1
|
Kang SH, Ham HY, Hong CW, Song DK. Glycine induces enhancement of bactericidal activity of neutrophils. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY 2022; 26:229-238. [PMID: 35766001 PMCID: PMC9247710 DOI: 10.4196/kjpp.2022.26.4.229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 03/30/2022] [Accepted: 04/13/2022] [Indexed: 11/21/2022]
Abstract
Severe bacterial infections are frequently accompanied by depressed neutrophil functions. Thus, agents that increase the microbicidal activity of neutrophils could add to a direct antimicrobial therapy. Lysophosphatidylcholine augments neutrophil bactericidal activity via the glycine (Gly)/glycine receptor (GlyR) α2/TRPM2/p38 mitogen-activated protein kinase (MAPK) pathway. However, the direct effect of glycine on neutrophil bactericidal activity was not reported. In this study, the effect of glycine on neutrophil bactericidal activity was examined. Glycine augmented bactericidal activity of human neutrophils (EC50 = 238 μM) in a strychnine (a GlyR antagonist)-sensitive manner. Glycine augmented bacterial clearance in mice, which was also blocked by strychnine (0.4 mg/kg, s.c.). Glycine enhanced NADPH oxidase-mediated reactive oxygen species (ROS) production and TRPM2-mediated [Ca2+]i increase in neutrophils that had taken up E. coli. Glycine augmented Lucifer yellow uptake (fluid-phase pinocytosis) and azurophil granule-phagosome fusion in neutrophils that had taken up E. coli in an SB203580 (a p38 MAPK inhibitor)-sensitive manner. These findings indicate that glycine augments neutrophil microbicidal activity by enhancing azurophil granule-phagosome fusion via the GlyRα2/ROS/calcium/p38 MAPK pathway. We suggest that glycine could be a useful agent for increasing neutrophil bacterial clearance.
Collapse
Affiliation(s)
- Shin-Hae Kang
- Department of Pharmacology, College of Medicine, Hallym University, Chuncheon 24252, Korea
| | - Hwa-Yong Ham
- Department of Pharmacology, College of Medicine, Hallym University, Chuncheon 24252, Korea
| | - Chang-Won Hong
- Department of Physiology, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| | - Dong-Keun Song
- Department of Pharmacology, College of Medicine, Hallym University, Chuncheon 24252, Korea
| |
Collapse
|
2
|
Paré G, Vitry J, Merchant ML, Vaillancourt M, Murru A, Shen Y, Elowe S, Lahoud MH, Naccache PH, McLeish KR, Fernandes MJ. The Inhibitory Receptor CLEC12A Regulates PI3K-Akt Signaling to Inhibit Neutrophil Activation and Cytokine Release. Front Immunol 2021; 12:650808. [PMID: 34234773 PMCID: PMC8256872 DOI: 10.3389/fimmu.2021.650808] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 05/21/2021] [Indexed: 12/25/2022] Open
Abstract
The myeloid inhibitory C-type lectin receptor CLEC12A limits neutrophil activation, pro-inflammatory pathways and disease in mouse models of inflammatory arthritis by a molecular mechanism that remains poorly understood. We addressed how CLEC12A-mediated inhibitory signaling counteracts activating signaling by cross-linking CLEC12A in human neutrophils. CLEC12A cross-linking induced its translocation to flotillin-rich membrane domains where its ITIM was phosphorylated in a Src-dependent manner. Phosphoproteomic analysis identified candidate signaling molecules regulated by CLEC12A that include MAPKs, phosphoinositol kinases and members of the JAK-STAT pathway. Stimulating neutrophils with uric acid crystals, the etiological agent of gout, drove the hyperphosphorylation of p38 and Akt. Ultimately, one of the pathways through which CLEC12A regulates uric acid crystal-stimulated release of IL-8 by neutrophils is through a p38/PI3K-Akt signaling pathway. In summary this work defines early molecular events that underpin CLEC12A signaling in human neutrophils to modulate cytokine synthesis. Targeting this pathway could be useful therapeutically to dampen inflammation.
Collapse
Affiliation(s)
- Guillaume Paré
- Division of Infectious Diseases and Immunology, Laval University, Centres Hospitaliers Universitaires (CHU) de Québec Research Center, Québec, QC, Canada
| | - Julien Vitry
- Division of Infectious Diseases and Immunology, Laval University, Centres Hospitaliers Universitaires (CHU) de Québec Research Center, Québec, QC, Canada.,Department of Microbiology and Immunology, Faculty of Medicine, Laval University, CHU de Québec Research Center, Québec, QC, Canada
| | - Michael L Merchant
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY, United States
| | - Myriam Vaillancourt
- Division of Infectious Diseases and Immunology, Laval University, Centres Hospitaliers Universitaires (CHU) de Québec Research Center, Québec, QC, Canada
| | - Andréa Murru
- Division of Infectious Diseases and Immunology, Laval University, Centres Hospitaliers Universitaires (CHU) de Québec Research Center, Québec, QC, Canada.,Department of Microbiology and Immunology, Faculty of Medicine, Laval University, CHU de Québec Research Center, Québec, QC, Canada
| | - Yunyun Shen
- Division of Infectious Diseases and Immunology, Laval University, Centres Hospitaliers Universitaires (CHU) de Québec Research Center, Québec, QC, Canada.,Department of Microbiology and Immunology, Faculty of Medicine, Laval University, CHU de Québec Research Center, Québec, QC, Canada
| | - Sabine Elowe
- Department of Pediatrics, Faculty of Medicine, Laval University, CHU de Québec Research Center, Québec, QC, Canada.,Reproduction, Mother and Youth Health Division, Laval University, CHU de Québec Research Center, Québec, QC, Canada
| | - Mireille H Lahoud
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Paul H Naccache
- Division of Infectious Diseases and Immunology, Laval University, Centres Hospitaliers Universitaires (CHU) de Québec Research Center, Québec, QC, Canada.,Department of Microbiology and Immunology, Faculty of Medicine, Laval University, CHU de Québec Research Center, Québec, QC, Canada
| | - Kenneth R McLeish
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY, United States
| | - Maria J Fernandes
- Division of Infectious Diseases and Immunology, Laval University, Centres Hospitaliers Universitaires (CHU) de Québec Research Center, Québec, QC, Canada.,Department of Microbiology and Immunology, Faculty of Medicine, Laval University, CHU de Québec Research Center, Québec, QC, Canada
| |
Collapse
|
3
|
Methods of Granulocyte Isolation from Human Blood and Labeling with Multimodal Superparamagnetic Iron Oxide Nanoparticles. Molecules 2020; 25:molecules25040765. [PMID: 32053865 PMCID: PMC7070653 DOI: 10.3390/molecules25040765] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/17/2020] [Accepted: 02/02/2020] [Indexed: 02/08/2023] Open
Abstract
This in vitro study aimed to find the best method of granulocyte isolation for subsequent labeling with multimodal nanoparticles (magnetic and fluorescent properties) to enable detection by optical and magnetic resonance imaging (MRI) techniques. The granulocytes were obtained from venous blood samples from 12 healthy volunteers. To achieve high purity and yield, four different methods of granulocyte isolation were evaluated. The isolated granulocytes were labeled with multimodal superparamagnetic iron oxide nanoparticles (M-SPIONs) coated with dextran, and the iron load was evaluated qualitatively and quantitatively by MRI, near-infrared fluorescence (NIRF) and inductively coupled plasma mass spectrometry (ICP-MS). The best method of granulocyte isolation was Percoll with Ficoll, which showed 95.92% purity and 94% viability. After labeling with M-SPIONs, the granulocytes showed 98.0% purity with a yield of 3.5 × 106 cells/mL and more than 98.6% viability. The iron-loading value in the labeled granulocytes, as obtained by MRI, was 6.40 ± 0.18 pg/cell. Similar values were found with the ICP-MS and NIRF imaging techniques. Therefore, our study shows that it is possible to isolate granulocytes with high purity and yield and labeling with M-SPIONs provides a high internalized iron load and low toxicity to cells. Therefore, these M-SPION-labeled granulocytes could be a promising candidate for future use in inflammation/infection detection by optical and MRI techniques.
Collapse
|
4
|
Yoneten KK, Kasap M, Akpinar G, Kanli A, Karaoz E. Comparative Proteomics Analysis of Four Commonly Used Methods for Identification of Novel Plasma Membrane Proteins. J Membr Biol 2019; 252:587-608. [PMID: 31346646 DOI: 10.1007/s00232-019-00084-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 07/17/2019] [Indexed: 11/25/2022]
Abstract
Plasma membrane proteins perform a variety of important tasks in the cells. These tasks can be diverse as carrying nutrients across the plasma membrane, receiving chemical signals from outside the cell, translating them into intracellular action, and anchoring the cell in a particular location. When these crucial roles of plasma membrane proteins are considered, the need for their characterization becomes inevitable. Certain characteristics of plasma membrane proteins such as hydrophobicity, low solubility, and low abundance limit their detection by proteomic analyses. Here, we presented a comparative proteomics study in which the most commonly used plasma membrane protein enrichment methods were evaluated. The methods that were utilized include biotinylation, selective CyDye labeling, temperature-dependent phase partition, and density-gradient ultracentrifugation. Western blot analysis was performed to assess the level of plasma membrane protein enrichment using plasma membrane and cytoplasmic protein markers. Quantitative evaluation of the level of enrichment was performed by two-dimensional electrophoresis (2-DE) and benzyldimethyl-n-hexadecylammonium chloride/sodium dodecyl sulfate polyacrylamide gel electrophoresis (16-BAC/SDS-PAGE) from which the protein spots were cut and identified. Results from this study demonstrated that density-gradient ultracentrifugation method was superior when coupled with 16-BAC/SDS-PAGE. This work presents a valuable contribution and provides a future direction to the membrane sub-proteome research by evaluating commonly used methods for plasma membrane protein enrichment.
Collapse
Affiliation(s)
| | - Murat Kasap
- Department of Medical Biology, School of Medicine, Kocaeli University, 41380, Kocaeli, Turkey.
| | - Gurler Akpinar
- Department of Medical Biology, School of Medicine, Kocaeli University, 41380, Kocaeli, Turkey
| | - Aylin Kanli
- Department of Medical Biology, School of Medicine, Kocaeli University, 41380, Kocaeli, Turkey
| | - Erdal Karaoz
- Department of Histology and Embryology, School of Medicine, Istinye University, 34010, Istanbul, Turkey
| |
Collapse
|
5
|
PTENα promotes neutrophil chemotaxis through regulation of cell deformability. Blood 2019; 133:2079-2089. [PMID: 30926592 DOI: 10.1182/blood-2019-01-899864] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 03/14/2019] [Indexed: 12/20/2022] Open
Abstract
Neutrophils are a major component of immune defense and are recruited through neutrophil chemotaxis in response to invading pathogens. However, the molecular mechanism that controls neutrophil chemotaxis remains unclear. Here, we report that PTENα, the first isoform identified in the PTEN family, regulates neutrophil deformability and promotes chemotaxis of neutrophils. A high level of PTENα is detected in neutrophils and lymphoreticular tissues. Homozygous deletion of PTENα impairs chemoattractant-induced migration of neutrophils. We show that PTENα physically interacts with cell membrane cross-linker moesin through its FERM domain and dephosphorylates moesin at Thr558, which disrupts the association of filamentous actin with the plasma membrane and subsequently induces morphologic changes in neutrophil pseudopodia. These results demonstrate that PTENα acts as a phosphatase of moesin and modulates neutrophil-mediated host immune defense. We propose that PTENα signaling is a potential target for the treatment of infections and immune diseases.
Collapse
|
6
|
Xu K, Cooney KA, Shin EY, Wang L, Deppen JN, Ginn SC, Levit RD. Adenosine from a biologic source regulates neutrophil extracellular traps (NETs). J Leukoc Biol 2019; 105:1225-1234. [PMID: 30907983 DOI: 10.1002/jlb.3vma0918-374r] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 02/01/2019] [Accepted: 02/25/2019] [Indexed: 01/27/2023] Open
Abstract
Neutrophil extracellular traps (NETs) are implicated in autoimmune, thrombotic, malignant, and inflammatory diseases; however, little is known of their endogenous regulation under basal conditions. Inflammatory effects of neutrophils are modulated by extracellular purines such as adenosine (ADO) that is inhibitory or ATP that generally up-regulates effector functions. In order to evaluate the effects of ADO on NETs, human neutrophils were isolated from peripheral venous blood from healthy donors and stimulated to make NETs. Treatment with ADO inhibited NET production as quantified by 2 methods: SYTOX green fluorescence and human neutrophil elastase (HNE)-DNA ELISA assay. Specific ADO receptor agonist and antagonist were tested for their effects on NET production. The ADO 2A receptor (A2A R) agonist CSG21680 inhibited NETs to a similar degree as ADO, whereas the A2A R antagonist ZM241385 prevented ADO's NET-inhibitory effects. Additionally, CD73 is a membrane bound ectonucleotidase expressed on mesenchymal stromal cells (MSCs) that allows manipulation of extracellular purines in tissues such as bone marrow. The effects of MSCs on NET formation were evaluated in coculture. MSCs reduced NET formation in a CD73-dependent manner. These results imply that extracellular purine balance may locally regulate NETosis and may be actively modulated by stromal cells to maintain tissue homeostasis.
