A.W.)
| | - Habibah A. Wahab
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Gelugor 11800, Penang, Malaysia; (N.M.); (T.P.); (A.M.G.); (C.S.T.); (M.L.T.); (H.A.W.)
| |
Collapse
|
24
|
Discovery of Novel Chemical Series of OXA-48 β-Lactamase Inhibitors by High-Throughput Screening. Pharmaceuticals (Basel) 2021; 14:ph14070612. [PMID: 34202402 PMCID: PMC8308845 DOI: 10.3390/ph14070612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/21/2021] [Accepted: 06/23/2021] [Indexed: 11/17/2022] Open
Abstract
The major cause of bacterial resistance to β-lactams is the production of hydrolytic β-lactamase enzymes. Nowadays, the combination of β-lactam antibiotics with β-lactamase inhibitors (BLIs) is the main strategy for overcoming such issues. Nevertheless, particularly challenging β-lactamases, such as OXA-48, pose the need for novel and effective treatments. Herein, we describe the screening of a proprietary compound collection against Klebsiella pneumoniae OXA-48, leading to the identification of several chemotypes, like the 4-ideneamino-4H-1,2,4-triazole (SC_2) and pyrazolo[3,4-b]pyridine (SC_7) cores as potential inhibitors. Importantly, the most potent representative of the latter series (ID2, AC50 = 0.99 μM) inhibited OXA-48 via a reversible and competitive mechanism of action, as demonstrated by biochemical and X-ray studies; furthermore, it slightly improved imipenem’s activity in Escherichia coli ATCC BAA-2523 β-lactam resistant strain. Also, ID2 showed good solubility and no sign of toxicity up to the highest tested concentration, resulting in a promising starting point for further optimization programs toward novel and effective non-β-lactam BLIs.
Collapse
|
25
|
Reconfigurable Dual Peptide Tethered Polymer System Offers a Synergistic Solution for Next Generation Dental Adhesives. Int J Mol Sci 2021; 22:ijms22126552. [PMID: 34207218 PMCID: PMC8235192 DOI: 10.3390/ijms22126552] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/07/2021] [Accepted: 06/09/2021] [Indexed: 01/29/2023] Open
Abstract
Resin-based composite materials have been widely used in restorative dental materials due to their aesthetic, mechanical, and physical properties. However, they still encounter clinical shortcomings mainly due to recurrent decay that develops at the composite-tooth interface. The low-viscosity adhesive that bonds the composite to the tooth is intended to seal this interface, but the adhesive seal is inherently defective and readily damaged by acids, enzymes, and oral fluids. Bacteria infiltrate the resulting gaps at the composite-tooth interface and bacterial by-products demineralize the tooth and erode the adhesive. These activities lead to wider and deeper gaps that provide an ideal environment for bacteria to proliferate. This complex degradation process mediated by several biological and environmental factors damages the tooth, destroys the adhesive seal, and ultimately, leads to failure of the composite restoration. This paper describes a co-tethered dual peptide-polymer system to address composite-tooth interface vulnerability. The adhesive system incorporates an antimicrobial peptide to inhibit bacterial attack and a hydroxyapatite-binding peptide to promote remineralization of damaged tooth structure. A designer spacer sequence was incorporated into each peptide sequence to not only provide a conjugation site for methacrylate (MA) monomer but also to retain active peptide conformations and enhance the display of the peptides in the material. The resulting MA-antimicrobial peptides and MA-remineralization peptides were copolymerized into dental adhesives formulations. The results on the adhesive system composed of co-tethered peptides demonstrated both strong metabolic inhibition of S. mutans and localized calcium phosphate remineralization. Overall, the result offers a reconfigurable and tunable peptide-polymer hybrid system as next-generation adhesives to address composite-tooth interface vulnerability.
Collapse
|
26
|
Gwynne WD, Shakeel MS, Girgis-Gabardo A, Hassell JA. The Role of Serotonin in Breast Cancer Stem Cells. Molecules 2021; 26:molecules26113171. [PMID: 34073226 PMCID: PMC8198186 DOI: 10.3390/molecules26113171] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/21/2021] [Accepted: 05/24/2021] [Indexed: 02/07/2023] Open
Abstract
Breast tumors were the first tumors of epithelial origin shown to follow the cancer stem cell model. The model proposes that cancer stem cells are uniquely endowed with tumorigenic capacity and that their aberrant differentiation yields non-tumorigenic progeny, which constitute the bulk of the tumor cell population. Breast cancer stem cells resist therapies and seed metastases; thus, they account for breast cancer recurrence. Hence, targeting these cells is essential to achieve durable breast cancer remissions. We identified compounds including selective antagonists of multiple serotonergic system pathway components required for serotonin biosynthesis, transport, activity via multiple 5-HT receptors (5-HTRs), and catabolism that reduce the viability of breast cancer stem cells of both mouse and human origin using multiple orthologous assays. The molecular targets of the selective antagonists are expressed in breast tumors and breast cancer cell lines, which also produce serotonin, implying that it plays a required functional role in these cells. The selective antagonists act synergistically with chemotherapy to shrink mouse mammary tumors and human breast tumor xenografts primarily by inducing programmed tumor cell death. We hypothesize those serotonergic proteins of diverse activity function by common signaling pathways to maintain cancer stem cell viability. Here, we summarize our recent findings and the relevant literature regarding the role of serotonin in breast cancer.
Collapse
Affiliation(s)
- William D. Gwynne
- Department of Surgery, McMaster University, Hamilton, ON L8S 4L8, Canada;
| | - Mirza S. Shakeel
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada; (M.S.S.); (A.G.-G.)
| | - Adele Girgis-Gabardo
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada; (M.S.S.); (A.G.-G.)
| | - John A. Hassell
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada; (M.S.S.); (A.G.-G.)
- Correspondence:
| |
Collapse
|
27
|
Mhatre O, Reddy BPK, Patnaik C, Chakrabarty S, Ingle A, De A, Srivastava R. pH-responsive delivery of anti-metastatic niclosamide using mussel inspired polydopamine nanoparticles. Int J Pharm 2021; 597:120278. [PMID: 33540007 DOI: 10.1016/j.ijpharm.2021.120278] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 12/16/2020] [Accepted: 01/08/2021] [Indexed: 12/15/2022]
Abstract
Niclosamide (Nic), an FDA approved antihelminthic drug, is being repurposed as a potent anti-cancer and anti-inflammatory agent. Niclosamide exhibits anti-cancer activity in multiple cancer types, including breast, colon, and prostate cancers. Niclosamide, a BCS II drug, is practically insoluble in water and sparingly soluble in organic solvents (ethanol, dimethyl sulfoxide), leading to limited therapeutic applications, and necessitates the need for a drug carrier. Herein, we report the preparation of polydopamine nanoparticles loaded with niclosamide (Nic-PDA NPs). The designed formulation had a very high loading efficiency (~30%) and entrapment efficiency close to 90%. The average hydrodynamic diameter of Nic-PDA NPs was 146.3 nm, with a narrow size distribution (PDI = 0.039). The formulation exhibited a pH-dependent drug release profile, with ~35% drug released at pH 7.4 after 120 h, compared to > 50% at pH 5.5 in simulated physiological conditions. The NPs exhibited time-dependent cellular uptake and were primarily localized in the cytoplasm. The formulation exhibited comparable cytotoxicity in MDA-MB-231 cells (IC50 = 2.73 μM, 36 h), and inhibited the migration of cancer cells significantly compared to the free drug and unloaded PDA NPs. Furthermore, the unloaded NPs exhibited excellent in vivo compatibility. The study establishes a rigorously optimized protocol for the synthesis of Nic loaded PDA NPs. The biocompatibility, anti-migratory efficacy, and the in vivo non-toxic nature of PDA has been well demonstrated.
Collapse
Affiliation(s)
- Omkar Mhatre
- Department of Biosciences and Bioengineering (BSBE), Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - B Pradeep K Reddy
- Department of Biosciences and Bioengineering (BSBE), Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Chetna Patnaik
- Molecular Functional Imaging Lab, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, India; Department of Life Sciences, Homi Bhabha National Institute, Mumbai, India
| | - Sabyasachi Chakrabarty
- Department of Biosciences and Bioengineering (BSBE), Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Aravind Ingle
- Molecular Functional Imaging Lab, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, India
| | - Abhijit De
- Molecular Functional Imaging Lab, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, India; Department of Life Sciences, Homi Bhabha National Institute, Mumbai, India.
| | - Rohit Srivastava
- Department of Biosciences and Bioengineering (BSBE), Indian Institute of Technology Bombay, Powai, Mumbai, India.
| |
Collapse
|
28
|
Smirnova A, Mentor A, Ranefall P, Bornehag CG, Brunström B, Mattsson A, Jönsson M. Increased apoptosis, reduced Wnt/β-catenin signaling, and altered tail development in zebrafish embryos exposed to a human-relevant chemical mixture. CHEMOSPHERE 2021; 238:124584. [PMID: 33032226 DOI: 10.1016/j.chemosphere.2019.124584] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 08/09/2019] [Accepted: 08/13/2019] [Indexed: 05/22/2023]
Abstract
A wide variety of anthropogenic chemicals is detected in humans and wildlife and the health effects of various chemical exposures are not well understood. Early life stages are generally the most susceptible to chemical disruption and developmental exposure can cause disease in adulthood, but the mechanistic understanding of such effects is poor. Within the EU project EDC-MixRisk, a chemical mixture (Mixture G) was identified in the Swedish pregnancy cohort SELMA by the inverse association between levels in women at around gestational week ten with birth weight of their children. This mixture was composed of mono-ethyl phthalate, mono-butyl phthalate, mono-benzyl phthalate, mono-ethylhexyl phthalate, mono-isononyl phthalate, triclosan, perfluorohexane sulfonate, perfluorooctanoic acid, and perfluorooctane sulfonate. In a series of experimental studies, we characterized effects of Mixture G on early development in zebrafish models. Here, we studied apoptosis and Wnt/β-catenin signaling which are two evolutionarily conserved signaling pathways of crucial importance during development. We determined effects on apoptosis by measuring TUNEL staining, caspase-3 activity, and acridine orange staining in wildtype zebrafish embryos, while Wnt/β-catenin signaling was assayed using a transgenic line expressing an EGFP reporter at β-catenin-regulated promoters. We found that Mixture G increased apoptosis, suppressed Wnt/β-catenin signaling in the caudal fin, and altered the shape of the caudal fin at water concentrations only 20-100 times higher than the geometric mean serum concentration in the human cohort. These findings call for awareness that pollutant mixtures like mixture G may interfere with a variety of developmental processes, possibly resulting in adverse health effects.
