1
|
O’Donoghue AJ, Liu C, Simington CJ, Montermoso S, Moreno-Galvez E, Serafim MSM, Burata OE, Lucero RM, Nguyen JT, Fong D, Tran K, Millan N, Gallimore JM, Parungao K, Fong J, Suzuki BM, Jiang Z, Isoe J, Rascón AA. Comprehensive proteolytic profiling of Aedes aegypti mosquito midgut extracts: Unraveling the blood meal protein digestion system. PLoS Negl Trop Dis 2025; 19:e0012555. [PMID: 39913535 PMCID: PMC11838913 DOI: 10.1371/journal.pntd.0012555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 02/19/2025] [Accepted: 01/28/2025] [Indexed: 02/20/2025] Open
Abstract
To sustain the gonotrophic cycle, the Aedes aegypti mosquito must acquire a blood meal from a human or other vertebrate host. However, in the process of blood feeding, the mosquito may facilitate the transmission of several bloodborne viral pathogens (e.g., dengue, Zika, and chikungunya). The blood meal is essential as it contains proteins that are digested into polypeptides and amino acid nutrients that are eventually used for egg production. These proteins are digested by several midgut proteolytic enzymes. As such, the female mosquito's reliance on blood may serve as a potential target for vector and viral transmission control. However, this strategy may prove to be challenging since midgut proteolytic activity is a complex process dependent on several exo- and endo-proteases. Therefore, to understand the complexity of Ae. aegypti blood meal digestion, we used Multiplex Substrate Profiling by Mass Spectrometry (MSP-MS) to generate global proteolytic profiles of sugar- and blood-fed midgut tissue extracts, along with substrate profiles of recombinantly expressed midgut proteases. Our results reveal a shift from high exoproteolytic activity in sugar-fed mosquitoes to an expressive increase in endoproteolytic activity in blood-fed mosquitoes. This approach allowed for the identification of 146 cleaved peptide bonds (by the combined 6 h and 24 h blood-fed samples) in the MSP-MS substrate library, and of these 146, 99 (68%) were cleaved by the five recombinant proteases evaluated. These reveal the individual contribution of each recombinant midgut protease to the overall blood meal digestion process of the Ae. aegypti mosquito. Further, our molecular docking simulations support the substrate specificity of each recombinant protease. Therefore, the present study provides key information of midgut proteases and the blood meal digestion process in mosquitoes, which may be exploited for the development of potential inhibitor targets for vector and viral transmission control strategies.
Collapse
Affiliation(s)
- Anthony J. O’Donoghue
- Center for Discovery and Innovation in Parasitic Disease, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California, United States of America
| | - Chenxi Liu
- Center for Discovery and Innovation in Parasitic Disease, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California, United States of America
| | - Carter J. Simington
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, Arizona, United States of America
| | - Saira Montermoso
- Department of Chemistry, San José State University, San José, California, United States of America
| | - Elizabeth Moreno-Galvez
- Department of Chemistry, San José State University, San José, California, United States of America
| | - Mateus Sá M. Serafim
- Center for Discovery and Innovation in Parasitic Disease, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California, United States of America
- Department of Microbiology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Olive E. Burata
- Department of Chemistry, San José State University, San José, California, United States of America
| | - Rachael M. Lucero
- Department of Chemistry, San José State University, San José, California, United States of America
| | - James T. Nguyen
- Department of Chemistry, San José State University, San José, California, United States of America
| | - Daniel Fong
- Department of Chemistry, San José State University, San José, California, United States of America
| | - Khanh Tran
- Department of Chemistry, San José State University, San José, California, United States of America
| | - Neomi Millan
- Department of Chemistry, San José State University, San José, California, United States of America
| | - Jamie M. Gallimore
- Department of Chemistry, San José State University, San José, California, United States of America
| | - Kamille Parungao
- Department of Chemistry, San José State University, San José, California, United States of America
| | - Jonathan Fong
- Department of Chemistry, San José State University, San José, California, United States of America
| | - Brian M. Suzuki
- Center for Discovery and Innovation in Parasitic Disease, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California, United States of America
| | - Zhenze Jiang
- Center for Discovery and Innovation in Parasitic Disease, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California, United States of America
| | - Jun Isoe
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, Arizona, United States of America
| | - Alberto A. Rascón
- Department of Chemistry, San José State University, San José, California, United States of America
| |
Collapse
|
2
|
Yang L, Cheng Y, Wang Q, Hou J, Rong Q, Xiao C, Zhang Y, Yan J, Xia Q, Hou Y. Insights into the activation mechanism of Bm-CPA: Implications for insect molting regulation. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 173:104175. [PMID: 39134228 DOI: 10.1016/j.ibmb.2024.104175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 08/06/2024] [Accepted: 08/06/2024] [Indexed: 08/19/2024]
Abstract
Carboxypeptidase A has been found across various animal species, yet its activation mechanism during the insect molting process remains elusive. Our study specifically delved into the activation mechanism of carboxypeptidase A (Bm-CPA), identified in Bombyx mori's molting fluid during metamorphosis. Initially, western blotting identified two forms of Bm-CPA, 65 kDa and 54 kDa, in the epidermis of silkworms during the molting stage. Expressing the complete Bm-CPA sequence in Pichia pastoris allowed the identification, via mass spectrometry analysis, of a 75-amino-acid propeptide for the initial hydrolysis process. Subsequently, a 35 kDa form of Bm-CPA emerged in the molting fluid, confirmed as the active form through in vitro assays, demonstrating potent carboxypeptidase A activity and faint carboxypeptidase B activity. Four potential activation sites (including Lys158/Arg159 and Arg177/Arg178) were identified through mass spectrometry and amino acid mutation analysis. RNAi of Bm-CPA indicates its critical role in molting. Finally, the carboxypeptidase inhibitor (Bm-CPI) from silkworm molting fluid was expressed to explore its role in regulating Bm-CPA activity, demonstrating a direct interaction with the 35 kDa Bm-CPA. Our research implies Bm-CPA's potential involvement in the silkworm molting process, suggesting diverse regulatory roles. These findings highlight intricate protein regulation patterns during insect metamorphosis and development.
Collapse
Affiliation(s)
- Lingzhen Yang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, 400716, China
| | - Yuejing Cheng
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, 400716, China
| | - Qinglang Wang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, 400716, China
| | - Jianing Hou
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, 400716, China
| | - Qingyu Rong
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, 400716, China
| | - Chunxia Xiao
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, 400716, China
| | - Yuhao Zhang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, 400716, China
| | - Jiamin Yan
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, 400716, China
| | - Qingyou Xia
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, 400716, China
| | - Yong Hou
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, 400716, China.
| |
Collapse
|
3
|
Liu X, Gao Y, Li Y, Zhang J. Targeting Syntaxin 1A via RNA interference inhibits feeding and midgut development in Locusta migratoria. INSECT SCIENCE 2024. [PMID: 39075757 DOI: 10.1111/1744-7917.13419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 06/03/2024] [Accepted: 06/20/2024] [Indexed: 07/31/2024]
Abstract
Syntaxin 1A (Syx1A) has diverse and indispensable functions in animals. Previous studies have mainly focused on the roles of Syx1A in Drosophila, and so how Syx1A operates during the development of other insects remains poorly understood. This study investigated whether disrupting LmSyx1A using RNA interference (RNAi) affects the growth and development of Locusta migratoria. LmSyx1A was expressed in all tissues tested, with the highest expression observed in the fat body. After 5th-instar nymphs were injected with double-stranded LmSyx1A (dsLmSyx1A), none of the nymphs were able to molt normally and all eventually died. The silencing of LmSyx1A resulted in the cessation of feeding, body weight loss, and atrophy of the midgut and gastric cecum in locusts. Hematoxylin and eosin (H&E) staining showed that the columnar cells in the midgut were severely damaged, with microvilli defects visible in dsLmSyx1A-injected nymphs. Secretory vesicles were observed with transmission electron microscopy (TEM). In addition, reverse transcription quantitative polymerase chain reaction (RT-qPCR) further indicates that silencing LmSyx1A repressed the expression of genes involved in the insulin/mammalian target of rapamycin (mTOR)-associated nutritional pathway. Taken together, these results suggest that LmSyx1A significantly affects the midgut cell layer of locust nymphs, which was partially associated with the downregulation of the insulin/mTOR-associated nutritional pathway. Thus, we argue that LmSyx1A is a suitable target for developing dsRNA-based biological pesticides for managing L. migratoria.
Collapse
Affiliation(s)
- Xiaojian Liu
- Shanxi Key Laboratory of Nucleic Acid Biopesticides, Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, China
| | - Ya Gao
- Shanxi Key Laboratory of Nucleic Acid Biopesticides, Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, China
| | - Yao Li
- Shanxi Key Laboratory of Nucleic Acid Biopesticides, Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, China
| | - Jianzhen Zhang
- Shanxi Key Laboratory of Nucleic Acid Biopesticides, Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, China
| |
Collapse
|
4
|
Liu X, Li Y, Gao Y, El Wakil A, Moussian B, Zhang J. RNA interference-mediated silencing of coat protein II (COPII) genes affects the gut homeostasis and cuticle development in Locusta migratoria. Int J Biol Macromol 2024; 266:131137. [PMID: 38537854 DOI: 10.1016/j.ijbiomac.2024.131137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/08/2024] [Accepted: 03/23/2024] [Indexed: 04/06/2024]
Abstract
The coat protein II (COPII) complex consists of five primary soluble proteins, namely the small GTP-binding protein Sar1, the inner coat Sec23/Sec24 heterodimers, and the outer coat Sec13/Sec31 heterotetramers. COPII is essential for cellular protein and lipid trafficking through cargo sorting and vesicle formation at the endoplasmic reticulum. However, the roles of COPII assembly genes remain unknown in insects. In present study, we identified five COPII assembly genes (LmSar1, LmSec23, LmSec24, LmSec13 and LmSec31) in Locusta migratoria. RT-qPCR results revealed that these genes showed different expression patterns in multiple tissues and developmental days of fifth-instar nymphs. Injection of double-stranded RNA against each LmCOPII gene induced a high RNAi efficiency, and considerably suppressed feeding, and increased mortality to 100 %. Results from the micro-sectioning and hematoxylin-eosin staining of midguts showed that the brush border was severely damaged and the number of columnar cells was significantly reduced in dsLmCOPII-injected nymphs, as compared with the control. The dilated endoplasmic reticulum phenotype of columnar cells was observed by transmission electron microscopy. RT-qPCR results further indicated that silencing any of the five genes responsible for COPII complex assembly repressed the expression of genes involved in insulin/mTOR-associated nutritional pathway. Therefore, COPII assembly genes could be promising RNAi targets for insect pest management by disrupting gut and cuticle development.