Collapse
Affiliation(s)
- Kai Xu
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
- Department of Cardiovascular Medicine, Xiangya Hospital, Changsha, China
| | - Kimberly A Cooney
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Eric Y Shin
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Lanfang Wang
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Juline N Deppen
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Sydney C Ginn
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Rebecca D Levit
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
7
|
Bisso PW, Gaglione S, Guimarães PPG, Mitchell MJ, Langer R. Nanomaterial Interactions with Human Neutrophils. ACS Biomater Sci Eng 2018; 4:4255-4265. [PMID: 31497639 PMCID: PMC6731026 DOI: 10.1021/acsbiomaterials.8b01062] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Neutrophils are the most abundant circulating leukocyte and the first point of contact between many drug delivery formulations and human cells. Despite their prevalence and implication in a range of immune functions, little is known about how human neutrophils respond to synthetic particulates. Here, we describe how ex vivo human neutrophils respond to particles which vary in both size (5 nm to 2 μm) and chemistry (lipids, poly(styrene), poly(lactic-co-glycolic acid), and gold). In particular, we show that (i) particle uptake is rapid, typically plateauing within 15 min; (ii) for a given particle chemistry, neutrophils preferentially take up larger particles at the nanoscale, up to 200 nm in size; (iii) uptake of nanoscale poly(styrene) and liposomal particles at concentrations of up to 5 μg/mL does not enhance apoptosis, activation, or cell death; (iv) particle-laden neutrophils retain the ability to degranulate normally in response to chemical stimulation; and (v) ingested particles reside in intracellular compartments that are retained during activation and degranulation. Aside from the implications for design of intravenously delivered particulate formulations in general, we expect these observations to be of particular use for targeting nanoparticles to circulating neutrophils, their clearance site (bone marrow), or distal sites of active inflammation.
Collapse
Affiliation(s)
- Paul W. Bisso
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Stephanie Gaglione
- Department of Chemical Engineering, University of Toronto, Toronto, Ontario M5S 3E5, Canada
| | - Pedro P. G. Guimarães
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Michael J. Mitchell
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Robert Langer
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
8
|
Dindot SV, Doan RN, Kuskie KR, Hillman PR, Whitfield CM, McQueen CM, Bordin AI, Bourquin JR, Cohen ND. Postnatal changes in epigenetic modifications of neutrophils of foals are associated with increased ROS function and regulation of neutrophil function. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 87:182-187. [PMID: 29958850 DOI: 10.1016/j.dci.2018.06.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 06/25/2018] [Accepted: 06/25/2018] [Indexed: 06/08/2023]
Abstract
Neonates of all species, including foals, are highly susceptible to infection, and neutrophils play a crucial role in innate immunity to infection. Evidence exists that neutrophils of neonatal foals are functionally deficient during the first weeks of life, including expression of cytokine genes such as IFNG. We hypothesized that postnatal epigenetic changes were likely to regulate the observed age-related changes in foal neutrophils. Using ChIP-Seq, we identified significant differences in trimethylated histone H3 lysine 4, an epigenetic modification associated with active promoters and enhancers, in neutrophils in foals at 30 days of age relative to 1 day of age. These chromatin changes were associated with genes implicated in immune responses and were consistent with age-related changes in neutrophil functional responses including ROS generation and IFN expression. Postnatal changes in epigenetic modifications suggest that environmentally-mediated cues help to promote maturation of neutrophil functional responses. Elucidating the environmental triggers and their signaling pathways could provide a means for improving innate immune responses of neonates to improve their ability to combat infectious diseases.
Collapse
Affiliation(s)
- Scott V Dindot
- Department of Veterinary Pathobiology, Texas A&M University College of Veterinary Medicine & Biomedical Sciences, College Station, TX, USA; Department of Molecular and Cellular Medicine, Texas A&M Health Science Center College of Medicine, College Station, TX, USA.
| | - Ryan N Doan
- Department of Veterinary Pathobiology, Texas A&M University College of Veterinary Medicine & Biomedical Sciences, College Station, TX, USA
| | - Kyle R Kuskie
- Department of Large Animal Clinical Sciences, Texas A&M University College of Veterinary Medicine & Biomedical Sciences, College Station, TX, USA
| | - Paul R Hillman
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center College of Medicine, College Station, TX, USA
| | - Canaan M Whitfield
- Department of Large Animal Clinical Sciences, Texas A&M University College of Veterinary Medicine & Biomedical Sciences, College Station, TX, USA
| | - Cole M McQueen
- Department of Large Animal Clinical Sciences, Texas A&M University College of Veterinary Medicine & Biomedical Sciences, College Station, TX, USA
| | - Angela I Bordin
- Department of Large Animal Clinical Sciences, Texas A&M University College of Veterinary Medicine & Biomedical Sciences, College Station, TX, USA
| | - Jessica R Bourquin
- Department of Large Animal Clinical Sciences, Texas A&M University College of Veterinary Medicine & Biomedical Sciences, College Station, TX, USA
| | - Noah D Cohen
- Department of Large Animal Clinical Sciences, Texas A&M University College of Veterinary Medicine & Biomedical Sciences, College Station, TX, USA.
| |
Collapse
|
9
|
Anderson MC, Chaze T, Coïc YM, Injarabian L, Jonsson F, Lombion N, Selimoglu-Buet D, Souphron J, Ridley C, Vonaesch P, Baron B, Arena ET, Tinevez JY, Nigro G, Nothelfer K, Solary E, Lapierre V, Lazure T, Matondo M, Thornton D, Sansonetti PJ, Baleux F, Marteyn BS. MUB 40 Binds to Lactoferrin and Stands as a Specific Neutrophil Marker. Cell Chem Biol 2018; 25:483-493.e9. [PMID: 29478905 DOI: 10.1016/j.chembiol.2018.01.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 12/04/2017] [Accepted: 01/26/2018] [Indexed: 02/07/2023]
Abstract
Neutrophils represent the most abundant immune cells recruited to inflamed tissues. A lack of dedicated tools has hampered their detection and study. We show that a synthesized peptide, MUB40, binds to lactoferrin, the most abundant protein stored in neutrophil-specific and tertiary granules. Lactoferrin is specifically produced by neutrophils among other leukocytes, making MUB40 a specific neutrophil marker. Naive mammalian neutrophils (human, guinea pig, mouse, rabbit) were labeled by fluorescent MUB40 conjugates (-Cy5, Dylight405). A peptidase-resistant retro-inverso MUB40 (RI-MUB40) was synthesized and its lactoferrin-binding property validated. Neutrophil lactoferrin secretion during in vitro Shigella infection was assessed with RI-MUB40-Cy5 using live cell microscopy. Systemically administered RI-MUB40-Cy5 accumulated at sites of inflammation in a mouse arthritis inflammation model in vivo and showed usefulness as a potential tool for inflammation detection using non-invasive imaging. Improving neutrophil detection with the universal and specific MUB40 marker will aid the study of broad ranges of inflammatory diseases.
Collapse
Affiliation(s)
- Mark C Anderson
- Institut Pasteur, Unité de Pathogénie Microbienne Moléculaire, 28 rue du Dr Roux, 75724 Paris Cedex 15, France; INSERM Unité 1202, 28 rue du Dr Roux, 75724 Paris Cedex 15, France
| | - Thibault Chaze
- Institut Pasteur / CNRS USR 2000 Mass Spectrometry for Biology, Proteomics Platform, CITECH, 28 rue du Dr Roux, 75724 Paris Cedex 15, France
| | - Yves-Marie Coïc
- Institut Pasteur, Unité de Chimie des Biomolécules, CNRS UMR 3523, 28 rue du Dr Roux, 75724 Paris Cedex 15, France
| | - Louise Injarabian
- Institut Pasteur, Unité de Pathogénie Microbienne Moléculaire, 28 rue du Dr Roux, 75724 Paris Cedex 15, France; INSERM Unité 1202, 28 rue du Dr Roux, 75724 Paris Cedex 15, France; CNRS, IBGC, Cell Energetic Metabolism, 1 rue Camille Saint Saëns CS 61390, 33077 Bordeaux Cedex, France
| | - Friederike Jonsson
- Institut Pasteur, Département d'Immunologie, 25 rue du Docteur Roux, 75024 Paris Cedex 15, France; INSERM Unité 1222, 25 rue du Dr Roux, 75015 Paris Cedex 15, France
| | - Naelle Lombion
- Institut Gustave Roussy, Laboratoire de Thérapie Cellulaire, 114 rue Edouard Vaillant, 94800 Villejuif, France
| | | | - Judith Souphron
- Institut Pasteur, Unité de Pathogénie Microbienne Moléculaire, 28 rue du Dr Roux, 75724 Paris Cedex 15, France; INSERM Unité 1202, 28 rue du Dr Roux, 75724 Paris Cedex 15, France
| | - Caroline Ridley
- University of Manchester, Wellcome Trust Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, A.V. Hill Building, Manchester M13 9PT, UK
| | - Pascale Vonaesch
- Institut Pasteur, Unité de Pathogénie Microbienne Moléculaire, 28 rue du Dr Roux, 75724 Paris Cedex 15, France; INSERM Unité 1202, 28 rue du Dr Roux, 75724 Paris Cedex 15, France
| | - Bruno Baron
- Institut Pasteur, Plate-Forme de Biophysique Moléculaire, 28 rue du Dr Roux, 75724 Paris Cedex 15, France
| | - Ellen T Arena
- Institut Pasteur, Unité de Pathogénie Microbienne Moléculaire, 28 rue du Dr Roux, 75724 Paris Cedex 15, France; INSERM Unité 1202, 28 rue du Dr Roux, 75724 Paris Cedex 15, France
| | - Jean-Yves Tinevez
- Institut Pasteur, CITECH, Imagopole, 28 rue du Dr Roux, 75724 Paris Cedex 15, France
| | - Giulia Nigro
- Institut Pasteur, Unité de Pathogénie Microbienne Moléculaire, 28 rue du Dr Roux, 75724 Paris Cedex 15, France; INSERM Unité 1202, 28 rue du Dr Roux, 75724 Paris Cedex 15, France
| | - Katharina Nothelfer
- Institut Pasteur, Unité de Pathogénie Microbienne Moléculaire, 28 rue du Dr Roux, 75724 Paris Cedex 15, France; INSERM Unité 1202, 28 rue du Dr Roux, 75724 Paris Cedex 15, France
| | - Eric Solary
- Institut Gustave Roussy Inserm U1009, 114 rue Edouard Vaillant, 94800 Villejuif, France
| | - Valérie Lapierre
- Institut Gustave Roussy, Laboratoire de Thérapie Cellulaire, 114 rue Edouard Vaillant, 94800 Villejuif, France
| | - Thierry Lazure
- APHP Hôpital du Kremlin-Bicêtre, 78 rue du Général Leclerc, 94270 Le Kremlin-Bicêtre, France
| | - Mariette Matondo
- Institut Pasteur / CNRS USR 2000 Mass Spectrometry for Biology, Proteomics Platform, CITECH, 28 rue du Dr Roux, 75724 Paris Cedex 15, France
| | - David Thornton
- Institut Pasteur, Département d'Immunologie, 25 rue du Docteur Roux, 75024 Paris Cedex 15, France
| | - Philippe J Sansonetti
- Institut Pasteur, Unité de Pathogénie Microbienne Moléculaire, 28 rue du Dr Roux, 75724 Paris Cedex 15, France; INSERM Unité 1202, 28 rue du Dr Roux, 75724 Paris Cedex 15, France; Collège de France, Paris, France
| | - Françoise Baleux
- Institut Pasteur, Unité de Chimie des Biomolécules, CNRS UMR 3523, 28 rue du Dr Roux, 75724 Paris Cedex 15, France
| | - Benoit S Marteyn
- Institut Pasteur, Unité de Pathogénie Microbienne Moléculaire, 28 rue du Dr Roux, 75724 Paris Cedex 15, France; INSERM Unité 1202, 28 rue du Dr Roux, 75724 Paris Cedex 15, France; Institut Gustave Roussy, Laboratoire de Thérapie Cellulaire, 114 rue Edouard Vaillant, 94800 Villejuif, France.
| |
Collapse
|
10
|
Druhan LJ, Lance A, Li S, Price AE, Emerson JT, Baxter SA, Gerber JM, Avalos BR. Leucine Rich α-2 Glycoprotein: A Novel Neutrophil Granule Protein and Modulator of Myelopoiesis. PLoS One 2017; 12:e0170261. [PMID: 28081565 PMCID: PMC5233425 DOI: 10.1371/journal.pone.0170261] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 12/30/2016] [Indexed: 02/01/2023] Open
Abstract
Leucine-rich α2 glycoprotein (LRG1), a serum protein produced by hepatocytes, has been implicated in angiogenesis and tumor promotion. Our laboratory previously reported the expression of LRG1 in murine myeloid cell lines undergoing neutrophilic granulocyte differentiation. However, the presence of LRG1 in primary human neutrophils and a role for LRG1 in regulation of hematopoiesis have not been previously described. Here we show that LRG1 is packaged into the granule compartment of human neutrophils and secreted upon neutrophil activation to modulate the microenvironment. Using immunofluorescence microscopy and direct biochemical measurements, we demonstrate that LRG1 is present in the peroxidase-negative granules of human neutrophils. Exocytosis assays indicate that LRG1 is differentially glycosylated in neutrophils, and co-released with the secondary granule protein lactoferrin. Like LRG1 purified from human serum, LRG1 secreted from activated neutrophils also binds cytochrome c. We also show that LRG1 antagonizes the inhibitory effects of TGFβ1 on colony growth of human CD34+ cells and myeloid progenitors. Collectively, these data invoke an additional role for neutrophils in innate immunity that has not previously been reported, and suggest a novel mechanism whereby neutrophils may modulate the microenvironment via extracellular release of LRG1.