Collapse
Affiliation(s)
- Anna Smirnova
- Department of Environmental Toxicology, Uppsala University, Uppsala, Sweden; The Centre for Reproductive Biology in Uppsala (CRU), Uppsala, Sweden
| | - Anna Mentor
- Department of Environmental Toxicology, Uppsala University, Uppsala, Sweden; The Centre for Reproductive Biology in Uppsala (CRU), Uppsala, Sweden
| | - Petter Ranefall
- SciLifeLab BioImage Informatics Facility, and Dept of Information Technology, Uppsala University, Uppsala, Sweden
| | - Carl-Gustaf Bornehag
- Public Health Sciences, Karlstad University, Karlstad, Sweden; Icahn School of Medicine at Mount Sinai, New York, USA
| | - Björn Brunström
- Department of Environmental Toxicology, Uppsala University, Uppsala, Sweden; The Centre for Reproductive Biology in Uppsala (CRU), Uppsala, Sweden
| | - Anna Mattsson
- Department of Environmental Toxicology, Uppsala University, Uppsala, Sweden; The Centre for Reproductive Biology in Uppsala (CRU), Uppsala, Sweden
| | - Maria Jönsson
- Department of Environmental Toxicology, Uppsala University, Uppsala, Sweden; The Centre for Reproductive Biology in Uppsala (CRU), Uppsala, Sweden.
| |
Collapse
|
29
|
Blendinger F, Seitz D, Ottenschläger A, Fleischer M, Bucher V. Atomic Layer Deposition of Bioactive TiO 2 Thin Films on Polyetheretherketone for Orthopedic Implants. ACS APPLIED MATERIALS & INTERFACES 2021; 13:3536-3546. [PMID: 33438388 DOI: 10.1021/acsami.0c17990] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
TiO2 thin films were deposited on the orthopedic implant material polyetheretherketone (PEEK) by plasma enhanced atomic layer deposition (PEALD) and characterized for their ability to enhance the osseointegrative properties. PEALD was chosen for film deposition to circumvent drawbacks present in line-of-sight deposition techniques, which require technically complex setups for a homogeneous coating thickness. Film conformality was analyzed on silicon 3D test structures and PEEK with micron-scale surface roughness. Wettability and surface energy were determined through contact angle measurements; film roughness and crystallinity were determined by atomic force microscopy and X-ray diffraction, respectively. Adhesion properties of TiO2 on PEEK were determined with tensile strength tests. Cell tests were performed with the mouse mesenchymal tumor stem cell line ST-2. TiO2-coated PEEK disks were used as substrates for cell proliferation tests and long-term differentiation tests. After 28 days of cultivation, a mineralized bone matrix was observed. Furthermore, the collagen I and osteocalcin content were determined. The results reveal that the osteogenic properties of the TiO2 thin film are comparable to those of hydroxyapatite, and thus bioactive properties of PEEK implants are improved by TiO2 thin films deposited with PEALD.
Collapse
Affiliation(s)
- Felix Blendinger
- Institute for Microsystems Technology (iMST), Furtwangen University, Jakob-Kienzle-Str. 17, D-78054 Villingen-Schwenningen, Germany
- Institute for Applied Physics and Center LISA+, University of Tübingen, Auf der Morgenstelle 10, D-72076 Tübingen, Germany
| | - Daniel Seitz
- BioMed Center Innovation gGmbH, Ludwig-Thoma-Str. 36c, D-95447 Bayreuth, Germany
| | | | - Monika Fleischer
- Institute for Applied Physics and Center LISA+, University of Tübingen, Auf der Morgenstelle 10, D-72076 Tübingen, Germany
| | - Volker Bucher
- Institute for Microsystems Technology (iMST), Furtwangen University, Jakob-Kienzle-Str. 17, D-78054 Villingen-Schwenningen, Germany
| |
Collapse
|
30
|
Lünne F, Niehaus EM, Lipinski S, Kunigkeit J, Kalinina SA, Humpf HU. Identification of the polyketide synthase PKS7 responsible for the production of lecanoric acid and ethyl lecanorate in Claviceps purpurea. Fungal Genet Biol 2020; 145:103481. [DOI: 10.1016/j.fgb.2020.103481] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 10/14/2020] [Accepted: 10/23/2020] [Indexed: 12/25/2022]
|
31
|
Figueroa-Lopez KJ, Torres-Giner S, Angulo I, Pardo-Figuerez M, Escuin JM, Bourbon AI, Cabedo L, Nevo Y, Cerqueira MA, Lagaron JM. Development of Active Barrier Multilayer Films Based on Electrospun Antimicrobial Hot-Tack Food Waste Derived Poly(3-hydroxybutyrate- co-3-hydroxyvalerate) and Cellulose Nanocrystal Interlayers. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2356. [PMID: 33260904 PMCID: PMC7761208 DOI: 10.3390/nano10122356] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/20/2020] [Accepted: 11/24/2020] [Indexed: 11/21/2022]
Abstract
Active multilayer films based on polyhydroxyalkanoates (PHAs) with and without high barrier coatings of cellulose nanocrystals (CNCs) were herein successfully developed. To this end, an electrospun antimicrobial hot-tack layer made of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) derived from cheese whey, a by-product from the dairy industry, was deposited on a previously manufactured blown film of commercial food contact PHA-based resin. A hybrid combination of oregano essential oil (OEO) and zinc oxide nanoparticles (ZnONPs) were incorporated during the electrospinning process into the PHBV nanofibers at 2.5 and 2.25 wt%, respectively, in order to provide antimicrobial properties. A barrier CNC coating was also applied by casting from an aqueous solution of nanocellulose at 2 wt% using a rod at 1m/min. The whole multilayer structure was thereafter assembled in a pilot roll-to-roll laminating system, where the blown PHA-based film was located as the outer layers while the electrospun antimicrobial hot-tack PHBV layer and the barrier CNC coating were placed as interlayers. The resultant multilayer films, having a final thickness in the 130-150 µm range, were characterized to ascertain their potential in biodegradable food packaging. The multilayers showed contact transparency, interlayer adhesion, improved barrier to water and limonene vapors, and intermediate mechanical performance. Moreover, the films presented high antimicrobial and antioxidant activities in both open and closed systems for up to 15 days. Finally, the food safety of the multilayers was assessed by migration and cytotoxicity tests, demonstrating that the films are safe to use in both alcoholic and acid food simulants and they are also not cytotoxic for Caco-2 cells.
Collapse
Affiliation(s)
- Kelly J. Figueroa-Lopez
- Novel Materials and Nanotechnology Group, Institute of Agrochemistry and Food Technology (IATA), CSIC, Calle Catedrático Agustín Escardino Benllonch 7, 46980 Valencia, Spain; (K.J.F.-L.); (S.T.-G.); (M.P.-F.)
| | - Sergio Torres-Giner
- Novel Materials and Nanotechnology Group, Institute of Agrochemistry and Food Technology (IATA), CSIC, Calle Catedrático Agustín Escardino Benllonch 7, 46980 Valencia, Spain; (K.J.F.-L.); (S.T.-G.); (M.P.-F.)
| | - Inmaculada Angulo
- Gaiker Technological Centre, Department of Plastics and Composites, Parque Tecnológico Edificio 202, 48170 Zamudio, Spain;
| | - Maria Pardo-Figuerez
- Novel Materials and Nanotechnology Group, Institute of Agrochemistry and Food Technology (IATA), CSIC, Calle Catedrático Agustín Escardino Benllonch 7, 46980 Valencia, Spain; (K.J.F.-L.); (S.T.-G.); (M.P.-F.)