Collapse
Affiliation(s)
- Xiaojian Liu
- Shanxi Key Laboratory of Nucleic Acid Biopesticides, Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Yao Li
- Shanxi Key Laboratory of Nucleic Acid Biopesticides, Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Ya Gao
- Shanxi Key Laboratory of Nucleic Acid Biopesticides, Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Abeer El Wakil
- Faculty of Education, Department of Biological and Geological Sciences, Alexandria University, Alexandria, Egypt
| | - Bernard Moussian
- INRAE, CNRS, Université Côte d'Azur, Institut Sophia Agrobiotech, Sophia Antipolis, France
| | - Jianzhen Zhang
- Shanxi Key Laboratory of Nucleic Acid Biopesticides, Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China.
| |
Collapse
|
5
|
Malta LGF, Koerich LB, D'Ávila Pessoa GC, Araujo RN, Sant'Anna MRV, Pereira MH, Gontijo NF. Clogmia albipunctata (Williston, 1893) midgut physiology: pH control and functional relationship with Lower Diptera (nematoceran) especially with hematophagous species. Comp Biochem Physiol A Mol Integr Physiol 2024; 290:111584. [PMID: 38224901 DOI: 10.1016/j.cbpa.2024.111584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 01/17/2024]
Abstract
Clogmia albipunctata (Williston, 1893) is a non-hematophagous insect belonging to the order Diptera, suborder Nematocera (Lower Diptera) and family Psychodidae. In the present work, we investigated how C. albipunctata control their midgut pH under different physiological conditions, comparing their midgut physiology with some nematoceran hematophagous species. The C. albipunctata midgut pH was measured after ingestion of sugar, protein and under the effect of the alkalinizing hormone released in the hemolymph of the hematophagous sand fly Lutzomyia longipalpis obtained just after a blood meal. The midgut pH of unfed or sugar-fed C. albipunctata is 5.5-6, and its midgut underwent alkalinization after protein ingestion or under treatment with hemolymph collected from blood fed L. longipalpis. These results suggested that in nematocerans, mechanisms for pH control seem shared between hematophagous and non-hematophagous species. This kind of pH control is convenient for successful blood digestion. The independent evolution of many hematophagous groups from the Lower Diptera suggests that characteristics involved in midgut pH control were already present in non-hematophagous species and represent a readiness for adaptation to this feeding mode.
Collapse
Affiliation(s)
- Luccas Gabriel Ferreira Malta
- Laboratório de Fisiologia de Insetos Hematófagos, Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Departamento de Parasitologia, Pampulha, Belo Horizonte, Minas Gerais, Brazil
| | - Leonardo Barbosa Koerich
- Laboratório de Fisiologia de Insetos Hematófagos, Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Departamento de Parasitologia, Pampulha, Belo Horizonte, Minas Gerais, Brazil
| | - Grasielle Caldas D'Ávila Pessoa
- Laboratório de Fisiologia de Insetos Hematófagos, Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Departamento de Parasitologia, Pampulha, Belo Horizonte, Minas Gerais, Brazil
| | - Ricardo N Araujo
- Laboratório de Fisiologia de Insetos Hematófagos, Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Departamento de Parasitologia, Pampulha, Belo Horizonte, Minas Gerais, Brazil
| | - Mauricio Roberto Viana Sant'Anna
- Laboratório de Fisiologia de Insetos Hematófagos, Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Departamento de Parasitologia, Pampulha, Belo Horizonte, Minas Gerais, Brazil
| | - Marcos H Pereira
- Laboratório de Fisiologia de Insetos Hematófagos, Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Departamento de Parasitologia, Pampulha, Belo Horizonte, Minas Gerais, Brazil
| | - Nelder Figueiredo Gontijo
- Laboratório de Fisiologia de Insetos Hematófagos, Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Departamento de Parasitologia, Pampulha, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
6
|
Nuss AB, Gulia-Nuss M. Trypsin, the Major Proteolytic Enzyme for Blood Digestion in the Mosquito Midgut. Cold Spring Harb Protoc 2023; 2023:pdb.top107656. [PMID: 36787964 DOI: 10.1101/pdb.top107656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
When a female mosquito takes a blood meal, proteolytic activity surges in the midgut. Trypsin-like serine proteases are the major endoproteolytic enzyme induced by feeding in mosquitoes. The mosquito midgut lacks trypsin activity before the blood meal, but in most anautogenous mosquitoes, trypsin activity increases continuously up to 30 h after feeding and subsequently returns to baseline levels by 60 h. Trypsin activity in mosquitoes is restricted entirely to the posterior midgut lumen, where blood is stored and digested. Trypsin enzyme activity can be quantitatively measured using the artificial Nα-benzoyl-DL-arginine 4-nitroanilide hydrochloride substrate, a method described in our associated protocol.
Collapse
Affiliation(s)
- Andrew B Nuss
- Department of Biochemistry and Molecular Biology, Veterinary, and Rangeland Sciences, University of Nevada, Reno, Nevada 89557, USA
- Department of Agriculture, Veterinary, and Rangeland Sciences, University of Nevada, Reno, Nevada 89557, USA
| | - Monika Gulia-Nuss
- Department of Biochemistry and Molecular Biology, Veterinary, and Rangeland Sciences, University of Nevada, Reno, Nevada 89557, USA
| |
Collapse
|
7
|
Pomun T, Wonginta P, Kubera A. Malaria Box Compounds against Anopheles gambiae (Diptera: Culicidae) Carboxypeptidase B Activity to Block Malaria Transmission. JOURNAL OF MEDICAL ENTOMOLOGY 2022; 59:1355-1362. [PMID: 35522203 DOI: 10.1093/jme/tjac043] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Indexed: 06/14/2023]
Abstract
Carboxypeptidase B (CPB) plays an important role in blood digestion in mosquitos, aiding the release of free amino acids. Anopheles CPB is a target to block malaria transmission because it facilitates Plasmodium invasion of the mosquito midgut. Our study aimed to discover inhibitors of Anopheles CPB to prevent Plasmodium development in the mosquito. The Anopheles gambiae cpb (Agcpb) gene without a signal sequence was cloned into the pET28b expression vector. The recombinant AgCPB protein was expressed in E. coli BL21(DE3) within inclusion bodies after induction with 0.5 mM isopropyl β-D-1-thiogalactopyranoside at 37°C for 4 h. The protein pellet was dissolved in 6 M urea, purified by affinity chromatography, and dialyzed in reaction buffer. The refolded recombinant AgCPB could digest the hippuryl-arginine substrate similarly to that of the commercial porcine pancreas CPB. The 20 top-scoring malaria box compounds from the virtual-screening results were then chosen for an in vitro inhibition assay against AgCPB. Four of the 20 malaria box compounds could inhibit AgCPB activity. The compound MMV007591 was the most potent inhibitor with an IC50 at 0.066 µM. The results indicate that these candidate compounds may be utilized in drug development against mosquito CPB activity to curb malaria transmission.
Collapse
Affiliation(s)
- Tippawan Pomun
- Department of Genetics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Phattaradanai Wonginta
- Department of Genetics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Anchanee Kubera
- Department of Genetics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
- Centre for Advanced Studies in Tropical Natural Resources, Kasetsart University, Bangkok 10900, Thailand
| |
Collapse
|
8
|
Tian Z, Guo S, Zhu F, Liu W, Wang XP. Targeting coat protein II complex genes via RNA interference inhibits female adult feeding and reproductive development in the cabbage beetle Colaphellus bowringi. PEST MANAGEMENT SCIENCE 2022; 78:2141-2150. [PMID: 35171515 DOI: 10.1002/ps.6836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 01/17/2022] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND The cabbage beetle Colaphellus bowringi is a highly destructive cruciferous vegetable pest in Asia. This beetle is predominantly controlled by synthetic chemical pesticides, which leave pesticide residues on food and constitute a major hidden danger to human health. Based on preliminary research, we hypothesized that the coat protein II (COPII) complex, a primary coated vesicle that exports cargo molecules from the endoplasmic reticulum, is a promising novel target for the control of Colaphellus bowringi. RESULTS This study investigated whether disrupting COPII using RNA interference (RNAi) affects the growth and development of Colaphellus bowringi adults. The results showed that five COPII assembly genes, Sar1, Sec23, Sec24, Sec13, and Sec31, were uniformly expressed in multiple tissues of adult female Colaphellus bowringi. Injecting double-stranded RNA (dsRNA) against each gene induced a high RNAi efficiency by approximately 55-99%, and considerably inhibited yolk deposition and ovarian growth. Moreover, knockdown of Sar1, Sec23 and Sec24 suppressed feeding and increased mortality to 26.67%, 46.67%, and 42.22%, respectively. This was partially due to the down-regulation of insulin/mTOR-associated nutritional pathways. The results indicate that silencing any of the five genes responsible for COPII complex assembly represses Juvenile hormone and ecdysone signaling pathways, suggesting that vesicle transport plays a vital role in the endocrine regulation of Colaphellus bowringi females. CONCLUSION This study suggests that the COPII complex could be a promising RNAi target for the management of Colaphellus bowringi, which would reduce our dependence on chemical pesticides for pest control. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhong Tian
- Hubei Key Laboratory of Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Shuang Guo
- Hubei Key Laboratory of Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Fen Zhu
- Hubei Key Laboratory of Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Wen Liu
- Hubei Key Laboratory of Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xiao-Ping Wang
- Hubei Key Laboratory of Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
9
|
Hixson B, Bing XL, Yang X, Bonfini A, Nagy P, Buchon N. A transcriptomic atlas of Aedes aegypti reveals detailed functional organization of major body parts and gut regional specializations in sugar-fed and blood-fed adult females. eLife 2022; 11:76132. [PMID: 35471187 PMCID: PMC9113746 DOI: 10.7554/elife.76132] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
Mosquitoes transmit numerous pathogens, but large gaps remain in our understanding of their physiology. To facilitate explorations of mosquito biology, we have created Aegypti-Atlas (http://aegyptiatlas.buchonlab.com/), an online resource hosting RNAseq profiles of Ae. aegypti body parts (head, thorax, abdomen, gut, Malpighian tubules, ovaries), gut regions (crop, proventriculus, anterior and posterior midgut, hindgut), and a gut time course of blood meal digestion. Using Aegypti-Atlas, we provide insights into regionalization of gut function, blood feeding response, and immune defenses. We find that the anterior and posterior midgut possess digestive specializations which are preserved in the blood-fed state. Blood feeding initiates the sequential induction and repression/depletion of multiple cohorts of peptidases. With respect to defense, immune signaling components, but not recognition or effector molecules, show enrichment in ovaries. Basal expression of antimicrobial peptides is dominated by holotricin and gambicin, which are expressed in carcass and digestive tissues, respectively, in a mutually exclusive manner. In the midgut, gambicin and other effectors are almost exclusively expressed in the anterior regions, while the posterior midgut exhibits hallmarks of immune tolerance. Finally, in a cross-species comparison between Ae. aegypti and Anopheles gambiae midguts, we observe that regional digestive and immune specializations are conserved, indicating that our dataset may be broadly relevant to multiple mosquito species. We demonstrate that the expression of orthologous genes is highly correlated, with the exception of a ‘species signature’ comprising a few highly/disparately expressed genes. With this work, we show the potential of Aegypti-Atlas to unlock a more complete understanding of mosquito biology.
