1
|
Ramirez K, Kyu S, Nguyen D, Han SY, Lee YL, Bradley J, Randall T, Sanz I, Lee FEH, Sulchek T. Heterofunctional Particles as Single Cell Sensors to Capture Secreted Immunoglobulins and Isolate Antigen-Specific Antibody Secreting Cells. Adv Healthc Mater 2021; 10:e2001947. [PMID: 34160143 DOI: 10.1002/adhm.202001947] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 04/05/2021] [Indexed: 01/13/2023]
Abstract
Isolating cells based on their secreted proteins remain a challenge. The authors demonstrate a capacity for high throughput single-cell protein secretion analysis and isolation based on heterofunctional particles combined with fluorescence activated cell sorting (FACS). The workflow shows that antibody secreting cells (ASCs) specific for the H1 protein from influenza virus can be isolated from B cells. The workflow consists of incubating anti-CD27 particles with the ASCs, capturing locally secreted immunoglobulins with Protein G on the particles, and identifying immunoglobulins specific to H1 via fluorescent labeled antigens followed by FACS to enrich antigen-specific ASCs. Two particles designs, Janus and mixed, are tested with hybridoma cells. Mixed particles are found to improve antibody collection, while Janus particles are found to bind target cells more effectively. Targeted hybridoma cells in coculture with non-specific hybridoma cells are identified with a sensitivity of 96% and specificity of 98%. Heterofunctional particles are used to capture ASCs that secrete antibodies specific for influenza virus from B cells from healthy adults isolated from blood after vaccination. Positive H1-tetramer sorted ASCs are validated using single ASC cultures and identify 23/56 cells specific for H1 demonstrating 164-fold enrichment from total B cells and 14.6-fold enrichment from total ASCs.
Collapse
Affiliation(s)
- Katily Ramirez
- Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Shuya Kyu
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA, 30332, USA
| | - Doan Nguyen
- Lowance Center for Human Immunology, Emory University, Atlanta, GA, 30332, USA
| | - So-Yun Han
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Ye Lim Lee
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - John Bradley
- Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, AL, 35487, USA
| | - Troy Randall
- Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, AL, 35487, USA
| | - Ignacio Sanz
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA, 30332, USA
| | - Frances Eun-Hyung Lee
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA, 30332, USA
| | - Todd Sulchek
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| |
Collapse
|
2
|
Aebischer-Gumy C, Moretti P, Ollier R, Ries Fecourt C, Rousseau F, Bertschinger M. SPLICELECT™: an adaptable cell surface display technology based on alternative splicing allowing the qualitative and quantitative prediction of secreted product at a single-cell level. MAbs 2021; 12:1709333. [PMID: 31955651 PMCID: PMC6973322 DOI: 10.1080/19420862.2019.1709333] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
We describe a mammalian expression construct (SPLICELECT™) that allows the redirection of a proportion of a secreted protein onto the cell surface using alternative splicing: whereas the majority of the RNA is spliced into a transcript encoding a secreted protein, a weak splice donor site yields a secondary transcript encoding, in addition, a C-terminal transmembrane domain. The different sequence elements can be modified in order to modulate the level of cell surface display and of secretion in an independent manner. In this work, we demonstrated that the cell surface display of stable cell lines is correlated with the level of the secreted protein of interest, but also with the level of heterodimerization in the case of a bispecific antibody. It was also shown that this construct may be useful for rapid screening of multiple antibody candidates in binding assays following transient transfection. Thus, the correlation of product quantity and quality of the secreted and of membrane-displayed product in combination with the flexibility of the construct with regards to cell surface display/secretion levels make SPLICELECT™ a valuable tool with many potential applications, not limited to industrial cell line development or antibody engineering.
Collapse
Affiliation(s)
- Christel Aebischer-Gumy
- Cell Sciences, Ichnos Sciences SA (formerly Glenmark Pharmaceuticals SA), La Chaux-de-Fonds, Switzerland
| | - Pierre Moretti
- Cell Sciences, Ichnos Sciences SA (formerly Glenmark Pharmaceuticals SA), La Chaux-de-Fonds, Switzerland
| | - Romain Ollier
- Antibody Engineering, Ichnos Sciences SA (formerly Glenmark Pharmaceuticals SA), La Chaux-de-Fonds, Switzerland
| | - Christelle Ries Fecourt
- Antibody Engineering, Ichnos Sciences SA (formerly Glenmark Pharmaceuticals SA), La Chaux-de-Fonds, Switzerland
| | - François Rousseau
- Antibody Engineering, Ichnos Sciences SA (formerly Glenmark Pharmaceuticals SA), La Chaux-de-Fonds, Switzerland
| | - Martin Bertschinger
- Cell Sciences, Ichnos Sciences SA (formerly Glenmark Pharmaceuticals SA), La Chaux-de-Fonds, Switzerland
| |
Collapse
|
3
|
Liu YS, Matabaro E, Gao XD, Fujita M. Selecting cells expressing high levels of recombinant proteins using the GPI-anchored protein with selenocysteine system. J Biosci Bioeng 2020; 131:225-233. [PMID: 33158753 DOI: 10.1016/j.jbiosc.2020.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 09/29/2020] [Accepted: 10/11/2020] [Indexed: 11/28/2022]
Abstract
Most biopharmaceutical proteins are produced in mammalian cells because they have the advantageous capacity for protein folding, assembly, and posttranslational modifications. To satisfy the increasing demand for these proteins for clinical purposes and studies, traditional methods to improve protein productivity have included gene amplification, host cell engineering, medium optimization, and screening methods. However, screening and selection of high-producing cell lines remain complex and time consuming. In this study, we established a glycosylphosphatidylinositol (GPI)-anchored protein with a selenocysteine (GPS) system to select cells producing high levels of target secretory proteins. Recombinant lysosomal acid lipase (LIPA) and α-galactosidase A (GALA) were fused with a GPI attachment signal sequence and a selenocysteine insertion sequence after an in-frame UGA codon. Under these conditions, most of the recombinant proteins were secreted into the culture medium, but some were found to be GPI-anchored proteins on the cell surface. When sodium selenite was supplied into the culture medium, the amount of GPI-anchored LIPA and GALA was increased. High-expressing cells were selected by detecting surface GPI-anchored LIPA. The GPI-anchored protein was then eliminated by knocking out the GPI biosynthesis gene PIGK, in these cells, all LIPA was in secreted form. Our system provides a promising method of isolating cells that highly express recombinant proteins from large cell populations.
Collapse
Affiliation(s)
- Yi-Shi Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Emmanuel Matabaro
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xiao-Dong Gao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Morihisa Fujita
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
4
|
Liu G, Bursill C, Cartland SP, Anwer AG, Parker LM, Zhang K, Feng S, He M, Inglis DW, Kavurma MM, Hutchinson MR, Goldys EM. A Nanoparticle-Based Affinity Sensor that Identifies and Selects Highly Cytokine-Secreting Cells. iScience 2019; 20:137-147. [PMID: 31569048 PMCID: PMC6833483 DOI: 10.1016/j.isci.2019.09.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 09/10/2019] [Accepted: 09/12/2019] [Indexed: 11/01/2022] Open
Abstract
We developed a universal method termed OnCELISA to detect cytokine secretion from individual cells by applying a capture technology on the cell membrane. OnCELISA uses fluorescent magnetic nanoparticles as assay reporters that enable detection on a single-cell level in microscopy and flow cytometry and fluorimetry in cell ensembles. This system is flexible and can be modified to detect different cytokines from a broad range of cytokine-secreting cells. Using OnCELISA we have been able to select and sort highly cytokine-secreting cells and identify cytokine-secreting expression profiles of different cell populations in vitro and ex vivo. We show that this system can be used for ultrasensitive monitoring of cytokines in the complex biological environment of atherosclerosis that contains multiple cell types. The ability to identify and select cell populations based on their cytokine expression characteristics is valuable in a host of applications that require the monitoring of disease progression.
