1
|
Zhang X, Hou Y, Huang Y, Chen W, Zhang H. Interplay between zinc and cell proliferation and implications for the growth of livestock. J Anim Physiol Anim Nutr (Berl) 2023; 107:1402-1418. [PMID: 37391879 DOI: 10.1111/jpn.13851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 07/02/2023]
Abstract
Zinc (Zn) plays a critical role in the growth of livestock, which depends on cell proliferation. In addition to modifying the growth associated with its effects on food intake, mitogenic hormones, signal transduction and gene transcription, Zn also regulates body weight gain through mediating cell proliferation. Zn deficiency in animals leads to growth inhibition, along with an arrest of cell cycle progression at G0/G1 and S phase due to depression in the expression of cyclin D/E and DNA synthesis. Therefore, in the present study, the interplay between Zn and cell proliferation and implications for the growth of livestock were reviewed, in which Zn regulates cell proliferation in several ways, especially cell cycle progression at the G0/G1 phase DNA synthesis and mitosis. During the cell cycle, the Zn transporters and major Zn binding proteins such as metallothioneins are altered with the requirements of cellular Zn level and nuclear translocation of Zn. In addition, calcium signaling, MAPK pathway and PI3K/Akt cascades are also involved in the process of Zn-interfering cell proliferation. The evidence collected over the last decade highlights the necessity of Zn for normal cell proliferation, which suggests Zn supplementation should be considered for the growth and health of poultry.
Collapse
Affiliation(s)
- Xiangli Zhang
- College of Animal Science and Technology, Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, China
| | - Yuhuang Hou
- Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Sciences and Aquatic Ecology, Ghent University, Ghent, Belgium
| | - Yanqun Huang
- College of Animal Science and Technology, Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, China
| | - Wen Chen
- College of Animal Science and Technology, Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, China
| | - Huaiyong Zhang
- College of Animal Science and Technology, Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, China
- Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Sciences and Aquatic Ecology, Ghent University, Ghent, Belgium
| |
Collapse
|
2
|
Randhawa K, Jahani-Asl A. CLIC1 regulation of cancer stem cells in glioblastoma. CURRENT TOPICS IN MEMBRANES 2023; 92:99-123. [PMID: 38007271 DOI: 10.1016/bs.ctm.2023.09.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2023]
Abstract
Chloride intracellular channel 1 (CLIC1) has emerged as a therapeutic target in various cancers. CLIC1 promotes cell cycle progression and cancer stem cell (CSC) self-renewal. Furthermore, CLIC1 is shown to play diverse roles in proliferation, cell volume regulation, tumour invasion, migration, and angiogenesis. In glioblastoma (GB), CLIC1 facilitates the G1/S phase transition and tightly regulates glioma stem-like cells (GSCs), a rare population of self-renewing CSCs with central roles in tumour resistance to therapy and tumour recurrence. CLIC1 is found as either a monomeric soluble protein or as a non-covalent dimeric protein that can form an ion channel. The ratio of dimeric to monomeric protein is altered in GSCs and depends on the cell redox state. Elucidating the mechanisms underlying the alterations in CLIC1 expression and structural transitions will further our understanding of its role in GSC biology. This review will highlight the role of CLIC1 in GSCs and its significance in facilitating different hallmarks of cancer.
Collapse
Affiliation(s)
- Kamaldeep Randhawa
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada; Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Arezu Jahani-Asl
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada; Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada; Regenerative Medicine Program and Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada.
| |
Collapse
|
3
|
Tamurejo-Alonso P, González-Martín ML, Pacha-Olivenza MÁ. Electrodeposited Zinc Coatings for Biomedical Application: Morphology, Corrosion and Biological Behaviour. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5985. [PMID: 37687682 PMCID: PMC10488799 DOI: 10.3390/ma16175985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/22/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023]
Abstract
The improvement of biodegradable metals is currently an active and promising research area for their capabilities in implant manufacturing. However, controlling their degradation rate once their surface is in contact with the physiological media is a challenge. Surface treatments are in the way of addressing the improvement of this control. Zinc is a biocompatible metal present in the human body as well as a metal widely used in coatings to prevent corrosion, due to its well-known metal protective action. These two outstanding characteristics make zinc coating worthy of consideration to improve the degradation behaviour of implants. Electrodeposition is one of the most practical and common technologies to create protective zinc coatings on metals. This article aims to review the effect of the different parameters involved in the electrochemical process on the topography and corrosion characteristics of the zinc coating. However, certainly, it also provides an actual and comprehensive description of the state-of-the-art of the use of electrodeposited zinc for biomedical applications, focusing on their capacity to protect against bacterial colonization and to allow cell adhesion and proliferation.
Collapse
Affiliation(s)
- Purificación Tamurejo-Alonso
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, University of Extremadura, 06006 Badajoz, Spain;
- University Institute of Extremadura Sanity Research (INUBE), 06006 Badajoz, Spain;
| | - María Luisa González-Martín
- University Institute of Extremadura Sanity Research (INUBE), 06006 Badajoz, Spain;
- Department of Applied Physics, Faculty of Science, University of Extremadura, 06006 Badajoz, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 06006 Badajoz, Spain
| | - Miguel Ángel Pacha-Olivenza
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, University of Extremadura, 06006 Badajoz, Spain;
- University Institute of Extremadura Sanity Research (INUBE), 06006 Badajoz, Spain;
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 06006 Badajoz, Spain
| |
Collapse
|
4
|
Vesicular Zinc Modulates Cell Proliferation and Survival in the Developing Hippocampus. Cells 2023; 12:cells12060880. [PMID: 36980221 PMCID: PMC10047515 DOI: 10.3390/cells12060880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 03/09/2023] [Indexed: 03/16/2023] Open
Abstract
In the brain, vesicular zinc, which refers to a subset of zinc that is sequestered into synaptic vesicles by zinc transporter 3 (ZnT3), has extensive effects on neuronal signalling and modulation. Vesicular zinc-focused research has mainly been directed to its role in the hippocampus, particularly in adult neurogenesis. However, whether vesicular zinc is involved in modulating neurogenesis during the early postnatal period has been less studied. As a first step to understanding this, we used ZnT3 knockout (KO) mice, which lack ZnT3 and, thus, vesicular zinc, to evaluate cell proliferation at three different age points spanning postnatal development (P6, P14, and P28). The survival and the neuronal phenotype of these cells was also assessed in adulthood. We found that male ZnT3 KO mice exhibited lower rates of cell proliferation at P14, but a greater number of these cells survived to adulthood. Additionally, significantly more cells labelled on P6 survived to adulthood in male and female ZnT3 KO mice. We also found sex-dependent differences, whereby male mice showed higher levels of cell proliferation at P28, as well as higher levels of cell survival for P14-labelled cells, compared to female mice. However, female mice showed greater percentages of neuronal differentiation for P14-labelled cells. Finally, we found significant effects of age of BrdU injections on cell proliferation, survival, and neuronal differentiation. Collectively, our results suggest that the loss of vesicular zinc affects normal proliferation and survival of cells born at different age points during postnatal development and highlight prominent sex- and age-dependent differences. Our findings provide the foundation for future studies to further probe the role of vesicular zinc in the modulation of developmental neurogenesis.