Collapse
Affiliation(s)
- Bretta Hixson
- Department of Entomology, Cornell University, Ithaca, United States
| | - Xiao-Li Bing
- Department of Entomology, Cornell University, Ithaca, United States
| | - Xiaowei Yang
- Department of Entomology, Cornell University, Ithaca, United States
| | | | - Peter Nagy
- Department of Entomology, Cornell University, Ithaca, United States
| | - Nicolas Buchon
- Department of Entomology, Cornell University, Ithaca, United States
| |
Collapse
|
10
|
Harrison RE, Brown MR, Strand MR. Whole blood and blood components from vertebrates differentially affect egg formation in three species of anautogenous mosquitoes. Parasit Vectors 2021; 14:119. [PMID: 33627180 PMCID: PMC7905675 DOI: 10.1186/s13071-021-04594-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 01/11/2021] [Indexed: 02/07/2023] Open
Abstract
Background Most female mosquitoes are anautogenous and must blood feed on a vertebrate host to produce eggs. Prior studies show that the number of eggs females lay per clutch correlates with the volume of blood ingested and that protein is the most important macronutrient for egg formation. In contrast, how whole blood, blood fractions and specific blood proteins from different vertebrates affect egg formation is less clear. Since egg formation is best understood in Aedes aegypti, we examined how blood and blood components from different vertebrates affect this species and two others: the malaria vector Anopheles gambiae and arbovirus vector Culex quinquefasciatus. Methods Adult female mosquitoes were fed blood, blood fractions and purified major blood proteins from different vertebrate hosts. Markers of reproductive response including ovary ecdysteroidogenesis, yolk deposition into oocytes and number of mature eggs produced were measured. Results Ae. aegypti, An. gambiae and C. quinquefasciatus responded differently to meals of whole blood, plasma or blood cells from human, rat, chicken and turkey hosts. We observed more similarities between the anthropophiles Ae. aegypti and An. gambiae than the ornithophile C. quinquefasciatus. Focusing on Ae. aegypti, the major plasma-derived proteins (serum albumin, fibrinogen and globulins) differentially stimulated egg formation as a function of vertebrate host source. The major blood cell protein, hemoglobin, stimulated yolk deposition when from pigs but not humans, cows or sheep. Serum albumins from different vertebrates also variably affected egg formation. Bovine serum albumin (BSA) stimulated ovary ecdysteroidogenesis, but more weakly induced digestive enzyme activities than whole blood. In contrast, BSA-derived peptides and free amino acids had no stimulatory effects on ecdysteroidogenesis or yolk deposition into oocytes. Conclusions Whole blood, blood fractions and specific blood proteins supported egg formation in three species of anautogenous mosquitoes but specific responses varied with the vertebrate source of the blood components tested.![]()
Collapse
Affiliation(s)
- Ruby E Harrison
- Department of Entomology, The University of Georgia, 120 Cedar Street, 420 Biological Sciences, Athens, GA, 30602, USA
| | - Mark R Brown
- Department of Entomology, The University of Georgia, 120 Cedar Street, 420 Biological Sciences, Athens, GA, 30602, USA
| | - Michael R Strand
- Department of Entomology, The University of Georgia, 120 Cedar Street, 420 Biological Sciences, Athens, GA, 30602, USA.
| |
Collapse
|
11
|
Aedes aegypti post-emergence transcriptome: Unveiling the molecular basis for the hematophagic and gonotrophic capacitation. PLoS Negl Trop Dis 2021; 15:e0008915. [PMID: 33406161 PMCID: PMC7815146 DOI: 10.1371/journal.pntd.0008915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 01/19/2021] [Accepted: 10/22/2020] [Indexed: 01/01/2023] Open
Abstract
The adult females of Aedes aegypti mosquitoes are facultative hematophagous insects but they are unable to feed on blood right after pupae emergence. The maturation process that takes place during the first post-emergence days, hereafter named hematophagic and gonotrophic capacitation, comprises a set of molecular and physiological changes that prepare the females for the first gonotrophic cycle. Notwithstanding, the molecular bases underlying mosquito hematophagic and gonotrophic capacitation remain obscure. Here, we investigated the molecular and biochemical changes in adult Ae. aegypti along the first four days post-emergence, prior to a blood meal. We performed a RNA-Seq analysis of the head and body, comparing male and female gene expression time courses. A total of 811 and 203 genes were differentially expressed, respectively in the body and head, and both body parts showed early, mid, and late female-specific expression profiles. Female-specific up-regulation of genes involved in muscle development and the oxidative phosphorylation pathway were remarkable features observed in the head. Functional assessment of mitochondrial oxygen consumption in heads showed a gradual increase in respiratory capacity and ATP-linked respiration as a consequence of induced mitochondrial biogenesis and content over time. This pattern strongly suggests that boosting oxidative phosphorylation in heads is a required step towards blood sucking habit. Several salivary gland genes, proteases, and genes involved in DNA replication and repair, ribosome biogenesis, and juvenile hormone signaling were up-regulated specifically in the female body, which may reflect the gonotrophic capacitation. This comprehensive description of molecular and biochemical mechanisms of the hematophagic and gonotrophic capacitation in mosquitoes unravels potentially new targets for vector control.
Collapse
|
12
|
Li X, Yang J, Pu Q, Peng X, Xu L, Liu S. Serine hydroxymethyltransferase controls blood-meal digestion in the midgut of Aedes aegypti mosquitoes. Parasit Vectors 2019; 12:460. [PMID: 31551071 PMCID: PMC6757384 DOI: 10.1186/s13071-019-3714-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 09/12/2019] [Indexed: 02/07/2023] Open
Abstract
Background Female Aedes aegypti mosquitoes are vectors of arboviruses that cause diverse diseases of public health significance. Blood protein digestion by midgut proteases provides anautogenous mosquitoes with the nutrients essential for oocyte maturation and egg production. Midgut-specific miR-1174 affects the functions of the midgut through its target gene serine hydroxymethyltransferase (SHMT). However, less is known about SHMT-regulated processes in blood digestion by mosquitoes. Methods RNAi of SHMT was realized by injection of the double-stranded RNA at 16 h post-eclosion. The expression of SHMT at mRNA level and protein level was assayed by real-time PCR and Western blotting, respectively. Statistical analyses were performed with GraphPad7 using Student’s t-test. Results Here, we confirmed that digestion of blood was inhibited in SHMT RNAi-silenced female A. aegypti mosquitoes. Evidence is also presented that all SHMT-depleted female mosquitoes lost their flight ability and died within 48 h of a blood meal. Furthermore, most examined digestive enzymes responded differently in their transcriptional expression to RNAi depletion of SHMT, with some downregulated, some upregulated and some remaining stable. Phylogenetic analysis showed that transcriptional expression responses to SHMT silence were largely unrelated to the sequence similarity between these enzymes. Conclusions Overall, this research shows that SHMT was expressed at a low level in the midgut of Aedes aegypti mosquitoes, but blood-meal digestion was inhibited when SHMT was silenced. Transcriptional expressions of different digestive enzymes were affected in response to SHMT depletion, suggesting that SHMT is required for the blood-meal digestion in the midgut and targeting SHMT could provide an effective strategy for vector mosquito population control.