Collapse
Affiliation(s)
- Guozhen Liu
- Graduate School of Biomedical Engineering, ARC Centre of Excellence in Nanoscale Biophotonics (CNBP), Faculty of Engineering, The University of New South Wales, Sydney, NSW 2052, Australia; ARC Centre of Excellence in Nanoscale Biophotonics (CNBP), Macquarie University, Sydney, NSW 2109, Australia; International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
| | - Christina Bursill
- Heart Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5005, Australia; Heart Research Institute, Sydney 2042, Australia
| | - Siân P Cartland
- Heart Research Institute, Sydney 2042, Australia; Sydney Medical School, University of Sydney, Sydney, Australia
| | - Ayad G Anwer
- Graduate School of Biomedical Engineering, ARC Centre of Excellence in Nanoscale Biophotonics (CNBP), Faculty of Engineering, The University of New South Wales, Sydney, NSW 2052, Australia; ARC Centre of Excellence in Nanoscale Biophotonics (CNBP), Macquarie University, Sydney, NSW 2109, Australia
| | - Lindsay M Parker
- ARC Centre of Excellence in Nanoscale Biophotonics (CNBP), Macquarie University, Sydney, NSW 2109, Australia
| | - Kaixin Zhang
- ARC Centre of Excellence in Nanoscale Biophotonics (CNBP), Macquarie University, Sydney, NSW 2109, Australia
| | - Shilun Feng
- ARC Centre of Excellence in Nanoscale Biophotonics (CNBP), Macquarie University, Sydney, NSW 2109, Australia
| | - Meng He
- ARC Centre of Excellence in Nanoscale Biophotonics (CNBP), Macquarie University, Sydney, NSW 2109, Australia
| | - David W Inglis
- ARC Centre of Excellence in Nanoscale Biophotonics (CNBP), Macquarie University, Sydney, NSW 2109, Australia
| | - Mary M Kavurma
- Heart Research Institute, Sydney 2042, Australia; Sydney Medical School, University of Sydney, Sydney, Australia
| | - Mark R Hutchinson
- ARC Centre of Excellence in Nanoscale Biophotonics (CNBP), School of Medicine, Adelaide University, Adelaide, SA 5005, Australia
| | - Ewa M Goldys
- Graduate School of Biomedical Engineering, ARC Centre of Excellence in Nanoscale Biophotonics (CNBP), Faculty of Engineering, The University of New South Wales, Sydney, NSW 2052, Australia; ARC Centre of Excellence in Nanoscale Biophotonics (CNBP), Macquarie University, Sydney, NSW 2109, Australia.
| |
Collapse
|
5
|
Abali F, Broekmaat J, Tibbe A, Schasfoort RBM, Zeune L, Terstappen LWMM. A microwell array platform to print and measure biomolecules produced by single cells. LAB ON A CHIP 2019; 19:1850-1859. [PMID: 31041434 DOI: 10.1039/c9lc00100j] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Here we describe a combined method to monitor the secretion of molecules produced by single cells, followed by a method to isolate the individual cells that produced these molecules. The method is based on a self-sorting microwell chip that is connected to an activated membrane that collects the produced molecules. The produced molecules are printed by diffusion in small spots onto the membrane. The location of the printed spots can be correlated to the microwell number and the cell that produced these molecules. To demonstrate the method, we used the EpCAM antibody producing hybridoma cell line VU1D9 and a genetically engineered CHO cell-line producing Her2. VU1D9 cells produced 4.6 ± 5.6 pg (mean ± SD) of EpCAM antibody per 24 h and CHO cells 6.5 ± 8.2 pg per 24 h of Herceptin antibody.
Collapse
Affiliation(s)
- Fikri Abali
- Department of Medical Cell BioPhysics, University of Twente, Hallenweg 23, Enschede, 7522 NH, The Netherlands.
| | | | | | - Richard B M Schasfoort
- Department of Medical Cell BioPhysics, University of Twente, Hallenweg 23, Enschede, 7522 NH, The Netherlands.
| | - Leonie Zeune
- Department of Medical Cell BioPhysics, University of Twente, Hallenweg 23, Enschede, 7522 NH, The Netherlands.
| | - Leon W M M Terstappen
- Department of Medical Cell BioPhysics, University of Twente, Hallenweg 23, Enschede, 7522 NH, The Netherlands.
| |
Collapse
|
6
|
Chakrabarti L, Zhuang L, Roy G, Bowen MA, Dall’Acqua WF, Hawley‐Nelson P, Marelli M. Amber suppression coupled with inducible surface display identifies cells with high recombinant protein productivity. Biotechnol Bioeng 2019; 116:793-804. [PMID: 30536645 PMCID: PMC6590230 DOI: 10.1002/bit.26892] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 12/06/2018] [Indexed: 12/19/2022]
Abstract
Cell line development (CLD) for biotherapeutics is a time- and resource-intensive process requiring the isolation and screening of large numbers of clones to identify high producers. Novel methods aimed at enhancing cell line screening efficiency using markers predictive of productivity early in the CLD process are needed to reliably generate high-yielding cell lines. To enable efficient and selective isolation of antibody expressing Chinese hamster ovary cells by fluorescence-activated cell sorting, we developed a strategy for the expression of antibodies containing a switchable membrane-associated domain to anchor an antibody to the membrane of the expressing cell. The switchable nature of the membrane domain is governed by the function of an orthogonal aminoacyl transfer RNA synthetase/tRNApyl pair, which directs a nonnatural amino acid (nnAA) to an amber codon encoded between the antibody and the membrane anchor. The process is "switchable" in response to nnAA in the medium, enabling a rapid transition between the surface display and secretion. We demonstrate that the level of cell surface display correlates with productivity and provides a method for enriching phenotypically stable high-producer cells. The strategy provides a means for selecting high-producing cells with potential applications to multiple biotherapeutic protein formats.
Collapse
Affiliation(s)
- Lina Chakrabarti
- Cell Culture and Fermentation Science, MedImmuneGaithersburgMaryland
| | - Li Zhuang
- Antibody Discovery and Protein Engineering, MedImmuneGaithersburgMaryland
| | - Gargi Roy
- Antibody Discovery and Protein Engineering, MedImmuneGaithersburgMaryland
| | - Michael A. Bowen
- Antibody Discovery and Protein Engineering, MedImmuneGaithersburgMaryland
| | | | - Pam Hawley‐Nelson
- Cell Culture and Fermentation Science, MedImmuneGaithersburgMaryland
| | - Marcello Marelli
- Antibody Discovery and Protein Engineering, MedImmuneGaithersburgMaryland
| |
Collapse
|
7
|
Chakrabarti L, Mathew A, Li L, Han S, Klover J, Albanetti T, Hawley-Nelson P. Mitochondrial membrane potential identifies cells with high recombinant protein productivity. J Immunol Methods 2019; 464:31-39. [DOI: 10.1016/j.jim.2018.10.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 10/04/2018] [Accepted: 10/16/2018] [Indexed: 12/11/2022]
|
8
|
Droz X, Harraghy N, Lançon E, Le Fourn V, Calabrese D, Colombet T, Liechti P, Rida A, Girod PA, Mermod N. Automated microfluidic sorting of mammalian cells labeled with magnetic microparticles for those that efficiently express and secrete a protein of interest. Biotechnol Bioeng 2017; 114:1791-1802. [DOI: 10.1002/bit.26270] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 01/05/2017] [Accepted: 02/15/2017] [Indexed: 12/28/2022]
Affiliation(s)
- Xuan Droz
- Department of Fundamental Microbiology, Institute of Biotechnology, University of Lausanne; Center for Biotechnology UNIL-EPFL; Lausanne Switzerland
| | - Niamh Harraghy
- Department of Fundamental Microbiology, Institute of Biotechnology, University of Lausanne; Center for Biotechnology UNIL-EPFL; Lausanne Switzerland
| | - Etienne Lançon
- Department of Fundamental Microbiology, Institute of Biotechnology, University of Lausanne; Center for Biotechnology UNIL-EPFL; Lausanne Switzerland
| | | | | | | | | | | | | | - Nicolas Mermod
- Department of Fundamental Microbiology, Institute of Biotechnology, University of Lausanne; Center for Biotechnology UNIL-EPFL; Lausanne Switzerland
| |
Collapse
|
9
|
Liu CZ, Jiao XL, Gao DQ, Xing LB, Liu H, Luo Y, Gao YT. Real-time live-cell analysis system for screening single tumor cell clones and analyzing their colony-forming ability. Shijie Huaren Xiaohua Zazhi 2017; 25:881-890. [DOI: 10.11569/wcjd.v25.i10.881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM To screen single tumor cell clones and evaluating their colony-forming ability by IncuCyte ZOOM.