Collapse
|
5
|
Petay M, Cherfan M, Bouderlique E, Reguer S, Mathurin J, Dazzi A, L’Heronde M, Daudon M, Letavernier E, Deniset-Besseau A, Bazin D. Multiscale approach to provide a better physicochemical description of women breast microcalcifications. CR CHIM 2022. [DOI: 10.5802/crchim.210] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
6
|
Yi J, Chung JW, Pak JH. Zinc is an essential element for the maintenance of redox homeostasis and cell cycle in murine auditory hair cells. J Nutr Biochem 2022; 100:108901. [PMID: 34748925 DOI: 10.1016/j.jnutbio.2021.108901] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 08/19/2021] [Accepted: 09/28/2021] [Indexed: 12/25/2022]
Abstract
A nutrition deficiency is one of the various causes of hearing loss. Zinc is an essential element for cell proliferation, antioxidant reactions, and the maintenance of hearing ability. Our previous studies have reported that the auditory brainstem response (ABR) threshold is increased in mice fed with zinc-deficient diets. However, the molecular mechanism of zinc involved in auditory system remains to be elucidated. In the present study, we examined the detrimental effects of zinc deficiency on cell cycle progression in murine auditory cells (HEI-OC1). The treatment of HEI-OC1 cells with 0.5 μM TPEN (N,N,N',N'-Tetrakis (2-pyridylmethyl) ethylenediamine) for 24 h inhibited cell proliferation, accumulation of reactive oxygen species (ROS), and induction of apoptosis. The cell proliferation block was caused by a G1/S phase arrest. Supplementation of the cell growth medium with 5 μM ZnCl2 after exposure to TPEN attenuated ROS accumulation and the arrest caused by the zinc deficiency. The ABR threshold was elevated in mice fed with a zinc-deficient diet. Additionally, we observed an increased expression of p21 and decreased expression of cyclin E and pRb in the spiral ganglion (SG), the organ of Corti (OC), Limbus (L), and stria vascularis (SV) in the zinc-deficient mouse cochlea. These results indicated that zinc is an essential nutrient for proliferation via the cell cycle and that a dysregulation of the cell cycle may cause hearing loss.
Collapse
Affiliation(s)
- Junyeong Yi
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Ulsan College of Medicine, Asan Medical Center, Songpa-Gu, Seoul, Korea.
| | - Jong Woo Chung
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Ulsan College of Medicine, Asan Medical Center, Songpa-Gu, Seoul, Korea.
| | - Jhang Ho Pak
- Department of Convergence Medicine, University of Ulsan College of Medicine and Asan Institute for Life Sciences, Asan Medical Center, Songpa-Gu, Seoul, Korea.
| |
Collapse
|
7
|
Abstract
There is a need for titanium (Ti), an antimicrobial implant coating that provides sustained protection against bacterial infection. Chitosan (CS) coatings, combined with halloysite nanotubes (HNTs), are an attractive solution due to the inherent biocompatibility of halloysite, its ability to provide sustained drug release, and the antimicrobial properties of CS. In this study, the electrodeposition (EPD) method was used to coat titanium foil with CS blended with zinc-coated HNTs (ZnHNTs) and pre-loaded with the antibiotic gentamicin. The CS-ZnHNTs-gentamycin sulfate (GS) coatings were characterized using scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), X-ray powder diffraction (XRD), X-ray fluorescence (XRF), Fourier-transform infrared spectroscopy (FTIR), and UV-visible spectroscopy. The coatings were further examined for their ability to sustain GS release, resist bacterial colonization and growth, and prevent biofilm formation. The CS-ZnHNTs-GS coatings were cytocompatible, exhibited significant antimicrobial properties, and supported pre-osteoblast cell proliferation. Hydroxyapatite also formed on the coatings after immersion in simulated body fluid. While the focus in this study was on zinc-coated HNTs doped into CS, our design offers tunability, as different metals can be coated onto the HNT surface and different drugs or growth factors loaded into the HNT lumen. Our results, and the potential for customization, suggest that these coatings have potential in the construction of an array of infection-resistant implant coatings.
Collapse
|
8
|
Ige JO, Gbadegesin MA, Olugbami JO, Adegoke AM, Odunola OA, Anetor GO, Anetor JI. A Common Insecticide Induced-Oxidative Stress in Wistar Rats: Significance for Humans and Implications for Nutritional Modulation of Insecticide Toxicity. J Am Coll Nutr 2020; 40:608-616. [PMID: 32877313 DOI: 10.1080/07315724.2020.1812452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVE This study examined the levels of selected micronutrients and associated biochemical changes in rats exposed to Baygon® insecticide. Arsenic is a toxic metalloid commonly used in insecticides manufacture but unheralded. METHODS Fifteen rats, divided into three equal groups: Group I (control); group II (administered 2.5 mg/kg sodium arsenite (SA) on alternate days for four weeks); group III (exposed to 14.0 mL Baygon® m-3 cage volume daily for four weeks). Serum levels of arsenic (As), selenium (Se) and zinc (Zn) were determined using flame atomic absorption spectrophotometry (FAAS). Reduced glutathione (GSH), glutathione peroxidase (GPx), and total protein (TP) were determined spectrophotometrically. RESULTS Arsenic and Se levels were significantly raised in groups II and III compared with control (p < 0.05), unlike Zn levels that were significantly decreased in groups II and III (p < 0.05) in both. No significant change in the activity of GPx; though the activity increased in the group treated with SA, but decreased in the group treated with Baygon® compared to control (P < 0.05). Histology of the liver and lung was unaltered in control, but in contrast, the SA-treated group demonstrated moderate fibrous hyperplasia with prominent highly infiltrated portal area in the liver; while the lung revealed thickened alveolar walls from proliferated pneumocytes. In the Baygon®-treated group, there was mild hyperplasia of the fibrous connective tissue and congested prominent portal areas; while the lung exhibited severe thickened alveolar walls due to proliferated pneumocytes. CONCLUSION Exposure of rats to Baygon® elicited alteration of key trace elements involved in the antioxidant system, culminating in oxidative stress with attendant deleterious effects. One significance of this for humans is that it has great potentials for possible nutritional modulation of insecticide toxicity with micronutrients, especially with zinc, holding great promise in tropical developing countries.