Collapse
Affiliation(s)
- Xuemei Li
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, 400715, People's Republic of China
| | - Jinyu Yang
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, 400715, People's Republic of China.,College of Biotechnology, Southwest University, Chongqing, 400715, People's Republic of China
| | - Qian Pu
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, 400715, People's Republic of China
| | - Xinyue Peng
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, 400715, People's Republic of China
| | - Lili Xu
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, 400715, People's Republic of China
| | - Shiping Liu
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, 400715, People's Republic of China. .,College of Biotechnology, Southwest University, Chongqing, 400715, People's Republic of China. .,College of Life Science, China West Normal University, Nanchong, 637002, People's Republic of China.
| |
Collapse
|
13
|
Ding A, Shi H, Guo Q, Liu F, Wang J, Cheng B, Wei W, Xu C. Gene cloning and expression of a partial sequence of Hirudomacin, an antimicrobial protein that is increased in leech (Hirudo nipponica Whitman) after a blood meal. Comp Biochem Physiol B Biochem Mol Biol 2019; 231:75-86. [PMID: 30794960 DOI: 10.1016/j.cbpb.2019.02.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 02/11/2019] [Accepted: 02/11/2019] [Indexed: 02/06/2023]
Abstract
The novel antimicrobial gene Hirudomacin (Hmc), with a 249-bp cDNA, encodes a mature protein of 61 amino acids and a 22-amino acid signal peptide. Hmc exhibits the highest similarity, at 90.1%, with macin family members found in the salivary gland of the leech Hirudo nipponica Whitman. A mature Hmc protein concentration of 219 μg/mL was detected using the Bradford method. The mature Hmc protein is 6862.82 Da and contains 8 cysteine residues. Antimicrobial assays showed a minimum bactericidal concentration and 50% lethal dose of 1.56 μg/mL and 0.78 μg/mL, respectively, for Staphylococcus aureus and 0.39 μg/mL and 0.195 μg/mL, respectively, for Bacillus subtilis. Transmission electron microscopy revealed membrane integrity disruption in S. aureus and B. subtilis, which resulted in bacterial lysis. The level of Hmc mRNA in the salivary gland during three blood meal stages indicated a remarkable trend of increase (P < .05), and western blotting demonstrated that among the three blood meal stages, expression of the mature Hmc protein was highest in both the salivary gland and intestine at the fed stage (P < .05). Immunofluorescence further showed the mature Hmc protein to be localized outside the cell nucleus, with the signal intensity in the salivary gland peaking at the fed stage (P < .05). In conclusion, the mature Hmc protein exhibits broad-spectrum antimicrobial effects against gram-positive and gram-negative bacteria, and a blood meal upregulates Hmc gene and protein expression in H. nipponica.
Collapse
Affiliation(s)
- Andong Ding
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing 210095, China
| | - Hongzhuan Shi
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing 210095, China
| | - Qiaosheng Guo
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing 210095, China.
| | - Fei Liu
- Department of Marine Science and Technology, School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Jia Wang
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing 210095, China
| | - Boxing Cheng
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing 210095, China
| | - Weiwei Wei
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing 210095, China
| | - Chengfeng Xu
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
14
|
VenkatRao V, Kumar SK, Sridevi P, Muley VY, Chaitanya RK. Cloning, characterization and transmission blocking potential of midgut carboxypeptidase A in Anopheles stephensi. Acta Trop 2017; 168:21-28. [PMID: 28087198 DOI: 10.1016/j.actatropica.2016.12.035] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 12/27/2016] [Accepted: 12/27/2016] [Indexed: 11/16/2022]
Abstract
Transmission-blocking vaccines (TBV) interrupt malaria parasite transmission and hence form an important component for malaria eradication. Mosquito midgut exopeptidases such as aminopeptidase N & carboxypeptidase B have demonstrated TBV potential. In the present study, we cloned and characterized carboxypeptidase A (CPA) from the midgut of an important malarial vector, Anopheles stephensi. ClustalW amino acid alignment and in silico 3-dimensional structure analysis of CPA predicted the presence of active sites involved in zinc and substrate binding that are conserved among all the known mosquito species. Real-time PCR analysis demonstrated that CPA is predominantly expressed in the midgut throughout the mosquito life cycle and that this gene is significantly elevated in P. berghei-infected mosquitoes compared to uninfected blood-fed controls. The high midgut CPA activity correlated with the prominent mRNA levels observed. Peptide-based anti-CPA antibodies were raised that cross-reacted specifically to ∼48kDa and ∼37kDa bands, which correspond to zymogen and active forms of CPA. Further, the addition of CPA-directed antibodies to P. berghei-containing blood meal significantly reduced the mosquito infection rate in the test group compared to control and blocked the parasite development in the midgut. These results support further development of A. stephensi CPA as a candidate TBV.
Collapse
Affiliation(s)
- V VenkatRao
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Surendra K Kumar
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - P Sridevi
- Department of Biotechnology, Indira Gandhi National Tribal University, Amarkantak, 484224, India
| | - Vijaykumar Yogesh Muley
- Centre for Computational Science, School of Basic & Applied Sciences, Central University of Punjab, Bhatinda 151001, India
| | - R K Chaitanya
- Centre for Animal Sciences, School of Basic & Applied Sciences, Central University of Punjab, Bhatinda, 151001, India.
| |
Collapse
|
15
|
Dixon DP, Van Ekeris L, Linser PJ. Characterization of Carbonic Anhydrase 9 in the Alimentary Canal of Aedes aegypti and Its Relationship to Homologous Mosquito Carbonic Anhydrases. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 14:E213. [PMID: 28230813 PMCID: PMC5334767 DOI: 10.3390/ijerph14020213] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 02/13/2017] [Accepted: 02/14/2017] [Indexed: 01/22/2023]
Abstract
In the mosquito midgut, luminal pH regulation and cellular ion transport processes are important for the digestion of food and maintenance of cellular homeostasis. pH regulation in the mosquito gut is affected by the vectorial movement of the principal ions including bicarbonate/carbonate and protons. As in all metazoans, mosquitoes employ the product of aerobic metabolism carbon dioxide in its bicarbonate/carbonate form as one of the major buffers of cellular and extracellular pH. The conversion of metabolic carbon dioxide to bicarbonate/carbonate is accomplished by a family of enzymes encoded by the carbonic anhydrase gene family. This study characterizes Aedes aegypti carbonic anhydrases using bioinformatic, molecular, and immunohistochemical methods. Our analyses show that there are fourteen Aedes aegypti carbonic anhydrase genes, two of which are expressed as splice variants. The carbonic anhydrases were classified as either integral membrane, peripheral membrane, mitochondrial, secreted, or soluble cytoplasmic proteins. Using polymerase chain reaction and Western blotting, one of the carbonic anhydrases, Aedes aegypti carbonic anhydrase 9, was analyzed and found in each life stage, male/female pupae, male/female adults, and in the female posterior midgut. Next, carbonic anhydrase 9 was analyzed in larvae and adults using confocal microscopy and was detected in the midgut regions. According to our analyses, carbonic anhydrase 9 is a soluble cytoplasmic enzyme found in the alimentary canal of larvae and adults and is expressed throughout the life cycle of the mosquito. Based on previous physiological analyses of adults and larvae, it appears AeCA9 is one of the major carbonic anhydrases involved in producing bicarbonate/carbonate which is involved in pH regulation and ion transport processes in the alimentary canal. Detailed understanding of the molecular bases of ion homeostasis in mosquitoes will provide targets for novel mosquito control strategies into the new millennium.
Collapse
Affiliation(s)
- Daniel P Dixon
- The Whitney Laboratory, University of Florida, Saint Augustine, FL 32080, USA.
- The Anastasia Mosquito Control District, St. Augustine Florida, Saint Augustine, FL 32092, USA.
| | - Leslie Van Ekeris
- The Whitney Laboratory, University of Florida, Saint Augustine, FL 32080, USA.
| | - Paul J Linser
- The Whitney Laboratory, University of Florida, Saint Augustine, FL 32080, USA.
| |
Collapse
|
16
|
Santiago PB, de Araújo CN, Motta FN, Praça YR, Charneau S, Bastos IMD, Santana JM. Proteases of haematophagous arthropod vectors are involved in blood-feeding, yolk formation and immunity - a review. Parasit Vectors 2017; 10:79. [PMID: 28193252 PMCID: PMC5307778 DOI: 10.1186/s13071-017-2005-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 01/27/2017] [Indexed: 11/10/2022] Open
Abstract
Ticks, triatomines, mosquitoes and sand flies comprise a large number of haematophagous arthropods considered vectors of human infectious diseases. While consuming blood to obtain the nutrients necessary to carry on life functions, these insects can transmit pathogenic microorganisms to the vertebrate host. Among the molecules related to the blood-feeding habit, proteases play an essential role. In this review, we provide a panorama of proteases from arthropod vectors involved in haematophagy, in digestion, in egg development and in immunity. As these molecules act in central biological processes, proteases from haematophagous vectors of infectious diseases may influence vector competence to transmit pathogens to their prey, and thus could be valuable targets for vectorial control.
Collapse
Affiliation(s)
- Paula Beatriz Santiago
- Laboratório de Interação Patógeno-Hospedeiro, Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Asa Norte, 70910-900, Brasília, DF, Brazil
| | - Carla Nunes de Araújo
- Laboratório de Interação Patógeno-Hospedeiro, Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Asa Norte, 70910-900, Brasília, DF, Brazil.,Faculdade de Ceilândia, Universidade de Brasília, Centro Metropolitano, Conjunto A, Lote 01, 72220-275, Brasília, DF, Brazil
| | - Flávia Nader Motta
- Laboratório de Interação Patógeno-Hospedeiro, Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Asa Norte, 70910-900, Brasília, DF, Brazil.,Faculdade de Ceilândia, Universidade de Brasília, Centro Metropolitano, Conjunto A, Lote 01, 72220-275, Brasília, DF, Brazil
| | - Yanna Reis Praça
- Laboratório de Interação Patógeno-Hospedeiro, Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Asa Norte, 70910-900, Brasília, DF, Brazil.,Programa Pós-Graduação em Ciências Médicas, Faculdade de Medicina, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Asa Norte, 70910-900, Brasília, DF, Brazil
| | - Sébastien Charneau
- Laboratório de Bioquímica e Química de Proteínas, Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Asa Norte, 70910-900, Brasília, DF, Brazil
| | - Izabela M Dourado Bastos
- Laboratório de Interação Patógeno-Hospedeiro, Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Asa Norte, 70910-900, Brasília, DF, Brazil
| | - Jaime M Santana
- Laboratório de Interação Patógeno-Hospedeiro, Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Asa Norte, 70910-900, Brasília, DF, Brazil.