METHODS Primary tumor cells were isolated by differential digestion and differential adherence method. On the basis of limited dilution, dynamic real-time tracking technology and full aperture imaging technology were used to track single cell clones and evaluate their colony-formation ability.
RESULTS Six lines of primary tumor cells (TJ3ZX-02 to 07) were isolated from 30 tumor tissues, and 89 persistently proliferative tumor cell clones were screened from five primary tumor cell lines (TJ3ZX-03 to 07), of which 67 were expanded and cryopreserved. Eighteen monoclonal cell lines were excluded due to the lack of expansion ability, and 28 polyclonal cell lines were excluded because of consisting of two or more cell types as revealed by the Sequence Diagram. The analysis of clone-forming ability of two monoclonal cell strains (TJ3ZX-06-B11, TJ3ZX-07-H11) showed that the clone-forming rates for the plate method (35.17%, 13.17%) were significantly higher than those for IncuCyte ZOOM (23.13%, 5.51%) at 14 d (P < 0.05), although there was no significant difference at 21 d (35.63% and 13.22% for IncuCyte ZOOM).
CONCLUSION IncuCyte ZOOM is simple, accurate and time-saving for screening single clones and measuring their colony-forming ability.
Collapse
|
10
|
Holzlöhner P, Hanack K. Generation of Murine Monoclonal Antibodies by Hybridoma Technology. J Vis Exp 2017. [PMID: 28117810 DOI: 10.3791/54832] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Monoclonal antibodies are universal binding molecules and are widely used in biomedicine and research. Nevertheless, the generation of these binding molecules is time-consuming and laborious due to the complicated handling and lack of alternatives. The aim of this protocol is to provide one standard method for the generation of monoclonal antibodies using hybridoma technology. This technology combines two steps. Step 1 is an appropriate immunization of the animal and step 2 is the fusion of B lymphocytes with immortal myeloma cells in order to generate hybrids possessing both parental functions, such as the production of antibody molecules and immortality. The generated hybridoma cells were then recloned and diluted to obtain stable monoclonal cell cultures secreting the desired monoclonal antibody in the culture supernatant. The supernatants were tested in enzyme-linked immunosorbent assays (ELISA) for antigen specificity. After the selection of appropriate cell clones, the cells were transferred to mass cultivation in order to produce the desired antibody molecule in large amounts. The purification of the antibodies is routinely performed by affinity chromatography. After purification, the antibody molecule can be characterized and validated for the final test application. The whole process takes 8 to 12 months of development, and there is a high risk that the antibody will not work in the desired test system.
Collapse
Affiliation(s)
| | - Katja Hanack
- Department of Biochemistry and Biology, University of Potsdam;
| |
Collapse
|
11
|
Priola JJ, Calzadilla N, Baumann M, Borth N, Tate CG, Betenbaugh MJ. High-throughput screening and selection of mammalian cells for enhanced protein production. Biotechnol J 2016; 11:853-65. [DOI: 10.1002/biot.201500579] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 02/09/2016] [Accepted: 05/17/2016] [Indexed: 01/05/2023]
Affiliation(s)
- Joseph J. Priola
- Department of Chemical and Biomolecular Engineering; Johns Hopkins University; Baltimore MD USA
| | - Nathan Calzadilla
- Department of Chemical and Biomolecular Engineering; Johns Hopkins University; Baltimore MD USA
| | | | - Nicole Borth
- Department of Biotechnology; Universität für Bodenkultur; Vienna Austria
| | | | - Michael J. Betenbaugh
- Department of Chemical and Biomolecular Engineering; Johns Hopkins University; Baltimore MD USA
| |
Collapse
|
12
|
Lang S, Drewello D, Wichter J, Nommay A, Wilms B, Knopf HP, Jostock T. Surface display vectors for selective detection and isolation of high level antibody producing cells. Biotechnol Bioeng 2016; 113:2386-93. [DOI: 10.1002/bit.26000] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 03/30/2016] [Accepted: 04/28/2016] [Indexed: 12/20/2022]
Affiliation(s)
- Sabine Lang
- Integrated Biologics Profiling; Novartis Pharma AG; Postfach CH-4002, Basel Switzerland
| | - Delia Drewello
- Integrated Biologics Profiling; Novartis Pharma AG; Postfach CH-4002, Basel Switzerland
| | - Johannes Wichter
- GBW/H, White Biotechnology Research-Microbiology; BASF; Ludwigshafen Germany
| | - Audrey Nommay
- Integrated Biologics Profiling; Novartis Pharma AG; Postfach CH-4002, Basel Switzerland
| | - Burkhard Wilms
- Integrated Biologics Profiling; Novartis Pharma AG; Postfach CH-4002, Basel Switzerland
| | - Hans-Peter Knopf
- Integrated Biologics Profiling; Novartis Pharma AG; Postfach CH-4002, Basel Switzerland
| | - Thomas Jostock
- Integrated Biologics Profiling; Novartis Pharma AG; Postfach CH-4002, Basel Switzerland
| |
Collapse
|
13
|
Use of Human Hybridoma Technology To Isolate Human Monoclonal Antibodies. Microbiol Spectr 2016; 3:AID-0027-2014. [PMID: 26104564 DOI: 10.1128/microbiolspec.aid-0027-2014] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human hybridoma technique offers an important approach for isolation of human monoclonal antibodies. A diversity of approaches can be used with varying success. Recent technical advances in expanding the starting number of human antigen-specific B cells, improving fusion efficiency, and isolating new myeloma partners and new cell cloning methods have enabled the development of protocols that make the isolation of human monoclonal antibodies from blood samples feasible. Undoubtedly, additional innovations that could improve efficiency are possible.
Collapse
|
14
|
Hanack K, Messerschmidt K, Listek M. Antibodies and Selection of Monoclonal Antibodies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 917:11-22. [DOI: 10.1007/978-3-319-32805-8_2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
15
|
Misaghi S, Shaw D, Louie S, Nava A, Simmons L, Snedecor B, Poon C, Paw JS, Gilmour-Appling L, Cupp JE. Slashing the timelines: Opting to generate high-titer clonal lines faster via viability-based single cell sorting. Biotechnol Prog 2015; 32:198-207. [DOI: 10.1002/btpr.2204] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 10/28/2015] [Indexed: 11/07/2022]
Affiliation(s)
- Shahram Misaghi
- Dept. of Early Stage Cell Culture; Genentech, Inc; 1 DNA Way South San Francisco CA 94080
| | - David Shaw
- Dept. of Early Stage Cell Culture; Genentech, Inc; 1 DNA Way South San Francisco CA 94080
| | - Salina Louie
- Dept. of Early Stage Cell Culture; Genentech, Inc; 1 DNA Way South San Francisco CA 94080
| | - Adrian Nava
- Dept. of Early Stage Cell Culture; Genentech, Inc; 1 DNA Way South San Francisco CA 94080
| | - Laura Simmons
- Dept. of Early Stage Cell Culture; Genentech, Inc; 1 DNA Way South San Francisco CA 94080
| | - Brad Snedecor
- Dept. of Early Stage Cell Culture; Genentech, Inc; 1 DNA Way South San Francisco CA 94080
| | - Chungkee Poon
- Dept. of Immunology; Genentech, Inc; 1 DNA Way South San Francisco CA 94080
| | - Jonathan S. Paw
- Dept. of Immunology; Genentech, Inc; 1 DNA Way South San Francisco CA 94080
| | | | - James E. Cupp
- Dept. of Immunology; Genentech, Inc; 1 DNA Way South San Francisco CA 94080
| |
Collapse
|
16
|
Chen W, Zhao X, Zhang M, Yuan Y, Ge L, Tang B, Xu X, Cao L, Guo H. High-efficiency secretory expression of human neutrophil gelatinase-associated lipocalin from mammalian cell lines with human serum albumin signal peptide. Protein Expr Purif 2015; 118:105-12. [PMID: 26518367 DOI: 10.1016/j.pep.2015.10.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 10/19/2015] [Accepted: 10/21/2015] [Indexed: 12/18/2022]
Abstract
Human neutrophil gelatinase associated lipocalin (NGAL) is a secretory glycoprotein initially isolated from neutrophils. It is thought to be involved in the incidence and development of immunological diseases and cancers. Urinary and serum levels of NGAL have been investigated as a new biomarker of acute kidney injury (AKI), for an earlier and more accurate detection method than with creatinine level. However, expressing high-quality recombinant NGAL is difficult both in Escherichia coli and mammalian cells for the low yield. Here, we cloned and fused NGAL to the C-terminus of signal peptides of human NGAL, human interleukin-2 (IL2), gaussia luciferase (Gluc), human serum albumin preproprotein (HSA) or an hidden Markov model-generated signal sequence (HMM38) respectively for transient expression in Expi293F suspension cells to screen for their ability to improve the secretory expression of recombinant NGAL. The best results were obtained with signal peptide derived from HSA. The secretory recombinant protein could react specifically with NGAL antibody. For scaled production, we used HSA signal peptide to establish stable Chinese hamster ovary cell lines. Then we developed a convenient colony-selection system to select high-expression, stable cell lines. Moreover, we purified the NGAL with Ni-Sepharose column. The recombinant human NGAL displayed full biological activity. We provide a method to enhance the secretory expression of recombinant human NGAL by using the HSA signal peptide and produce the glycoprotein in mammalian cells.