- Bioinicia R&D, Bioinicia S.L., Calle Algepser 65, Nave 3, 46980 Paterna, Valencia, Spain
| | - Jose Manuel Escuin
- Tecnopackaging S.L., Poligono Industrial Empresarium, Calle Romero 12, 50720 Zaragoza, Spain;
| | - Ana Isabel Bourbon
- Food Processing and Nutrition Group, International Iberian Nanotechnology Laboratory (INL), Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal; (A.I.B.); (M.A.C.)
| | - Luis Cabedo
- Polymers and Advanced Materials Group (PIMA), School of Technology and Experimental Sciences, Universitat Jaume I (UJI), Avenida de Vicent Sos Baynat s/n, 12071 Castellón, Spain;
| | - Yuval Nevo
- Melodea Bio-Based Solutions, Faculty of Agriculture-Hebrew University, Rehovot 76100, Israel;
| | - Miguel A. Cerqueira
- Food Processing and Nutrition Group, International Iberian Nanotechnology Laboratory (INL), Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal; (A.I.B.); (M.A.C.)
| | - Jose M. Lagaron
- Novel Materials and Nanotechnology Group, Institute of Agrochemistry and Food Technology (IATA), CSIC, Calle Catedrático Agustín Escardino Benllonch 7, 46980 Valencia, Spain; (K.J.F.-L.); (S.T.-G.); (M.P.-F.)
| |
Collapse
|
32
|
Layeghi-Ghalehsoukhteh S, Pal Choudhuri S, Ocal O, Zolghadri Y, Pashkov V, Niederstrasser H, Posner BA, Kantheti HS, Azevedo-Pouly AC, Huang H, Girard L, MacDonald RJ, Brekken RA, Wilkie TM. Concerted cell and in vivo screen for pancreatic ductal adenocarcinoma (PDA) chemotherapeutics. Sci Rep 2020; 10:20662. [PMID: 33244070 PMCID: PMC7693321 DOI: 10.1038/s41598-020-77373-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 10/23/2020] [Indexed: 12/22/2022] Open
Abstract
PDA is a major cause of US cancer-related deaths. Oncogenic Kras presents in 90% of human PDAs. Kras mutations occur early in pre-neoplastic lesions but are insufficient to cause PDA. Other contributing factors early in disease progression include chronic pancreatitis, alterations in epigenetic regulators, and tumor suppressor gene mutation. GPCRs activate heterotrimeric G-proteins that stimulate intracellular calcium and oncogenic Kras signaling, thereby promoting pancreatitis and progression to PDA. By contrast, Rgs proteins inhibit Gi/q-coupled GPCRs to negatively regulate PDA progression. Rgs16::GFP is expressed in response to caerulein-induced acinar cell dedifferentiation, early neoplasia, and throughout PDA progression. In genetically engineered mouse models of PDA, Rgs16::GFP is useful for pre-clinical rapid in vivo validation of novel chemotherapeutics targeting early lesions in patients following successful resection or at high risk for progressing to PDA. Cultured primary PDA cells express Rgs16::GFP in response to cytotoxic drugs. A histone deacetylase inhibitor, TSA, stimulated Rgs16::GFP expression in PDA primary cells, potentiated gemcitabine and JQ1 cytotoxicity in cell culture, and Gem + TSA + JQ1 inhibited tumor initiation and progression in vivo. Here we establish the use of Rgs16::GFP expression for testing drug combinations in cell culture and validation of best candidates in our rapid in vivo screen.
Collapse
Affiliation(s)
- Somayeh Layeghi-Ghalehsoukhteh
- Department of Pharmacology, UT Southwestern Medical Center, 6001 Forest Park Drive, Dallas, TX, 75390, USA
- Department of Basic Science, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Shreoshi Pal Choudhuri
- Department of Pharmacology, UT Southwestern Medical Center, 6001 Forest Park Drive, Dallas, TX, 75390, USA
| | - Ozhan Ocal
- Department of Pharmacology, UT Southwestern Medical Center, 6001 Forest Park Drive, Dallas, TX, 75390, USA
- Department of Molecular Biology and Genetics, Bilkent University, 06800, Ankara, Turkey
| | - Yalda Zolghadri
- Department of Pharmacology, UT Southwestern Medical Center, 6001 Forest Park Drive, Dallas, TX, 75390, USA
- Department of Basic Science, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Victor Pashkov
- Department of Pharmacology, UT Southwestern Medical Center, 6001 Forest Park Drive, Dallas, TX, 75390, USA
| | - Hanspeter Niederstrasser
- Department of Biochemistry, UT Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390, USA
| | - Bruce A Posner
- Department of Biochemistry, UT Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390, USA
| | - Havish S Kantheti
- Department of Pharmacology, UT Southwestern Medical Center, 6001 Forest Park Drive, Dallas, TX, 75390, USA
- Cancer Discovery (CanDisc) Group, UT Southwestern Medical Center, 6001 Forest Park Drive, Dallas, TX, 75390, USA
| | - Ana C Azevedo-Pouly
- Department of Surgery, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Huocong Huang
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Luc Girard
- Department of Pharmacology, UT Southwestern Medical Center, 6001 Forest Park Drive, Dallas, TX, 75390, USA
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Raymond J MacDonald
- Department of Molecular Biology, UT Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390, USA
| | - Rolf A Brekken
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Thomas M Wilkie
- Department of Pharmacology, UT Southwestern Medical Center, 6001 Forest Park Drive, Dallas, TX, 75390, USA.
| |
Collapse
|
33
|
Korff M, Imberg L, Will JM, Bückreiß N, Kalinina SA, Wenzel BM, Kastner GA, Daniliuc CG, Barth M, Ovsepyan RA, Butov KR, Humpf HU, Lehr M, Panteleev MA, Poso A, Karst U, Steinmetzer T, Bendas G, Kalinin DV. Acylated 1H-1,2,4-Triazol-5-amines Targeting Human Coagulation Factor XIIa and Thrombin: Conventional and Microscale Synthesis, Anticoagulant Properties, and Mechanism of Action. J Med Chem 2020; 63:13159-13186. [DOI: 10.1021/acs.jmedchem.0c01635] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Marvin Korff
- Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, Corrensstraße 48, 48149 Münster, Germany
| | - Lukas Imberg
- Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, Corrensstraße 48, 48149 Münster, Germany
| | - Jonas M. Will
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 30, 48149 Münster, Germany
| | - Nico Bückreiß
- Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Svetlana A. Kalinina
- Institute of Food Chemistry, University of Münster, Corrensstraße 45, 48149 Münster, Germany
| | - Benjamin M. Wenzel
- Department of Pharmacy, Institute of Pharmaceutical Chemistry, Philipps University Marburg, Marbacher Weg 6, 35032 Marburg, Germany
| | - Gregor A. Kastner
- Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, Corrensstraße 48, 48149 Münster, Germany
| | - Constantin G. Daniliuc
- Institute for Organic Chemistry, University of Münster, Corrensstraße 40, 48149 Münster, Germany
| | - Maximilian Barth
- Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, Corrensstraße 48, 48149 Münster, Germany
| | - Ruzanna A. Ovsepyan
- Laboratory of Translational Medicine, Dmitriy Rogachev National Medical Research Center of Pediatric Hematology, Oncology, and Immunology, Samory Mashela str. 1, GSP-7, 117997 Moscow, Russia
- Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences, 4 Kosygina St, 119991 Moscow, Russia
| | - Kirill R. Butov
- Laboratory of Translational Medicine, Dmitriy Rogachev National Medical Research Center of Pediatric Hematology, Oncology, and Immunology, Samory Mashela str. 1, GSP-7, 117997 Moscow, Russia
- Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences, 4 Kosygina St, 119991 Moscow, Russia
| | - Hans-Ulrich Humpf
- Institute of Food Chemistry, University of Münster, Corrensstraße 45, 48149 Münster, Germany
| | - Matthias Lehr
- Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, Corrensstraße 48, 48149 Münster, Germany
| | - Mikhail A. Panteleev
- Laboratory of Translational Medicine, Dmitriy Rogachev National Medical Research Center of Pediatric Hematology, Oncology, and Immunology, Samory Mashela str. 1, GSP-7, 117997 Moscow, Russia
- Faculty of Physics, Lomonosov Moscow State University, 1/2 Leninskie gory, 119991 Moscow, Russia
- Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences, 4 Kosygina St, 119991 Moscow, Russia
- Faculty of Biological and Medical Physics, Moscow Institute of Physics and Technology, 9 Institutskii per., 141700 Dolgoprudnyi, Russia
| | - Antti Poso
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70211 Kuopio, Finland
- Department of Internal Medicine VIII, University Hospital Tübingen, 72076 Tübingen, Germany
| | - Uwe Karst
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 30, 48149 Münster, Germany
| | - Torsten Steinmetzer
- Department of Pharmacy, Institute of Pharmaceutical Chemistry, Philipps University Marburg, Marbacher Weg 6, 35032 Marburg, Germany
| | - Gerd Bendas
- Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Dmitrii V. Kalinin
- Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, Corrensstraße 48, 48149 Münster, Germany
| |
Collapse
|
34
|
Marima R, Hull R, Dlamini Z, Penny C. Efavirenz and Lopinavir/Ritonavir Alter Cell Cycle Regulation in Lung Cancer. Front Oncol 2020; 10:1693. [PMID: 32984047 PMCID: PMC7484481 DOI: 10.3389/fonc.2020.01693] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 07/29/2020] [Indexed: 12/18/2022] Open
Abstract
Highly active anti-retroviral treatment (HAART) is currently the most effective treatment for HIV/AIDS. Additionally, HIV positive patients receiving HAART have a better health-related quality of life (HRQoL). Cancers previously associated with HIV/AIDS also known as the AIDS defining cancers (ADCs), such as Kaposi's sarcoma and non-Hodgkin's lymphoma have been on the decline since the introduction of HAART. However, non-AIDS defining cancers (NADCs), in particular, lung cancers have been documented to be on the rise. The association between the use of HAART components and lung carcinogenesis is poorly understood. This study aimed at elucidating the effects of two HAART components [efavirenz (EFV), and lopinavir/ritonavir (LPV/r)] on lung cancer. This was achieved through the use of in vitro cell biological approaches to assess cell health, including cell viability, Real Time Cell Analysis (RTCA) growth monitoring, evaluation of the cell cycle, and progression to apoptosis, following on drug treatments. At plasma level concentrations, both EFV and LPV/r induced S-phase arrest, while at lower concentrations both drugs promoted the progression of cells into G2/M phase following cell cycle FACS analysis. At higher concentrations although cell viability assays reflected anti-proliferative effects of the drugs, this was not statistically significant. RTCA showed a significant decline in cell viability in response to the highest dose of LPV/r. Dual staining by Annexin V-FITC and PI confirmed significant pro-apoptotic effects were promoted by LPV/r. Both EFV and LPV/r exert double-edged oncogenic effects on MRC-5 and A549 lung cells, acting to either promote cell proliferation or to enhance apoptosis. This is affected by EFV and LPV/r altering cell cycle progression, with a significant S-phase arrest, this being an indication of cellular stress, cytotoxicity, and DNA damage within the cell.