| |
Collapse
|
17
|
Borges-Veloso A, Saboia-Vahia L, Dias-Lopes G, Domont GB, Britto C, Cuervo P, De Jesus JB. In-depth characterization of trypsin-like serine peptidases in the midgut of the sugar fed Culex quinquefasciatus. Parasit Vectors 2015; 8:373. [PMID: 26174750 PMCID: PMC4502911 DOI: 10.1186/s13071-015-0985-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 07/03/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Culex quinquefasciatus is a hematophagous insect from the Culicidae family that feeds on the blood of humans, dogs, birds and livestock. This species transmits a wide variety of pathogens between humans and animals. The midgut environment is the first location of pathogen-vector interactions for blood-feeding mosquitoes and the expression of specific peptidases in the early stages of feeding could influence the outcome of the infection. Trypsin-like serine peptidases belong to a multi-gene family that can be expressed in different isoforms under distinct physiological conditions. However, the confident assignment of the trypsin genes that are expressed under each condition is still a challenge due to the large number of trypsin-coding genes in the Culicidae family and most likely because they are low abundance proteins. METHODS We used zymography for the biochemical characterization of the peptidase profile of the midgut from C. quinquefasciatus females fed on sugar. Protein samples were also submitted to SDS-PAGE followed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis for peptidase identification. The peptidases sequences were analyzed with bioinformatics tools to assess their distinct features. RESULTS Zymography revealed that trypsin-like serine peptidases were responsible for the proteolytic activity in the midgut of females fed on sugar diet. After denaturation in SDS-PAGE, eight trypsin-like serine peptidases were identified by LC-MS/MS. These peptidases have structural features typical of invertebrate digestive trypsin peptidases but exhibited singularities at the protein sequence level such as: the presence of different amino acids at the autocatalytic motif and substrate binding regions as well as different number of disulfide bounds. Data mining revealed a group of trypsin-like serine peptidases that are specific to C. quinquefasciatus when compared to the culicids genomes sequenced so far. CONCLUSION We demonstrated that proteomics approaches combined with bioinformatics tools and zymographic analysis can lead to the functional annotation of trypsin-like serine peptidases coding genes and aid in the understanding of the complexity of peptidase expression in mosquitoes.
Collapse
Affiliation(s)
- André Borges-Veloso
- Laboratório de Biologia Molecular e Doenças Endêmicas, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, RJ, Brazil.
| | - Leonardo Saboia-Vahia
- Laboratorio de Pesquisa em Leishmaniose, Instituto Oswaldo Cruz, FIOCRUZ, Av. Brasil 4365, Manguinhos, Pav. Leônidas Deane, Sala 509, CEP: 21040-360, Rio de Janeiro, RJ, Brazil.
| | - Geovane Dias-Lopes
- Laboratório de Biologia Molecular e Doenças Endêmicas, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, RJ, Brazil.
| | - Gilberto B Domont
- Unidade de Proteômica, Laboratório de Química de Proteínas, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Constança Britto
- Laboratório de Biologia Molecular e Doenças Endêmicas, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, RJ, Brazil.
| | - Patricia Cuervo
- Laboratorio de Pesquisa em Leishmaniose, Instituto Oswaldo Cruz, FIOCRUZ, Av. Brasil 4365, Manguinhos, Pav. Leônidas Deane, Sala 509, CEP: 21040-360, Rio de Janeiro, RJ, Brazil.
| | - Jose B De Jesus
- Laboratório de Biologia Molecular e Doenças Endêmicas, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, RJ, Brazil. .,Departamento de Medicina, Faculdade de Medicina, Universidade Federal de São João del Rei, São João del Rei, MG, Brasil.
| |
Collapse
|
18
|
Tham HW, Balasubramaniam VRMT, Tejo BA, Ahmad H, Hassan SS. CPB1 of Aedes aegypti interacts with DENV2 E protein and regulates intracellular viral accumulation and release from midgut cells. Viruses 2014; 6:5028-46. [PMID: 25521592 PMCID: PMC4276941 DOI: 10.3390/v6125028] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 11/24/2014] [Accepted: 12/11/2014] [Indexed: 11/21/2022] Open
Abstract
Aedes aegypti is a principal vector responsible for the transmission of dengue viruses (DENV). To date, vector control remains the key option for dengue disease management. To develop new vector control strategies, a more comprehensive understanding of the biological interactions between DENV and Ae. aegypti is required. In this study, a cDNA library derived from the midgut of female adult Ae. aegypti was used in yeast two-hybrid (Y2H) screenings against DENV2 envelope (E) protein. Among the many interacting proteins identified, carboxypeptidase B1 (CPB1) was selected, and its biological interaction with E protein in Ae. aegypti primary midgut cells was further validated. Our double immunofluorescent assay showed that CPB1-E interaction occurred in the endoplasmic reticulum (ER) of the Ae. aegypti primary midgut cells. Overexpression of CPB1 in mosquito cells resulted in intracellular DENV2 genomic RNA or virus particle accumulation, with a lower amount of virus release. Therefore, we postulated that in Ae. aegypti midgut cells, CPB1 binds to the E protein deposited on the ER intraluminal membranes and inhibits DENV2 RNA encapsulation, thus inhibiting budding from the ER, and may interfere with immature virus transportation to the trans-Golgi network.
Collapse
Affiliation(s)
- Hong-Wai Tham
- Virus-Host Interaction Research Group, Infectious Disease Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia.
| | - Vinod R M T Balasubramaniam
- Virus-Host Interaction Research Group, Infectious Disease Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia.
| | - Bimo Ario Tejo
- Department of Biotechnology and Neuroscience, Faculty of Life Science, Surya University, 15810 Tangerang, Banten, Indonesia.
| | - Hamdan Ahmad
- School of Biological Sciences, Universiti Sains Malaysia, 11800 USM, Pulau Pinang, Malaysia.
| | - Sharifah Syed Hassan
- Virus-Host Interaction Research Group, Infectious Disease Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia.
| |
Collapse
|
19
|
Zhao B, Kokoza VA, Saha TT, Wang S, Roy S, Raikhel AS. Regulation of the gut-specific carboxypeptidase: a study using the binary Gal4/UAS system in the mosquito Aedes aegypti. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2014; 54:1-10. [PMID: 25152428 PMCID: PMC4426967 DOI: 10.1016/j.ibmb.2014.08.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 07/31/2014] [Accepted: 08/03/2014] [Indexed: 05/26/2023]
Abstract
Pathogen transmission by mosquitoes is tightly linked to blood feeding which, in turn, is required for egg development. Studies of these processes would greatly benefit from genetic methods, such as the binary Gal4/UAS system. The latter has been well established for model organisms, but its availability is limited for mosquitoes. The objective of this study was to develop the blood-meal-activated, gut-specific Gal4/UAS system for the yellow-fever mosquito Aedes aegypti and utilize it to investigate the regulation of gut-specific gene expression. A 1.1-kb, 5(') upstream region of the carboxypeptidase A (CP) gene was used to genetically engineer the CP-Gal4 driver mosquito line. The CP-Gal4 specifically activated the Enhanced Green Fluorescent Protein (EGFP) reporter only after blood feeding in the gut of the CP-Gal4 > UAS-EGFP female Ae. aegypti. We used this system to study the regulation of CP gene expression. In vitro treatments with either amino acids (AAs) or insulin stimulated expression of the CP-Gal4 > UAS-EGFP transgene; no effect was observed with 20-hydroxyecdysone (20E) treatments. The transgene activation by AAs and insulin was blocked by rapamycin, the inhibitor of the Target-of-Rapamycin (TOR) kinase. RNA interference (RNAi) silence of the insulin receptor (IR) reduced the expression of the CP-Gal4 > UAS-EGFP transgene. Thus, in vitro and in vivo experiments have revealed that insulin and TOR pathways control expression of the digestive enzyme CP. In contrast, 20E, the major regulator of post-blood-meal vitellogenic events in female mosquitoes, has no role in regulating the expression of this gene. This novel CP-Gal4/UAS system permits functional testing of midgut-specific genes that are involved in blood digestion and interaction with pathogens in Ae. aegypti mosquitoes.
Collapse
Affiliation(s)
- Bo Zhao
- Department of Entomology, University of California Riverside, Riverside, CA 92521, USA; Graduate Program in Genetics, Genomics and Bioinformatics, University of California Riverside, Riverside, CA 92521, USA.
| | - Vladimir A Kokoza
- Department of Entomology, University of California Riverside, Riverside, CA 92521, USA; The Institute for Integrative Genome Biology, University of California Riverside, Riverside, CA 92521, USA.
| | - Tusar T Saha
- Department of Entomology, University of California Riverside, Riverside, CA 92521, USA; The Institute for Integrative Genome Biology, University of California Riverside, Riverside, CA 92521, USA.
| | - Stephanie Wang
- Honors Undergraduate Program, University of California Riverside, Riverside, CA 92521, USA.
| | - Sourav Roy
- Department of Entomology, University of California Riverside, Riverside, CA 92521, USA; The Institute for Integrative Genome Biology, University of California Riverside, Riverside, CA 92521, USA.
| | - Alexander S Raikhel
- Department of Entomology, University of California Riverside, Riverside, CA 92521, USA; The Institute for Integrative Genome Biology, University of California Riverside, Riverside, CA 92521, USA.
| |
Collapse
|
20
|
Exsheathment and midgut invasion of nocturnally subperiodic Brugia malayi microfilariae in a refractory vector, Aedes aegypti (Thailand strain). Parasitol Res 2014; 113:4141-9. [PMID: 25138070 DOI: 10.1007/s00436-014-4086-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 08/14/2014] [Indexed: 10/24/2022]
Abstract
Exsheathment and midgut invasion of nocturnally subperiodic Brugia malayi microfilariae were analyzed using light and scanning electron microscopy in a refractory vector, Aedes aegypti (Thailand strain). Results showed that exsheathed microfilariae represented only approximately 1% of the total microfilaria midguts dissected at 5-min post-infected blood meal (PIBM). The percentage of exsheathed microfilariae found in midguts progressively increased to about 20, 60, 80, 90, and 100% at 1-, 2-5-, 6-12-, 18-36-, and 48-h PIBM, respectively. Importantly, all the microfilariae penetrating the mosquito midguts were exsheathed. Midgut invasion by the exsheathed microfilariae was observed between 2- and 48-h PIBM. SEM analysis revealed sheathed microfilariae surrounded by small particles and maceration of the microfilarial sheath in the midguts, suggesting that the midguts of the refractory mosquitoes might have protein(s) and/or enzyme(s) and/or factor(s) that induce and/or accelerate exsheathment. The microfilariae penetrated the internal face of the peritrophic matrix (PM) by their anterior part and then the midgut epithelium, before entering the hemocoel suggesting that PM was not a barrier against the microfilariae migrating towards the midgut. Melanized microfilariae were discovered in the hemocoel examined at 96-h PIBM suggesting that the refractory mosquitoes used melanization reactions against this parasite. This study provided evidence that A. aegypti (Thailand strain) has refractory mechanisms against B. malayi in both midgut and hemocoel.