Collapse
Affiliation(s)
- Lawrence J. Druhan
- The Department of Hematologic Oncology, The Levine Cancer Institute, Carolinas HealthCare System, Charlotte, North Carolina, United States of America
| | - Amanda Lance
- The Department of Hematologic Oncology, The Levine Cancer Institute, Carolinas HealthCare System, Charlotte, North Carolina, United States of America
| | - Shimena Li
- The University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Andrea E. Price
- The Department of Hematologic Oncology, The Levine Cancer Institute, Carolinas HealthCare System, Charlotte, North Carolina, United States of America
| | - Jacob T. Emerson
- The Department of Hematologic Oncology, The Levine Cancer Institute, Carolinas HealthCare System, Charlotte, North Carolina, United States of America
| | - Sarah A. Baxter
- The Department of Hematologic Oncology, The Levine Cancer Institute, Carolinas HealthCare System, Charlotte, North Carolina, United States of America
| | - Jonathan M. Gerber
- The Department of Hematologic Oncology, The Levine Cancer Institute, Carolinas HealthCare System, Charlotte, North Carolina, United States of America
| | - Belinda R. Avalos
- The Department of Hematologic Oncology, The Levine Cancer Institute, Carolinas HealthCare System, Charlotte, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
11
|
Ng HP, Valentine VG, Wang G. CFTR targeting during activation of human neutrophils. J Leukoc Biol 2016; 100:1413-1424. [DOI: 10.1189/jlb.4a0316-130rr] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
Abstract
Abstract
Cystic fibrosis transmembrane conductance regulator (CFTR), a cAMP-activated chloride channel, plays critical roles in phagocytic host defense. However, how activated neutrophils regulate CFTR channel distribution subcellularly is not well defined. To investigate, we tested multiple Abs against different CFTR domains, to examine CFTR expression in human peripheral blood neutrophils by flow cytometry. The data confirmed that resting neutrophils had pronounced CFTR expression. Activation of neutrophils with soluble or particulate agonists did not significantly increase CFTR expression level, but induced CFTR redistribution to cell surface. Such CFTR mobilization correlated with cell-surface recruitment of formyl-peptide receptor during secretory vesicle exocytosis. Intriguingly, neutrophils from patients with ΔF508-CF, despite expression of the mutant CFTR, showed little cell-surface mobilization upon stimulation. Although normal neutrophils effectively targeted CFTR to their phagosomes, ΔF508-CF neutrophils had impairment in that process, resulting in deficient hypochlorous acid production. Taken together, activated neutrophils regulate CFTR distribution by targeting this chloride channel to the subcellular sites of activation, and ΔF508-CF neutrophils fail to achieve such targeting, thus undermining their host defense function.
Collapse
Affiliation(s)
- Hang Pong Ng
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center , New Orleans, Louisiana
| | - Vincent G Valentine
- Department of Medicine, University of Texas Medical Branch , Galveston, Texas
| | - Guoshun Wang
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center , New Orleans, Louisiana
- Department of Genetics, Louisiana State University Health Sciences Center , New Orleans, Louisiana
- Department of Medicine, Louisiana State University Health Sciences Center , New Orleans, Louisiana
| |
Collapse
|
12
|
Nakayama H, Kurihara H, Morita YS, Kinoshita T, Mauri L, Prinetti A, Sonnino S, Yokoyama N, Ogawa H, Takamori K, Iwabuchi K. Lipoarabinomannan binding to lactosylceramide in lipid rafts is essential for the phagocytosis of mycobacteria by human neutrophils. Sci Signal 2016; 9:ra101. [PMID: 27729551 DOI: 10.1126/scisignal.aaf1585] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Pathogenic mycobacteria use virulence factors, including mannose-capped lipoarabinomannan (ManLAM), to survive in host phagocytic cells, such as neutrophils. We assessed the roles of lactosylceramide (LacCer, CDw17)-enriched lipid rafts in the phagocytosis of mycobacteria by human neutrophils and in the intracellular fate of phagocytosed mycobacteria. We showed that the association of the Src family kinase (SFK) Lyn with C24 fatty acid chain-containing LacCer was essential for the phagocytosis of mycobacteria by neutrophils. Assays with LacCer-containing liposomes, LacCer-coated plastic plates, and LAM-coated beads demonstrated that the phagocytosis of mycobacteria was mediated through the binding of LacCer to LAM. Both ManLAM from pathogenic species and phosphoinositol-capped LAM (PILAM) from nonpathogenic Mycobacterium smegmatis bound equivalently to LacCer to stimulate phagocytosis. However, PILAM from an M. smegmatis α1,2-mannosyltransferase deletion mutant (ΔMSMEG_4247), lacking the α1,2-monomannose side branches of the LAM mannan core, did not bind to LacCer or induce phagocytosis. An anti-LacCer antibody immunoprecipitated the SFK Hck from the phagosomes of neutrophils that internalized nonpathogenic mycobacteria but not from those that internalized pathogenic mycobacteria. Furthermore, knockdown of Hck by short inhibitory RNA abolished the fusion of lysosomes with phagosomes containing nonpathogenic mycobacteria. Further analysis showed that ManLAM, but not PILAM, inhibited the association of Hck with LacCer-enriched lipid rafts in phagosomal membranes, effectively blocking phagolysosome formation. Together, these findings suggest that pathogenic mycobacteria use ManLAM not only for binding to LacCer-enriched lipid rafts and entering neutrophils but also for disrupting signaling through Hck-coupled, LacCer-enriched lipid rafts and preventing phagolysosome formation.
Collapse
Affiliation(s)
- Hitoshi Nakayama
- Laboratory of Biochemistry, Juntendo University Faculty of Health Care and Nursing, Urayasu, Chiba 279-0023, Japan. Institute for Environmental and Gender-Specific Medicine, Juntendo University Graduate School of Medicine, Urayasu, Chiba 279-0021, Japan
| | - Hidetake Kurihara
- Department of Anatomy, Juntendo University Faculty of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Yasu S Morita
- Department of Microbiology, University of Massachusetts, Amherst, MA 01003-9364, USA. Department of Immunoregulation, Research Institute for Microbial Diseases, World Premier International Research Center Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - Taroh Kinoshita
- Department of Immunoregulation, Research Institute for Microbial Diseases, World Premier International Research Center Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - Laura Mauri
- Department of Medical Biotechnology and Translational Medicine, Interdisciplinary Laboratory for Advanced Technologies, University of Milan, Via Fratelli Cervi, Milano 20129, Italy
| | - Alessandro Prinetti
- Department of Medical Biotechnology and Translational Medicine, Interdisciplinary Laboratory for Advanced Technologies, University of Milan, Via Fratelli Cervi, Milano 20129, Italy
| | - Sandro Sonnino
- Department of Medical Biotechnology and Translational Medicine, Interdisciplinary Laboratory for Advanced Technologies, University of Milan, Via Fratelli Cervi, Milano 20129, Italy
| | - Noriko Yokoyama
- Institute for Environmental and Gender-Specific Medicine, Juntendo University Graduate School of Medicine, Urayasu, Chiba 279-0021, Japan
| | - Hideoki Ogawa
- Institute for Environmental and Gender-Specific Medicine, Juntendo University Graduate School of Medicine, Urayasu, Chiba 279-0021, Japan
| | - Kenji Takamori
- Institute for Environmental and Gender-Specific Medicine, Juntendo University Graduate School of Medicine, Urayasu, Chiba 279-0021, Japan
| | - Kazuhisa Iwabuchi
- Laboratory of Biochemistry, Juntendo University Faculty of Health Care and Nursing, Urayasu, Chiba 279-0023, Japan. Institute for Environmental and Gender-Specific Medicine, Juntendo University Graduate School of Medicine, Urayasu, Chiba 279-0021, Japan. Infection Control Nursing, Juntendo University Graduate School of Health Care and Nursing, Urayasu, Chiba 279-0023, Japan.
| |
Collapse
|
13
|
Secondary necrotic neutrophils release interleukin-16C and macrophage migration inhibitory factor from stores in the cytosol. Cell Death Discov 2015; 1:15056. [PMID: 27551482 PMCID: PMC4979515 DOI: 10.1038/cddiscovery.2015.56] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 10/02/2015] [Accepted: 10/16/2015] [Indexed: 11/08/2022] Open
Abstract
Neutrophils harbor a number of preformed effector proteins that allow for immediate antimicrobial functions without the need for time-consuming de novo synthesis. Evidence indicates that neutrophils also contain preformed cytokines, including interleukin (IL)-1ra, CXCL8 and CXCL2. In the search for additional preformed cytokines, a cytokine array analysis identified IL-16 and macrophage migration inhibitory factor (MIF) as preformed cytokines in lysates from human primary neutrophils. Both IL-16 and MIF are unconventional cytokines because they lack a signal sequence. Using confocal immunofluorescence microscopy as well as western blot analysis of subcellular fractions, IL-16 and MIF were found to be stored in the cytosol rather than in the granules of human neutrophils, which implies an unconventional secretion mechanism for both cytokines. IL-16 is synthesized and stored as a precursor (pre-IL-16). We present evidence that the processing of pre-IL-16 to the biologically active IL-16C is mediated by caspase-3 and occurs during both spontaneous and UV-induced apoptosis of human neutrophils. Although IL-16 processing occurs during apoptosis, IL-16C and MIF release was observed only during secondary necrosis of neutrophils. Screening a panel of microbial substances and proinflammatory cytokines did not identify a stimulus that induced the release of IL-16C and MIF independent of secondary necrosis. The data presented here suggest that IL-16 and MIF are neutrophil-derived inflammatory mediators released under conditions of insufficient clearance of apoptotic neutrophils, as typically occurs at sites of infection and autoimmunity.
Collapse
|
14
|
Abstract
Nox4 is an oddity among members of the Nox family of NADPH oxidases [seven isoenzymes that generate reactive oxygen species (ROS) from molecular oxygen] in that it is constitutively active. All other Nox enzymes except for Nox4 require upstream activators, either calcium or organizer/activator subunits (p47(phox), NOXO1/p67(phox), and NOXA1). Nox4 may also be unusual as it reportedly releases hydrogen peroxide (H₂O₂) in contrast to Nox1-Nox3 and Nox5, which release superoxide, although this result is controversial in part because of possible membrane compartmentalization of superoxide, which may prevent detection. Our studies were undertaken (1) to identify the Nox4 ROS product using a membrane-free, partially purified preparation of Nox4 and (2) to test the hypothesis that Nox4 activity is acutely regulated not by activator proteins or calcium, but by cellular pO₂, allowing it to function as an O₂ sensor, the output of which is signaling H₂O₂. We find that approximately 90% of the electron flux through isolated Nox4 produces H₂O₂ and 10% forms superoxide. The kinetic mechanism of H₂O₂ formation is consistent with a mechanism involving binding of one oxygen molecule, which is then sequentially reduced by the heme in two one-electron reduction steps first to form a bound superoxide intermediate and then H₂O₂; kinetics are not consistent with a previously proposed internal superoxide dismutation mechanism involving two oxygen binding/reduction steps for each H₂O₂ formed. Critically, Nox4 has an unusually high Km for oxygen (∼18%), similar to the values of known oxygen-sensing enzymes, compared with a Km of 2-3% for Nox2, the phagocyte NADPH oxidase. This allows Nox4 to generate H₂O₂ as a function of oxygen concentration throughout a physiological range of pO2 values and to respond rapidly to changes in pO₂.
Collapse
|
15
|
Clemmensen SN, Udby L, Borregaard N. Subcellular fractionation of human neutrophils and analysis of subcellular markers. Methods Mol Biol 2014; 1124:53-76. [PMID: 24504946 DOI: 10.1007/978-1-62703-845-4_5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The neutrophil has long been recognized for its impressive number of cytoplasmic granules that harbor proteins indispensable for innate immunity. Analysis of isolated granules has provided important information on how the neutrophil grades its response to match the challenges it meets on its passage from blood to tissues. Nitrogen cavitation was developed as a method for disruption of cells on the assumption that sudden reduction of the partial pressure of nitrogen would lead to aeration of nitrogen dissolved in the lipid bilayer of plasma membranes. We find that cells are broken by the shear stress that is associated with passage through the outlet valve under high pressure and that this results in disruption of the neutrophil cell membrane while granules remain intact. The unique properties of Percoll as a sedimentable density medium with no inherent tonicity or viscosity are used for creation of continuous density gradients with shoulders in the density profile created to optimize the physical separation of granule subsets and light membranes. Immunological methods (sandwich enzyme-linked immunosorbent assays) are used for quantitation of proteins that are characteristic constituents of the granule subsets of neutrophils.
Collapse
Affiliation(s)
- Stine Novrup Clemmensen
- The Granulocyte Research Laboratory, Department of Hematology, Rigshospitalet, Copenhagen University, Copenhagen, Denmark
| | | | | |
Collapse
|
16
|
The subcellular localization of the receptor for platelet-activating factor in neutrophils affects signaling and activation characteristics. Clin Dev Immunol 2013; 2013:456407. [PMID: 24069041 PMCID: PMC3773398 DOI: 10.1155/2013/456407] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 07/22/2013] [Indexed: 11/22/2022]
Abstract
The localization in neutrophils, of the receptor for platelet-activating factor (PAFR), has been determined using subcellular fractionation and a receptor mobilization protocol. We show that the PAFR is expressed primarily in the plasma membrane. Although activation of neutrophils by PAF induces responses typical also of agonists that bind the formyl peptide receptors (FPR), known to be stored in mobilizable organelles, some quantitative as well as qualitative differences were observed when neutrophils were activated through these receptors. PAF is equipotent to fMLF (high affinity agonist for FPR1) to cleave off L-selectin and to induce granule/vesicle secretion but is more potent than fMLF to induce a rise in intracellular Ca2+. Similar to fMLF, PAF induced also a robust release of reactive oxygen species, but with higher EC50 value and was less sensitive to a PI3K inhibitor compared to the fMLF response. Despite the lack of a granule localized storage pool of receptors, the PAF-induced superoxide production could be primed; receptor mobilization was, thus, not required for priming of the PAF response. The desensitized PAFR could not be reactivated, suggesting that distinct signaling pathways are utilized for termination of the responses triggered through FPR1 and PAFR.