Collapse
Affiliation(s)
- Wei Chen
- Department of Urology, Drum Tower Hospital, Medical School of Nanjing University, Institute of Urology, Nanjing University, Nanjing 210008, Jiangsu, PR China
| | - Xiaozhi Zhao
- Department of Urology, Drum Tower Hospital, Medical School of Nanjing University, Institute of Urology, Nanjing University, Nanjing 210008, Jiangsu, PR China
| | - Mingxin Zhang
- Department of Urology, Drum Tower Hospital, Medical School of Nanjing University, Institute of Urology, Nanjing University, Nanjing 210008, Jiangsu, PR China
| | - Yimin Yuan
- Department of Urology, Drum Tower Hospital, Medical School of Nanjing University, Institute of Urology, Nanjing University, Nanjing 210008, Jiangsu, PR China
| | - Liyuan Ge
- Department of Urology, Drum Tower Hospital, Medical School of Nanjing University, Institute of Urology, Nanjing University, Nanjing 210008, Jiangsu, PR China
| | - Bo Tang
- Vazyme Biotech Co., Ltd, Nanjing 210000, Jiangsu, PR China
| | - Xiaoyu Xu
- Vazyme Biotech Co., Ltd, Nanjing 210000, Jiangsu, PR China
| | - Lin Cao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China; Vazyme Biotech Co., Ltd, Nanjing 210000, Jiangsu, PR China.
| | - Hongqian Guo
- Department of Urology, Drum Tower Hospital, Medical School of Nanjing University, Institute of Urology, Nanjing University, Nanjing 210008, Jiangsu, PR China.
| |
Collapse
|
17
|
Kuhne M, Dippong M, Flemig S, Hoffmann K, Petsch K, Schenk JA, Kunte HJ, Schneider RJ. Comparative characterization of mAb producing hapten-specific hybridoma cells by flow cytometric analysis and ELISA. J Immunol Methods 2014; 413:45-56. [DOI: 10.1016/j.jim.2014.07.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 07/13/2014] [Accepted: 07/14/2014] [Indexed: 01/20/2023]
|
18
|
Chuang KH, Hsieh YC, Chiang IS, Chuang CH, Kao CH, Cheng TC, Wang YT, Lin WW, Chen BM, Roffler SR, Huang MY, Cheng TL. High-throughput sorting of the highest producing cell via a transiently protein-anchored system. PLoS One 2014; 9:e102569. [PMID: 25036759 PMCID: PMC4103822 DOI: 10.1371/journal.pone.0102569] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 06/20/2014] [Indexed: 11/19/2022] Open
Abstract
Developing a high-throughput method for the effecient selection of the highest producing cell is very important for the production of recombinant protein drugs. Here, we developed a novel transiently protein-anchored system coupled with fluorescence activated cell sorting (FACS) for the efficient selection of the highest producing cell. A furin cleavage peptide (RAKR) was used to join a human anti-epithelial growth factor antibody (αEGFR Ab) and the extracellular-transmembrane-cytosolic domains of the mouse B7-1 antigen (B7). The furin inhibitor can transiently switch secreted αEGFR Ab into a membrane-anchored form. After cell sorting, the level of membrane αEGFR Ab-RAKR-B7 is proportional to the amount of secreted αEGFR Ab in the medium. We further selected 23 αEGFR Ab expressing cells and demonstrated a high correlation (R2 = 0.9165) between the secretion level and surface expression levels of αEGFR Ab. These results suggested that the novel transiently protein-anchored system can easily and efficiently select the highest producing cells, reducing the cost for the production of biopharmaceuticals.
Collapse
Affiliation(s)
- Kuo-Hsiang Chuang
- Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei, Taiwan
- Ph.D. Program for Clinical Drug Discovery from Botanical Herbs, Taipei Medical University, Taipei, Taiwan
- Master Program for Clinical Pharmacogenomics and Pharmacoproteomics, Taipei Medical University, Taipei, Taiwan
| | - Yuan-Chin Hsieh
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - I-Shiuan Chiang
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chih-Hung Chuang
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chien-Han Kao
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ta-Chun Cheng
- Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei, Taiwan
| | - Yeng-Tseng Wang
- Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wen-Wei Lin
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Bing-Mae Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Steve R. Roffler
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Ming-Yii Huang
- Department of Radiation Oncology, Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- * E-mail: (MYH); (TLC)
| | - Tian-Lu Cheng
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
- Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- * E-mail: (MYH); (TLC)
| |
Collapse
|
19
|
Jones MC, Kobie JJ, Delouise LA. Characterization of cell seeding and specific capture of B cells in microbubble well arrays. Biomed Microdevices 2014; 15:453-63. [PMID: 23358874 DOI: 10.1007/s10544-013-9745-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Development of micro-well array systems for use in high-throughput screening of rare cells requires a detailed understanding of the factors that impact the specific capture of cells in wells and the distribution statistics of the number of cells deposited into wells. In this study we investigate the development of microbubble (MB) well array technology for sorting antigen-specific B-cells. Using Poisson statistics we delineate the important role that the fractional area of MB well opening and the cell seeding density have on determining cell seeding distribution in wells. The unique architecture of the MB well hinders captured cells from escaping the well and provides a unique microenvironmental niche that enables media changes as needed for extended cell culture. Using cell lines and primary B and T cells isolated from human peripheral blood we demonstrate the use of affinity capture agents coated in the MB wells to enrich for the selective capture of B cells. Important differences were noted in the efficacy of bovine serum albumin to block the nonspecific adsorption of primary cells relative to cell lines as well as the efficacy of the capture coatings using mixed primary B and T cells samples. These results emphasize the importance of using primary cells in technology development and suggest the need to utilize B cell capture agents that are insensitive to cell activation.
Collapse
Affiliation(s)
- Meghan C Jones
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
| | | | | |
Collapse
|
20
|
Helman D, Toister-Achituv M, Bar-Shimon M, Cohen B, Otmi I, Berger N, Kalimi D, Kimalov B, Medina T, Sapir A, Rotemberg O, Zabavnik N, Zauberman A, Smolarsky M. Novel membrane-bound reporter molecule for sorting high producer cells by flow cytometry. Cytometry A 2013; 85:162-8. [PMID: 23765751 DOI: 10.1002/cyto.a.22308] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 02/27/2013] [Accepted: 05/11/2013] [Indexed: 12/28/2022]
Abstract
We developed a membrane bound reporter and selection molecule for sorting by fluorescence activated cell sorting (FACS) of cells producing a protein of interest. This molecule is composed of a transmembrane (TM) domain, fused on its extracellular end to a biotin mimetic peptide (BMP) and on its intracellular side to puromycin N-acetyl transferase (PAC). In this format BMP is displayed on the cell membrane surface and PAC faces the cell cytoplasm. BMP was detected and quantified on the cell surface by fluorescently labelled streptavidin, allowing cell sorting by FACS, according to the reporter expression level. The reporter and a gene of interest (GOI) were connected on the same transcript via an internal ribosomal entry site (IRES). The reporter expression level was found to correlate with that of the GOI, enabling sorting of high producer cells by FACS. Thus, the highest fluorescent cells sorted had also the highest protein of interest (POI) productivity level.