Collapse
Affiliation(s)
- John O Ige
- Department of Chemical Pathology, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Michael A Gbadegesin
- Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Jeremiah O Olugbami
- Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Ayodeji M Adegoke
- Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Oyeronke A Odunola
- Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Gloria O Anetor
- Department of Human Kinetics & Health Education, Faculty of Education, Health Education Unit, National Open University of Nigeria (NOUN), Abuja, Nigeria
| | - John I Anetor
- Department of Chemical Pathology, College of Medicine, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
9
|
Nimmanon T, Ziliotto S, Ogle O, Burt A, Gee JMW, Andrews GK, Kille P, Hogstrand C, Maret W, Taylor KM. The ZIP6/ZIP10 heteromer is essential for the zinc-mediated trigger of mitosis. Cell Mol Life Sci 2020; 78:1781-1798. [PMID: 32797246 PMCID: PMC7904737 DOI: 10.1007/s00018-020-03616-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 07/22/2020] [Accepted: 08/07/2020] [Indexed: 02/08/2023]
Abstract
Zinc has been known to be essential for cell division for over 40 years but the molecular pathways involved remain elusive. Cellular zinc import across biological membranes necessitates the help of zinc transporters such as the SLC39A family of ZIP transporters. We have discovered a molecular process that explains why zinc is required for cell division, involving two highly regulated zinc transporters, as a heteromer of ZIP6 and ZIP10, providing the means of cellular zinc entry at a specific time of the cell cycle that initiates a pathway resulting in the onset of mitosis. Crucially, when the zinc influx across this heteromer is blocked by ZIP6 or ZIP10 specific antibodies, there is no evidence of mitosis, confirming the requirement for zinc influx as a trigger of mitosis. The zinc that influxes into cells to trigger mitosis additionally changes the phosphorylation state of STAT3 converting it from a transcription factor to a protein that complexes with this heteromer and pS38Stathmin, the form allowing microtubule rearrangement as required in mitosis. This discovery now explains the specific cellular role of ZIP6 and ZIP10 and how they have special importance in the mitosis process compared to other ZIP transporter family members. This finding offers new therapeutic opportunities for inhibition of cell division in the many proliferative diseases that exist, such as cancer.
Collapse
Affiliation(s)
- Thirayost Nimmanon
- Department of Pathology, Phramongkutklao College of Medicine, 315 Ratchawithi Road, Thung Phayathai, Ratchathewi, Bangkok, 10400, Thailand
| | - Silvia Ziliotto
- Breast Cancer Molecular Pharmacology Group, School of Pharmacy and Pharmaceutical Sciences, Redwood Building, Cardiff University, King Edward VII Avenue, Cardiff, CF10 3NB, UK
| | - Olivia Ogle
- Breast Cancer Molecular Pharmacology Group, School of Pharmacy and Pharmaceutical Sciences, Redwood Building, Cardiff University, King Edward VII Avenue, Cardiff, CF10 3NB, UK
| | - Anna Burt
- Breast Cancer Molecular Pharmacology Group, School of Pharmacy and Pharmaceutical Sciences, Redwood Building, Cardiff University, King Edward VII Avenue, Cardiff, CF10 3NB, UK
| | - Julia M W Gee
- Breast Cancer Molecular Pharmacology Group, School of Pharmacy and Pharmaceutical Sciences, Redwood Building, Cardiff University, King Edward VII Avenue, Cardiff, CF10 3NB, UK
| | - Glen K Andrews
- Departments of Biochemistry and Molecular Biology, Kansas City, USA.,Anatomy and Cell Biology, Medical Center, University of Kansas, Kansas City, KS, 66106, USA
| | - Pete Kille
- School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff, CF10 3AT, UK
| | - Christer Hogstrand
- Metal Metabolism Group, Diabetes and Nutritional Sciences Division, Faculty of Life Sciences and Medicine, King's College London, 150 Stamford Street, London, SE1 9NH, UK
| | - Wolfgang Maret
- Metal Metabolism Group, Diabetes and Nutritional Sciences Division, Faculty of Life Sciences and Medicine, King's College London, 150 Stamford Street, London, SE1 9NH, UK
| | - Kathryn M Taylor
- Breast Cancer Molecular Pharmacology Group, School of Pharmacy and Pharmaceutical Sciences, Redwood Building, Cardiff University, King Edward VII Avenue, Cardiff, CF10 3NB, UK.
| |
Collapse
|
10
|
Lo MN, Damon LJ, Wei Tay J, Jia S, Palmer AE. Single cell analysis reveals multiple requirements for zinc in the mammalian cell cycle. eLife 2020; 9:e51107. [PMID: 32014109 PMCID: PMC7000218 DOI: 10.7554/elife.51107] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 12/30/2019] [Indexed: 01/01/2023] Open
Abstract
Zinc is widely recognized as essential for growth and proliferation, yet the mechanisms of how zinc deficiency arrests these processes remain enigmatic. Here we induce subtle zinc perturbations and track asynchronously cycling cells throughout division using fluorescent reporters, high throughput microscopy, and quantitative analysis. Zinc deficiency induces quiescence and resupply stimulates synchronized cell-cycle reentry. Monitoring cells before and after zinc deprivation we found the position of cells within the cell cycle determined whether they either went quiescent or entered another cell cycle but stalled in S-phase. Stalled cells exhibited prolonged S-phase, were defective in DNA synthesis and had increased DNA damage levels, suggesting a role for zinc in maintaining genome integrity. Finally, we demonstrate zinc deficiency-induced quiescence occurs independently of DNA-damage response pathways, and is distinct from mitogen removal and spontaneous quiescence. This suggests a novel pathway to quiescence and reveals essential micronutrients play a role in cell cycle regulation.