Collapse
|
17
|
Perera NC, Wiesmüller KH, Larsen MT, Schacher B, Eickholz P, Borregaard N, Jenne DE. NSP4 is stored in azurophil granules and released by activated neutrophils as active endoprotease with restricted specificity. THE JOURNAL OF IMMUNOLOGY 2013; 191:2700-7. [PMID: 23904161 DOI: 10.4049/jimmunol.1301293] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Whereas neutrophil elastase, cathepsin G, and proteinase 3 have been known as granule-associated serine proteases of neutrophils for decades, a fourth member, called neutrophil serine protease 4 (NSP4), was just recently described and provisionally characterized. In this study, we identified NSP4 as a novel azurophil granule protein of neutrophils by Western blot analyses of subcellular fractions as well as by RT-PCR analyses of neutrophil precursors from human bone marrow. The highest mRNA levels were observed in myeloblasts and promyelocytes, similar to myeloperoxidase, a marker of azurophil granules. To determine the extended sequence specificity of recombinant NSP4, we used an iterative fluorescence resonance energy transfer-based optimization strategy. In total, 142 different peptide substrates with arginine in P1 and variations at the P1', P2', P3, P4, and P2 positions were tested. This enabled us to construct an α1-proteinase inhibitor variant (Ile-Lys-Pro-Arg-/-Ser-Ile-Pro) with high specificity for NSP4. This tailor-made serpin was shown to form covalent complexes with all NSP4 of neutrophil lysates and supernatants of activated neutrophils, indicating that NSP4 is fully processed and stored as an already activated enzyme in azurophil granules. Moreover, cathepsin C was identified as the activator of NSP4 in vivo, as cathepsin C deficiency resulted in a complete absence of NSP4 in a Papillon-Lefèvre patient. Our in-depth analysis of NSP4 establishes this arginine-specific protease as a genuine member of preactivated serine proteases stored in azurophil granules of human neutrophils.
Collapse
Affiliation(s)
- Natascha C Perera
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum München, Member of the German Center for Lung Research, 81377 Munich, Germany
| | | | | | | | | | | | | |
Collapse
|
18
|
Aiken ML, Painter RG, Zhou Y, Wang G. Chloride transport in functionally active phagosomes isolated from Human neutrophils. Free Radic Biol Med 2012; 53:2308-17. [PMID: 23089227 PMCID: PMC3672382 DOI: 10.1016/j.freeradbiomed.2012.10.542] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Revised: 10/01/2012] [Accepted: 10/11/2012] [Indexed: 01/05/2023]
Abstract
Chloride anion is critical for hypochlorous acid (HOCl) production and microbial killing in neutrophil phagosomes. However, the molecular mechanism by which this anion is transported to the organelle is poorly understood. In this report, membrane-enclosed and functionally active phagosomes were isolated from human neutrophils by using opsonized paramagnetic latex microspheres and a rapid magnetic separation method. The phagosomes recovered were highly enriched for specific protein markers associated with this organelle such as lysosomal-associated membrane protein-1, myeloperoxidase (MPO), lactoferrin, and NADPH oxidase. When FITC-dextran was included in the phagocytosis medium, the majority of the isolated phagosomes retained the fluorescent label after isolation, indicative of intact membrane structure. Flow cytometric measurement of acridine orange, a fluorescent pH indicator, in the purified phagosomes demonstrated that the organelle in its isolated state was capable of transporting protons to the phagosomal lumen via the vacuolar-type ATPase proton pump (V-ATPase). When NADPH was supplied, the isolated phagosomes constitutively oxidized dihydrorhodamine 123, indicating their ability to produce hydrogen peroxide. The preparations also showed a robust production of HOCl within the phagosomal lumen when assayed with the HOCl-specific fluorescent probe R19-S by flow cytometry. MPO-mediated iodination of the proteins covalently conjugated to the phagocytosed beads was quantitatively measured. Phagosomal uptake of iodide and protein iodination were significantly blocked by chloride channel inhibitors, including CFTRinh-172 and NPPB. Further experiments determined that the V-ATPase-driving proton flux into the isolated phagosomes required chloride cotransport, and the cAMP-activated CFTR chloride channel was a major contributor to the chloride transport. Taken together, the data suggest that the phagosomal preparation described herein retains ion transport properties, and multiple chloride channels including CFTR are responsible for chloride supply to neutrophil phagosomes.
Collapse
Affiliation(s)
- Martha L Aiken
- Department of Microbiology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Richard G Painter
- Department of Microbiology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Yun Zhou
- Department of Microbiology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Guoshun Wang
- Department of Microbiology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA; Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA; Department of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA.
| |
Collapse
|
19
|
Jena P, Mohanty S, Mohanty T, Kallert S, Morgelin M, Lindstrøm T, Borregaard N, Stenger S, Sonawane A, Sørensen OE. Azurophil granule proteins constitute the major mycobactericidal proteins in human neutrophils and enhance the killing of mycobacteria in macrophages. PLoS One 2012; 7:e50345. [PMID: 23251364 PMCID: PMC3522671 DOI: 10.1371/journal.pone.0050345] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 10/18/2012] [Indexed: 12/16/2022] Open
Abstract
Pathogenic mycobacteria reside in, and are in turn controlled by, macrophages. However, emerging data suggest that neutrophils also play a critical role in innate immunity to tuberculosis, presumably by their different antibacterial granule proteins. In this study, we purified neutrophil azurophil and specific granules and systematically analyzed the antimycobacterial activity of some purified azurophil and specific granule proteins against M. smegmatis, M. bovis-BCG and M. tuberculosis H37Rv. Using gel overlay and colony forming unit assays we showed that the defensin-depleted azurophil granule proteins (AZP) were more active against mycobacteria compared to other granule proteins and cytosolic proteins. The proteins showing antimycobacterial activity were identified by MALDI-TOF mass spectrometry. Electron microscopic studies demonstrate that the AZP disintegrate bacterial cell membrane resulting in killing of mycobacteria. Exogenous addition of AZP to murine macrophage RAW 264.7, THP-1 and peripheral blood monocyte-derived macrophages significantly reduced the intracellular survival of mycobacteria without exhibiting cytotoxic activity on macrophages. Immunofluorescence studies showed that macrophages actively endocytose neutrophil granular proteins. Treatment with AZP resulted in increase in co-localization of BCG containing phagosomes with lysosomes but not in increase of autophagy. These data demonstrate that neutrophil azurophil proteins may play an important role in controlling intracellular survival of mycobacteria in macrophages.
Collapse
Affiliation(s)
- Prajna Jena
- School of Biotechnology, Campus-11, KIIT University, Bhubaneswar, Orissa, India
| | - Soumitra Mohanty
- School of Biotechnology, Campus-11, KIIT University, Bhubaneswar, Orissa, India
| | - Tirthankar Mohanty
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Stephanie Kallert
- Institute for Medical Microbiology and Hygiene, University of Ulm, Ulm, Germany
| | - Matthias Morgelin
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Thomas Lindstrøm
- Department of Infectious Disease Immunology, Statens Serum Institute, Copenhagen, Denmark
| | - Niels Borregaard
- Department of Hematology, University of Copenhagen, Copenhagen, Denmark
| | - Steffen Stenger
- Institute for Medical Microbiology and Hygiene, University of Ulm, Ulm, Germany
| | - Avinash Sonawane
- School of Biotechnology, Campus-11, KIIT University, Bhubaneswar, Orissa, India
| | - Ole E. Sørensen
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
| |
Collapse
|
20
|
SLC35D3 delivery from megakaryocyte early endosomes is required for platelet dense granule biogenesis and is differentially defective in Hermansky-Pudlak syndrome models. Blood 2012; 120:404-14. [PMID: 22611153 DOI: 10.1182/blood-2011-11-389551] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Platelet dense granules are members of a family of tissue-specific, lysosome-related organelles that also includes melanosomes in melanocytes. Contents released from dense granules after platelet activation promote coagulation and hemostasis, and dense granule defects such as those seen in Hermansky-Pudlak syndrome (HPS) cause excessive bleeding, but little is known about how dense granules form in megakaryocytes (MKs). In the present study, we used SLC35D3, mutation of which causes a dense granule defect in mice, to show that early endosomes play a direct role in dense granule biogenesis. We show that SLC35D3 expression is up-regulated during mouse MK differentiation and is enriched in platelets. Using immunofluorescence and immunoelectron microscopy and subcellular fractionation in megakaryocytoid cells, we show that epitope-tagged and endogenous SLC35D3 localize predominantly to early endosomes but not to dense granule precursors. Nevertheless, SLC35D3 is depleted in mouse platelets from 2 of 3 HPS models and, when expressed ectopically in melanocytes, SLC35D3 localizes to melanosomes in a manner requiring a HPS-associated protein complex that functions from early endosomal transport intermediates. We conclude that SLC35D3 is either delivered to nascent dense granules from contiguous early endosomes as MKs mature or functions in dense granule biogenesis directly from early endosomes, suggesting that dense granules originate from early endosomes in MKs.
Collapse
|
21
|
Corti A, Franzini M, Cianchetti S, Bergamini G, Lorenzini E, Melotti P, Paolicchi A, Paggiaro P, Pompella A. Contribution by polymorphonucleate granulocytes to elevated gamma-glutamyltransferase in cystic fibrosis sputum. PLoS One 2012; 7:e34772. [PMID: 22496859 PMCID: PMC3319600 DOI: 10.1371/journal.pone.0034772] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Accepted: 03/05/2012] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Cystic fibrosis (CF) is an autosomal recessive disorder characterized by a chronic neutrophilic airways inflammation, increasing levels of oxidative stress and reduced levels of antioxidants such as glutathione (GSH). Gamma-glutamyltransferase (GGT), an enzyme induced by oxidative stress and involved in the catabolism of GSH and its derivatives, is increased in the airways of CF patients with inflammation, but the possible implications of its increase have not yet been investigated in detail. PRINCIPAL FINDINGS The present study was aimed to evaluate the origin and the biochemical characteristics of the GGT detectable in CF sputum. We found GGT activity both in neutrophils and in the fluid, the latter significantly correlating with myeloperoxidase expression. In neutrophils, GGT was associated with intracellular granules. In the fluid, gel-filtration chromatography showed the presence of two distinct GGT fractions, the first corresponding to the human plasma b-GGT fraction, the other to the free enzyme. The same fractions were also observed in the supernatant of ionomycin and fMLP-activated neutrophils. Western blot analysis confirmed the presence of a single band of GGT immunoreactive peptide in the CF sputum samples and in isolated neutrophils. CONCLUSIONS In conclusion, our data indicate that neutrophils are able to transport and release GGT, thus increasing GGT activity in CF sputum. The prompt release of GGT may have consequences on all GGT substrates, including major inflammatory mediators such as S-nitrosoglutathione and leukotrienes, and could participate in early modulation of inflammatory response.
Collapse
Affiliation(s)
- Alessandro Corti
- Dipartimento di Patologia Sperimentale, Università di Pisa, Scuola Medica, Pisa, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Clemmensen SN, Jacobsen LC, Rørvig S, Askaa B, Christenson K, Iversen M, Jørgensen MH, Larsen MT, van Deurs B, Ostergaard O, Heegaard NH, Cowland JB, Borregaard N. Alpha-1-antitrypsin is produced by human neutrophil granulocytes and their precursors and liberated during granule exocytosis. Eur J Haematol 2011; 86:517-30. [PMID: 21477074 DOI: 10.1111/j.1600-0609.2011.01601.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Alpha-1-antitrypsin (A1AT) is an important inhibitor of neutrophil proteases including elastase, cathepsin G, and proteinase 3. Transcription profiling data suggest that A1AT is expressed by human neutrophil granulocytes during all developmental stages. A1AT has hitherto only been found associated with azurophile granules in neutrophils indicative of A1AT expression being restricted to the promyelocyte stage. We examined the localization and production of A1AT in healthy donor neutrophils and found A1AT to be a constituent of all granule subtypes and to be released from neutrophils following stimulation. A1AT is produced at all stages of myeloid maturation in the bone marrow. The production increases as neutrophils enter circulation and increases further upon migration to tissues as observed in skin windows and when blood neutrophils are incubated with granulocyte colony-stimulating factor. Neutrophils from patients with A1AT-deficiency carrying the (PI)ZZ mutation in the A1AT gene appeared structurally and functionally normal, but A1AT produced in leukocytes of these patients lacked the ability to bind proteases efficiently. We conclude that A1AT generation and release from neutrophils add significantly to the antiprotease levels in tissues during inflammation. Impaired binding of neutrophil A1AT to serine proteases in patients with (PI)ZZ mutations may enhance their susceptibility to the development of emphysema.