Collapse
Affiliation(s)
- Rahaba Marima
- SA-MRC/UP Precision Prevention and Novel Drug Targets for HIV-Associated Cancers Extramural Unit, Faculty of Health Sciences, Pan African Cancer Research Institute, University of Pretoria, Pretoria, South Africa.,Department of Internal Medicine, Faculty of Health Sciences, School of Clinical Medicine, University of the Witwatersrand, Parktown, South Africa
| | - Rodney Hull
- SA-MRC/UP Precision Prevention and Novel Drug Targets for HIV-Associated Cancers Extramural Unit, Faculty of Health Sciences, Pan African Cancer Research Institute, University of Pretoria, Pretoria, South Africa
| | - Zodwa Dlamini
- SA-MRC/UP Precision Prevention and Novel Drug Targets for HIV-Associated Cancers Extramural Unit, Faculty of Health Sciences, Pan African Cancer Research Institute, University of Pretoria, Pretoria, South Africa.,Department of Internal Medicine, Faculty of Health Sciences, School of Clinical Medicine, University of the Witwatersrand, Parktown, South Africa
| | - Clement Penny
- Department of Internal Medicine, Faculty of Health Sciences, School of Clinical Medicine, University of the Witwatersrand, Parktown, South Africa
| |
Collapse
|
35
|
Khan F, Ali H, Musharraf SG. Tenofovir disoproxil fumarate induces fetal hemoglobin production in K562 cells and β-YAC transgenic mice: A therapeutic approach for γ-globin induction. Exp Cell Res 2020; 394:112168. [PMID: 32653411 DOI: 10.1016/j.yexcr.2020.112168] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 07/05/2020] [Indexed: 02/07/2023]
Abstract
Pharmacologic induction of fetal hemoglobin (HbF) is an effective strategy for treating β-hemoglobinopathies like β-thalassemia and sickle cell anemia by ameliorating disease severity. Hydroxyurea is the only FDA-approved agent that induces HbF, but significant nonresponders and toxicity limit its clinical usefulness. This study relates preclinical investigation of Tenofovir disoproxil fumarate (TDF) as a potential HbF inducing agent, using human erythroleukemia cell line and a β-YAC mouse model. Erythroid induction of K562 cells was studied by the benzidine/H2O2 reaction, total hemoglobin production was estimated by plasma hemoglobin assay kit, and γ-globin gene expression by RT-qPCR, whereas, fetal hemoglobin production was estimated by flow cytometry and immunofluorescence microscopy. We observed significantly increased γ- globin gene transcription and HbF expression mediated by TDF in K562 cells. Subsequent treatment of β-YAC transgenic mice with TDF confirmed HbF induction in vivo through an increase in γ-globin gene expression and in the percentage of HbF positive red blood cells. Moreover, TDF showed no cytotoxic effect at HbF inducing concentrations. These data support the potential development of TDF for the treatment of hematological disorders, including β-thalassemia and sickle cell anemia.
Collapse
Affiliation(s)
- Faisal Khan
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Hamad Ali
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Syed Ghulam Musharraf
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan; H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan.
| |
Collapse
|
36
|
Elliott AG, Huang JX, Neve S, Zuegg J, Edwards IA, Cain AK, Boinett CJ, Barquist L, Lundberg CV, Steen J, Butler MS, Mobli M, Porter KM, Blaskovich MAT, Lociuro S, Strandh M, Cooper MA. An amphipathic peptide with antibiotic activity against multidrug-resistant Gram-negative bacteria. Nat Commun 2020; 11:3184. [PMID: 32576824 PMCID: PMC7311426 DOI: 10.1038/s41467-020-16950-x] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 06/03/2020] [Indexed: 11/09/2022] Open
Abstract
Peptide antibiotics are an abundant and synthetically tractable source of molecular diversity, but they are often cationic and can be cytotoxic, nephrotoxic and/or ototoxic, which has limited their clinical development. Here we report structure-guided optimization of an amphipathic peptide, arenicin-3, originally isolated from the marine lugworm Arenicola marina. The peptide induces bacterial membrane permeability and ATP release, with serial passaging resulting in a mutation in mlaC, a phospholipid transport gene. Structure-based design led to AA139, an antibiotic with broad-spectrum in vitro activity against multidrug-resistant and extensively drug-resistant bacteria, including ESBL, carbapenem- and colistin-resistant clinical isolates. The antibiotic induces a 3–4 log reduction in bacterial burden in mouse models of peritonitis, pneumonia and urinary tract infection. Cytotoxicity and haemolysis of the progenitor peptide is ameliorated with AA139, and the ‘no observable adverse effect level’ (NOAEL) dose in mice is ~10-fold greater than the dose generally required for efficacy in the infection models. Peptide antibiotics often display a very narrow therapeutic index. Here, the authors present an optimized peptide antibiotic with broad-spectrum in vitro activities, in vivo efficacy in multiple disease models against multidrug-resistant Gram-negative infections, and reduced toxicity.
Collapse
Affiliation(s)
- Alysha G Elliott
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, Queensland, QLD, 4072, Australia
| | - Johnny X Huang
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, Queensland, QLD, 4072, Australia.,School of Life Science and Technology, Weifang Medical University, Weifang, 261053, China
| | - Søren Neve
- Orphazyme, Ole Maaloesvej 3, 2200, Copenhagen, Denmark
| | - Johannes Zuegg
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, Queensland, QLD, 4072, Australia
| | - Ingrid A Edwards
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, Queensland, QLD, 4072, Australia
| | - Amy K Cain
- Wellcome Sanger Institute, Hinxton, UK.,Department of Molecular Sciences, Macquarie University, NSW, 2109, Australia
| | | | - Lars Barquist
- Helmholtz Institute for RNA-based Infection Research (HIRI), Würzburg, Germany.,Faculty of Medicine, University of Würzburg, Würzburg, Germany
| | | | - Jason Steen
- School of Chemistry and Molecular Biosciences, The University of Queensland, Queensland, Qld, Australia
| | - Mark S Butler
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, Queensland, QLD, 4072, Australia
| | - Mehdi Mobli
- Centre for Advanced Imaging, The University of Queensland, Queensland, Qld, Australia
| | - Kaela M Porter
- Adenium Biotech ApS, Ole Maaloesvej 3, 2200, Copenhagen, Denmark
| | - Mark A T Blaskovich
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, Queensland, QLD, 4072, Australia
| | - Sergio Lociuro
- BioVersys AG, Hochbergerstrasse 60C, Technology Park, 4057, Basel, Switzerland
| | - Magnus Strandh
- Adenium Biotech ApS, Ole Maaloesvej 3, 2200, Copenhagen, Denmark
| | - Matthew A Cooper
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, Queensland, QLD, 4072, Australia. .,Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
37
|
Xie SX, Song L, Yuca E, Boone K, Sarikaya R, VanOosten SK, Misra A, Ye Q, Spencer P, Tamerler C. Antimicrobial Peptide-Polymer Conjugates for Dentistry. ACS APPLIED POLYMER MATERIALS 2020; 2:1134-1144. [PMID: 33834166 PMCID: PMC8026165 DOI: 10.1021/acsapm.9b00921] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Bacterial adhesion and growth at the composite/adhesive/tooth interface remain the primary cause of dental composite restoration failure. Early colonizers, including Streptococcus mutans, play a critical role in the formation of dental caries by creating an environment that reduces the adhesive's integrity. Subsequently, other bacterial species, biofilm formation, and lactic acid from S. mutans demineralize the adjoining tooth. Because of their broad spectrum of antibacterial activity and low risk for antibiotic resistance, antimicrobial peptides (AMPs) have received significant attention to prevent bacterial biofilms. Harnessing the potential of AMPs is still very limited in dentistry-a few studies have explored peptide-enabled antimicrobial adhesive copolymer systems using mainly nonspecific adsorption. In the current investigation, to avoid limitations from nonspecific adsorption and to prevent potential peptide leakage out of the resin, we conjugated an AMP with a commonly used monomer for dental adhesive formulation. To tailor the flexibility between the peptide and the resin material, we designed two different spacer domains. The spacer-integrated antimicrobial peptides were conjugated to methacrylate (MA), and the resulting MA-AMP monomers were next copolymerized into dental adhesives as AMP-polymer conjugates. The resulting bioactivity of the polymethacrylate-based AMP conjugated matrix activity was investigated. The antimicrobial peptide conjugated to the resin matrix demonstrated significant antimicrobial activity against S. mutans. Secondary structure analyses of conjugated peptides were applied to understand the activity differential. When mechanical properties of the adhesive system were investigated with respect to AMP and cross-linking concentration, resulting AMP-polymer conjugates maintained higher compressive moduli compared to hydrogel analogues including polyHEMA. Overall, our result provides a robust approach to develop a fine-tuned bioenabled peptide adhesive system with improved mechanical properties and antimicrobial activity. The results of this study represent a critical step toward the development of peptide-conjugated dentin adhesives for treatment of secondary caries and the enhanced durability of dental composite restorations.