Collapse
Affiliation(s)
- Maria N Lo
- Department of BiochemistryUniversity of Colorado, BoulderBoulderUnited States
- BioFrontiers InstituteUniversity of Colorado, BoulderBoulderUnited States
| | - Leah J Damon
- Department of BiochemistryUniversity of Colorado, BoulderBoulderUnited States
- BioFrontiers InstituteUniversity of Colorado, BoulderBoulderUnited States
| | - Jian Wei Tay
- Department of BiochemistryUniversity of Colorado, BoulderBoulderUnited States
- BioFrontiers InstituteUniversity of Colorado, BoulderBoulderUnited States
| | - Shang Jia
- Department of ChemistryUniversity of California, BerkeleyBerkeleyUnited States
| | - Amy E Palmer
- Department of BiochemistryUniversity of Colorado, BoulderBoulderUnited States
- BioFrontiers InstituteUniversity of Colorado, BoulderBoulderUnited States
| |
Collapse
|
11
|
Prasad AS. Lessons Learned from Experimental Human Model of Zinc Deficiency. J Immunol Res 2020; 2020:9207279. [PMID: 32411807 PMCID: PMC7199614 DOI: 10.1155/2020/9207279] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 09/05/2019] [Indexed: 12/13/2022] Open
Abstract
Zinc is an essential element for humans, and its deficiency was documented in 1963. Nutritional zinc deficiency is now known to affect over two billion subjects in the developing world. Conditioned deficiency of zinc in many diseases has also been observed. In zinc-deficient dwarfs from the Middle East, we reported growth retardation, delayed sexual development, susceptibility to infections, poor appetite, and mental lethargy. We never found a zinc-deficient dwarf who survived beyond the age of 25 y. In an experimental model of human mild zinc deficiency, we reported decreased thymulin (a thymopoietic hormone) activity in Th1 cells, decreased mRNAs of IL-2 and IFN-gamma genes, and decreased activity of natural killer cells (NK) and T cytotoxic T cells. The effect of zinc deficiency on thymulin activity and IL-2 mRNA was seen within eight to twelve weeks of the institution of zinc-deficient diet in human volunteers, whereas lymphocyte zinc decreased in 20 weeks and plasma zinc decreased in 24 weeks after instituting zinc-deficient diet. We hypothesized that decreased thymulin activity, which is known to proliferate Th1 cells, decreased the proliferation differentiation of Th1 cells. This resulted in decreased generation of IL-2 and IFN-gamma. We observed no effect in Th2 cell function; thus, zinc deficiency resulted in an imbalance of Th1 to Th2 function resulting in decreased cell-mediated immunity. Zinc therapy may be very useful in many chronic diseases. Zinc supplementation improves cell-mediated immunity, decreases oxidative stress, and decreases generation of chronic inflammatory cytokines in humans. Development of sensitive immunological biomarkers may be more sensitive than an assay of zinc in plasma and peripheral blood cells for diagnosis of marginal zinc deficiency in human.
Collapse
Affiliation(s)
- Ananda S. Prasad
- Department of Oncology, Wayne State University School of Medicine and Barbara Ann Karmanos Cancer Center, Detroit, Michigan 48201, USA
| |
Collapse
|
12
|
The Effects of Partially or Completely Substituted Dietary Zinc Sulfate by Lower Levels of Zinc Methionine on Growth Performance, Apparent Total Tract Digestibility, Immune Function, and Visceral Indices in Weaned Piglets. Animals (Basel) 2019; 9:ani9050236. [PMID: 31086094 PMCID: PMC6562981 DOI: 10.3390/ani9050236] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/03/2019] [Accepted: 05/11/2019] [Indexed: 12/26/2022] Open
Abstract
Simple Summary This study was conducted to assess the effects of five diets with different doses and sources of zinc (Zn) on the growth performance (average daily gain, average daily food intake and gain to feed ratio), apparent total tract digestibility of nutrients, serum metabolites and immune functions of weaned piglets. The control diet contained 100 mg/kg inorganic Zn from ZnSO4. The total dose of Zn in experimental diets was lower than that of the control diet, and the inorganic Zn from ZnSO4 was gradually replaced by organic Zn from ZnMet. Therefore, the experimental diets were a basal diet containing 75 + 12.5, 50 + 25, 25 + 37.5, and 0 + 50 mg/kg Zn from ZnSO4 and ZnMet, respectively. No differences were observed in growth performance, nutrient digestibility and serum metabolites. However, Zinc digestibility and parameters relating to body immune functions were improved when at least 50 mg of inorganic Zn was replaced by organic Zn. Thus supplementing 50 mg of inorganic Zn from ZnSO4 plus 25 mg of organic Zn from ZnMet to piglets would be the best strategy to benefit the immune system and maintain growth performance under the conditions of the current study. Abstract The study aimed to evaluate the effects of replacing zinc sulfate (ZnSO4) with a lower level of zinc methionine (ZnMet) on the growth performance, apparent total tract digestibility (ATTD) of nutrients, serum metabolites and immune functions of weaned piglets. Thirty-five weaned Duroc × Landrace × Large White male piglets (10.69 ± 0.26 kg) were randomly allotted to five diets. The control diet was supplemented with 100 mg/kg of Zn from ZnSO4, and experimental diets included 75 + 12.5, 50 + 25, 25 + 37.5, and 0 + 50 mg/kg of Zn from ZnSO4 and ZnMet, respectively. The results showed that no differences were observed in growth performance, ATTD of nutrients and serum metabolites among treatments, while serum white blood cell count, lymphocyte count, IgM contents and spleen index were higher (p < 0.01) in piglets fed with 50 + 25 mg/kg of Zn. Zinc digestibility (p < 0.05), IgA content (p < 0.001) and thymus index (p < 0.05) were increased when at least 50% of ZnSO4 was replaced by ZnMet. All the results indicated that using a lower level of ZnMet in weaned piglet’s diet instead of ZnSO4 had no adverse impacts on ATTD of nutrients and serum metabolites; and a 50 + 25 mg/kg of Zn (from ZnSO4 and ZnMet, respectively) diet showed the best advantages for parameters relating to immune functions.
Collapse
|
13
|
Fang L, Trigiante G, Kousseff CJ, Crespo-Otero R, Philpott MP, Watkinson M. Biotin-tagged fluorescent sensor to visualize ‘mobile’ Zn2+ in cancer cells. Chem Commun (Camb) 2018; 54:9619-9622. [DOI: 10.1039/c8cc05425h] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A biotin-tagged fluorescent sensor was developed to image Zn2+ in cancer cells specifically, which showed no entry to normal cells.