Collapse
Affiliation(s)
- Stine N Clemmensen
- The Granulocyte Research Laboratory, Department of Hematology, National University Hospital, Copenhagen, Denmark
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
de A. Paes AM, Veríssimo-Filho S, Guimarães LL, Silva ACB, Takiuti JT, Santos CXC, Janiszewski M, Laurindo FRM, Lopes LR. Protein disulfide isomerase redox-dependent association with p47phox: evidence for an organizer role in leukocyte NADPH oxidase activation. J Leukoc Biol 2011; 90:799-810. [DOI: 10.1189/jlb.0610324] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
|
24
|
Elbjeirami WM, Donnachie EM, Burns AR, Smith CW. Endothelium-derived GM-CSF influences expression of oncostatin M. Am J Physiol Cell Physiol 2011; 301:C947-53. [PMID: 21775705 DOI: 10.1152/ajpcell.00205.2011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
During and after transendothelial migration, neutrophils undergo a number of phenotypic changes resulting from encounters with endothelium-derived factors. This report uses an in vitro model with human umbilical vein endothelial cells and isolated human neutrophils to examine the effects of two locally derived cytokines, granulocyte (G)-macrophage (M) colony-stimulating factor (GM-CSF) and G-CSF, on oncostatin M (OSM) expression. Neutrophils contacting activated HUVEC expressed and released increased amounts of oncostatin M (OSM), a proinflammatory cytokine known to induce polymorphonuclear neutrophil adhesion and chemotaxis. Neutrophil transendothelial migration resulted in threefold higher OSM expression and protein levels compared with nontransmigrated cells. Addition of anti-GM-CSF neutralizing antibody reduced OSM expression level but anti-G-CSF was without effect. GM-CSF but not G-CSF protein addition to cultures of isolated neutrophils resulted in a significant increase in OSM protein secretion. However, inhibition of β(2) integrins by neutralizing antibody significantly reduced GM-CSF-induced OSM production indicating this phenomenon is adhesion dependent. Thus cytokine-stimulated endothelial cells can produce sufficient quantities of GM-CSF to influence in an adhesion-dependent manner, the phenotypic characteristics of neutrophils resulting in the latter's transmigration. Both transmigration and adhesion phenomenon lead to increased production of OSM by neutrophils that then play a major role in inflammatory response.
Collapse
Affiliation(s)
- Wafa M Elbjeirami
- Department of Pathology, Laboratory Medicine, King Hussein Cancer Center, Amman, Jordan.
| | | | | | | |
Collapse
|
25
|
Marois L, Vaillancourt M, Paré G, Gagné V, Fernandes MJG, Rollet-Labelle E, Naccache PH. CIN85 modulates the down-regulation of Fc gammaRIIa expression and function by c-Cbl in a PKC-dependent manner in human neutrophils. J Biol Chem 2011; 286:15073-84. [PMID: 21372129 PMCID: PMC3083175 DOI: 10.1074/jbc.m110.213660] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Revised: 02/21/2011] [Indexed: 01/04/2023] Open
Abstract
We previously described a non-classical mechanism that arrests FcγRIIa signaling in human neutrophils once engaged by immune complexes or opsonized pathogens. The engagement of FcγRIIa leads to its ubiquitination by the ubiquitin ligase c-Cbl and degradation by the proteasome. Herein, we further examined some of the events regulating this novel pathway. The adaptor protein CIN85 was described in other systems to be involved in the regulation of the c-Cbl-dependent pathway. We found that CIN85 is expressed in human neutrophils and that it translocates like c-Cbl from the cytosol to the plasma membrane following receptor cross-linking. CIN85 was also recruited to the same subset of high density detergent-resistant membrane fractions in which stimulated FcγRIIa partitioned with c-Cbl. The integrity of these microdomains is essential to the FcγRIIa degradation process because the cholesterol-depleting agent methyl-β-cyclodextrin inhibits this event. Silencing the expression of CIN85 by siRNA in dibutyryl cyclic AMP-differentiated PLB 985 cells prevented FcγRIIa degradation and increased IgG-mediated phagocytosis. Confocal microscopy revealed that the presence of CIN85 is essential to the proper sorting of FcγRIIa during endocytosis. We also provide direct evidence that CIN85 is a substrate of serine/threonine kinase PKCs. Classical PKCs positively regulate FcγRIIa ubiquitination and degradation because these events were inhibited by Gö6976, a classical PKC inhibitor. We conclude that the ubiquitination and degradation of stimulated FcγRIIa mediated by c-Cbl are positively regulated by the adaptor protein CIN85 in a PKC-dependent manner and that these events contribute to the termination of FcγRIIa signaling.
Collapse
Affiliation(s)
- Louis Marois
- From the Centre de Recherche en Rhumatologie et Immunologie, Centre de Recherche du CHUQ, Département de Microbiologie-Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, Québec G1V 4G2, Canada
| | - Myriam Vaillancourt
- From the Centre de Recherche en Rhumatologie et Immunologie, Centre de Recherche du CHUQ, Département de Microbiologie-Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, Québec G1V 4G2, Canada
| | - Guillaume Paré
- From the Centre de Recherche en Rhumatologie et Immunologie, Centre de Recherche du CHUQ, Département de Microbiologie-Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, Québec G1V 4G2, Canada
| | - Valérie Gagné
- From the Centre de Recherche en Rhumatologie et Immunologie, Centre de Recherche du CHUQ, Département de Microbiologie-Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, Québec G1V 4G2, Canada
| | - Maria J. G. Fernandes
- From the Centre de Recherche en Rhumatologie et Immunologie, Centre de Recherche du CHUQ, Département de Microbiologie-Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, Québec G1V 4G2, Canada
| | - Emmanuelle Rollet-Labelle
- From the Centre de Recherche en Rhumatologie et Immunologie, Centre de Recherche du CHUQ, Département de Microbiologie-Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, Québec G1V 4G2, Canada
| | - Paul H. Naccache
- From the Centre de Recherche en Rhumatologie et Immunologie, Centre de Recherche du CHUQ, Département de Microbiologie-Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, Québec G1V 4G2, Canada
| |
Collapse
|
26
|
Jerke U, Rolle S, Dittmar G, Bayat B, Santoso S, Sporbert A, Luft F, Kettritz R. Complement receptor Mac-1 is an adaptor for NB1 (CD177)-mediated PR3-ANCA neutrophil activation. J Biol Chem 2011; 286:7070-81. [PMID: 21193407 PMCID: PMC3044964 DOI: 10.1074/jbc.m110.171256] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Revised: 12/04/2010] [Indexed: 11/06/2022] Open
Abstract
The glycosylphosphatidylinositol (GPI)-anchored neutrophil-specific receptor NB1 (CD177) presents the autoantigen proteinase 3 (PR3) on the membrane of a neutrophil subset. PR3-ANCA-activated neutrophils participate in small-vessel vasculitis. Since NB1 lacks an intracellular domain, we characterized components of the NB1 signaling complex that are pivotal for neutrophil activation. PR3-ANCA resulted in degranulation and superoxide production in the mNB1(pos)/PR3(high) neutrophils, but not in the mNB1(neg)/PR3(low) subset, whereas MPO-ANCA and fMLP caused similar responses. The NB1 signaling complex that was precipitated from plasma membranes contained the transmembrane receptor Mac-1 (CD11b/CD18) as shown by MS/MS analysis and immunoblotting. NB1 co-precipitation was less for CD11a and not detectable for CD11c. NB1 showed direct protein-protein interactions with both CD11b and CD11a by surface plasmon resonance analysis (SPR). However, when these integrins were presented as heterodimeric transmembrane proteins on transfected cells, only CD11b/CD18 (Mac-1)-transfected cells adhered to immobilized NB1 protein. This adhesion was inhibited by mAb against NB1, CD11b, and CD18. NB1, PR3, and Mac-1 were located within lipid rafts. In addition, confocal microscopy showed the strongest NB1 co-localization with CD11b and CD18 on the neutrophil. Stimulation with NB1-activating mAb triggered degranulation and superoxide production in mNB1(pos)/mPR3(high) neutrophils, and this effect was reduced using blocking antibodies to CD11b. CD11b blockade also inhibited PR3-ANCA-induced neutrophil activation, even when β2-integrin ligand-dependent signals were omitted. We establish the pivotal role of the NB1-Mac-1 receptor interaction for PR3-ANCA-mediated neutrophil activation.
Collapse
Affiliation(s)
- Uwe Jerke
- From the Medical Faculty of the Charité, Experimental and Clinical Research Center, Berlin, Germany
| | - Susanne Rolle
- From the Medical Faculty of the Charité, Experimental and Clinical Research Center, Berlin, Germany
| | - Gunnar Dittmar
- the Max-Delbrück-Center for Molecular Medicine, Berlin 13125, Germany, and
| | - Behnaz Bayat
- the Institut for Clinical Immunology and Transfusion Medicine, Justus von Liebig University, Giessen 35385, Germany
| | - Sentot Santoso
- the Institut for Clinical Immunology and Transfusion Medicine, Justus von Liebig University, Giessen 35385, Germany
| | - Anje Sporbert
- the Max-Delbrück-Center for Molecular Medicine, Berlin 13125, Germany, and
| | - Friedrich Luft
- From the Medical Faculty of the Charité, Experimental and Clinical Research Center, Berlin, Germany
| | - Ralph Kettritz
- From the Medical Faculty of the Charité, Experimental and Clinical Research Center, Berlin, Germany
| |
Collapse
|
27
|
Faugaret D, Chouinard FC, Harbour D, El azreq MA, Bourgoin SG. An essential role for phospholipase D in the recruitment of vesicle amine transport protein-1 to membranes in human neutrophils. Biochem Pharmacol 2011; 81:144-56. [PMID: 20858461 DOI: 10.1016/j.bcp.2010.09.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Revised: 09/08/2010] [Accepted: 09/10/2010] [Indexed: 12/13/2022]
Abstract
Although phosphatidic acid (PA) regulates a wide variety of physiological processes, its targets remain poorly characterized in human neutrophils. By co-sedimentation with PA-containing vesicles we identified several PA-binding proteins including vesicle amine transport protein-1 (VAT-1), Annexin A3 (ANXA3), Rac2, Cdc42 and RhoG in neutrophil cytosol. Except for ANXA3, protein binding to PA-containing liposomes was calcium-independent. Cdc42 and RhoG preferentially interacted with PA whereas VAT-1 bound to PA or phosphatidylserine with the same affinity. VAT-1 translocated to neutrophil membranes upon N-formyl-methionyl-leucyl-phenylalanine (fMLF) stimulation. Inhibition of fMLF-induced PLD activity with the Src kinase inhibitor PP2, the selective inhibitor of PLD FIPI, or of PA formation with primary alcohols reduced VAT-1 translocation. In contrast, inhibition of PA hydrolysis with propranolol enhanced fMLF-mediated VAT-1 recruitment to membranes. PMA also redistributed VAT-1 to membranes in a PKC- and PLD-dependent manner. Though fMLF and PMA increased VAT-1 phosphorylation, different kinases appear to be involved. Cell fractionation revealed that a pool of VAT-1 was co-localized with primary, secondary and tertiary granules and plasma membrane markers in resting neutrophils. Stimulation with fMLF enhanced VAT-1 co-localization with CD32a, a plasma membrane marker. Confocal microscopy revealed that VAT-1 decorates granular structures at the cell periphery and double labeling with VAT-1/lactoferrin antibodies showed a partial co-localization with secondary granules in control and fMLF-stimulated cells. Characterization of these putative PA-binding proteins constitutes another step forward for a better understanding of the role of PLD-derived PA in neutrophil physiology.
Collapse
Affiliation(s)
- Delphine Faugaret
- Centre de Recherche en Rhumatologie et Immunologie, Centre de recherche du CHUQ-CHUL et Faculté de Médecine de l'Université Laval, 2705 Boulevard Laurier, local T1-49, Québec, QC, G1V 4G2, Canada.
| | | | | | | | | |
Collapse
|
28
|
Marois L, Paré G, Vaillancourt M, Rollet-Labelle E, Naccache PH. Fc gammaRIIIb triggers raft-dependent calcium influx in IgG-mediated responses in human neutrophils. J Biol Chem 2010; 286:3509-19. [PMID: 21123174 DOI: 10.1074/jbc.m110.169516] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human neutrophils constitutively express a unique combination of FcγRs, namely FcγRIIa and FcγRIIIb. Numerous lines of evidence support the concept that these FcγRs generate only partially characterized intracellular signals. However, despite the fact that both receptors are likely to be engaged simultaneously in a physiological setting, no recent publications have investigated the distinct, although partially convergent, results of their joint activation in IgG-dependent responses. To examine the significance of the co-expression of FcγRIIa and FcγRIIIb on human neutrophils, we analyzed the neutrophil responses to stimuli that engage these FcγRs, namely the phagocytosis of human IgG-opsonized zymosan and the responses to heat-aggregated IgGs. Blocking antibodies to either FcγR significantly decreased the phagocytic index and the stimulated production of superoxide anions. Both receptors are required for optimal IgG-dependent responses by human neutrophils. On the other hand, only blocking antibodies to FcγRIIIb, but not to FcγRIIa, inhibited the mobilization of calcium in response to heat-aggregated IgGs. Furthermore, phagocytosis of IgG-opsonized zymosan by human neutrophils required an extracellular influx of calcium that was blocked only by antibodies against FcγRIIIb. We also observed that this calcium influx as well as the IgG-dependent phagocytosis were dependent on the integrity of the plasma membrane detergent-resistant microdomains to which both isoforms were recruited following stimulation by heat-aggregated IgGs. These data clarify the mechanisms that regulate the FcγRs constitutively expressed on human neutrophils, describe a specific contribution of FcγRIIIb at the level of the mobilization of calcium, and provide evidence for a crucial role of detergent-resistant microdomains in this process.