Collapse
Affiliation(s)
| | | | - Esra Yuca
- University of Kansas (KU), Lawrence, Kansas, and Yildiz Technical University, Istanbul, Turkey
| | - Kyle Boone
- University of Kansas (KU), Lawrence, Kansas
| | | | | | - Anil Misra
- University of Kansas (KU), Lawrence, Kansas
| | - Qiang Ye
- University of Kansas (KU), Lawrence, Kansas
| | | | | |
Collapse
|
38
|
Viegas C, Almeida B, Monteiro A, Paciência I, Rufo J, Aguiar L, Lage B, Diogo Gonçalves LM, Caetano LA, Carolino E, Gomes AQ, Twarużek M, Kosicki R, Grajewski J, Teixeira JP, Viegas S, Pereira C. Exposure assessment in one central hospital: A multi-approach protocol to achieve an accurate risk characterization. ENVIRONMENTAL RESEARCH 2020; 181:108947. [PMID: 31767353 DOI: 10.1016/j.envres.2019.108947] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 11/15/2019] [Accepted: 11/17/2019] [Indexed: 06/10/2023]
Abstract
The bioburden in a Hospital building originates not only from patients, visitors and staff, but is also disseminated by several indoor hospital characteristics and outdoor environmental sources. This study intends to assess the exposure to bioburden in one central Hospital with a multi-approach protocol using active and passive sampling methods. The microbial contamination was also characterized through molecular tools for toxigenic species, antifungal resistance and mycotoxins and endotoxins profile. Two cytotoxicity assays (MTT and resazurin) were conducted with two cell lines (Calu-3 and THP-1), and in vitro pro-inflammatory potential was assessed in THP-1 cell line. Out of the 15 sampling locations 33.3% did not comply with Portuguese legislation regarding bacterial contamination, whereas concerning fungal contamination 60% presented I/O > 1. Toxigenic fungal species were observed in 27% of the sampled rooms (4 out of 15) and qPCR analysis successfully amplified DNA from the Aspergillus sections Flavi and Fumigati, although mycotoxins were not detected. Growth of distinct fungal species was observed on Sabouraud dextrose agar with triazole drugs, such as Aspergillus section Versicolores on 1 mg/L VORI. The highest concentrations of endotoxins were found in settled dust samples and ranged from 5.72 to 23.0 EU.mg-1. While a considerable cytotoxic effect (cell viability < 30%) was observed in one HVAC filter sample with Calu-3 cell line, it was not observed with THP-1 cell line. In air samples a medium cytotoxic effect (61-68% cell viability) was observed in 3 out of 15 samples. The cytokine responses produced a more potent average cell response (46.8 ± 12.3 ρg/mL IL-1β; 90.8 ± 58.5 ρg/mL TNF-α) on passive samples than air samples (25.5 ± 5.2 ρg/mL IL-1β and of 19.4 ± 5.2 ρg/mL TNF-α). A multi-approach regarding parameters to assess, sampling and analysis methods should be followed to characterize the biorburden in the Hospital indoor environment. This study supports the importance of considering exposure to complex mixtures in indoor environments.
Collapse
Affiliation(s)
- Carla Viegas
- H&TRC- Health & Technology Research Center, ESTeSL- Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, Portugal; NOVA National School of Public Health, Public Health Research Centre, Universidade NOVA de Lisboa, Portugal; Comprehensive Health Research Center (CHRC), Portugal.
| | - Beatriz Almeida
- H&TRC- Health & Technology Research Center, ESTeSL- Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, Portugal
| | - Ana Monteiro
- H&TRC- Health & Technology Research Center, ESTeSL- Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, Portugal; Escola Nacional de Saúde Pública, Universidade NOVA de Lisboa, 1600-560, Lisbon, Portugal
| | - Inês Paciência
- Faculdade de Medicina da Universidade do Porto, Porto, Portugal & Centro Hospitalar São João, Porto, Portugal; EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal; Instituto de Ciência e Inovação em Engenharia Mecânica e Engenharia Industrial, Porto, Portugal
| | - João Rufo
- Faculdade de Medicina da Universidade do Porto, Porto, Portugal & Centro Hospitalar São João, Porto, Portugal; EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal
| | - Lívia Aguiar
- INSA - Instituto Nacional de Saúde Dr. Ricardo Jorge, Departamento de Saúde Ambiental, Porto, Portugal
| | - Bruna Lage
- INSA - Instituto Nacional de Saúde Dr. Ricardo Jorge, Departamento de Saúde Ambiental, Porto, Portugal
| | - Lídia Maria Diogo Gonçalves
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | - Liliana Aranha Caetano
- H&TRC- Health & Technology Research Center, ESTeSL- Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, Portugal; Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | - Elisabete Carolino
- H&TRC- Health & Technology Research Center, ESTeSL- Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, Portugal
| | - Anita Quintal Gomes
- H&TRC- Health & Technology Research Center, ESTeSL- Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, Portugal; University of Lisbon Institute of Molecular Medicine, Faculty of Medicine, Lisbon, Portugal
| | - Magdalena Twarużek
- Kazimierz Wielki University, Faculty of Natural Sciences, Institute of Experimental Biology, Department of Physiology and Toxicology, Chodkiewicza 30, 85-064, Bydgoszcz, Poland
| | - Robert Kosicki
- Kazimierz Wielki University, Faculty of Natural Sciences, Institute of Experimental Biology, Department of Physiology and Toxicology, Chodkiewicza 30, 85-064, Bydgoszcz, Poland
| | - Jan Grajewski
- Kazimierz Wielki University, Faculty of Natural Sciences, Institute of Experimental Biology, Department of Physiology and Toxicology, Chodkiewicza 30, 85-064, Bydgoszcz, Poland
| | - João Paulo Teixeira
- EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal; INSA - Instituto Nacional de Saúde Dr. Ricardo Jorge, Departamento de Saúde Ambiental, Porto, Portugal
| | - Susana Viegas
- H&TRC- Health & Technology Research Center, ESTeSL- Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, Portugal; NOVA National School of Public Health, Public Health Research Centre, Universidade NOVA de Lisboa, Portugal; Comprehensive Health Research Center (CHRC), Portugal
| | - Cristiana Pereira
- EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal; INSA - Instituto Nacional de Saúde Dr. Ricardo Jorge, Departamento de Saúde Ambiental, Porto, Portugal
| |
Collapse
|
39
|
Lu H, Shu Q, Lou H, Chen Q. Mitochondria-Mediated Programmed Cell Death in Saccharomyces cerevisiae Induced by Betulinic Acid Is Accelerated by the Deletion of PEP4 Gene. Microorganisms 2019; 7:microorganisms7110538. [PMID: 31703462 PMCID: PMC6920885 DOI: 10.3390/microorganisms7110538] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 10/27/2019] [Accepted: 11/05/2019] [Indexed: 11/22/2022] Open
Abstract
In this work, using Saccharomyces cerevisiae as a model, we showed that BetA could inhibit cell proliferation and lead to lethal cytotoxicity accompanying programmed cell death (PCD). Interestingly, it was found that vacuolar protease Pep4p played a pivotal role in BetA-induced S. cerevisiae PCD. The presence of Pep4p reduced the damage of BetA-induced cells. This work implied that BetA may induce cell death of S. cerevisiae through mitochondria-mediated PCD, and the deletion of Pep4 gene possibly accelerated the effect of PCD. The present investigation provided the preliminary research for the complicated mechanism of BetA-induced cell PCD regulated by vacular protease Pep4p and lay the foundation for understanding of the Pep4p protein in an animal model.
Collapse
Affiliation(s)
| | | | | | - Qihe Chen
- Correspondence: ; Tel.: +86-0571-8698-4316
| |
Collapse
|
40
|
Koutsoni OS, Karampetsou K, Dotsika E. In vitro Screening of Antileishmanial Activity of Natural Product Compounds: Determination of IC 50, CC 50 and SI Values. Bio Protoc 2019; 9:e3410. [PMID: 33654910 DOI: 10.21769/bioprotoc.3410] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 10/28/2019] [Accepted: 10/10/2019] [Indexed: 11/02/2022] Open
Abstract
Neglected tropical diseases gain the scientific interest of numerous research programs in an attempt to achieve their effective control or elimination. In this attempt, more cutting-edge public health policies and research are needed for the discovery of new, safer and effective drugs originated from natural products. Here, we describe protocols for the in vitro screening of a natural product-derived compound required for the determination of its antileishmanial potency. For this purpose, the Total Phenolic Fraction (TPF) derived from extra virgin olive oil is evaluated through the in vitro cell culture method against extracellular promastigote and intracellular amastigote Leishmania spp. forms. The aim of this article is to describe a step-by-step procedure that can be easily applied to accurately estimate the 50% inhibitory concentration (IC50), the 50% cytotoxic concentration (CC50) and the selectivity index (SI) via the resazurin reduction assay. These protocols are based on the ability of resazurin (oxidized blue form) to be irreversibly reduced by enzymes in viable cells and generate a red fluorescent resorufin product and can be easily expanded to the investigation of the antimicrobial activity in other microorganisms.