Collapse
Affiliation(s)
- Le Fang
- The Joseph Priestley Building
- School of Biological and Chemical Sciences
- Queen Mary University of London
- London
- UK
| | - Giuseppe Trigiante
- Centre for Cutaneous Research, Institute of Cell and Molecular Science
- Barts and The London School of Medicine and Dentistry
- Queen Mary University of London
- London E1 2AT
- UK
| | - Christina J. Kousseff
- The Joseph Priestley Building
- School of Biological and Chemical Sciences
- Queen Mary University of London
- London
- UK
| | - Rachel Crespo-Otero
- The Joseph Priestley Building
- School of Biological and Chemical Sciences
- Queen Mary University of London
- London
- UK
| | - Michael P. Philpott
- Centre for Cutaneous Research, Institute of Cell and Molecular Science
- Barts and The London School of Medicine and Dentistry
- Queen Mary University of London
- London E1 2AT
- UK
| | - Michael Watkinson
- The Joseph Priestley Building
- School of Biological and Chemical Sciences
- Queen Mary University of London
- London
- UK
| |
Collapse
|
14
|
Nidumuru S, Boddula V, Vadakedath S, Kolanu BR, Kandi V. Evaluating the Role of Zinc in Beta Thalassemia Major: A Prospective Case-Control Study from a Tertiary Care Teaching Hospital in India. Cureus 2017; 9:e1495. [PMID: 28948115 PMCID: PMC5606730 DOI: 10.7759/cureus.1495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Background Thalassemia is a common hereditary anemia in humans, and beta thalassemia represents a group of recessively inherited hemoglobin disorders first described by Cooley and Lee and characterized by the abnormal synthesis of β-globin chain. The homozygous state results in severe anemia, which needs regular blood transfusion. Although such treatments increase the patient's life span, a variety of complications, including endocrine, metabolic, skeletal, and growth disorders are being observed due to increased iron storage in the body. Objective There are some reports emphasizing the role of zinc deficiency and its associated outcomes among thalassemia patients, but none from this part of the world. The aim of this study was to determine the serum zinc levels in children with beta thalassemia major. Methods This is a prospective case-control study, which included 35 children between the ages five and 15 years, who were diagnosed as suffering from beta thalassemia major. An equal number of age matched healthy subjects were recruited as controls. The study was carried out at the thalassemia center attached to the Prathima Institute of Medical Sciences (PIMS), Karimnagar, Telangana, India, during the year 2016. Blood samples were collected from both the cases and control subjects and serum zinc activities were analyzed using a semi-automated analyzer. Statistical Package for the Social Sciences (SPSS, Version 15.0) (SPSS Inc., Chicago, USA) was used to calculate the unpaired and independent Student's t-test (p value) to find the significance of the results. Results The mean concentrations of serum zinc among the cases and the controls were 39.25 ± 13.45 and 85.31 ± 13.53 (p <0.0001), respectively. Among the cases, 26 (65%) thalassemia patients had zinc concentration below 60 μg/dl, confirming hypozincemia. Conclusion This study revealed that hypozincemia was prevalent in beta thalassemia major patients. Further evaluation regarding the role of zinc in the development and progression of thalassemia is recommended.
Collapse
|
15
|
Early-in-life dietary zinc deficiency and supplementation and mammary tumor development in adulthood female rats. J Nutr Biochem 2017; 44:71-79. [DOI: 10.1016/j.jnutbio.2017.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 12/16/2016] [Accepted: 03/02/2017] [Indexed: 11/19/2022]
|
16
|
Textural, Structural and Biological Evaluation of Hydroxyapatite Doped with Zinc at Low Concentrations. MATERIALS 2017; 10:ma10030229. [PMID: 28772589 PMCID: PMC5503371 DOI: 10.3390/ma10030229] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 02/19/2017] [Accepted: 02/22/2017] [Indexed: 01/04/2023]
Abstract
The present work was focused on the synthesis and characterization of hydroxyapatite doped with low concentrations of zinc (Zn:HAp) (0.01 < xZn < 0.05). The incorporation of low concentrations of Zn2+ ions in the hydroxyapatite (HAp) structure was achieved by co-precipitation method. The physico-chemical properties of the samples were characterized by X-ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), Scanning Electron Microscopy (SEM), zeta-potential, and DLS and N2-BET measurements. The results obtained by XRD and FTIR studies demonstrated that doping hydroxyapatite with low concentrations of zinc leads to the formation of a hexagonal structure with lattice parameters characteristic to hydroxyapatite. The XRD studies have also shown that the crystallite size and lattice parameters of the unit cell depend on the substitutions of Ca2+ with Zn2+ in the apatitic structure. Moreover, the FTIR analysis revealed that the water content increases with the increase of zinc concentration. Furthermore, the Energy Dispersive X-ray Analysis (EDAX) and XPS analyses showed that the elements Ca, P, O, and Zn were found in all the Zn:HAp samples suggesting that the synthesized materials were zinc doped hydroxyapatite, Ca10−xZnx(PO4)6(OH), with 0.01 ≤ xZn ≤ 0.05. Antimicrobial assays on Staphylococcus aureus and Escherichia coli bacterial strains and HepG2 cell viability assay were carried out.
Collapse
|
17
|
Roles of Zinc Signaling in the Immune System. J Immunol Res 2016; 2016:6762343. [PMID: 27872866 PMCID: PMC5107842 DOI: 10.1155/2016/6762343] [Citation(s) in RCA: 163] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 08/11/2016] [Indexed: 02/07/2023] Open
Abstract
Zinc (Zn) is an essential micronutrient for basic cell activities such as cell growth, differentiation, and survival. Zn deficiency depresses both innate and adaptive immune responses. However, the precise physiological mechanisms of the Zn-mediated regulation of the immune system have been largely unclear. Zn homeostasis is tightly controlled by the coordinated activity of Zn transporters and metallothioneins, which regulate the transport, distribution, and storage of Zn. There is growing evidence that Zn behaves like a signaling molecule, facilitating the transduction of a variety of signaling cascades in response to extracellular stimuli. In this review, we highlight the emerging functional roles of Zn and Zn transporters in immunity, focusing on how crosstalk between Zn and immune-related signaling guides the normal development and function of immune cells.
Collapse
|
18
|
Yang TC, Wu PC, Chung IF, Jiang JH, Fann MJ, Kao LS. Cell death caused by the synergistic effects of zinc and dopamine is mediated by a stress sensor gene Gadd45b - implication in the pathogenesis of Parkinson's disease. J Neurochem 2016; 139:120-33. [PMID: 27385273 DOI: 10.1111/jnc.13728] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 07/01/2016] [Accepted: 07/03/2016] [Indexed: 11/30/2022]
Abstract
The pathogenesis of Parkinson's disease (PD) is not completely understood, Zinc (Zn(2+) ) and dopamine (DA) have been shown to involve in the degeneration of dopaminergic cells. By microarray analysis, we identified Gadd45b as a candidate molecule that mediates Zn(2+) and DA-induced cell death; the mRNA and protein levels of Gadd45b are increased by Zn(2+) treatment and raised to an even higher level by Zn(2+) plus DA treatment. Zn(2+) plus DA treatment-induced PC12 cell death was enhanced when there was over-expression of Gadd45b and was decreased by knock down of Gadd45b. MAPK p38 and JNK signaling was able to cross-talk with Gadd45b during Zn(2+) and DA treatment. The synergistic effects of Zn(2+) and DA on PC12 cell death can be accounted for by an activation of the Gadd45b-induced cell death pathway and an inhibition of p38/JNK survival pathway. Furthermore, the in vivo results show that the levels of Gadd45b protein expression and phosphorylation of p38 were increased in the substantia nigra by the infusion of Zn(2+) /DA in the mouse brain and the level of Gadd45b mRNA is significantly higher in the substantia nigra of male PD patients than normal controls. The novel role of Gadd45b and its interactions with JNK and p38 will help our understanding of the pathogenesis of PD and help the development of future treatments for PD. Zinc and dopamine are implicated in the degeneration of dopaminergic neurons. We previously demonstrated that zinc and dopamine induced synergistic effects on PC12 cell death. Results from this study show that these synergistic effects can be accounted for by activation of the Gadd45b-induced cell death pathway and inhibition of the p38/JNK survival pathway. We provide in vitro and in vivo evidence to support a novel role for Gadd45b in the pathogenesis of Parkinson's disease.