Collapse
|
21
|
Advances in Mammalian cell line development technologies for recombinant protein production. Pharmaceuticals (Basel) 2013; 6:579-603. [PMID: 24276168 PMCID: PMC3817724 DOI: 10.3390/ph6050579] [Citation(s) in RCA: 201] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 03/28/2013] [Accepted: 04/10/2013] [Indexed: 01/20/2023] Open
Abstract
From 2006 to 2011, an average of 15 novel recombinant protein therapeutics have been approved by US Food and Drug Administration (FDA) annually. In addition, the expiration of blockbuster biologics has also spurred the emergence of biosimilars. The increasing numbers of innovator biologic products and biosimilars have thus fuelled the demand of production cell lines with high productivity. Currently, mammalian cell line development technologies used by most biopharmaceutical companies are based on either the methotrexate (MTX) amplification technology or the glutamine synthetase (GS) system. With both systems, the cell clones obtained are highly heterogeneous, as a result of random genome integration by the gene of interest and the gene amplification process. Consequently, large numbers of cell clones have to be screened to identify rare stable high producer cell clones. As such, the cell line development process typically requires 6 to 12 months and is a time, capital and labour intensive process. This article reviews established advances in protein expression and clone screening which are the core technologies in mammalian cell line development. Advancements in these component technologies are vital to improve the speed and efficiency of generating robust and highly productive cell line for large scale production of protein therapeutics.
Collapse
|
22
|
Current state and recent advances in biopharmaceutical production in Escherichia coli, yeasts and mammalian cells. J Ind Microbiol Biotechnol 2013; 40:257-74. [PMID: 23385853 DOI: 10.1007/s10295-013-1235-0] [Citation(s) in RCA: 139] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Accepted: 01/22/2013] [Indexed: 12/28/2022]
Abstract
Almost all of the 200 or so approved biopharmaceuticals have been produced in one of three host systems: the bacterium Escherichia coli, yeasts (Saccharomyces cerevisiae, Pichia pastoris) and mammalian cells. We describe the most widely used methods for the expression of recombinant proteins in the cytoplasm or periplasm of E. coli, as well as strategies for secreting the product to the growth medium. Recombinant expression in E. coli influences the cell physiology and triggers a stress response, which has to be considered in process development. Increased expression of a functional protein can be achieved by optimizing the gene, plasmid, host cell, and fermentation process. Relevant properties of two yeast expression systems, S. cerevisiae and P. pastoris, are summarized. Optimization of expression in S. cerevisiae has focused mainly on increasing the secretion, which is otherwise limiting. P. pastoris was recently approved as a host for biopharmaceutical production for the first time. It enables high-level protein production and secretion. Additionally, genetic engineering has resulted in its ability to produce recombinant proteins with humanized glycosylation patterns. Several mammalian cell lines of either rodent or human origin are also used in biopharmaceutical production. Optimization of their expression has focused on clonal selection, interference with epigenetic factors and genetic engineering. Systemic optimization approaches are applied to all cell expression systems. They feature parallel high-throughput techniques, such as DNA microarray, next-generation sequencing and proteomics, and enable simultaneous monitoring of multiple parameters. Systemic approaches, together with technological advances such as disposable bioreactors and microbioreactors, are expected to lead to increased quality and quantity of biopharmaceuticals, as well as to reduced product development times.
Collapse
|
23
|
Kim YG, Park B, Ahn JO, Jung JK, Lee HW, Lee EG. New cell line development for antibody-producing Chinese hamster ovary cells using split green fluorescent protein. BMC Biotechnol 2012; 12:24. [PMID: 22587529 PMCID: PMC3428690 DOI: 10.1186/1472-6750-12-24] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Accepted: 04/30/2012] [Indexed: 11/21/2022] Open
Abstract
Background The establishment of high producer is an important issue in Chinese hamster ovary (CHO) cell culture considering increased heterogeneity by the random integration of a transfected foreign gene and the altered position of the integrated gene. Fluorescence-activated cell sorting (FACS)-based cell line development is an efficient strategy for the selection of CHO cells in high therapeutic protein production. Results An internal ribosome entry site (IRES) was introduced for using two green fluorescence protein (GFP) fragments as a reporter to both antibody chains, the heavy chain and the light chain. The cells co-transfected with two GFP fragments showed the emission of green fluorescence by the reconstitution of split GFP. The FACS-sorted pool with GFP expression had a higher specific antibody productivity (qAb) than that of the unsorted pool. The qAb was highly correlated with the fluorescence intensity with a high correlation coefficient, evidenced from the analysis of median GFP and qAb in individual selected clones. Conclusions This study proved that the fragment complementation for split GFP could be an efficient indication for antibody production on the basis of high correlation of qAb with reconstitution of GFP. Taken together, we developed an efficient FACS-based screening method for high antibody-producing CHO cells with the benefits of the split GFP system.
Collapse
Affiliation(s)
- Yeon-Gu Kim
- Process Engineering Center, KRIBB, Daejeon 305-806, Korea
| | | | | | | | | | | |
Collapse
|
24
|
Kumar N, Borth N. Flow-cytometry and cell sorting: an efficient approach to investigate productivity and cell physiology in mammalian cell factories. Methods 2012; 56:366-74. [PMID: 22426008 DOI: 10.1016/j.ymeth.2012.03.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2011] [Revised: 02/26/2012] [Accepted: 03/05/2012] [Indexed: 01/07/2023] Open
Abstract
The performance of cell lines used for the production of biotherapeutic proteins typically depends on the number of cells in culture, their specific growth rate, their viability and the cell specific productivity (qP). Therefore both cell line development and process development are trying to (a) improve cell proliferation to reduce lag-phase and achieve high number of cells; (b) delay cell death to prolong the production phase and improve culture longevity; (c) and finally, increase qP. All of these factors, when combined in an optimised process, concur to increase the final titre and yield of the recombinant protein. As cellular performance is at the centre of any improvement, analysis methods that enable the characterisation of individual cells in their entirety can help in identifying cell types and culture conditions that perform exceptionally well. This observation of cells and their complexity is reflected by the term "cytomics" and flow cytometry is one of the methods used for this purpose. With its ability to analyse the distribution of physiological properties within a population and to isolate rare outliers with exceptional properties, flow cytometry ideally complements other methods used for optimisation, including media design and cell engineering. In the present review we describe approaches that could be used, directly or indirectly, to analyse and sort cellular phenotypes characterised by improved growth behaviour, reduced cell death or high qP and outline their potential use for cell line and process optimisation.
Collapse
Affiliation(s)
- Niraj Kumar
- Department of Biotechnology, BOKU University Vienna, Austria
| | | |
Collapse
|
25
|
Abstract
Many therapeutically relevant proteins, like IgG antibodies, are highly complex, multimeric glycoproteins that are difficult to express in microbial systems and thus usually produced in mammalian host cells. During the past two decades, stable mammalian expression technologies have made huge progress resulting in highly increased speed of cell line development and yield of manufacturing processes. Here, we give an overview of technologies that are applied at different stages of state-of-the-art cell line development processes for biomanufacturing.