Collapse
Affiliation(s)
- Olga S Koutsoni
- Laboratory of Cellular Immunology & National Reference Laboratory for Leishmaniasis, Department of Microbiology, Hellenic Pasteur Institute, 127 Vass. Sofias av., 11521 Athens, Greece
| | - Kalliopi Karampetsou
- Laboratory of Cellular Immunology & National Reference Laboratory for Leishmaniasis, Department of Microbiology, Hellenic Pasteur Institute, 127 Vass. Sofias av., 11521 Athens, Greece.,Division of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Eleni Dotsika
- Laboratory of Cellular Immunology & National Reference Laboratory for Leishmaniasis, Department of Microbiology, Hellenic Pasteur Institute, 127 Vass. Sofias av., 11521 Athens, Greece
| |
Collapse
|
41
|
Ferino A, Rapozzi V, Xodo LE. The ROS-KRAS-Nrf2 axis in the control of the redox homeostasis and the intersection with survival-apoptosis pathways: Implications for photodynamic therapy. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2019; 202:111672. [PMID: 31778952 DOI: 10.1016/j.jphotobiol.2019.111672] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 09/05/2019] [Accepted: 10/24/2019] [Indexed: 12/13/2022]
Abstract
In highly proliferating cancer cells oncogenic mutations reprogram the metabolism and increase the production of reactive oxygen species (ROS). Cancer cells prevent ROS accumulation by upregulating antioxidant systems. Here we show that an increase of oxidative stress (ROS and singlet oxygen), generated by photoactivated TMPyP4, results in the upregulation of KRAS and Nrf2, the major regulator of the redox homeostasis. In agreement with a previous observation, the ectopic expression of KRAS G12D or G12 V is found to stimulate Nrf2. This suggests that ROS, KRAS and Nrf2 establish a molecular axis controlling the redox homeostasis in cancer cells. We found that this axis also modulates the function of the NF-kB/Snail/RKIP circuitry, regulating the survival and apoptosis pathways. Our data show that low ROS levels, obtained when Nrf2 is activated by KRAS, results in the upregulation of prosurvival Snail and simultaneous downregulation of proapoptotic RKIP: an expression pattern favouring cell proliferation. By contrast, high ROS levels, obtained when Nrf2 is inhibited by a small molecule (luteolin), favour apoptosis by upregulating proapoptotic RKIP and downregulating prosurvival Snail. The results of this study are useful to design efficient photodynamic therapy (PDT) against cancer. We hypothesize that cancer cells can be sensitized to PDT when the photosensitizer is used in the presence of an inhibitor of Nrf2 (adjuvant). To test this hypothesis, we used luteolin (3',4',5,7-tetrahydroflavone) as Nrf2 inhibitor, since it reduces the expression of Nrf2 and increases intracellular ROS. By means of colony formation and viability assays we found that when Nrf2 is inhibited, PDT shows an increase of efficiency up to 45%.
Collapse
Affiliation(s)
- Annalisa Ferino
- Department of Medicine, Laboratory of Biochemistry, University of Udine, P.le Kolbe 4, 33100 Udine, Italy
| | - Valentina Rapozzi
- Department of Medicine, Laboratory of Biochemistry, University of Udine, P.le Kolbe 4, 33100 Udine, Italy
| | - Luigi E Xodo
- Department of Medicine, Laboratory of Biochemistry, University of Udine, P.le Kolbe 4, 33100 Udine, Italy.
| |
Collapse
|
42
|
Malakpour Permlid A, Roci P, Fredlund E, Fält F, Önell E, Johansson F, Oredsson S. Unique animal friendly 3D culturing of human cancer and normal cells. Toxicol In Vitro 2019; 60:51-60. [DOI: 10.1016/j.tiv.2019.04.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 04/18/2019] [Accepted: 04/18/2019] [Indexed: 10/26/2022]
|
43
|
Rodrigues ET, Varela AT, Pardal MA, Oliveira PJ. Cell-based assays seem not to accurately predict fish short-term toxicity of pesticides. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 252:476-482. [PMID: 31158675 DOI: 10.1016/j.envpol.2019.05.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 05/03/2019] [Accepted: 05/07/2019] [Indexed: 05/13/2023]
Abstract
A key action of current aquatic environmental sciences is the determination of concentration-response assessments to quantitatively measure the risk of pollutants, and fish lethal tests are still a regulatory requirement for assessing the environmental risk of both new and existing substances in the aquatic compartment. However, animal health and welfare aspects, as well as the time and resources required to support fish lethal testing, stimulate research for alternative in vitro methods, and cell-based assays are considered as one such alternative. The first goal of the present study was to compile existing fish short-term toxicity and cell toxicity data of pesticides through a scientific literature search, and relate in vivo and in vitro results to identify sensitive cell models, mammalian-, fish- or arthropod-derived. Discovering cell models which are sensitive is of great importance, since the risk of false negatives, believed to be the main limitation of cell-based assays as an alternative to fish tests, may decrease. As to the second goal, this study also determined and compared cell toxicity results for 12 pesticides using rat cardiomyoblast H9c2(2-1) cells with the corresponding fish LC50,96h (50% lethal concentration at 96 h of exposure) values collected in literature. On the whole, the in vivo/in vitro ratio was obtained for 50 pesticides belonging to 23 groups, and presented only 27% of positive results, thus confirming the low sensitivity of cell-based assays in relation to fish lethal data for pesticides. In general, cell-based assays still do not seem to be an alternative to the regulatory short-term fish assay for pesticides, making further studies necessary.
Collapse
Affiliation(s)
- Elsa T Rodrigues
- CFE - Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal.
| | - Ana T Varela
- CFE - Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal.
| | - Miguel A Pardal
- CFE - Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal.
| | - Paulo J Oliveira
- CNC - Centre for Neuroscience and Cell Biology, University of Coimbra, UC-Biotech, Lot 8A, Biocant Park, 3060-197, Cantanhede, Portugal.
| |
Collapse
|
44
|
Li X, Payne DT, Ampolu B, Bland N, Brown JT, Dutton MJ, Fitton CA, Gulliver A, Hale L, Hamza D, Jones G, Lane R, Leach AG, Male L, Merisor EG, Morton MJ, Quy AS, Roberts R, Scarll R, Schulz-Utermoehl T, Stankovic T, Stevenson B, Fossey JS, Agathanggelou A. Derivatisation of parthenolide to address chemoresistant chronic lymphocytic leukaemia. MEDCHEMCOMM 2019; 10:1379-1390. [PMID: 32952998 PMCID: PMC7478165 DOI: 10.1039/c9md00297a] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 07/03/2019] [Indexed: 12/13/2022]
Abstract
Parthenolide is a natural product that exhibits anti-leukaemic activity, however, its clinical use is limited by its poor bioavailability. It may be extracted from feverfew and protocols for growing, extracting and derivatising it are reported. A novel parthenolide derivative with good bioavailability and pharmacological properties was identified through a screening cascade based on in vitro anti-leukaemic activity and calculated "drug-likeness" properties, in vitro and in vivo pharmacokinetics studies and hERG liability testing. In vitro studies showed the most promising derivative to have comparable anti-leukaemic activity to DMAPT, a previously described parthenolide derivative. The newly identified compound was shown to have pro-oxidant activity and in silico molecular docking studies indicate a prodrug mode of action. A synthesis scheme is presented for the production of amine 7 used in the generation of 5f.
Collapse
Affiliation(s)
- Xingjian Li
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, West Midlands B15 2TT, UK.
| | - Daniel T Payne
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, West Midlands B15 2TT, UK.
| | - Badarinath Ampolu
- Sygnature Discovery, The Discovery Building, BioCity, Pennyfoot Street, Nottingham, NG1 1GR, UK
| | - Nicholas Bland
- Sygnature Discovery, The Discovery Building, BioCity, Pennyfoot Street, Nottingham, NG1 1GR, UK
| | - Jane T Brown
- Sygnature Discovery, The Discovery Building, BioCity, Pennyfoot Street, Nottingham, NG1 1GR, UK
| | - Mark J Dutton
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, West Midlands B15 2TT, UK.
| | - Catherine A Fitton
- Institute for Cancer and Genomic Sciences, University of Birmingham, Edgbaston, Birmingham, West Midlands B15 2TT, UK.
| | - Abigail Gulliver
- Winterbourne Botanic Garden, University of Birmingham, 58 Edgbaston Park Road, Edgbaston, Birmingham, West Midlands B15 2RT, UK
| | - Lee Hale
- Winterbourne Botanic Garden, University of Birmingham, 58 Edgbaston Park Road, Edgbaston, Birmingham, West Midlands B15 2RT, UK
| | - Daniel Hamza
- Sygnature Discovery, The Discovery Building, BioCity, Pennyfoot Street, Nottingham, NG1 1GR, UK
| | - Geraint Jones
- Sygnature Discovery, The Discovery Building, BioCity, Pennyfoot Street, Nottingham, NG1 1GR, UK
| | - Rebecca Lane
- Sygnature Discovery, The Discovery Building, BioCity, Pennyfoot Street, Nottingham, NG1 1GR, UK
| | - Andrew G Leach
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, UK
| | - Louise Male
- X-Ray Crystallography Facility, School of Chemistry, University of Birmingham, Edgbaston, Birmingham, West Midlands B15 2TT, UK
| | - Elena G Merisor
- Sygnature Discovery, The Discovery Building, BioCity, Pennyfoot Street, Nottingham, NG1 1GR, UK
| | - Michael J Morton
- ApconiX Ltd, Alderly Park, Nether Alderly, Cheshire, SK10 4TG, UK
| | - Alex S Quy
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, West Midlands B15 2TT, UK.