Collapse
Affiliation(s)
- Louis Marois
- Centre de Recherche du Centre Hospitalier Universitaire de Québec, Department of Microbiology-Infectiology and Immunology, Faculty of Medicine, Laval University, Québec City, Québec G1V 4G2, Canada
| | | | | | | | | |
Collapse
|
29
|
Luerman GC, Powell DW, Uriarte SM, Cummins TD, Merchant ML, Ward RA, McLeish KR. Identification of phosphoproteins associated with human neutrophil granules following chemotactic peptide stimulation. Mol Cell Proteomics 2010; 10:M110.001552. [PMID: 21097543 DOI: 10.1074/mcp.m110.001552] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Regulated exocytosis of neutrophil intracellular storage granules is necessary for neutrophil participation in the inflammatory response. The signal transduction pathways that participate in neutrophil exocytosis are complex and poorly defined. Several protein kinases, including p38 MAPK and the nonreceptor tyrosine kinases, Hck and Fgr, participate in this response. However, the downstream targets of these kinases that regulate exocytosis are unknown. The present study combined a novel inhibitor of neutrophil exocytosis with proteomic techniques to identify phosphopeptides and phosphoproteins from a population of gelatinase and specific granules isolated from unstimulated and fMLF-stimulated neutrophils. To prevent loss of granule-associated phosphoproteins upon exocytosis, neutrophils were pretreated with a TAT-fusion protein containing a SNARE domain from SNAP-23 (TAT-SNAP-23), which inhibited fMLF-stimulated CD66b-containing granule exocytosis by 100±10%. Following TAT-SNAP-23 pretreatment, neutrophils were stimulated with the chemotactic peptide fMLF for 0 min, 1 min, and 2 min. Granules were isolated by gradient centrifugation and subjected to proteolytic digestion with trypsin or chymotrypsin to obtain peptides from the outer surface of the granule. Phosphopeptides were enriched by gallium or TiO2 affinity chromatography, and phosphopeptides and phosphorylation sites were identified by reversed phase high performance liquid chromatography-electrospray ionization-tandem MS. This resulted in the identification of 243 unique phosphopeptides corresponding to 235 proteins, including known regulators of vesicle trafficking. The analysis identified 79 phosphoproteins from resting neutrophils, 81 following 1 min of fMLF stimulation, and 118 following 2 min of stimulation. Bioinformatic analysis identified a potential Src tyrosine kinase motif from a phosphopeptide corresponding to G protein coupled receptor kinase 5 (GRK5). Phosphorylation of GRK5 by Src was confirmed by an in vitro kinase reaction and by precursor ion scanning for phospho-tyrosine specific immonium ions containing Tyr251 and Tyr253. Immunoprecipitation of phosphorylated GRK5 from intact cells was reduced by a Src inhibitor. In conclusion, targets of signal transduction pathways were identified that are candidates to regulate neutrophil granule exocytosis.
Collapse
Affiliation(s)
- Gregory C Luerman
- Department of Biochemistry and Molecular Biology, University of Louisville, Louisville, KY 40202, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
The prolyl isomerase Pin1 acts as a novel molecular switch for TNF-alpha-induced priming of the NADPH oxidase in human neutrophils. Blood 2010; 116:5795-802. [PMID: 20956805 DOI: 10.1182/blood-2010-03-273094] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Neutrophils play a key role in host defense by releasing reactive oxygen species (ROS). However, excessive ROS production by neutrophil nicotinamide adenine dinucleotide phosphate (NADPH) oxidase can damage bystander tissues, thereby contributing to inflammatory diseases. Tumor necrosis factor-α (TNF-α), a major mediator of inflammation, does not activate NADPH oxidase but induces a state of hyperresponsiveness to subsequent stimuli, an action known as priming. The molecular mechanisms by which TNF-α primes the NADPH oxidase are unknown. Here we show that Pin1, a unique cis-trans prolyl isomerase, is a previously unrecognized regulator of TNF-α-induced NADPH oxidase hyperactivation. We first showed that Pin1 is expressed in neutrophil cytosol and that its activity is markedly enhanced by TNF-α. Inhibition of Pin1 activity with juglone or with a specific peptide inhibitor abrogated TNF-α-induced priming of neutrophil ROS production induced by N-formyl-methionyl-leucyl-phenylalanine peptide (fMLF). TNF-α enhanced fMLF-induced Pin1 and p47phox translocation to the membranes and juglone inhibited this process. Pin1 binds to p47phox via phosphorylated Ser345, thereby inducing conformational changes that facilitate p47phox phosphorylation on other sites by protein kinase C. These findings indicate that Pin1 is critical for TNF-α-induced priming of NADPH oxidase and for excessive ROS production. Pin1 inhibition could potentially represent a novel anti-inflammatory strategy.
Collapse
|
31
|
Niessen J, Jedlitschky G, Greinacher A, Kroemer HK. Isolation of platelet granules. ACTA ACUST UNITED AC 2010; Chapter 3:Unit 3.35. [PMID: 20235104 DOI: 10.1002/0471143030.cb0335s46] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Functional analysis of platelet intracellular structures requires isolation and purification of these cellular compartments. With regard to the function of platelets, both, dense (delta) and alpha granules are relevant target structures. However, the availability of sufficient purification protocols for these structures is rather limited. This unit describes two protocols for isolation and purification of platelet granule structures. The Basic Protocol describes a new technique based on immunolabeling with target-specific antibodies followed by magnetic sorting, whereas the Alternate Protocol describes the more traditional procedure based on differential centrifugation and density-based sedimentation. For both methods, the degree of granule purification can be most easily determined by immunoblotting using various antibodies that recognize structure-specific proteins. The immunomagnetic sorting method is especially good for studies requiring highly purified material (e.g., for the identification of specific transporters and receptors).
Collapse
Affiliation(s)
- Juliane Niessen
- Department of Pharmacology, Research Center of Pharmacology and Experimental Therapeutics, Ernst-Moritz-Arndt-University, Greifswald, Germany
| | | | | | | |
Collapse
|
32
|
Rosas M, Thomas B, Stacey M, Gordon S, Taylor PR. The myeloid 7/4-antigen defines recently generated inflammatory macrophages and is synonymous with Ly-6B. J Leukoc Biol 2010; 88:169-80. [PMID: 20400676 PMCID: PMC2892525 DOI: 10.1189/jlb.0809548] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
This study aimed to identify the inflammation-associated 7/4-antigen, which is highly expressed on neutrophils, inflammatory monocytes, some activated macrophages, as well as on bone marrow myeloid-restricted progenitors. The high expression on inflammatory cells is suggestive of a role in inflammation and makes the 7/4-antigen a potential target for the manipulation of inflammatory cells. Consistent with this, the 7/4-antibody mediates specific depletion of 7/4-expressing neutrophils and monocytes. We have identified the 7/4-antigen as a 25- to 30-kDa GPI-anchored glycoprotein synonymous with the Ly-6B.2 alloantigen. We characterized the expression of Ly-6B during the inflammatory reaction induced by zymosan. During the later stages of an experimental, acute, self-resolving inflammatory response, we found that Ly-6B is differentially expressed on macrophages. Ly-6B-expressing macrophages also express more MHCII, CIITA, CCR2, Ly-6C, and CD62L than the Ly-6B-negative macrophages, which in turn, express more of the resident tissue macrophage marker SIGN-R1 and higher CD11b and F4/80. Ly-6B-expressing macrophages incorporate more BrdU than their Ly-6B-negative contemporaries when fed during the resolution phase of the acute inflammatory response. Thus, Ly-6B expression on mature macrophages defines a subset of recently generated inflammatory macrophages that retain monocytic markers and is hence a surrogate marker of macrophage turnover in inflammatory lesions. The definition of the 7/4:Ly-6B antigen will allow further characterization and specific modulation of Ly-6B-expressing cells in vivo.
Collapse
Affiliation(s)
- Marcela Rosas
- Infection, Immunity and Biochemistry, Cardiff University School of Medicine, Cardiff, UK
| | | | | | | | | |
Collapse
|
33
|
Painter RG, Marrero L, Lombard GA, Valentine VG, Nauseef WM, Wang G. CFTR-mediated halide transport in phagosomes of human neutrophils. J Leukoc Biol 2010; 87:933-42. [PMID: 20089668 DOI: 10.1189/jlb.1009655] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Chloride serves as a critical component of innate host defense against infection, providing the substrate for MPO-catalyzed production of HOCl in the phagosome of human neutrophils. Here, we used halide-specific fluorescent sensors covalently coupled to zymosan particles to investigate the kinetics of chloride and iodide transport in phagosomes of human neutrophils. Using the self-ratioable fluorescent probe specific for chloride anion, we measured chloride dynamics within phagosomes in response to extracellular chloride changes by quantitative fluorescence microscopy. Under the experimental conditions used, normal neutrophils showed rapid phagosomal chloride uptake with an initial influx rate of 0.31 +/- 0.04 mM/s (n=5). GlyH-101, a CFTR(inh), decreased the rate of uptake in a dose-dependent manner. Neutrophils isolated from CF patients showed a significantly slower rate of chloride uptake by phagosomes, having an initial influx rate of 0.043 +/- 0.012 mM/s (n=5). Interestingly, the steady-state level of chloride in CF phagosomes was approximately 26 mM, significantly lower than that of the control ( approximately 68 mM). As CFTR transports chloride as well as other halides, we conjugated an iodide-sensitive probe as an independent approach to confirm the results. The dynamics of iodide uptake by neutrophil phagosomes were monitored by flow cytometry. CFTR(inh)172 blocked 40-50% of the overall iodide uptake by phagosomes in normal neutrophils. In a parallel manner, the level of iodide uptake by CF phagosomes was only 20-30% of that of the control. Taken together, these results implicate CFTR in transporting halides into the phagosomal lumen.
Collapse
Affiliation(s)
- Richard G Painter
- Department of Medicine, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112, USA
| | | | | | | | | | | |
Collapse
|
34
|
Johnson JL, Brzezinska AA, Tolmachova T, Munafo DB, Ellis BA, Seabra MC, Hong H, Catz SD. Rab27a and Rab27b regulate neutrophil azurophilic granule exocytosis and NADPH oxidase activity by independent mechanisms. Traffic 2009; 11:533-47. [PMID: 20028487 DOI: 10.1111/j.1600-0854.2009.01029.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Neutrophils rely on exocytosis to mobilize receptors and adhesion molecules and to release microbicidal factors. This process should be strictly regulated because uncontrolled release of toxic proteins would be injurious to the host. In vivo studies showed that the small GTPase Rab27a regulates azurophilic granule exocytosis. Using mouse neutrophils deficient in Rab27a (Rab27a(ash/ash)), Rab27b [Rab27b knockout (KO)] or both [Rab27a/b double KO (DoKo)], we investigated the role of the Rab27 isoforms in neutrophils. We found that both Rab27a and Rab27b deficiencies impaired azurophilic granule exocytosis. Rab27a(ash/ash) neutrophils showed upregulation of Rab27b expression which did not compensate for the secretory defects observed in Rab27a-deficient cells, suggesting that Rab27 isoforms play independent roles in neutrophil exocytosis. Total internal reflection fluorescence microscopy analysis showed that Rab27a(ash/ash) and Rab27b KO neutrophils have a decreased number of azurophilic granules near the plasma membrane. The effect was exacerbated in Rab27a/b DoKo neutrophils. Rab27-deficient neutrophils showed impaired activation of the reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase at the plasma membrane although intraphagosomal reactive oxygen species (ROS) production was not affected. Exocytosis of secretory vesicles in Rab27-deficient neutrophils was functional, suggesting that Rab27 GTPases selectively control the exocytosis of neutrophil granules.
Collapse
Affiliation(s)
- Jennifer L Johnson
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Neagoe PE, Brkovic A, Hajjar F, Sirois MG. Expression and release of angiopoietin-1 from human neutrophils: intracellular mechanisms. Growth Factors 2009; 27:335-44. [PMID: 19919521 DOI: 10.3109/08977190903155043] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
We recently demonstrated that Tie2 receptor activation on human neutrophils by both angiopoietins (Ang1 and Ang2) promoted platelet-activating factor synthesis, beta(2)-integrin activation, and cell migration. Herein, we wanted to assess if human neutrophils express angiopoietins and further delineate their mechanisms of release. Employing Reverse transcriptase-polymerase chain reaction, Real time quantitative transcriptase-polymerase chain reaction, FACScan analysis and ELISA approaches, we observed that neutrophils express Ang1 but not Ang2. For each condition, vascular endothelial growth factor (VEGF) detection was performed as positive control. Using nitrogen cavitation, we observed that Ang1 is localized in the cytosolic fraction whereas VEGF is found in beta-granules. Treatment of neutrophils with phorbol myristate acetate (PMA), N-Formyl-Met-Leu-Phe (fMLP) and tumor necrosis factor-alpha (TNF-alpha) induced VEGF release. Maximal effect was observed with PMA (80 nM) stimulation inducing a complete release of VEGF content (565 +/- 100 pg/ml; 6 x 10(6) neutrophils), corresponding to a 18.9-fold increase as compared to phosphate buffer saline (PBS) treated neutrophils. By contrast, only a treatment with PMA (80 nM) induced Ang1 release. PMA treatment induced also a complete release of Ang1 (661 +/- 148 pg/ml; 6 x 10(6) neutrophils), corresponding to 2.8-fold increase as compared to PBS-treated neutrophils. In both cases, PMA-mediated release of VEGF and Ang1 was nearly maximal by 15 min. Finally, we observed that the induction of Ang1 release was calcium-independent whereas VEGF release was not. These data demonstrate the capacity of human neutrophils to synthesize Ang1, which is stored and released differently as compared to VEGF. These data suggest a different cascade of events regarding the distribution of selected growth factors during inflammation and angiogenesis.