Collapse
|
26
|
Park S, Han J, Kim W, Lee GM, Kim HS. Rapid selection of single cells with high antibody production rates by microwell array. J Biotechnol 2011; 156:197-202. [DOI: 10.1016/j.jbiotec.2011.08.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Revised: 08/10/2011] [Accepted: 08/30/2011] [Indexed: 10/17/2022]
|
27
|
|
28
|
Gene amplification and vector engineering to achieve rapid and high-level therapeutic protein production using the Dhfr-based CHO cell selection system. Biotechnol Adv 2010; 28:673-81. [DOI: 10.1016/j.biotechadv.2010.04.003] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Revised: 02/24/2010] [Accepted: 04/14/2010] [Indexed: 11/18/2022]
|
29
|
Park S, Kim W, Kim Y, Son YD, Lee SC, Kim E, Kim SH, Kim JH, Kim HS. Array-Based Analysis of Secreted Glycoproteins for Rapid Selection of a Single Cell Producing a Glycoprotein with Desired Glycosylation. Anal Chem 2010; 82:5830-7. [DOI: 10.1021/ac100992n] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sunyoung Park
- Departments of Biological Sciences and Mathematical Sciences and Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology, 373-1, Guseong-dong, Yuseong-gu, Daejeon 305-701, Korea
| | - Wanjung Kim
- Departments of Biological Sciences and Mathematical Sciences and Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology, 373-1, Guseong-dong, Yuseong-gu, Daejeon 305-701, Korea
| | - Yongtae Kim
- Departments of Biological Sciences and Mathematical Sciences and Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology, 373-1, Guseong-dong, Yuseong-gu, Daejeon 305-701, Korea
| | - Young Dok Son
- Departments of Biological Sciences and Mathematical Sciences and Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology, 373-1, Guseong-dong, Yuseong-gu, Daejeon 305-701, Korea
| | - Sang-Chul Lee
- Departments of Biological Sciences and Mathematical Sciences and Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology, 373-1, Guseong-dong, Yuseong-gu, Daejeon 305-701, Korea
| | - Eunkyung Kim
- Departments of Biological Sciences and Mathematical Sciences and Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology, 373-1, Guseong-dong, Yuseong-gu, Daejeon 305-701, Korea
| | - Sung Ho Kim
- Departments of Biological Sciences and Mathematical Sciences and Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology, 373-1, Guseong-dong, Yuseong-gu, Daejeon 305-701, Korea
| | - Jung Hoe Kim
- Departments of Biological Sciences and Mathematical Sciences and Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology, 373-1, Guseong-dong, Yuseong-gu, Daejeon 305-701, Korea
| | - Hak-Sung Kim
- Departments of Biological Sciences and Mathematical Sciences and Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology, 373-1, Guseong-dong, Yuseong-gu, Daejeon 305-701, Korea
| |
Collapse
|
30
|
Lin S, Shen Z, Zha D, Sharkey N, Prinz B, Hamilton S, Pavoor TV, Bobrowicz B, Shaikh SS, Rittenhour AM, Potgieter TI, Bobrowicz P, Stadheim TA. Selection of Pichia pastoris strains expressing recombinant immunoglobulin G by cell surface labeling. J Immunol Methods 2010; 358:66-74. [PMID: 20338179 DOI: 10.1016/j.jim.2010.03.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Revised: 03/05/2010] [Accepted: 03/08/2010] [Indexed: 11/26/2022]
Abstract
A simple cell labeling method for sorting yeast Pichia pastoris antibody expressing strains is described. A small portion of secreted recombinant antibody retained on the cell surface was labeled with fluorescence detection antibody. The signal intensity of the labeled cell was correlated with the cell's antibody productivity. Using this labeling technique to sort a mixture model induced in the same fermenter where the cells of high producing strain were spiked into a population of a low producing strain at the frequency of 1:100,000, one round of sorting achieved a approximately 5000-fold enrichment of the high producing strain. A variety of P.pastoris strains expressing antibody sorted based on the signal intensity on the cell surface yielded titer improvements by 30% to 300%. Our data demonstrate that Pichia cell surface labeling is a simple, effective and reliable method for sorting Pichia antibody expressing strains for productivity improvement.
Collapse
Affiliation(s)
- Song Lin
- GlycoFi, Inc., a wholly-owned subsidiary of Merck & Co., Inc., Lebanon, NH 03766, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Díaz M, Herrero M, García LA, Quirós C. Application of flow cytometry to industrial microbial bioprocesses. Biochem Eng J 2010. [DOI: 10.1016/j.bej.2009.07.013] [Citation(s) in RCA: 132] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
32
|
Caron AW, Nicolas C, Gaillet B, Ba I, Pinard M, Garnier A, Massie B, Gilbert R. Fluorescent labeling in semi-solid medium for selection of mammalian cells secreting high-levels of recombinant proteins. BMC Biotechnol 2009; 9:42. [PMID: 19432976 PMCID: PMC2689207 DOI: 10.1186/1472-6750-9-42] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2008] [Accepted: 05/11/2009] [Indexed: 11/10/2022] Open
Abstract
Background Despite the powerful impact in recent years of gene expression markers like the green fluorescent protein (GFP) to link the expression of recombinant protein for selection of high producers, there is a strong incentive to develop rapid and efficient methods for isolating mammalian cell clones secreting high levels of marker-free recombinant proteins. Recently, a method combining cell colony growth in methylcellulose-based medium with detection by a fluorescently labeled secondary antibody or antigen has shown promise for the selection of Chinese Hamster Ovary (CHO) cell lines secreting recombinant antibodies. Here we report an extension of this method referred to as fluorescent labeling in semi-solid medium (FLSSM) to detect recombinant proteins significantly smaller than antibodies, such as IGF-E5, a 25 kDa insulin-like growth factor derivative. Results CHO cell clones, expressing 300 μg/ml IGF-E5 in batch culture, were isolated more easily and quickly compared to the classic limiting dilution method. The intensity of the detected fluorescent signal was found to be proportional to the amount of IGF-E5 secreted, thus allowing the highest producers in the population to be identified and picked. CHO clones producing up to 9.5 μg/ml of Tissue-Plasminogen Activator (tPA, 67 kDa) were also generated using FLSSM. In addition, IGF-E5 high-producers were isolated from 293SF transfectants, showing that cell selection in semi-solid medium is not limited to CHO and lymphoid cells. The best positive clones were collected with a micromanipulator as well as with an automated colony picker, thus demonstrating the method's high throughput potential. Conclusion FLSSM allows rapid visualization of the high secretors from transfected pools prior to picking, thus eliminating the tedious task of screening a high number of cell isolates. Because of its rapidity and its simplicity, FLSSM is a versatile method for the screening of high producers for research and industry.
Collapse
Affiliation(s)
- Antoine W Caron
- Institut de Recherche en Biotechnologie, Conseil National de Recherches du Canada, Montréal, QC, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Pichler J, Hesse F, Wieser M, Kunert R, Galosy SS, Mott JE, Borth N. A study on the temperature dependency and time course of the cold capture antibody secretion assay. J Biotechnol 2009; 141:80-3. [DOI: 10.1016/j.jbiotec.2009.03.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2008] [Revised: 02/24/2009] [Accepted: 03/02/2009] [Indexed: 10/21/2022]
|
34
|
Browne SM, Al-Rubeai M. Selection Methods for High-Producing Mammalian Cell Lines. CELL ENGINEERING 2009. [DOI: 10.1007/978-90-481-2245-5_7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
35
|
Browne SM, Al-Rubeai M. Selection methods for high-producing mammalian cell lines. Trends Biotechnol 2007; 25:425-32. [PMID: 17659798 DOI: 10.1016/j.tibtech.2007.07.002] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2007] [Revised: 04/30/2007] [Accepted: 07/18/2007] [Indexed: 10/23/2022]
Abstract
The selection of high-producing mammalian cell lines represents a bottleneck in process development for the production of biopharmaceuticals. Traditional methods are time consuming (development times often exceed six months) and significantly limited by the number of clones that can be feasibly screened. The market for therapeutic proteins is set to double by 2010, so there is an increasing need to develop methods for the selection of mammalian cell lines stably expressing recombinant products at high levels in an efficient, cost-effective and high-throughput manner. Alternatives include higher throughput methods based on flow-cytometric screening and recently developed automated systems for the selection of high-producing cell lines.
Collapse
Affiliation(s)
- Susan M Browne
- School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, Dublin 4, Ireland
| | | |
Collapse
|
36
|
Hartman TE, Sar N, Genereux K, Barritt DS, He Y, Burky JE, Wesson MC, Tso JY, Tsurushita N, Zhou W, Sauer PW. Derivation and characterization of cholesterol-independent non-GS NS0 cell lines for production of recombinant antibodies. Biotechnol Bioeng 2007; 96:294-306. [PMID: 16897745 DOI: 10.1002/bit.21099] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Presented is an antibody production platform based on the fed-batch culture of recombinant NS0-derived cell lines. NS0 host cells, obtained from the European Collection of Cell Cultures (ECACC, Salisbury, UK, Part No. 85110503), were first adapted to grow in a protein-free, cholesterol-free medium. The resulting host cell line was designated NS0-PFCF (protein-free, cholesterol-free). The five production cell lines presented here were generated using a common protocol consisting of transfection by electroporation and subcloning. The NS0-PFCF host cell line was transfected using a single expression vector containing the Escherichia coli xanthine-guanine phosphoribosyl transferase gene (gpt), and the antibody heavy and light chain genes driven by the CMV promoter. The five cell lines were chosen after one to three rounds of iterative subcloning, which resulted in a 19-64% increase in antibody productivity when four mother-daughter cell pairs were cultured in a fed-batch bioreactor process. The production cell lines were genetically characterized to determine antibody gene integrity, nucleotide sequences, copy number, and the number of insertion sites in the NS0 cell genome. Genetic characterization data indicate that each of the five production cell lines has a single stably integrated copy of the antibody expression vector, and that the antibody genes are correctly expressed. Stability of antibody production was evaluated for three of the five cell lines by comparing the early stage seed bank with the Working Cell Bank (WCB). Antibody productivity was shown to be stable in two of three cell lines evaluated, while one of the cell lines exhibited a 20% drop in productivity after passaging for approximately 4 weeks. These five NS0-derived production cell lines were successfully cultured to produce antibodies with acceptable product quality attributes in a standardized fed-batch bioreactor process, consistently achieving an average specific productivity of 20-60 pg/cell-day, and a volumetric productivity exceeding 120 mg/L-day (Burky et al., 2006). In contrast to the commonly available NS0 host cell line, which requires serum and cholesterol for growth, and the commonly used expression vector system, which uses a proprietary glutamine synthetase selection marker (GS-NS0), these NS0 cells are cholesterol-independent, grow well in a protein-free medium, use a non-proprietary selection marker, and do not require gene amplification for productivity improvement. These characteristics are advantageous for use of this NS0 cell line platform for manufacturing therapeutic antibodies.