Collapse
Affiliation(s)
- Tien-Chun Yang
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Pei-Chun Wu
- Brain Research Center, National Yang-Ming University, Taipei, Taiwan
| | - I-Fang Chung
- Institute of Biomedical Informatics, National Yang-Ming University, Taipei, Taiwan
| | - Jhih-Hang Jiang
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Ming-Ji Fann
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Lung-Sen Kao
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan. .,Brain Research Center, National Yang-Ming University, Taipei, Taiwan.
| |
Collapse
|
19
|
Yan YW, Fan J, Bai SL, Hou WJ, Li X, Tong H. Zinc Prevents Abdominal Aortic Aneurysm Formation by Induction of A20-Mediated Suppression of NF-κB Pathway. PLoS One 2016; 11:e0148536. [PMID: 26918963 PMCID: PMC4769024 DOI: 10.1371/journal.pone.0148536] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 01/19/2016] [Indexed: 01/09/2023] Open
Abstract
Chronic inflammation and degradation of elastin are the main processes in the development of abdominal aortic aneurysm (AAA). Recent studies show that zinc has an anti-inflammatory effect. Based on these, zinc may render effective therapy for the treatment of the AAA. Currently, we want to investigate the effects of zinc on AAA progression and its related molecular mechanism. Rat AAA models were induced by periaortic application of CaCl2. AAA rats were treated by daily intraperitoneal injection of ZnSO4 or vehicle alone. The aorta segments were collected at 4 weeks after surgery. The primary rat aortic vascular smooth muscle cells (VSMCs) were stimulated with TNF-α alone or with ZnSO4 for 3 weeks. The results showed that zinc supplementation significantly suppressed the CaCl2-induced expansion of the abdominal aortic diameter, as well as a preservation of medial elastin fibers in the aortas. Zinc supplementation also obviously attenuated infiltration of the macrophages and lymphocytes in the aortas. In addition, zinc reduced MMP-2 and MMP-9 production in the aortas. Most importantly, zinc treatment significantly induced A20 expression, along with inhibition of the NF-κB canonical signaling pathway in vitro in VSMCs and in vivo in rat AAA. This study demonstrated, for the first time, that zinc supplementation could prevent the development of rat experimental AAA by induction of A20-mediated inhibition of the NF-κB canonical signaling pathway.
Collapse
MESH Headings
- Animals
- Anti-Inflammatory Agents, Non-Steroidal/pharmacology
- Aorta, Abdominal/drug effects
- Aorta, Abdominal/metabolism
- Aorta, Abdominal/pathology
- Aortic Aneurysm, Abdominal/etiology
- Aortic Aneurysm, Abdominal/metabolism
- Aortic Aneurysm, Abdominal/prevention & control
- Cells, Cultured
- DNA-Binding Proteins/metabolism
- Disease Models, Animal
- Elastin/metabolism
- I-kappa B Kinase/metabolism
- I-kappa B Proteins/metabolism
- Inflammation/metabolism
- Inflammation/prevention & control
- Male
- Matrix Metalloproteinase 2/metabolism
- Matrix Metalloproteinase 9/metabolism
- Matrix Metalloproteinase Inhibitors/pharmacology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- NF-KappaB Inhibitor alpha
- NF-kappa B/metabolism
- Rats
- Rats, Wistar
- Signal Transduction/drug effects
- Tumor Necrosis Factor alpha-Induced Protein 3
- Zinc Sulfate/pharmacology
Collapse
Affiliation(s)
- Ya-Wei Yan
- Department of Tissue Engineering, School of Fundamental Science, China Medical University, Shenyang, China
| | - Jun Fan
- Department of Tissue Engineering, School of Fundamental Science, China Medical University, Shenyang, China
| | - Shu-Ling Bai
- Department of Tissue Engineering, School of Fundamental Science, China Medical University, Shenyang, China
- * E-mail:
| | - Wei-Jian Hou
- Department of Tissue Engineering, School of Fundamental Science, China Medical University, Shenyang, China
| | - Xiang Li
- Department of Cell Biology, College of Basic Medicine, China Medical University, Shenyang, China
| | - Hao Tong
- Department of Tissue Engineering, School of Fundamental Science, China Medical University, Shenyang, China
| |
Collapse
|
20
|
Cui XB, Shen YY, Jin TT, Li S, Li TT, Zhang SM, Peng H, Liu CX, Li SG, Yang L, Li N, Hu JM, Jiang JF, Li M, Liang WH, Li Y, Wei YT, Sun ZZ, Wu CY, Chen YZ, Li F. SLC39A6: a potential target for diagnosis and therapy of esophageal carcinoma. J Transl Med 2015; 13:321. [PMID: 26444413 PMCID: PMC4595240 DOI: 10.1186/s12967-015-0681-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 09/24/2015] [Indexed: 02/05/2023] Open
Abstract
Background Esophageal squamous cell carcinoma (ESCC) is a highly lethal cancer, and its underlying molecular mechanisms are poorly understood. Recent large-scale genome-wide association studies in Chinese Han populations have identified an ESCC susceptibility locus within the SLC39A6 gene. Here, we sought to explore the expression and biological function of SLC39A6 in ESCC. Methods Multiethnic validation of SLC39A6 protein expression was performed in different cohorts of patients from Chinese Han and Kazakh populations in the Xinjiang region by immunohistochemistry. The associations among SLC39A6 expression, clinicopathological parameters, and prognosis outcomes of ESCC were analyzed. And the effects of SLC39A6 silencing by siRNA on cell proliferation, apoptosis, and invasiveness, as well as the proteins involved in epithelial-to-mesenchymal transition (EMT) of esophageal cancer cells, were studied. Results SLC39A6 protein expression increased progressively from normal esophageal epithelium (NEE) to low-grade intraepithelial neoplasia to ESCC, and finally reached the highest in high-grade intraepithelial neoplasia from Han ethnic. Similarly, SLC39A6 protein was significantly overexpressed in Kazakh ethnic ESCC compared with that in NEE. Increased expression of SLC39A6 was found to be closely correlated with histological grade and early Tumor-Node-Metastasis stage I/II. High tumorous SLC39A6 expression was significantly correlated with shorter overall survival (OS). Cox regression analysis confirmed that SLC39A6 expression was an independent prognostic factor for poor OS in ESCC. Experimentally, the suppression of SLC39A6 expression promoted ESCC cell apoptosis but abrogated proliferation and invasion, and induced an EMT phenotype that included enhanced expression of E-cadherin, loss of vimentin, and morphological changes in ESCC cells in vitro. Conclusions Combined, our findings highlight a tumor-promoting role for SLC39A6 in ESCC, suggesting that SLC39A6 could serve as an early detector of high-risk subjects and prognostic biomarker. The targeting of SLC39A6 might be a potential therapeutic strategy for blocking ESCC. Electronic supplementary material The online version of this article (doi:10.1186/s12967-015-0681-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiao-Bin Cui
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, North 4th Road, 832002, Shihezi, China. .,Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, 430030, Wuhan, China.