Collapse
Affiliation(s)
- Paul-Eduard Neagoe
- Montreal Heart Institute, Research Center and Department of Pharmacology, Université de Montréal, Montreal, QC, Canada
| | | | | | | |
Collapse
|
36
|
Yersinia pestis two-component gene regulatory systems promote survival in human neutrophils. Infect Immun 2009; 78:773-82. [PMID: 19933831 DOI: 10.1128/iai.00718-09] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Human polymorphonuclear leukocytes (PMNs, or neutrophils) are the most abundant innate immune cell and kill most invading bacteria through combined activities of reactive oxygen species (ROS) and antimicrobial granule constituents. Pathogens such as Yersinia pestis resist destruction by the innate immune system and are able to survive in macrophages and neutrophils. The specific molecular mechanisms used by Y. pestis to survive following phagocytosis by human PMNs are incompletely defined. To gain insight into factors that govern Y. pestis intracellular survival in neutrophils, we inactivated 25 two-component gene regulatory systems (TCSs) with known or inferred function and assessed susceptibility of these mutant strains to human PMN granule extracts. Y. pestis strains deficient for PhoPQ, KdpED, CheY, CvgSY, and CpxRA TCSs were selected for further analysis, and all five strains were altered for survival following interaction with PMNs. Of these five strains, only Y. pestis DeltaphoPQ demonstrated global sensitivity to a panel of seven individual neutrophil antimicrobial peptides and serine proteases. Notably, Y. pestis DeltaphoPQ was deficient for intracellular survival in PMNs. Iterative analysis with Y. pestis strains lacking the PhoP-regulated genes ugd and pmrK indicated that the mechanism most likely responsible for increased resistance to killing is 4-amino-4-deoxy-l-arabinose modification of lipid A. Together, the data provide new information about Y. pestis evasion of the innate immune system.
Collapse
|
37
|
Brunner Y, Schvartz D, Couté Y, Sanchez JC. Proteomics of regulated secretory organelles. MASS SPECTROMETRY REVIEWS 2009; 28:844-867. [PMID: 19301366 DOI: 10.1002/mas.20211] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Regulated secretory organelles are important subcellular structures of living cells that allow the release in the extracellular space of crucial compounds, such as hormones and neurotransmitters. Therefore, the regulation of biogenesis, trafficking, and exocytosis of regulated secretory organelles has been intensively studied during the last 30 years. However, due to the large number of different regulated secretory organelles, only a few of them have been specifically characterized. New insights into regulated secretory organelles open crucial perspectives for a better comprehension of the mechanisms that govern cell secretion. The combination of subcellular fractionation, protein separation, and mass spectrometry is also possible to study regulated secretory organelles at the proteome level. In this review, we present different strategies used to isolate regulated secretory organelles, separate their protein content, and identify the proteins by mass spectrometry. The biological significance of regulated secretory organelles-proteomic analysis is discussed as well.
Collapse
Affiliation(s)
- Yannick Brunner
- Biomedical Proteomics Research Group, University Medical Center, Geneva, Switzerland
| | | | | | | |
Collapse
|
38
|
Popa-Nita O, Proulx S, Paré G, Rollet-Labelle E, Naccache PH. Crystal-induced neutrophil activation: XI. Implication and novel roles of classical protein kinase C. THE JOURNAL OF IMMUNOLOGY 2009; 183:2104-14. [PMID: 19596988 DOI: 10.4049/jimmunol.0900906] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Monosodium urate (MSU) crystals are among the most potent proinflammatory stimuli, and an innate immune inflammatory response to the crystal surface is involved in the pathology of gouty arthritis. Furthermore, MSU crystals have recently been identified as danger signals able to induce the maturation of dendritic cells. Release of the crystals into the joint cavity promotes an acute inflammation characterized by a massive infiltration of neutrophils that leads to tissue damage. Protein kinase C (PKC) represents a family of serine/threonine kinases that play central signaling roles in multiple cellular responses. This family of kinases is divided into three subfamilies based on second messenger requirements: conventional (or classical), novel, and atypical. Despite their role in signal transduction, very little is known about the involvement of the PKC family in the inflammatory reaction induced by MSU crystals. In the present study, we show that MSU crystals activate conventional PKC isoforms, and that this activation is necessary for the MSU crystal-induced degranulation and generation of a chemotactic activity in the supernatants of MSU crystal-stimulated human neutrophils. Evidence is also obtained that the tyrosine kinase Syk is a substrate of PKC and that the PKC-mediated serine phosphorylation of Syk is necessary to its interaction with the regulatory subunit of PI3K kinases (p85) and thus to the subsequent activation of these lipid kinases. These results suggest novel means of modulating neutrophil responses (through the specific regulation of PKC) during the acute phase of MSU crystal-induced inflammation.
Collapse
Affiliation(s)
- Oana Popa-Nita
- Department of Medicine, Faculty of Medicine, Centre de Recherche en Rhumatologie et Immunologie, Université Laval, Quebec City, Quebec, Canada
| | | | | | | | | |
Collapse
|
39
|
Singh A, Zarember KA, Kuhns DB, Gallin JI. Impaired priming and activation of the neutrophil NADPH oxidase in patients with IRAK4 or NEMO deficiency. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2009; 182:6410-7. [PMID: 19414794 PMCID: PMC3733113 DOI: 10.4049/jimmunol.0802512] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The NADPH oxidase (NOX), an oligomeric enzyme, plays a key role in polymorphonuclear neutrophil (PMN)-mediated host defense by producing cytotoxic superoxide anion (O(2)( )). Whereas in vitro and biochemical studies have examined the assembly and activation of this important host immune defense system, few studies have examined the function of NOX in human patients with primary immunodeficiency other than chronic granulomatous disease. We studied the activation of NOX in PMN from patients with two distinct immunodeficiencies, IL-1R-associated kinase (IRAK)4 deficiency and NF-kappaB essential modulator (NEMO or IkappaB kinase gamma) deficiency. We observed impaired O(2)( ) generation by LPS-treated and fMLP-activated IRAK4-deficient PMN that correlated with decreased phosphorylation of p47(phox) and subnormal translocation of p47(phox), p67(phox), Rac2, and gp91(phox)/Nox2 to the membranes indicating that TLR4 signaling to the NOX activation pathway requires IRAK4. NEMO-deficient PMN generated significantly less O(2)( ) in response to LPS-primed fMLP and translocated less p67(phox) than normal PMN, although p47(phox) and Rac2 translocation were normal. Generally, responses of NEMO-deficient cells were intermediate between IRAK4-deficient cells and normal cells. Decreased LPS- and fMLP-induced phosphorylation of p38 MAPK in both IRAK4- and NEMO-deficient PMN implicates additional signal transduction pathways in regulating PMN activation by LPS and fMLP. Decreased activation of NOX may contribute to the increased risk of infection seen in patients with IRAK4 and NEMO deficiency.
Collapse
Affiliation(s)
- Anjali Singh
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, NIH, 10 Center Drive, Room 10CRC/5-3816, MSC-1456, Bethesda, MD, 20892
| | - Kol A. Zarember
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, NIH, 10 Center Drive, Room 10CRC/5-3816, MSC-1456, Bethesda, MD, 20892
| | - Douglas B. Kuhns
- Clinical Services Program, SAIC-Frederick, Inc., NCI-Frederick, Frederick, MD 21702
| | - John I. Gallin
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, NIH, 10 Center Drive, Room 10CRC/5-3816, MSC-1456, Bethesda, MD, 20892
| |
Collapse
|
40
|
Marois L, Vaillancourt M, Marois S, Proulx S, Paré G, Rollet-Labelle E, Naccache PH. The ubiquitin ligase c-Cbl down-regulates FcgammaRIIa activation in human neutrophils. THE JOURNAL OF IMMUNOLOGY 2009; 182:2374-84. [PMID: 19201892 DOI: 10.4049/jimmunol.0801420] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Little is known about the mechanisms that arrest FcgammaRIIa signaling in human neutrophils once engaged by immune complexes or opsonized pathogens. In our previous studies, we observed a loss of immunoreactivity of Abs directed against FcgammaRIIa following its cross-linking. In this study, we report on the mechanisms involved in this event. A stimulated internalization of FcgammaRIIa leading to the down-regulation of its surface expression was observed by flow cytometry and confocal microscopy. Immunoprecipitation of the receptor showed that FcgammaRIIa is ubiquitinated after stimulation. MG132 and clasto-lactacystin beta-lactone inhibited the loss of immunoreactivity of FcgammaRIIa, suggesting that this receptor was down-regulated via the proteasomal pathway. The E3 ubiquitin ligase c-Cbl was found to translocate from the cytosol to the plasma membrane following receptor cross-linking. Furthermore, c-Cbl was recruited to the same subset of high-density, detergent-resistant membrane fractions as stimulated FcgammaRIIa itself. Silencing the expression of c-Cbl by small interfering RNA decreased FcgammaRIIa ubiquitination and prevented its degradation without affecting the internalisation process. It also prolonged the stimulation of the tyrosine phosphorylation response to the cross-linking of the receptor. We conclude that c-Cbl mediates the ubiquitination of stimulated FcgammaRIIa and thereby contributes to the termination of FcgammaRIIa signaling via its proteasomal degradation, thus leading to the down-regulation of neutrophil signalisation and function (phagocytosis) through this receptor.
Collapse
Affiliation(s)
- Louis Marois
- Centre de recherche en rhumatologie et immunologie, Centre de recherche du Centre hospitalier universitaire de Québec, Department of Medicine, Faculty of Medicine, Laval University, Quebec, Canada
| | | | | | | | | | | | | |
Collapse
|
41
|
Soehnlein O, Kai-Larsen Y, Frithiof R, Sorensen OE, Kenne E, Scharffetter-Kochanek K, Eriksson EE, Herwald H, Agerberth B, Lindbom L. Neutrophil primary granule proteins HBP and HNP1-3 boost bacterial phagocytosis by human and murine macrophages. J Clin Invest 2008; 118:3491-502. [PMID: 18787642 DOI: 10.1172/jci35740] [Citation(s) in RCA: 166] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2008] [Accepted: 08/06/2008] [Indexed: 01/13/2023] Open
Abstract
In acute inflammation, infiltrating polymorphonuclear leukocytes (also known as PMNs) release preformed granule proteins having multitudinous effects on the surrounding environment. Here we present what we believe to be a novel role for PMN-derived proteins in bacterial phagocytosis by both human and murine macrophages. Exposure of macrophages to PMN secretion markedly enhanced phagocytosis of IgG-opsonized Staphylococcus aureus both in vitro and in murine models in vivo. PMN secretion activated macrophages, resulting in upregulation of the Fcgamma receptors CD32 and CD64, which then mediated the enhanced phagocytosis of IgG-opsonized bacteria. The phagocytosis-stimulating activity within the PMN secretion was found to be due to proteins released from PMN primary granules; thorough investigation revealed heparin-binding protein (HBP) and human neutrophil peptides 1-3 (HNP1-3) as the mediators of the macrophage response to PMN secretion. The use of blocking antibodies and knockout mice revealed that HBP acts via beta2 integrins, but the receptor for HNP1-3 remained unclear. Mechanistically, HBP and HNP1-3 triggered macrophage release of TNF-alpha and IFN-gamma, which acted in an autocrine loop to enhance expression of CD32 and CD64 and thereby enhance phagocytosis. Thus, we attribute what may be a novel role for PMN granule proteins in regulating the immune response to bacterial infections.
Collapse
Affiliation(s)
- Oliver Soehnlein
- Department of Physiology and Pharmacology and Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
von Vietinghoff S, Eulenberg C, Wellner M, Luft FC, Kettritz R. Neutrophil surface presentation of the anti-neutrophil cytoplasmic antibody-antigen proteinase 3 depends on N-terminal processing. Clin Exp Immunol 2008; 152:508-16. [PMID: 18462208 DOI: 10.1111/j.1365-2249.2008.03663.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The neutrophil serine protease proteinase 3 (PR3) is a main autoantigen in anti-neutrophil cytoplasmic antibody-associated vasculitis. PR3 surface presentation on neutrophilic granulocytes, the main effector cells, is pathogenically important. PR3 is presented by the NB1 (CD177) glycoprotein, but how the presentation develops during neutrophil differentiation is not known. An N-terminally unprocessed PR3 (proPR3) is produced early during neutrophil development and promotes myeloid cell differentiation. We therefore investigated if PR3 presentation depended on NB1 during neutrophil differentiation and if PR3 and proPR3 could both be presented by NB1. In contrast to mature neutrophils, differentiating neutrophils showed an early NB1-independent PR3 surface display that was recognized by only two of four monoclonal anti-PR3 antibodies and occurred in parallel with proPR3, but not PR3 secretion, suggesting that the NB1-independent surface PR3 was proPR3. PR3 gene expression preceeded NB1. When the NB1 receptor was detected on the surface, a mode of PR3 surface display similar to mature neutrophils developed together with the degranulation system. Ectopic expression studies showed that NB1 was a sufficient receptor for PR3 but not proPR3. ProPR3 display on the plasma membrane may influence the bone marrow microenvironment. NB1-mediated PR3 presentation depended on PR3 N-terminal processing implicating the PR3-N-terminus as NB1-binding site.
Collapse
Affiliation(s)
- S von Vietinghoff
- Medical Faculty of the Charité, Experimental and Clinical Research Center, Franz-Volhard Clinic at the Max-Delbrück Center, HELIOS Klinikum Berlin, Berlin, Germany
| | | | | | | | | |
Collapse
|
43
|
Leclerc P, Biarc J, St-Onge M, Gilbert C, Dussault AA, Laflamme C, Pouliot M. Nucleobindin co-localizes and associates with cyclooxygenase (COX)-2 in human neutrophils. PLoS One 2008; 3:e2229. [PMID: 18493301 PMCID: PMC2373884 DOI: 10.1371/journal.pone.0002229] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2008] [Accepted: 04/15/2008] [Indexed: 11/26/2022] Open
Abstract
The inducible cyclooxygenase isoform (COX-2) is associated with inflammation, tumorigenesis, as well as with physiological events. Despite efforts deployed in order to understand the biology of this multi-faceted enzyme, much remains to be understood. Nucleobindin (Nuc), a ubiquitous Ca2+-binding protein, possesses a putative COX-binding domain. In this study, we investigated its expression and subcellular localization in human neutrophils, its affinity for COX-2 as well as its possible impact on PGE2 biosynthesis. Complementary subcellular localization approaches including nitrogen cavitation coupled to Percoll fractionation, immunofluorescence, confocal and electron microscopy collectively placed Nuc, COX-2, and all of the main enzymes involved in prostanoid synthesis, in the Golgi apparatus and endoplasmic reticulum of human neutrophils. Immunoprecipitation experiments indicated a high affinity between Nuc and COX-2. Addition of human recombinant (hr) Nuc to purified hrCOX-2 dose-dependently caused an increase in PGE2 biosynthesis in response to arachidonic acid. Co-incubation of Nuc with COX-2-expressing neutrophil lysates also increased their capacity to produce PGE2. Moreover, neutrophil transfection with hrNuc specifically enhanced PGE2 biosynthesis. Together, these results identify a COX-2-associated protein which may have an impact in prostanoid biosynthesis.