Collapse
|
21
|
Isoe J, Stover W, Miesfeld RB, Miesfeld RL. COPI-mediated blood meal digestion in vector mosquitoes is independent of midgut ARF-GEF and ARF-GAP regulatory activities. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2013; 43:732-9. [PMID: 23727611 PMCID: PMC3717261 DOI: 10.1016/j.ibmb.2013.05.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2013] [Revised: 05/14/2013] [Accepted: 05/21/2013] [Indexed: 05/26/2023]
Abstract
We have previously shown that defects in COPI coatomer proteins cause 80% mortality in blood fed Aedes aegypti mosquitoes by 96 h post-feeding. In this study we show that similar deficiencies in COPII and clathrin mediated vesicle transport do not disrupt blood meal digestion and are not lethal, even though both COPII and clathrin functions are required for ovarian development. Since COPI vesicle transport is controlled in mammalian cells by upstream G proteins and associated regulatory factors, we investigated the function of the orthologous ADP-ribosylation factor 1 (ARF1) and ARF4 proteins in mosquito tissues. We found that both ARF1 and ARF4 function upstream of COPI vesicle transport in blood fed mosquitoes given that an ARF1/ARF4 double deficiency is required to phenocopy the feeding-induced mortality observed in COPI coatomer deficient mosquitoes. Small molecule inhibitors of guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs) are often transitory, and therefore, we investigated the role of five Ae. aegypti ARF-GEF and ARF-GAP proteins in blood meal digestion using RNA interference. Surprisingly, we found that ARF-GEF and ARF-GAP functions are not required for blood meal digestion, even though both vitellogenesis and ovarian development in Ae. aegypti are dependent on GBF1 (ARF-GEF) and GAP1/GAP2 (ARF-GAPs) proteins. Moreover, deficiencies in orthologous COPI regulating genes in Anopheles stephensi mosquitoes had similar phenotypes, indicating conserved functions in these two mosquito species. We propose that based on the need for rapid initiation of protein digestion and peritrophic membrane formation, COPI vesicle transport in midgut epithelial cells is not dependent on ARF-GEF and ARF-GAP regulatory proteins to mediate vesicle recycling within the first 48 h post-feeding.
Collapse
Affiliation(s)
| | | | | | - Roger L. Miesfeld
- Corresponding author; Roger L. Miesfeld, , Department of Chemistry & Biochemistry, BioSciences West Room 518, 1041 E. Lowell St., University of Arizona, Tucson, AZ, 85721. Phone: (520) 626-2343, Fax: (520) 621-1697
| |
Collapse
|
22
|
Molecular characterization of the carboxypeptidase B1 of Anopheles stephensi and its evaluation as a target for transmission-blocking vaccines. Infect Immun 2013; 81:2206-16. [PMID: 23569111 DOI: 10.1128/iai.01331-12] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Malaria is one of the most important infectious diseases in the world, and it has many economic and social impacts on populations, especially in poor countries. Transmission-blocking vaccines (TBVs) are valuable tools for malaria eradication. A study on Anopheles gambiae revealed that polyclonal antibodies to carboxypeptidase B1 of A. gambiae can block sexual parasite development in the mosquito midgut. Hence, it was introduced as a TBV target in regions where A. gambiae is the main malaria vector. However, in Iran and neighboring countries as far as China, the main malaria vector is Anopheles stephensi. Also, the genome of this organism has not been sequenced yet. Therefore, in this study, carboxypeptidase B1 of A. stephensi was characterized by genomic and proteomic approaches. Furthermore, its expression pattern after ingestion of Plasmodium falciparum gametocytes and the effect of anti-CPBAs1 antibodies on sexual parasite development were evaluated. Our results revealed that the cpbAs1 expression level was increased after ingestion of the mature gametocytes of P. falciparum and that anti-CPBAs1 directed antibodies could significantly reduce the mosquito infection rate in the test group compared with the control group. Therefore, according to our findings and with respect to the high similarity of carboxypeptidase enzymes between the two main malaria vectors in Africa (A. gambiae) and Asia (A. stephensi) and the presence of other sympatric vectors, CPBAs1 could be introduced as a TBV candidate in regions where A. stephensi is the main malaria vector, and this will broaden the scope for the potential wider application of CPBAs1 antigen homologs/orthologs.
Collapse
|
23
|
Saboia-Vahia L, Borges-Veloso A, Mesquita-Rodrigues C, Cuervo P, Dias-Lopes G, Britto C, Silva APDB, De Jesus JB. Trypsin-like serine peptidase profiles in the egg, larval, and pupal stages of Aedes albopictus. Parasit Vectors 2013; 6:50. [PMID: 23445661 PMCID: PMC3606343 DOI: 10.1186/1756-3305-6-50] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Accepted: 02/18/2013] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Aedes albopictus, a ubiquitous mosquito, is one of the main vectors of dengue and yellow fever, representing an important threat to public health worldwide. Peptidases play key roles in processes such as digestion, oogenesis, and metamorphosis of insects. However, most of the information on the proteolytic enzymes of mosquitoes is derived from insects in the adult stages and is often directed towards the understanding of blood digestion. The aim of this study was to investigate the expression of active peptidases from the preimaginal stages of Ae. albopictus. METHODS Ae. albopictus eggs, larvae, and pupae were analyzed using zymography with susbtrate-SDS-PAGE. The pH, temperature and peptidase inhibitor sensitivity was evaluated. In addition, the proteolytic activities of larval instars were assayed using the fluorogenic substrate Z-Phe-Arg-AMC. RESULTS The proteolytic profile of the larval stage was composed of 8 bands ranging from 17 to 130 kDa. These enzymes displayed activity in a broad range of pH values, from 5.5 to 10.0. The enzymatic profile of the eggs was similar to that of the larvae, although the proteolytic bands of the eggs showed lower intensities. The pupal stage showed a complex proteolytic pattern, with at least 6 bands with apparent molecular masses ranging from 30 to 150 kDa and optimal activity at pH 7.5. Peptidases from larval instars were active from 10°C to 60°C, with optimal activity at temperatures between 37°C and 50°C. The proteolytic profile of both the larval and pupal stages was inhibited by phenyl-methyl sulfonyl-fluoride (PMSF) and Nα-Tosyl L-lysine chloromethyl ketone hydrochloride (TLCK), indicating that the main peptidases expressed during these developmental stages are trypsin-like serine peptidases. CONCLUSION The preimaginal stages of Ae. albopictus exhibited a complex profile of trypsin-like serine peptidase activities. A comparative analysis of the active peptidase profiles revealed differential expression of trypsin-like isoforms among the preimaginal stages, suggesting that some of these enzymes are stage specific. Additionally, a comparison of the peptidase expression between larvae from eggs collected in the natural environment and larvae obtained from the eggs of female mosquitoes maintained in colonies for a long period of time demonstrated that the proteolytic profile is invariable under such conditions.
Collapse
Affiliation(s)
- Leonardo Saboia-Vahia
- Laboratório de Biologia Molecular e Doenças Endêmicas, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | - André Borges-Veloso
- Laboratório de Biologia Molecular e Doenças Endêmicas, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | - Camila Mesquita-Rodrigues
- Laboratório de Biologia Molecular e Doenças Endêmicas, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | - Patricia Cuervo
- Laboratório de Pesquisa em Leishmaniose, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | - Geovane Dias-Lopes
- Laboratório de Biologia Molecular e Doenças Endêmicas, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | - Constança Britto
- Laboratório de Biologia Molecular e Doenças Endêmicas, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | - Ana Paula de Barros Silva
- Laboratório de Biologia Molecular e Doenças Endêmicas, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | - Jose B De Jesus
- Laboratório de Biologia Molecular e Doenças Endêmicas, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
- Departamento de Engenharia de Biossistemas, Universidade Federal de São João Del Rey, Minas Gerais, Brazil
| |
Collapse
|
24
|
Perić Mataruga V, Vlahović M, Janać B, Ilijin L, Janković Tomanić M, Matić D, Mrdaković M. Ghrelin effect on nutritional indices, midgut and fat body of Lymantria dispar L. (Lymantriidae). Peptides 2012; 37:55-62. [PMID: 22781165 DOI: 10.1016/j.peptides.2012.04.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Revised: 04/18/2012] [Accepted: 04/18/2012] [Indexed: 11/30/2022]
Abstract
Ghrelin is a 28-amino acid peptide that has significant effects on appetite and growth in humans and animals. The aim of this study was to examine 4th instar larvae of the pest insect Lymantria dispar L. after ghrelin treatment. Parameters included changes in nutritional indices (efficiency of conversion of ingested food, efficiency of conversion of digested food, approximate digestibility); midgut and fat body mass; total proteases, trypsin and leucine aminopeptidase activities in the midgut; number, height and width of columnar and goblet cells and their nuclei in the midgut epithelium and detection of ghrelin-like immunoreactivity in the midgut tissue. Four subpicomolar injections of ghrelin (0.3pmol) or physiological saline (control) were applied every 24h. The nutritional indices were higher in the ghrelin treated than in the control group. Ghrelin treatment was also associated with elevation of midgut mass, induced digestive enzyme activities, increased fat body mass and morphometric changes in columnar and goblet cells. This is the first report of the presence of ghrelin-like hormone in endocrine cells of an insect midgut. Such information provides additional evidence for application of this relatively simple model system in the future studies of the mechanisms underlying of digestion and energy balance in more complex organisms.