| | - Yao-Yuan Shen
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, North 4th Road, 832002, Shihezi, China. .,Department of Pathology, People Hospital of Xinjiang Uygur Autonomous Region, Ürümqi, China.
| | - Ting-Ting Jin
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, North 4th Road, 832002, Shihezi, China.
| | - Su Li
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, North 4th Road, 832002, Shihezi, China.
| | - Ting-Ting Li
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, North 4th Road, 832002, Shihezi, China.
| | - Shu-Mao Zhang
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, North 4th Road, 832002, Shihezi, China.
| | - Hao Peng
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, North 4th Road, 832002, Shihezi, China.
| | - Chun-Xia Liu
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, North 4th Road, 832002, Shihezi, China.
| | - Shu-Gang Li
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, North 4th Road, 832002, Shihezi, China.
| | - Lan Yang
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, North 4th Road, 832002, Shihezi, China.
| | - Na Li
- Department of Oncology, The First Affiliated Hospital, Shihezi University School of Medicine, 832002, Shihezi, China.
| | - Jian-Ming Hu
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, North 4th Road, 832002, Shihezi, China. .,Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, 430030, Wuhan, China.
| | - Jin-Fang Jiang
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, North 4th Road, 832002, Shihezi, China.
| | - Man Li
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, North 4th Road, 832002, Shihezi, China.
| | - Wei-Hua Liang
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, North 4th Road, 832002, Shihezi, China.
| | - Yong Li
- Department of CT and MRI, The First Affiliated Hospital, Shihezi University School of Medicine, 832002, Shihezi, China.
| | - Yu-Tao Wei
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital, Shihezi University School of Medicine, 832002, Shihezi, China.
| | - Zhen-Zhu Sun
- Department of Pathology, People Hospital of Xinjiang Uygur Autonomous Region, Ürümqi, China.
| | - Chuan-Yue Wu
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, North 4th Road, 832002, Shihezi, China. .,Department of Pathology, University of Pittsburgh, Pittsburgh, PA, 15261, USA.
| | - Yun-Zhao Chen
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, North 4th Road, 832002, Shihezi, China.
| | - Feng Li
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, North 4th Road, 832002, Shihezi, China. .,Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, 430030, Wuhan, China.
| |
Collapse
|
21
|
Kazi TG, Wadhwa SK, Afridi HI, Talpur FN, Tuzen M, Baig JA. Comparison of essential and toxic elements in esophagus, lung, mouth and urinary bladder male cancer patients with related to controls. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:7705-7715. [PMID: 25548013 DOI: 10.1007/s11356-014-3988-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 12/12/2014] [Indexed: 06/04/2023]
Abstract
There is a compelling evidence in support of negative associations between essential trace and toxic elements in different types of cancer. The aim of the present study was to investigate the relationship between carcinogenic (As, Cd, Ni) and anti-carcinogenic (Se, Zn) trace elements in scalp hair samples of different male cancerous patients (esophagus, lung, mouth, and urinary bladder). For comparative purposes, the scalp hair samples of healthy males of the same age group (ranged 35-65 years) as controls were analyzed. Both controls and patients have the same socioeconomic status, localities, dietary habits, and smoking locally made cigarette. The scalp hair samples were oxidized by 65% nitric acid: 30% hydrogen peroxide (2:1) ratio in microwave oven followed by atomic absorption spectrometry. The validity and accuracy of the methodology were checked using certified reference material of human hair BCR 397. The mean concentrations of As, Cd, and Ni were found to be significantly higher in scalp hair samples of patients having different cancers as compared to the controls, while reverse results were obtained in the case of Se and Zn levels (p < 0.01). The study revealed that the carcinogenic processes are significantly affecting the trace elements burden and mutual interaction of essential trace and toxic elements in the cancerous patients.
Collapse
Affiliation(s)
- Tasneem Gul Kazi
- National Center of Excellence in Analytical Chemistry, University of Sindh, 76080, Jamshoro, Pakistan,
| | | | | | | | | | | |
Collapse
|
22
|
Mayer LS, Uciechowski P, Meyer S, Schwerdtle T, Rink L, Haase H. Differential impact of zinc deficiency on phagocytosis, oxidative burst, and production of pro-inflammatory cytokines by human monocytes. Metallomics 2015; 6:1288-95. [PMID: 24823619 DOI: 10.1039/c4mt00051j] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Zinc deficiency has a fundamental influence on the immune defense, with multiple effects on different immune cells, resulting in a major impairment of human health. Monocytes and macrophages are among the immune cells that are most fundamentally affected by zinc, but the impact of zinc on these cells is still far from being completely understood. Therefore, this study investigates the influence of zinc deficiency on monocytes of healthy human donors. Peripheral blood mononuclear cells, which include monocytes, were cultured under zinc deficient conditions for 3 days. This was achieved by two different methods: by application of the membrane permeable chelator N,N,N',N'-tetrakis-(2-pyridylmethyl)ethylenediamine (TPEN) or by removal of zinc from the culture medium using a CHELEX 100 resin. Subsequently, monocyte functions were analyzed in response to Escherichia coli, Staphylococcus aureus, and Streptococcus pneumoniae. Zinc depletion had differential effects. On the one hand, elimination of bacterial pathogens by phagocytosis and oxidative burst was elevated. On the other hand, the production of the inflammatory cytokines tumor necrosis factor (TNF)-α and interleukin (IL)-6 was reduced. This suggests that monocytes shift from intercellular communication to basic innate defensive functions in response to zinc deficiency. These results were obtained regardless of the method by which zinc deficiency was achieved. However, CHELEX-treated medium strongly augmented cytokine production, independently from its capability for zinc removal. This side-effect severely limits the use of CHELEX for investigating the effects of zinc deficiency on innate immunity.
Collapse
Affiliation(s)
- Lena S Mayer
- Institute of Immunology, Medical Faculty, RWTH Aachen University, Pauwelsstrasse 30, 52074 Aachen, Germany.
| | | | | | | | | | | |
Collapse
|
23
|
Abstract
The essentiality of zinc in humans was established in 1963. During the past 50 y, tremendous advances in both clinical and basic sciences of zinc metabolism in humans have been observed. The major factor contributing to zinc deficiency is high phytate-containing cereal protein intake in the developing world, and nearly 2 billion subjects may be zinc deficient. Conditioned deficiency of zinc has been observed in patients with malabsorption syndrome, liver disease, chronic renal disease, sickle cell disease, and other chronic illnesses. Major clinical problems resulting from zinc deficiency in humans include growth retardation; cell-mediated immune dysfunction, and cognitive impairment. In the Middle East, zinc-deficient dwarfs did not live beyond the age of 25 y, and they died because of intercurrent infections. In 1963, we knew of only 3 enzymes that required zinc for their activities, but now we know of >300 enzymes and >1000 transcription factors that are known to require zinc for their activities. Zinc is a second messenger of immune cells, and intracellular free zinc in these cells participate in signaling events. Zinc has been very successfully used as a therapeutic modality for the management of acute diarrhea in children, Wilson's disease, the common cold and for the prevention of blindness in patients with age-related dry type of macular degeneration and is very effective in decreasing the incidence of infection in the elderly. Zinc not only modulates cell-mediated immunity but is also an antioxidant and anti-inflammatory agent.