Collapse
Affiliation(s)
- Patrick Leclerc
- Centre de Recherche en Rhumatologie et Immunologie and Department of Anatomy-Physiology, Faculty of Medicine, Laval University, Quebec City, Quebec, Canada
| | - Jordane Biarc
- Centre de Recherche en Rhumatologie et Immunologie and Department of Anatomy-Physiology, Faculty of Medicine, Laval University, Quebec City, Quebec, Canada
| | - Mireille St-Onge
- Centre de Recherche en Rhumatologie et Immunologie and Department of Anatomy-Physiology, Faculty of Medicine, Laval University, Quebec City, Quebec, Canada
| | - Caroline Gilbert
- Centre de Recherche en Rhumatologie et Immunologie and Department of Anatomy-Physiology, Faculty of Medicine, Laval University, Quebec City, Quebec, Canada
| | - Andrée-Anne Dussault
- Centre de Recherche en Rhumatologie et Immunologie and Department of Anatomy-Physiology, Faculty of Medicine, Laval University, Quebec City, Quebec, Canada
| | - Cynthia Laflamme
- Centre de Recherche en Rhumatologie et Immunologie and Department of Anatomy-Physiology, Faculty of Medicine, Laval University, Quebec City, Quebec, Canada
| | - Marc Pouliot
- Centre de Recherche en Rhumatologie et Immunologie and Department of Anatomy-Physiology, Faculty of Medicine, Laval University, Quebec City, Quebec, Canada
- * E-mail:
| |
Collapse
|
44
|
Abstract
The leukocyte response in inflammation is characterized by an initial recruitment of polymorphonuclear leukocytes (PMN) preceding a second wave of monocytes to the site of injury or infection. In the mouse, 2 populations of monocytes have been identified, Gr1(-)CCR2(-)CX3CR1(hi) resident monocytes and Gr1(+)CCR2(+)CX3CR1(lo) inflammatory monocytes. Here, intravital microscopy of the musculus cremaster and a subcutaneous air pouch model were used to investigate a possible link between PMN extravasation and the subsequent emigration of inflammatory monocytes in response to local stimulation with PAF. In mice that were made neutropenic by injection of a PMN-depleting antibody, the extravasation of inflammatory monocytes, but not resident monocytes, was markedly reduced compared with mice with intact white blood cell count but was restored by local treatment with secretion of activated PMN. Components of the PMN secretion were found to directly activate inflammatory monocytes and further examination revealed PMN-derived LL-37 and heparin-binding protein (HBP/CAP37/azurocidin) as primary mediators of the recruitment of inflammatory monocytes via activation of formyl-peptide receptors. These data show that LL-37 and HBP specifically stimulate mobilization of inflammatory monocytes. This cellular cross-talk functionally results in enhanced cytokine levels and increased bacterial clearance, thus boosting the early immune response.
Collapse
|
45
|
Pivot-Pajot C, Varoqueaux F, de Saint Basile G, Bourgoin SG. Munc13-4 Regulates Granule Secretion in Human Neutrophils. THE JOURNAL OF IMMUNOLOGY 2008; 180:6786-97. [DOI: 10.4049/jimmunol.180.10.6786] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
46
|
Ex vivo detection of primary leukemia cells resistant to granule cytotoxin-induced cell death: a rapid isolation method to study granzyme-B-mediated cell death. Ann Hematol 2008; 87:701-8. [PMID: 18437383 DOI: 10.1007/s00277-008-0485-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2007] [Accepted: 03/10/2008] [Indexed: 10/22/2022]
Abstract
Cytotoxic T lymphocytes and natural killer cells (CTL/NK) induce cell death in leukemia cells by the granzyme B (grB)-dependent granule cytotoxin (GC) pathway. Resistance to GC may be involved in immune evasion of leukemia cells. The delivery of active grB into the cytoplasma is dependent on the presence of perforin (PFN) and grB complexes. We developed a rapid method for the isolation of GC to investigate GC-mediated cell death in primary leukemia cells. We isolated GC containing grB, grB complexes and PFN by detergent free hypotonic lysis of the human NK cell leukemia line YT. The GC induce grB-mediated, caspase-dependent apoptosis in live cells. The human leukemia cell lines KG-1, U937, K562 (myeloid leukemia), Jurkat, Daudi, and BV173 (lymphoblastic leukemia) treated with GC internalized grB and underwent cell death. In primary leukemia cells analyzed ex vivo, we found GC-resistant leukemia cells in three out of seven patients with acute myeloid leukemia and one out of six patients with acute lymphoblastic leukemia. We conclude that our method is fast (approximately 1 h) and yields active GC that induce grB-dependent cell death. Furthermore, resistance to GC can be observed in acute leukemias and may be an important mechanism contributing to leukemia cell immune evasion.
Collapse
|
47
|
Palazzolo-Ballance AM, Reniere ML, Braughton KR, Sturdevant DE, Otto M, Kreiswirth BN, Skaar EP, DeLeo FR. Neutrophil microbicides induce a pathogen survival response in community-associated methicillin-resistant Staphylococcus aureus. THE JOURNAL OF IMMUNOLOGY 2008; 180:500-9. [PMID: 18097052 DOI: 10.4049/jimmunol.180.1.500] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
In recent years, there has been a dramatic increase in the incidence of community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) infections. MW2 (pulsed-field type USA400), the prototype CA-MRSA strain, is highly virulent and has enhanced ability to evade killing by neutrophils. Although progress has been made, the molecular basis for enhanced virulence of CA-MRSA remains incompletely defined. To that end, we studied resistance of MW2 to key microbicides of human neutrophils. Hydrogen peroxide (H2O2), hypochlorous acid, and azurophilic granule proteins had significant bacteriostatic but limited staphylocidal activity toward MW2 under the conditions tested. An MW2-specific microarray revealed common changes in S. aureus gene expression following exposure to each microbicide, such as up-regulation of transcripts involved in gene regulation (e.g., saeRS and kdpDE) and stress response. Azurophilic granule proteins elicited the greatest number of changes in MW2 transcripts, including up-regulation of mRNAs encoding multiple toxins and hemolysins (e.g., hlgA, hlgB, hlgC, hla, lukS-PV, lukF-PV, sec4, and set17-26). Notably, H2O2 triggered up-regulation of transcripts related to heme/iron uptake (e.g., isdA, isdB, and isdCDEFsrtBisdG), and an isogenic isdAB-negative strain of MW2 had increased susceptibility to H2O2 (p<0.001) and human neutrophils (p<0.05) compared with the wild-type parental strain. These findings reveal a S. aureus survival response wherein Iron-regulated surface determinant (Isd) proteins are important for resistance to innate host defense. Collectively, the data provide an enhanced view of the mechanisms used by S. aureus to circumvent destruction by the innate immune system.
Collapse
Affiliation(s)
- Amy M Palazzolo-Ballance
- Laboratory of Human Bacterial Pathogenesis, Research Technologies Section, Genomics Unit, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Jacobsen LC, Sørensen OE, Cowland JB, Borregaard N, Theilgaard-Mönch K. The secretory leukocyte protease inhibitor (SLPI) and the secondary granule protein lactoferrin are synthesized in myelocytes, colocalize in subcellular fractions of neutrophils, and are coreleased by activated neutrophils. J Leukoc Biol 2008; 83:1155-64. [PMID: 18285402 DOI: 10.1189/jlb.0706442] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The secretory leukocyte protease inhibitor (SLPI) re-establishes homeostasis at sites of infection by virtue of its ability to exert antimicrobial activity, to suppress LPS-induced cellular immune responses, and to reduce tissue damage through inhibition of serine proteases released by polymorphonuclear neutrophil granulocytes (PMNs). Microarray analysis of bone marrow (BM) populations highly enriched in promyelocytes, myelocytes/metamyelocytes (MYs), and BM neutrophils demonstrates a transient, high mRNA expression of SLPI and genuine secondary granule proteins (GPs) in MYs. Consistent with this finding, immunostaining of BM cells showed SLPI and the secondary GP lactoferrin (LF) to be present in cells from the myelocyte stage and throughout neutrophil differentiation. Subcellular fractionation studies demonstrated the colocalization of SLPI and LF in subcellular fractions highly enriched in secondary granules. Finally, exocytosis studies demonstrated a corelease of SLPI and LF within minutes of activation. Collectively, these findings strongly indicate that SLPI is localized in secondary granules of PMNs. However, the amount of SLPI detected in PMNs is low compared with primary keratinocytes stimulated by growth factors involved in wound healing. This implicates that neutrophil-derived SLPI might not contribute essentially to re-establishment of homeostasis at sites of infection but rather, exert physiologically relevant intracellular activities. These might include the protection of secondary GPs against proteolytic activation and/or degradation by proteases, which might be dislocated to secondary granules at minute amounts as a consequence of spillover.
Collapse
Affiliation(s)
- Lars C Jacobsen
- The Granulocyte Research Laboratory, Department of Hematology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | |
Collapse
|
49
|
Ai J, Druhan LJ, Hunter MG, Loveland MJ, Avalos BR. LRG-accelerated differentiation defines unique G-CSFR signaling pathways downstream of PU.1 and C/EBPepsilon that modulate neutrophil activation. J Leukoc Biol 2008; 83:1277-85. [PMID: 18272588 DOI: 10.1189/jlb.1107751] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Expression of leucine-rich alpha2 glycoprotein (LRG), a member of the leucine-rich repeat family of proteins, was recently shown to be up-regulated during neutrophil differentiation. Its precise role in granulopoiesis, however, remains unknown. In this paper, we show that the transcription factors PU.1 and C/EBPepsilon that regulate the expression of multiple myeloid-specific genes also bind to the LRG promoter. We also demonstrate that LRG localizes to the same cytoplasmic compartment as myeloperoxidase and that G-CSF treatment of the 32Dcl3 myeloid cell line induces nuclear translocation of LRG. Stable transfection of LRG into 32Dcl3 cells resulted in accelerated, G-CSF-mediated neutrophil differentiation and induction of CD11b expression. In contrast, constitutive expression of LRG in 32Dwt18 cells, expressing a chimeric erythropoietin (Epo)/G-CSFR consisting of the EpoR extracellular domain fused to the G-CSFR transmembrane and cytoplasmic domains, failed to induce accelerated neutrophil differentiation and CD11b expression in response to Epo stimulation. LRG-mediated accelerated differentiation and CD11b expression were found to correlate with an increased level of phospho-Stat3 but not with PU.1 or p27(kip1) levels. Hence, similar to other genes involved in neutrophil differentiation, the expression of LRG also appears to be regulated by PU.1 and C/EBPepsilon. Collectively, these findings suggest a role for LRG in modulating neutrophil differentiation and expression of CD11b via nonredundant G-CSFR signals.
Collapse
Affiliation(s)
- Jing Ai
- Davis Heart and Lung Research Institute and Division of Hematology/Oncology, The Ohio State University College of Medicine, Columbus, OH 43210-1240, USA
| | | | | | | | | |
Collapse
|
50
|
Niessen J, Jedlitschky G, Grube M, Bien S, Strobel U, Ritter CA, Greinacher A, Kroemer HK. Subfractionation and purification of intracellular granule-structures of human platelets: an improved method based on magnetic sorting. J Immunol Methods 2007; 328:89-96. [PMID: 17884082 DOI: 10.1016/j.jim.2007.08.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2007] [Revised: 08/03/2007] [Accepted: 08/19/2007] [Indexed: 11/18/2022]
Abstract
Functional analysis of intracellular structures requires isolation and purification of these cellular compartments. With regard to platelet function both delta and alpha granules are relevant target structures. However, the availability of sufficient purification protocols for these structures is rather limited and restricted to density gradient centrifugation. Because this method is time-consuming and the resulting products are often of limited purity, we designed a new purification method based on immunolabeling followed by magnetic sorting. We directly compared this new method with the conventional method of ultracentrifugation. We were able to get highly purified subcellular fractions of human platelets using several antibodies against specific markers for dense granules (LAMP2), alpha granules (P-selectin) and the plasma membrane (GPIIb/IIIa) in combination with antibody-coated magnetic beads. In the respective fractions the marker proteins used for isolation as well as further independent, structure specific markers (for example MRP4 for dense granules, von Willebrand factor (vWF) for alpha granules and protein disulfide isomerase, PDI and GPIb beta, for plasma membrane) could be detected by Western blotting. The method describes purification of membranal structures of human platelets such as the plasma membrane and both types of granules. Therefore, studies requiring highly purified material (e.g. identification of specific transporters and receptors) will benefit from these results.
Collapse
Affiliation(s)
- Juliane Niessen
- Research Center of Pharmacology and Experimental Therapeutics, Ernst-Moritz-Arndt-University, Greifswald, Germany
| | | | | | | | | | | | | | | |
Collapse
|