Collapse
Affiliation(s)
- Vesna Perić Mataruga
- Department of Insect Physiology and Biochemistry, Institute for Biological Research "Siniša Stanković", University of Belgrade, 11060 Belgrade, Serbia.
| | | | | | | | | | | | | |
Collapse
|
25
|
Rascón AA, Gearin J, Isoe J, Miesfeld RL. In vitro activation and enzyme kinetic analysis of recombinant midgut serine proteases from the Dengue vector mosquito Aedes aegypti. BMC BIOCHEMISTRY 2011; 12:43. [PMID: 21827688 PMCID: PMC3162888 DOI: 10.1186/1471-2091-12-43] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Accepted: 08/09/2011] [Indexed: 11/10/2022]
Abstract
Background The major Dengue virus vector Aedes aegypti requires nutrients obtained from blood meal proteins to complete the gonotrophic cycle. Although bioinformatic analyses of Ae. aegypti midgut serine proteases have provided evolutionary insights, very little is known about the biochemical activity of these digestive enzymes. Results We used peptide specific antibodies to show that midgut serine proteases are expressed as zymogen precursors, which are cleaved to the mature form after blood feeding. Since midgut protein levels are insufficient to purify active proteases directly from blood fed mosquitoes, we engineered recombinant proteins encoding a heterologous enterokinase cleavage site to permit generation of the bona fide mature form of four midgut serine proteases (AaET, AaLT, AaSPVI, AaSPVII) for enzyme kinetic analysis. Cleavage of the chromogenic trypsin substrate BApNA showed that AaET has a catalytic efficiency (kcat/KM) that is ~30 times higher than bovine trypsin, and ~2-3 times higher than AaSPVI and AaSPVII, however, AaLT does not cleave BApNA. To measure the enzyme activities of the mosquito midgut proteases using natural substrates, we developed a quantitative cleavage assay based on cleavage of albumin and hemoglobin proteins. These studies revealed that the recombinant AaLT enzyme was indeed catalytically active, and cleaved albumin and hemoglobin with equivalent efficiency to that of AaET, AaSPVI, and AaSPVII. Structural modeling of the AaLT and AaSPVI mature forms indicated that AaLT is most similar to serine collagenases, whereas AaSPVI appears to be a classic trypsin. Conclusions These data show that in vitro activation of recombinant serine proteases containing a heterologous enterokinase cleavage site can be used to investigate enzyme kinetics and substrate cleavage properties of biologically important mosquito proteases.
Collapse
Affiliation(s)
- Alberto A Rascón
- Department of Chemistry & Biochemistry, and Center for Insect Science West Room 518, 1041 E, Lowell St., University of Arizona, Tucson, AZ, 85721, USA
| | | | | | | |
Collapse
|
26
|
Mesquita-Rodrigues C, Saboia-Vahia L, Cuervo P, Levy CMD, Honorio NA, Domont GB, de Jesus JB. Expression of trypsin-like serine peptidases in pre-imaginal stages of Aedes aegypti (Diptera: Culicidae). ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2011; 76:223-235. [PMID: 21308760 DOI: 10.1002/arch.20412] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
This study reports the biochemical characterization and comparative analyses of highly active serine proteases in the larval and pupal developmental stages of Aedes aegypti (Linnaeus) using substrate-SDS-PAGE. Zymographic analysis of larval stadia detected proteolytic activity in 6-8 bands with apparent molecular masses ranging from 20 to 250 kDa, with activity observed from pH 5.5 to 10.0. The pupal stage showed a complex proteolytic activity in at least 11 bands with apparent Mr ranging from 25 to 250 kDa, and pH optimum at 10.0. The proteolytic activities of both larval and pupal stages were strongly inhibited by phenyl-methyl sulfonyl-fluoride and N-α-Tosyl-L-lysine chloromethyl ketone hydrochloride, indicating that the main proteases expressed by these developmental stages are trypsin-like serine proteases. The enzymes were active at temperatures ranging from 4 to 85°C, with optimal activity between 37 and 60°C, and low activity at 85°C. Comparative analysis between the proteolytic enzymes expressed by larvae and pupae showed that substantial changes in the expression of active trypsin-like serine proteases occur during the developmental cycle of A. aegypti.
Collapse
Affiliation(s)
- Camila Mesquita-Rodrigues
- Laboratório de Biologia Molecular e Doenças Endêmicas, Instituto Oswaldo Cruz, Rio de Janeiro, Brazil
| | | | | | | | | | | | | |
Collapse
|
27
|
Brackney DE, Isoe J, W C B, Zamora J, Foy BD, Miesfeld RL, Olson KE. Expression profiling and comparative analyses of seven midgut serine proteases from the yellow fever mosquito, Aedes aegypti. JOURNAL OF INSECT PHYSIOLOGY 2010; 56:736-744. [PMID: 20100490 PMCID: PMC2878907 DOI: 10.1016/j.jinsphys.2010.01.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Revised: 01/14/2010] [Accepted: 01/15/2010] [Indexed: 05/28/2023]
Abstract
Aedes aegypti utilizes blood for energy production, egg maturation and replenishment of maternal reserves. The principle midgut enzymes responsible for bloodmeal digestion are endoproteolytic serine-type proteases within the S1.A subfamily. While there are hundreds of serine protease-like genes in the A. aegypti genome, only five are known to be expressed in the midgut. We describe the cloning, sequencing and expression profiling of seven additional serine proteases and provide a genomic and phylogenetic assessment of these findings. Of the seven genes, four are constitutively expressed and three are transcriptionally induced upon blood feeding. The amount of transcriptional induction is strongly correlated among these genes. Alignments reveal that, in general, the conserved catalytic triad, active site and accessory catalytic residues are maintained in these genes and phylogenetic analysis shows that these genes fall within three distinct clades; trypsins, chymotrypsins and serine collagenases. Interestingly, a previously described trypsin consistently arose with other serine collagenases in phylogenetic analyses. These results suggest that multiple gene duplications have arisen within the S1.A subfamily of midgut serine proteases and/or that A. aegypti has evolved an array of proteases with a broad range of substrate specificities for rapid, efficient digestion of bloodmeals.
Collapse
Affiliation(s)
- Doug E Brackney
- Arthropod Infectious Disease Laboratory, 1692 Campus Delivery, Department of Microbiology, Immunology and Pathology at Colorado State University, Fort Collins, CO 80523, USA.
| | | | | | | | | | | | | |
Collapse
|
28
|
Evans AM, Aimanova KG, Gill SS. Characterization of a blood-meal-responsive proton-dependent amino acid transporter in the disease vector, Aedes aegypti. ACTA ACUST UNITED AC 2009; 212:3263-71. [PMID: 19801431 DOI: 10.1242/jeb.029553] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
After anautogenous mosquitoes ingest the required blood meal, proteins in it are rapidly cleaved, yielding a large pool of amino acids. Transport of these amino acids into gut epithelial cells and their subsequent translocation into other tissues is critical for oogenesis and other physiological processes. We have identified a proton amino acid transporter (PAT) in Aedes aegypti (AaePAT1, AAEL007191) which facilitates this transport and is expressed in epithelial cell membranes of larval caecae and the adult midgut. AaePAT1 encodes a 475 amino acid protein showing high similarity to Anopheles gambiae AGAP009896, Culex pipiens CPIJ011438 and Drosophila melanogaster CG7888. When expressed in Xenopus oocytes the transport kinetics showed AaePAT1 is a low affinity transporter with low substrate specificity, having Km and Vmax values of about 7.2 mmol l(-1) and 69 pmol oocyte(-1) min(-1), respectively, for glutamine. A number of other amino acids are also transported by this PAT. In female adult midgut, AaePAT1 transcript levels were induced after ingestion of a blood meal.
Collapse
Affiliation(s)
- Amy M Evans
- Department of Cell Biology and Neuroscience, University of California, Riverside, CA 92521, USA
| | | | | |
Collapse
|
29
|
Isoe J, Rascón AA, Kunz S, Miesfeld RL. Molecular genetic analysis of midgut serine proteases in Aedes aegypti mosquitoes. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2009; 39:903-12. [PMID: 19883761 PMCID: PMC2818436 DOI: 10.1016/j.ibmb.2009.10.008] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2009] [Revised: 10/23/2009] [Accepted: 10/26/2009] [Indexed: 05/13/2023]
Abstract
Digestion of blood meal proteins by midgut proteases provides anautogenous mosquitoes with the nutrients required to complete the gonotrophic cycle. Inhibition of protein digestion in the midgut of blood feeding mosquitoes could therefore provide a strategy for population control. Based on recent reports indicating that the mechanism and regulation of protein digestion in blood fed female Aedes aegypti mosquitoes is more complex than previously thought, we used a robust RNAi knockdown method to investigate the role of four highly expressed midgut serine proteases in blood meal metabolism. We show by Western blotting that the early phase trypsin protein (AaET) is maximally expressed at 3 h post-blood meal (PBM), and that AaET is not required for the protein expression of three late phase serine proteases, AaLT (late trypsin), AaSPVI (5G1), and AaSPVII. Using the trypsin substrate analog BApNA to analyze in vitro enzyme activity in midgut extracts from single mosquitoes, we found that knockdown of AaSPVI expression caused a 77.6% decrease in late phase trypsin-like activity, whereas, knockdown of AaLT and AaSPVII expression had no significant effect on BApNA activity. In contrast, injection of AaLT, AaSPVI, and AaSPVII dsRNA inhibited degradation of endogenous serum albumin protein using an in vivo protease assay, as well as, significantly decreased egg production in both the first and second gonotrophic cycles (P < 0.001). These results demonstrate that AaLT, AaSPVI, and AaSPVII all contribute to blood protein digestion and oocyte maturation, even though AaSPVI is the only abundant midgut late phase serine protease that appears to function as a classic trypsin enzyme.