| | - Ruth Roberts
- ApconiX Ltd, Alderly Park, Nether Alderly, Cheshire, SK10 4TG, UK
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, West Midlands B15 2TT, UK
| | - Rosanna Scarll
- Institute for Cancer and Genomic Sciences, University of Birmingham, Edgbaston, Birmingham, West Midlands B15 2TT, UK.
| | | | - Tatjana Stankovic
- Institute for Cancer and Genomic Sciences, University of Birmingham, Edgbaston, Birmingham, West Midlands B15 2TT, UK.
| | - Brett Stevenson
- Sygnature Discovery, The Discovery Building, BioCity, Pennyfoot Street, Nottingham, NG1 1GR, UK
| | - John S Fossey
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, West Midlands B15 2TT, UK.
| | - Angelo Agathanggelou
- Institute for Cancer and Genomic Sciences, University of Birmingham, Edgbaston, Birmingham, West Midlands B15 2TT, UK.
| |
Collapse
|
45
|
Magarò G, Prati F, Garofalo B, Corso G, Furlotti G, Apicella C, Mangano G, D'Atanasio N, Robinson D, Di Giorgio FP, Ombrato R. Virtual Screening Approach and Investigation of Structure-Activity Relationships To Discover Novel Bacterial Topoisomerase Inhibitors Targeting Gram-Positive and Gram-Negative Pathogens. J Med Chem 2019; 62:7445-7472. [PMID: 31276392 DOI: 10.1021/acs.jmedchem.9b00394] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Bacterial resistance is increasing rapidly, requiring urgent identification of new antibacterial drugs that are effective against multidrug-resistant pathogens. Novel bacterial topoisomerase inhibitors (NBTIs) provide a new strategy for investigating the well-validated DNA gyrase and topoisomerase IV targets while preventing cross-resistance issues. On this basis, starting from a virtual screening campaign and subsequent structure-based hit optimization guided by X-ray studies, a novel class of piperazine-like NBTIs with outstanding enzymatic activity against Staphylococcus aureus and Escherichia coli DNA gyrase and topoisomerase IV was identified. Notably, compounds (±)-33, (±)-35, and (±)-36 with potent and balanced multitarget enzymatic profiles exhibited excellent efficacy against selected Gram-positive and Gram-negative pathogens, as well as clinically relevant resistant strains. Overall, the new NBTI chemotype described herein, owing to the broad-spectrum antibacterial activity and favorable in vitro safety profile, might serve as a basis for the development of novel treatments against serious infections.
Collapse
Affiliation(s)
- Gabriele Magarò
- Angelini RR&D (Research, Regulatory & Development) , Angelini S.p.A. , Piazzale della Stazione SNC, S. Palomba-Pomezia , Rome 00071 , Italy
| | - Federica Prati
- Angelini RR&D (Research, Regulatory & Development) , Angelini S.p.A. , Piazzale della Stazione SNC, S. Palomba-Pomezia , Rome 00071 , Italy
| | - Barbara Garofalo
- Angelini RR&D (Research, Regulatory & Development) , Angelini S.p.A. , Piazzale della Stazione SNC, S. Palomba-Pomezia , Rome 00071 , Italy
| | - Gaia Corso
- Angelini RR&D (Research, Regulatory & Development) , Angelini S.p.A. , Piazzale della Stazione SNC, S. Palomba-Pomezia , Rome 00071 , Italy
| | - Guido Furlotti
- Angelini RR&D (Research, Regulatory & Development) , Angelini S.p.A. , Piazzale della Stazione SNC, S. Palomba-Pomezia , Rome 00071 , Italy
| | - Claudia Apicella
- Angelini RR&D (Research, Regulatory & Development) , Angelini S.p.A. , Piazzale della Stazione SNC, S. Palomba-Pomezia , Rome 00071 , Italy
| | - Giorgina Mangano
- Angelini RR&D (Research, Regulatory & Development) , Angelini S.p.A. , Piazzale della Stazione SNC, S. Palomba-Pomezia , Rome 00071 , Italy
| | - Noemi D'Atanasio
- Angelini RR&D (Research, Regulatory & Development) , Angelini S.p.A. , Piazzale della Stazione SNC, S. Palomba-Pomezia , Rome 00071 , Italy
| | - Daniel Robinson
- Schrodinger , 120 West 45th Street , New York , New York 10036 , United States
| | - Francesco Paolo Di Giorgio
- Angelini RR&D (Research, Regulatory & Development) , Angelini S.p.A. , Piazzale della Stazione SNC, S. Palomba-Pomezia , Rome 00071 , Italy
| | - Rosella Ombrato
- Angelini RR&D (Research, Regulatory & Development) , Angelini S.p.A. , Piazzale della Stazione SNC, S. Palomba-Pomezia , Rome 00071 , Italy
| |
Collapse
|
46
|
Silva AM, Alvarado HL, Abrego G, Martins-Gomes C, Garduño-Ramirez ML, García ML, Calpena AC, Souto EB. In Vitro Cytotoxicity of Oleanolic/Ursolic Acids-Loaded in PLGA Nanoparticles in Different Cell Lines. Pharmaceutics 2019; 11:pharmaceutics11080362. [PMID: 31344882 PMCID: PMC6723971 DOI: 10.3390/pharmaceutics11080362] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 07/19/2019] [Accepted: 07/22/2019] [Indexed: 12/20/2022] Open
Abstract
Oleanolic (OA) and ursolic (UA) acids are recognized triterpenoids with anti-cancer properties, showing cell-specific activity that can be enhanced when loaded into polymeric nanoparticles. The cytotoxic activity of OA and UA was assessed by Alamar Blue assay in three different cell lines, i.e., HepG2 (Human hepatoma cell line), Caco-2 (Human epithelial colorectal adenocarcinoma cell line) and Y-79 (Human retinoblastoma cell line). The natural and synthetic mixtures of these compounds were tested as free and loaded in polymeric nanoparticles in a concentration range from 2 to 32 µmol/L. The highest tested concentrations of the free triterpene mixtures produced statistically significant cell viability reduction in HepG2 and Caco-2 cells, compared to the control (untreated cells). When loaded in the developed PLGA nanoparticles, no differences were recorded for the tested concentrations in the same cell lines. However, in the Y-79 cell line, a decrease on cell viability was observed when testing the lowest concentration of both free triterpene mixtures, and after their loading into PLGA nanoparticles.
Collapse
Affiliation(s)
- Amélia M Silva
- Centre for Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os Montes e Alto Douro (UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal.
- Department of Biology and Environment, UTAD, Quinta de Prados, 5001-801 Vila Real, Portugal.
| | - Helen L Alvarado
- Department of Biology and Environment, UTAD, Quinta de Prados, 5001-801 Vila Real, Portugal
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, Ave. Joan XXIII s/n, 08028 Barcelona, Spain
| | - Guadalupe Abrego
- Department of Biology and Environment, UTAD, Quinta de Prados, 5001-801 Vila Real, Portugal
- Department of Chemical and Instrumental Analysis, Faculty of Chemistry and Pharmacy, University of El Salvador, Final 25 Ave. Norte, 3026 San Salvador, El Salvador
| | - Carlos Martins-Gomes
- Centre for Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os Montes e Alto Douro (UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal
- Department of Biology and Environment, UTAD, Quinta de Prados, 5001-801 Vila Real, Portugal
| | - Maria L Garduño-Ramirez
- Centro de Investigaciones Químicas, Universidad Autónoma del Estado de Morelos, Av. Universidad No. 1001, Col Chamilpa, 62209 Cuernavaca, Mexico
| | - María L García
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, Ave. Joan XXIII s/n, 08028 Barcelona, Spain
| | - Ana C Calpena
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, Ave. Joan XXIII s/n, 08028 Barcelona, Spain
| | - Eliana B Souto
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra (FFUC), Pólo das Ciências da Saúde, 3000-548 Coimbra, Portugal.
- CEB-Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| |
Collapse
|
47
|
Streichert K, Seitz C, Hoffmann E, Boos I, Jelkmann W, Brunner T, Unverzagt C, Rubini M. Synthesis of Erythropoietins Site-Specifically Conjugated with Complex-Type N-Glycans. Chembiochem 2019; 20:1914-1918. [PMID: 30973186 DOI: 10.1002/cbic.201900023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 04/05/2019] [Indexed: 12/14/2022]
Abstract
The biological activity of the glycoprotein hormone erythropoietin (EPO) is dependent mainly on the structure of its N-linked glycans. We aimed to readily attach defined N-glycans to EPO through copper-catalyzed azide alkyne cycloaddition. EPO variants with an alkyne-bearing non-natural amino acid (Plk) at the N-glycosylation sites 24, 38, and 83 were obtained by amber suppression followed by protein purification and refolding. Click conjugation of the alkynyl EPOs with biantennary N-glycan azides provided biologically active site-specifically modified EPO glycoconjugates.