Collapse
Affiliation(s)
- Taymar E Hartman
- Process Sciences and Engineering, PDL BioPharma, Inc., 34801 Campus Drive, Fremont, California 94555, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Kuystermans D, Krampe B, Swiderek H, Al-Rubeai M. Using cell engineering and omic tools for the improvement of cell culture processes. Cytotechnology 2007; 53:3-22. [PMID: 19003186 DOI: 10.1007/s10616-007-9055-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2006] [Accepted: 01/25/2007] [Indexed: 12/26/2022] Open
Abstract
Significant strides have been made in mammalian cell based biopharmaceutical process and cell line development over the past years. With several established mammalian host cell lines and expression systems, optimization of selection systems to reduce development times and improvement of glycosylation patterns are only some of the advances being made to improve cell culture processes. In this article, the advances pertaining to cell line development and cell engineering strategies are discussed. An overview of the cell engineering strategies to enhance cellular characteristics by genetic manipulation are illustrated, focusing on the use of genomics and proteomics tools and their application in such endeavors. Included in this review are some of the early studies using the 'omic' technique to understand cellular mechanisms of product synthesis and secretion, apoptosis, cell proliferation and the influence of the physicochemical environment. The article highlights the significance of integrating genomics and proteomics data with the vast amounts of bioprocess data for improved analysis of the biological pathways involved. Further improvements of the techniques and methodologies used are needed but ultimately, the new cell engineering strategies should provide great insight into the regulatory networks within the cell in a bioprocess environment and how to manipulate them to increase overall productivity.
Collapse
Affiliation(s)
- Darrin Kuystermans
- School of Chemical and Bioprocess Engineering and Centre for Synthesis and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland
| | | | | | | |
Collapse
|
38
|
Sleiman RJ, Gray PP, McCall MN, Codamo J, Sunstrom NAS. Accelerated cell line development using two-color fluorescence activated cell sorting to select highly expressing antibody-producing clones. Biotechnol Bioeng 2007; 99:578-87. [PMID: 17680677 DOI: 10.1002/bit.21612] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The success of engineered monoclonal antibodies as biopharmaceuticals has generated considerable interest in strategies designed to accelerate development of antibody expressing cell lines. Stable mammalian cell lines that express therapeutic antibodies at high levels typically take 6-12 months to develop. Here we describe a novel method to accelerate selection of cells expressing recombinant proteins (e.g., antibodies) using multiparameter fluorescence activated cell sorting (FACS) in association with dual intracellular autofluorescent reporter proteins. The method is co-factor-independent and does not require complex sample preparation. Chinese hamster ovary (CHO) clones expressing high levels of recombinant antibody were selected on the basis of a two-color FACS sorting strategy using heavy and light chain-specific fluorescent reporter proteins. We were able to establish within 12 weeks of transfection cell lines with greater than a 38-fold increase in antibody production when compared to the pool from which they were isolated, following a single round of FACS. The method provides a robust strategy to accelerate selection and characterization of clones and builds a foundation for a predictive model of specific productivity based upon on two-color fluorescence.
Collapse
Affiliation(s)
- Robert J Sleiman
- ACYTE Biotech Pty Ltd., University of New South Wales, Sydney, NSW, Australia
| | | | | | | | | |
Collapse
|
39
|
Abstract
The clinical and commercial success of monoclonal antibodies has led to the need for very large-scale production in mammalian cell culture. This has resulted in rapid expansion of global manufacturing capacity [1], an increase in size of reactors (up to 20,000 L) and a greatly increased effort to improve process efficiency with concomitant manufacturing cost reduction. This has been particularly successful in the upstream part of the process where productivity of cell cultures has improved 100 fold in the last 15 years. This success has resulted from improvements in expression technology and from process optimisation, especially the development of fed-batch cultures. In addition to improving process/cost efficiencies, a second key area has been reducing the time taken to develop processes and produce the first material required for clinical testing and proof-of-principle. Cell line creation is often the slowest step in this stage of process development. This article will review the technologies currently used to make monoclonal antibodies with particular emphasis on mammalian cell culture. Likely future trends are also discussed.
Collapse
Affiliation(s)
- John R Birch
- Lonza Biologics plc, 228 Bath Road, Slough, Berkshire, SL1 4DX, UK.
| | | |
Collapse
|
40
|
Mattanovich D, Borth N. Applications of cell sorting in biotechnology. Microb Cell Fact 2006; 5:12. [PMID: 16551353 PMCID: PMC1435767 DOI: 10.1186/1475-2859-5-12] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2005] [Accepted: 03/21/2006] [Indexed: 01/28/2023] Open
Abstract
Due to its unique capability to analyze a large number of single cells for several parameters simultaneously, flow cytometry has changed our understanding of the behavior of cells in culture and of the population dynamics even of clonal populations. The potential of this method for biotechnological research, which is based on populations of living cells, was soon appreciated. Sorting applications, however, are still less frequent than one would expect with regard to their potential. This review highlights important contributions where flow cytometric cell sorting was used for physiological research, protein engineering, cell engineering, specifically emphasizing selection of overproducing cell lines. Finally conclusions are drawn concerning the impact of cell sorting on inverse metabolic engineering and systems biology.
Collapse
Affiliation(s)
- Diethard Mattanovich
- University of Natural Resources and Applied Life Sciences Vienna, Department of Biotechnology, Institute of Applied Microbiology, Muthgasse 18, A-1190 Vienna, Austria
- School of Bioengineering, University of Applied Sciences FH-Campus Vienna, Muthgasse 18, A-1190 Vienna, Austria
| | - Nicole Borth
- University of Natural Resources and Applied Life Sciences Vienna, Department of Biotechnology, Institute of Applied Microbiology, Muthgasse 18, A-1190 Vienna, Austria
| |
Collapse
|
41
|
Carroll S, Al-Rubeai M. The selection of high-producing cell lines using flow cytometry and cell sorting. Expert Opin Biol Ther 2005; 4:1821-9. [PMID: 15500410 DOI: 10.1517/14712598.4.11.1821] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The selection of high-producing cell lines is usually time-consuming and labour-intensive. Following transfection, high-producing cells are selected using limiting dilution cloning to prevent non- and low-producing cells from outgrowing high-producing cells, a process that normally takes > 3 months. During this time, the cells have to be screened occasionally to ensure stability of the selected clone. Several new methods for selecting and screening cells using flow cytometry and cell sorting have recently been developed; these include gel microdrop technology, which encapsulates the cells in gelatine beads, and matrix-based secretion assays. This paper reviews these techniques for selecting high-producing cell lines and isolating rare cells.