Collapse
Affiliation(s)
| | | | | | - Roger L. Miesfeld
- Corresponding author; Roger L. Miesfeld; . Department of Chemistry & Biochemistry, BioSciences West Room 518, 1041 E. Lowell St., University of Arizona, Tucson, AZ, 85721. Phone: (520) 626-2343, Fax: (520) 621-1697
| |
Collapse
|
30
|
Fiandra L, Casartelli M, Cermenati G, Burlini N, Giordana B. The intestinal barrier in lepidopteran larvae: permeability of the peritrophic membrane and of the midgut epithelium to two biologically active peptides. JOURNAL OF INSECT PHYSIOLOGY 2009; 55:10-18. [PMID: 18948109 DOI: 10.1016/j.jinsphys.2008.09.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2008] [Revised: 09/12/2008] [Accepted: 09/16/2008] [Indexed: 05/27/2023]
Abstract
Endogenous peptide regulators of insect physiology and development are presently being considered as potential biopesticides, but their efficacy by oral delivery cannot be easily anticipated because of the limited information on how the insect gut barrier handles these kind of molecules. We investigated, in Bombyx mori larvae, the permeability properties of the two components of the intestinal barrier, the peritrophic membrane (PM) and the midgut epithelium, separately isolated and perfused in conventional Ussing chambers. The PM discriminated compounds of different dimensions but was easily crossed by two small peptides recently proposed as bioinsecticides, the neuropeptide proctolin and Aedes aegypti Trypsin Modulating Oostatic Factor (Aea-TMOF), although their flux values indicated that the permeability was highly affected by their steric conformation. To date, there is very little functional data available on how peptides cross the insect intestinal epithelium, but it has been speculated that peptides could reach the haemocoel through the paracellular pathway. We characterized the permeability properties of this route to a number of organic molecules, showing that B. mori septate junction was highly selective to both the dimension and the charge of the permeant compound. Confocal images of whole-mount midguts incubated with rhodamine(rh)-proctolin or fluorescein isothiocyanate (FITC)-Aea-TMOF added to the mucosal side of the epithelium, revealed that rh-proctolin did not enter the cell and crossed the midgut only by the paracellular pathway, while FITC-Aea-TMOF did cross the cell apical membrane, permeating also through the transcellular route.
Collapse
Affiliation(s)
- L Fiandra
- Department of Biology, University of Milan, Italy.
| | | | | | | | | |
Collapse
|
31
|
Isoe J, Zamora J, Miesfeld RL. Molecular analysis of the Aedes aegypti carboxypeptidase gene family. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2009; 39:68-73. [PMID: 18977440 PMCID: PMC2673731 DOI: 10.1016/j.ibmb.2008.09.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2007] [Revised: 09/08/2008] [Accepted: 09/11/2008] [Indexed: 05/26/2023]
Abstract
To gain a better understanding of coordinate regulation of protease gene expression in the mosquito midgut, we undertook a comprehensive molecular study of digestive carboxypeptidases in Aedes aegypti. Through a combination of cDNA cloning using degenerate PCR primers, and database mining of the recently completed A. aegypti genome, we cloned and characterized 18 A. aegypti carboxypeptidase genes. Bioinformatic analysis revealed that 11 of these genes belong to the carboxypeptidase A family (AaCPA-I through AaCPA-XI), and seven to the carboxypeptidase B gene family (AaCPB-I through AaCPB-VII). Phylogenetic analysis of 32 mosquito carboxypeptidases from five different species indicated that most of the sequence divergence in the carboxypeptidase gene family occurred prior to the separation of Aedes and Anopheles mosquito lineages. Unlike the CPA genes that are scattered throughout the A. aegypti genome, six of seven CPB genes were found to be located within a single 120 kb genome contig, suggesting that they most likely arose from multiple gene duplication events. Quantitative expression analysis revealed that 11 of the A. aegypti carboxypeptidase genes were induced up to 40-fold in the midgut in response to blood meal feeding, with peak expression times ranging from 3 to 36 h post-feeding depending on the gene.
Collapse
Affiliation(s)
| | | | - Roger L. Miesfeld
- Corresponding author: Roger L. Miesfeld, Ph.D., Department of Biochemistry and Molecular Biophysics, University of Arizona, Tucson, AZ 85721, USA, tel. (520) 626-2343, FAX (520) 621-1697,
| |
Collapse
|
32
|
Brandon MC, Pennington JE, Isoe J, Zamora J, Schillinger AS, Miesfeld RL. TOR signaling is required for amino acid stimulation of early trypsin protein synthesis in the midgut of Aedes aegypti mosquitoes. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2008; 38:916-922. [PMID: 18708143 PMCID: PMC2570706 DOI: 10.1016/j.ibmb.2008.07.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2007] [Revised: 06/26/2008] [Accepted: 07/20/2008] [Indexed: 05/25/2023]
Abstract
Blood meal digestion in mosquitoes occurs in two phases, an early phase that is translationally regulated, and a late phase that is transcriptionally regulated. Early trypsin is a well-characterized serine endoprotease that is representative of other early phase proteases in the midgut that are only synthesized after feeding. Since the kinase Target of Rapamycin (TOR) has been implicated as a nutrient sensor in other systems, including the mosquito fat body, we tested if TOR signaling is involved in early trypsin protein synthesis in the mosquito midgut in response to feeding. We found that ingestion of an amino acid meal by female mosquitoes induces early trypsin protein synthesis, coincident with phosphorylation of two known TOR target proteins, p70S6 kinase (S6K) and the translational repressor 4E-Binding Protein (4E-BP). Moreover, in vitro culturing of midguts from unfed mosquitoes led to amino acid-dependent phosphorylation of S6K and 4E-BP which could be blocked by treatment with rapamycin, a TOR-specific inhibitor. Lastly, by injecting mosquitoes with TOR double stranded RNA (dsRNA) or rapamycin, we demonstrated that TOR signaling was required in vivo for both phosphorylation of S6K and 4E-BP in the midgut, and for translation of early trypsin mRNA in response to amino acid feeding. It may be possible to target the TOR signaling pathway in the midgut to inhibit blood meal digestion, and thereby, decrease fecundity and the spread of mosquito borne diseases.
Collapse
Affiliation(s)
| | | | | | | | | | - Roger L. Miesfeld
- Address correspondence to: Roger L. Miesfeld, The University of Arizona, Department of Biochemistry and Molecular Biophysics, PO Box 210088, Tucson, AZ 85721-0088.
| |
Collapse
|
33
|
Cuervo P, Mesquita-Rodrigues C, d'Avila Levy CM, Britto C, Pires FA, Gredilha R, Alves CR, Jesus JBD. Serine protease activities in Oxysarcodexia thornax (Walker) (Diptera: Sarcophagidae) first instar larva. Mem Inst Oswaldo Cruz 2008; 103:504-6. [DOI: 10.1590/s0074-02762008000500018] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2007] [Accepted: 07/07/2008] [Indexed: 11/21/2022] Open
|
34
|
Lavazec C, Bonnet S, Thiery I, Boisson B, Bourgouin C. cpbAg1 encodes an active carboxypeptidase B expressed in the midgut of Anopheles gambiae. INSECT MOLECULAR BIOLOGY 2005; 14:163-174. [PMID: 15796749 DOI: 10.1111/j.1365-2583.2004.00541.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
We previously used differential display to identify several Anopheles gambiae genes, whose expression in the mosquito midgut was regulated upon ingestion of Plasmodium falciparum. Here, we report the characterization of one of these genes, cpbAg1, which codes for the first zinc-carboxypeptidase B identified in An. gambiae and in any insect. Expression of cpbAg1 in baculovirus gave rise to an active enzyme, and determination of the N-terminal amino acids confirmed that CPBAg1 contains a signal peptide and a pro-peptide, typical features of digestive zinc carboxypeptidases. cpbAg1 mRNA was mainly produced in the mosquito midgut, where it accumulated in unfed females and was rapidly down-regulated upon blood feeding. Annotation of the An. gambiae genome predicts twenty-three sequences coding for zinc-carboxypeptidases of which only two (cpbAg1 and cpbAg2) are expressed at a significant level in the mosquito midgut.
Collapse
Affiliation(s)
- C Lavazec
- Unité de Biologie et Génétique du Paludisme, Institut Pasteur, Paris, France
| | | | | | | | | |
Collapse
|
35
|
Caroci AS, Noriega FG. Free amino acids are important for the retention of protein and non-protein meals by the midgut of Aedes aegypti females. JOURNAL OF INSECT PHYSIOLOGY 2003; 49:839-44. [PMID: 16256686 DOI: 10.1016/s0022-1910(03)00134-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2003] [Revised: 05/23/2003] [Accepted: 05/28/2003] [Indexed: 05/05/2023]
Abstract
There is a relationship between the normal progress of digestion and the retention or elimination of the proteins ingested with the meal by Aedes aegyti females. The addition of soybean trypsin inhibitor (STI) to a protein meal prevented digestion and resulted in a rapid elimination of the undigested proteins. The addition of a mix of free amino acids to a protein meal together with STI resulted in a significant increase in the retention of the undigested proteins during the first 10-15 hrs after feeding. The effect of the free amino acids on the retention of the proteins was concentration-dependent between 250 microg/ml and 5 mg/ml. Free amino acids were also important for the retention of non-protein meals. When females were fed a meal containing FITC-dextran (20 kD), most of this compound was eliminated into the feces by 10 hrs; the addition of free amino acid resulted in a significant increase in the retention of the FITC-dextran by the midgut during the first 15 hrs after feeding. The presence of free amino acids in the midgut lumen seems to be an important signal used by the mosquito to regulate the retention of the meal.
Collapse
Affiliation(s)
- Abrahim S Caroci
- Department of Biochemistry and Molecular Biophysics and Center for Insect Science, University of Arizona, Tucson AZ, USA
| | | |
Collapse
|