Collapse
Affiliation(s)
- Katharina Streichert
- Department of Organic Chemistry, University of Konstanz, Universitätsstrasse 10, 78464, Konstanz, Germany
| | - Carina Seitz
- Department of Biochemical Pharmacology, University of Konstanz, Universitätsstrasse 10, 78464, Konstanz, Germany
| | - Eugenia Hoffmann
- Department of Organic Chemistry, University of Konstanz, Universitätsstrasse 10, 78464, Konstanz, Germany
| | - Irene Boos
- Department of Bioorganic Chemistry, University of Bayreuth, Universitätsstrasse 30, 95440, Bayreuth, Germany
| | - Wolfgang Jelkmann
- Department of Physiology, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - Thomas Brunner
- Department of Biochemical Pharmacology, University of Konstanz, Universitätsstrasse 10, 78464, Konstanz, Germany
| | - Carlo Unverzagt
- Department of Bioorganic Chemistry, University of Bayreuth, Universitätsstrasse 30, 95440, Bayreuth, Germany
| | - Marina Rubini
- Department of Organic Chemistry, University of Konstanz, Universitätsstrasse 10, 78464, Konstanz, Germany.,Department of Chemistry, University College Dublin, Stillorgan Road, Belfield, Dublin, 4, Ireland
| |
Collapse
|
48
|
de la Fuente-Herreruela D, Monnappa AK, Muñoz-Úbeda M, Morallón-Piña A, Enciso E, Sánchez L, Giusti F, Natale P, López-Montero I. Lipid-peptide bioconjugation through pyridyl disulfide reaction chemistry and its application in cell targeting and drug delivery. J Nanobiotechnology 2019; 17:77. [PMID: 31226993 PMCID: PMC6587267 DOI: 10.1186/s12951-019-0509-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 06/10/2019] [Indexed: 12/03/2022] Open
Abstract
Background The design of efficient drug delivery vectors requires versatile formulations able to simultaneously direct a multitude of molecular targets and to bypass the endosomal recycling pathway of cells. Liposomal-based vectors need the decoration of the lipid surface with specific peptides to fulfill the functional requirements. The unspecific binding of peptides to the lipid surface is often accompanied with uncontrolled formulations and thus preventing the molecular mechanisms of a successful therapy. Results We present a simple synthesis pathway to anchor cysteine-terminal peptides to thiol-reactive lipids for adequate and quantitative liposomal formulations. As a proof of concept, we have synthesized two different lipopeptides based on (a) the truncated Fibroblast Growth Factor (tbFGF) for cell targeting and (b) the pH sensitive and fusogenic GALA peptide for endosomal scape. Conclusions The incorporation of these two lipopeptides in the liposomal formulation improves the fibroblast cell targeting and promotes the direct delivery of cargo molecules to the cytoplasm of the cell. Electronic supplementary material The online version of this article (10.1186/s12951-019-0509-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Diego de la Fuente-Herreruela
- Dto. Química Física, Universidad Complutense de Madrid, Avenida Complutense s/n, 28040, Madrid, Spain.,Instituto de Investigación Hospital Doce de Octubre (i+12), Avenida de Córdoba s/n, 28041, Madrid, Spain
| | - Ajay K Monnappa
- Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 689-798, Republic of Korea
| | - Mónica Muñoz-Úbeda
- Instituto de Investigación Hospital Doce de Octubre (i+12), Avenida de Córdoba s/n, 28041, Madrid, Spain
| | - Aarón Morallón-Piña
- Dto. Química Física, Universidad Complutense de Madrid, Avenida Complutense s/n, 28040, Madrid, Spain
| | - Eduardo Enciso
- Dto. Química Física, Universidad Complutense de Madrid, Avenida Complutense s/n, 28040, Madrid, Spain
| | - Luis Sánchez
- Dto. Química Orgánica, Universidad Complutense de Madrid, Avenida Complutense s/n, 28040, Madrid, Spain
| | - Fabrice Giusti
- Institut de Chimie Séparative de Marcoule, ICSM, UMR 5257, Site de Marcoule-Bât, 426 BP 17 171, 30207, Bagnols sur Ceze, France
| | - Paolo Natale
- Dto. Química Física, Universidad Complutense de Madrid, Avenida Complutense s/n, 28040, Madrid, Spain.,Instituto de Investigación Hospital Doce de Octubre (i+12), Avenida de Córdoba s/n, 28041, Madrid, Spain
| | - Iván López-Montero
- Dto. Química Física, Universidad Complutense de Madrid, Avenida Complutense s/n, 28040, Madrid, Spain. .,Instituto de Investigación Hospital Doce de Octubre (i+12), Avenida de Córdoba s/n, 28041, Madrid, Spain.
| |
Collapse
|
49
|
Ali H, Iftikhar F, Shafi S, Siddiqui H, Khan IA, Choudhary MI, Musharraf SG. Thiourea derivatives induce fetal hemoglobin production in-vitro: A new class of potential therapeutic agents for β-thalassemia. Eur J Pharmacol 2019; 855:285-293. [PMID: 31100414 DOI: 10.1016/j.ejphar.2019.05.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 05/10/2019] [Accepted: 05/13/2019] [Indexed: 12/23/2022]
Abstract
Fetal hemoglobin (HbF) induction is a cost-effective therapeutic approach for the treatment of β-hemoglobinopathies like β-thalassemia and sickle cell anemia. The present study discusses the potential of thiourea derivatives as new class of compounds that induce the fetal hemoglobin production. HbF inducing effect of thiourea derivatives was studied using experimental cell system, the human erythroleukemic K562 cell line. Erythroid induction of K562 cells was studied by the benzidine/H2O2 reaction, total hemoglobin production was estimated by plasma hemoglobin assay kit, and γ-globin gene expression by RT-qPCR, whereas fetal hemoglobin production was estimated by flow cytometry and immunofluorescence microscopy. The results indicated that newly synthesized thiourea derivative are potent inducers of erythroid differentiation of K562 cells with an increased γ-globin gene expression and fetal hemoglobin production. Moreover, these compounds showed no cytotoxic effect and inhibition on K562 cells at HbF inducing concentrations. It is important to note that hydroxyurea is a cytotoxic chemotherapeutic agent and have deleterious side effects, reflecting the need to identify new safe and effective HbF induces. These results signify thiourea derivatives as promising HbF inducers, with the potential to be studied against hematological disorders, including β-thalassemia and sickle cell anemia.
Collapse
Affiliation(s)
- Hamad Ali
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Fizza Iftikhar
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Sarah Shafi
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Hina Siddiqui
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Ishtiaq Ahmad Khan
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - M Iqbal Choudhary
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan; H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan; Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21452, Saudi Arabia
| | - Syed Ghulam Musharraf
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan; H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan.
| |
Collapse
|
50
|
Lebraud H, Surova O, Courtin A, O'Reilly M, Valenzano CR, Nordlund P, Heightman TD. Quantitation of ERK1/2 inhibitor cellular target occupancies with a reversible slow off-rate probe. Chem Sci 2018; 9:8608-8618. [PMID: 30568786 PMCID: PMC6253716 DOI: 10.1039/c8sc02754d] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 09/15/2018] [Indexed: 11/21/2022] Open
Abstract
Target engagement is a key concept in drug discovery and its direct measurement can provide a quantitative understanding of drug efficacy and/or toxicity. Failure to demonstrate target occupancy in relevant cells and tissues has been recognised as a contributing factor to the low success rate of clinical drug development. Several techniques are emerging to quantify target engagement in cells; however, in situ measurements remain challenging, mainly due to technical limitations. Here, we report the development of a non-covalent clickable probe, based on SCH772984, a slow off-rate ERK1/2 inhibitor, which enabled efficient pull down of ERK1/2 protein via click reaction with tetrazine tagged agarose beads. This was used in a competition setting to measure relative target occupancy by selected ERK1/2 inhibitors. As a reference we used the cellular thermal shift assay, a label-free biophysical assay relying solely on ligand-induced thermodynamic stabilization of proteins. To validate the EC50 values measured by both methods, the results were compared with IC50 data for the phosphorylation of RSK, a downstream substrate of ERK1/2 used as a functional biomarker of ERK1/2 inhibition. We showed that a slow off-rate reversible probe can be used to efficiently pull down cellular proteins, significantly extending the potential of the approach beyond the need for covalent or photoaffinity warheads.
Collapse
Affiliation(s)
- Honorine Lebraud
- Astex Pharmaceuticals , 436 Cambridge Science Park , Cambridge , CB4 0QA , UK . ;
| | - Olga Surova
- Astex Pharmaceuticals , 436 Cambridge Science Park , Cambridge , CB4 0QA , UK . ;
- Department of Oncology-Pathology , Karolinska Institute , CCK R8:01 , Karolinska Hospital , 171 76 Stockholm , Sweden
| | - Aurélie Courtin
- Astex Pharmaceuticals , 436 Cambridge Science Park , Cambridge , CB4 0QA , UK . ;
| | - Marc O'Reilly
- Astex Pharmaceuticals , 436 Cambridge Science Park , Cambridge , CB4 0QA , UK . ;
| | - Chiara R Valenzano
- Astex Pharmaceuticals , 436 Cambridge Science Park , Cambridge , CB4 0QA , UK . ;
| | - Pär Nordlund
- Department of Oncology-Pathology , Karolinska Institute , CCK R8:01 , Karolinska Hospital , 171 76 Stockholm , Sweden
| | - Tom D Heightman
- Astex Pharmaceuticals , 436 Cambridge Science Park , Cambridge , CB4 0QA , UK . ;
| |
Collapse
|