Collapse
Affiliation(s)
- Silvia Carroll
- Department of Chemical Engineering, University of Birmingham, UK
| | | |
Collapse
|
42
|
Böhm E, Grillari J, Voglauer R, Gross S, Ernst W, Ferko B, Kunert R, Katinger H, Borth N. Establishment of a strategy for the rapid generation of a monoclonal antibody against the human protein SNEV (hNMP200) by flow-cytometric cell sorting. J Immunol Methods 2005; 307:13-23. [PMID: 16289093 DOI: 10.1016/j.jim.2005.08.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2005] [Revised: 08/01/2005] [Accepted: 08/18/2005] [Indexed: 10/25/2022]
Abstract
The screening for antigen-specific hybridoma cells with adequate production rates is still a time-, labour- and money-consuming procedure. A reduction in cell culture testing by specifically selecting those fused cells that produce antibody could therefore make hybridoma technology more attractive, even for small research groups or for newly discovered proteins at an early stage of research. Additional problems, such as the requirement to produce sufficient amounts of the unknown protein at a purity that allows specific immunisation of mice and testing of the resulting hybridoma clones, also need to be overcome. Here we present a new strategy to isolate rapidly and efficiently monoclonal antibodies against new proteins, for which only sequence information at the DNA level is known. The strategy consists of fusion of the protein to a hexa-His-tag to allow easy purification, production in yeast and insect cells to reduce background immunisation with host cell proteins and the selection of IgG-producing hybridoma cells by flow-cytometric cell sorting using the affinity matrix secretion assay technique.
Collapse
Affiliation(s)
- Ernst Böhm
- Institute of Applied Microbiology, Department of Biotechnology, University of Natural Resources and Applied Life Sciences, Wien/Vienna, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Omasa T. Gene amplification and its application in cell and tissue engineering. J Biosci Bioeng 2005; 94:600-5. [PMID: 16233356 DOI: 10.1016/s1389-1723(02)80201-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2002] [Accepted: 09/24/2002] [Indexed: 11/19/2022]
Abstract
Gene amplification means the repeated replication of a certain gene without a proportional increase in the copy number of other genes and is a widespread phenomenon in eukaryotes. It is an important developmental and evolutionary process in many organisms. This article focuses on mammalian gene amplification and its application in cell and tissue engineering. The dhfr gene amplification in Chinese hamster ovary (CHO) cells, the gene amplification mechanism, the selection protocol and the application of gene amplification were reviewed.
Collapse
Affiliation(s)
- Takeshi Omasa
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
44
|
Hanania EG, Fieck A, Stevens J, Bodzin LJ, Palsson BØ, Koller MR. Automated in situ measurement of cell-specific antibody secretion and laser-mediated purification for rapid cloning of highly-secreting producers. Biotechnol Bioeng 2005; 91:872-6. [PMID: 15937942 DOI: 10.1002/bit.20559] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cloning of highly-secreting recombinant cells is critical for biopharmaceutical manufacturing, but faces numerous challenges including the fact that secreted protein does not remain associated with the producing cell. A fundamentally new approach was developed combining in situ capture and measurement of individual cell protein secretion followed by laser-mediated elimination of all non- and poorly-secreting cells, leaving only the highest-secreting cell in a well. Recombinant cells producing humanized antibody were cultured serum-free on a capture matrix, followed by staining with fluorescently-labeled anti-human antibody fragment. A novel, automated, high-throughput instrument (called LEAP) was used to image and locate every cell, quantify the cell-associated and secreted antibody (surrounding each cell), eliminate all undesired cells from a well via targeted laser irradiation, and then track clone outgrowth and stability. Temporarily sparing an island of helper cells around the clone of interest improved cloning efficiency (particularly when using serum-free medium), and helper cells were easily eliminated with the laser after several days. The in situ nature of this process allowed several serial sub-cloning steps to be performed within days of one another, resulting in rapid generation of clonal populations with significantly increased and more stable, homogeneous antibody secretion. Cell lines with specific antibody secretion rates of > 50 pg/cell per day (in static batch culture) were routinely obtained as a result of this cloning approach, often times representing up to 20% of the clones screened.
Collapse
|
45
|
Carroll S, Al-Rubeai M. ACSD labelling and magnetic cell separation: a rapid method of separating antibody secreting cells from non-secreting cells. J Immunol Methods 2005; 296:171-8. [PMID: 15680161 DOI: 10.1016/j.jim.2004.11.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2004] [Revised: 10/13/2004] [Accepted: 11/11/2004] [Indexed: 10/26/2022]
Abstract
Several new ways of selecting cells have recently been developed. These include magnetic separation of cells by labelling with magnetic beads against the recombinant product, gel microdrop technology which encapsulates the cells in gelatine beads and matrix-based secretion assays. Affinity capture surface display (ACSD) is a matrix-based assay for the enrichment of high producing cells and relies on the strong affinity between biotin and avidin derivatives. Matrix-based assays have previously only been used for the enrichment of recombinant cells. Here, we have optimised this assay and developed a method of separating antibody producing cells from non-producing cells in a recombinant myeloma cell line using ACSD combined with MACS magnetic separation. The method is rapid, simple enough to become routine and adaptable to many different secreted products from recombinant mammalian cells.
Collapse
Affiliation(s)
- Silvia Carroll
- Department of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | | |
Collapse
|
46
|
Brezinsky SCG, Chiang GG, Szilvasi A, Mohan S, Shapiro RI, MacLean A, Sisk W, Thill G. A simple method for enriching populations of transfected CHO cells for cells of higher specific productivity. J Immunol Methods 2003; 277:141-55. [PMID: 12799047 DOI: 10.1016/s0022-1759(03)00108-x] [Citation(s) in RCA: 133] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
To establish a simple and rapid method for the screening of stable recombinant Chinese hamster ovary (CHO) cell lines, we have developed a cell surface labeling technique using fluorescently tagged antibodies that bind to secreted target proteins at low temperature. Using fluorescence intensity as the sole criterion for selection of cells, we are able to enrich populations of highly productive cells using preparative flow cytometry sorting. Reiterative sorting based on selection of cells having the highest fluorescence intensity of cell surface labeled protein results in dramatic increases in specific cellular productivity. Using lymphotoxin-beta receptor IgG fusion protein as a model system, we have demonstrated a greater than 20-fold increase in specific productivity (0.49-11.5 pg cell(-1) day(-1)) (pcd) without the use of methotrexate (MTX)-mediated selection or amplification. In addition, the flow cytometry used to enrich for and clone high producer cell lines has reduced development time by more than 50% and the number of screening assays by more than 10-fold. When a transfected population of CHO cells expressing a humanized version of the murine monoclonal antibody (mAb) AQC2 directed against human alpha 1 beta 1 integrin was subjected to the same treatment, a 25-fold improvement in specific productivity (0.3-8.0 pcd) was observed. Furthermore, similar application of this technique to MTX-amplified clones resulted in up to 120-fold overall improvement in specific productivity (up to 42 pcd). Greater than 20 examples are also presented to demonstrate the robustness and performance of this technique.
Collapse
|
47
|
Yoshikawa T, Nakanishi F, Ogura Y, Oi D, Omasa T, Katakura Y, Kishimoto M, Suga KI. Flow cytometry: an improved method for the selection of highly productive gene-amplified CHO cells using flow cytometry. Biotechnol Bioeng 2001; 74:435-42. [PMID: 11427945 DOI: 10.1002/bit.1134] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In previous work, we clarified the relationship between the productivity and stability of gene-amplified cells and the location of the amplified gene. The location of the amplified gene enabled us to classify resistant cells into two types. One type of resistant cell group, in which the amplified genes were observed near the telomeric region, was named the "telomere type." The other type of cell group, in which the amplified genes were observed in other chromosomal regions, was named the "other type." The phenotypes of these two types of cells are very different. In this experiment, using a fluorescein isothiocyanate-labeled methotrexate (F-MTX) reagent with flow cytometry, we were easily able to distinguish between highly productive cells and the other types of cells. The level of fluorescence differed according to the difference in resistance to MTX. Based on this new finding, highly productive gene-amplified cells could be isolated from heterogeneous gene-amplified cell pools more easily than by the method of limiting-dilution assay. The limiting-dilution method requires several months to obtain highly productive gene-amplified cells, while our flow-cytometry-based method of selection requires only a few weeks.
Collapse
Affiliation(s)
- T Yoshikawa
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
Protein libraries displayed on cell surfaces can be labeled with soluble ligands exhibiting well-characterized binding equilibria and dissociation kinetics, and then quantitatively screened by flow cytometry at a rate of >10(4) clones/second. The promise of cell-surface display for directed evolution is being realized, with significant improvements recently reported in protein ligand binding affinity, stability, expression and enzymatic activity.
Collapse
Affiliation(s)
- K D Wittrup
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|