Collapse
|
24
|
Alcantara EH, Shin MY, Feldmann J, Nixon GF, Beattie JH, Kwun IS. Long-term zinc deprivation accelerates rat vascular smooth muscle cell proliferation involving the down-regulation of JNK1/2 expression in MAPK signaling. Atherosclerosis 2013; 228:46-52. [PMID: 23466072 DOI: 10.1016/j.atherosclerosis.2013.01.030] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 12/30/2012] [Accepted: 01/25/2013] [Indexed: 11/25/2022]
Abstract
BACKGROUND The accelerated proliferation of vascular smooth muscle cells (VSMCs) is a contributor for atherosclerosis by thickening the vascular wall. Since zinc modulation of VSMC proliferation has not been clarified, this study investigated whether zinc affects VSMC proliferation. METHODS AND RESULTS Both a rat aorta origin vascular smooth muscle cell line (A7r5 VSMCs) and primary VSMCs which were collected from rat aorta (pVSMCs) were cultured with zinc (0-50 μM Zn) for short- (≤12 d) and long-term (28 d) periods under normal non-calcifying (0 or 1 mM P) or calcifying (>2 mM P) P conditions. Mouse vascular endothelial cells (MS I cells) were also cultured (under 0-50 μM Zn and 10 mM P for 20 d) to compare with VSMC cultures. While during short-term culture of VSMCs, zinc deprivation decreased cell proliferation in a zinc-concentration manner both under non-calcifying and calcifying conditions in A7r5 and pVSMCs (P < 0.05), during long-term cultures (28 d), A7r5 VSMC proliferation was inversely related to medium zinc concentration under normal physiological P conditions (regression coefficient r(2) = -0.563, P = 0.012). The anti-cell proliferative effect of zinc supplementation (>50 μM) was VSMC-specific. Long-term (35 d), low zinc treatment down-regulated JNK expression and activation, while not affecting ERK1/2 MAPK signaling in A7r5 VSMCs. CONCLUSION The results showed that chronic zinc deprivation accelerated VSMC proliferation, perhaps due to down-regulation of MAPK-JNK signaling, and that the anti-cell proliferative role of zinc is VSMC-specific. The findings suggested that zinc may have anti-VSMC proliferative properties in atherosclerosis.
Collapse
Affiliation(s)
- Ethel H Alcantara
- Department of Food Science and Nutrition, Andong National University, 388 Songchundong, Andong, Kyungbook 760-749, South Korea.
| | | | | | | | | | | |
Collapse
|
25
|
Oteiza PI. Zinc and the modulation of redox homeostasis. Free Radic Biol Med 2012; 53:1748-59. [PMID: 22960578 PMCID: PMC3506432 DOI: 10.1016/j.freeradbiomed.2012.08.568] [Citation(s) in RCA: 231] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2012] [Revised: 08/15/2012] [Accepted: 08/16/2012] [Indexed: 12/12/2022]
Abstract
Zinc, a redox-inactive metal, has been long viewed as a component of the antioxidant network, and growing evidence points to its involvement in redox-regulated signaling. These actions are exerted through several mechanisms based on the unique chemical and functional properties of zinc. Overall, zinc contributes to maintaining the cell redox balance through various mechanisms including: (i) the regulation of oxidant production and metal-induced oxidative damage; (ii) the dynamic association of zinc with sulfur in protein cysteine clusters, from which the metal can be released by nitric oxide, peroxides, oxidized glutathione, and other thiol oxidant species; (iii) zinc-mediated induction of the zinc-binding protein metallothionein, which releases the metal under oxidative conditions and acts per se as a scavenging oxidant; (iv) the involvement of zinc in the regulation of glutathione metabolism and of the overall protein thiol redox status; and (v) a direct or indirect regulation of redox signaling. Findings of oxidative stress, altered redox signaling, and associated cell/tissue dysfunction in cell and animal models of zinc deficiency highlight the relevant role of zinc in the preservation of cell redox homeostasis. However, although the participation of zinc in antioxidant protection, redox sensing, and redox-regulated signaling is accepted, the molecules, targets, and mechanisms involved are still partially known and the subject of active research.
Collapse
Affiliation(s)
- Patricia I Oteiza
- Department of Nutrition and Department of Environmental Toxicology, University of California at Davis, Davis, CA 95616, USA.
| |
Collapse
|
26
|
Alam S, Kelleher SL. Cellular mechanisms of zinc dysregulation: a perspective on zinc homeostasis as an etiological factor in the development and progression of breast cancer. Nutrients 2012; 4:875-903. [PMID: 23016122 PMCID: PMC3448077 DOI: 10.3390/nu4080875] [Citation(s) in RCA: 122] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 07/11/2012] [Accepted: 07/17/2012] [Indexed: 12/29/2022] Open
Abstract
Worldwide, breast cancer is the most commonly diagnosed cancer among women and is the leading cause of female cancer deaths. Zinc (Zn) functions as an antioxidant and plays a role in maintaining genomic stability. Zn deficiency results in oxidative DNA damage and increased cancer risk. Studies suggest an inverse association between dietary and plasma Zn levels and the risk for developing breast cancer. In contrast, breast tumor biopsies display significantly higher Zn levels compared with normal tissue. Zn accumulation in tumor tissue also correlates with increased levels of Zn importing proteins. Further, aberrant expression of Zn transporters in tumors correlates with malignancy, suggesting that altered metal homeostasis in the breast could contribute to malignant transformation and the severity of cancer. However, studies have yet to link dysregulated Zn transport and abnormal Zn-dependent functions in breast cancer development. Herein, we summarize studies that address the multi-modal role of Zn dyshomeostasis in breast cancer with respect to the role of Zn in modulating oxidative stress, DNA damage response/repair pathways and cell proliferation/apoptosis, and the relationship to aberrant regulation of Zn transporters. We also compare Zn dysregulation in breast tissue to that of prostate, pancreatic and ovarian cancer where possible.
Collapse
Affiliation(s)
- Samina Alam
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA 16802, USA;
| | - Shannon L. Kelleher
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA 16802, USA;
- Department of Surgery, the Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
- Cell and Molecular Physiology, the Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
- Author to whom correspondence should be addressed; ; Tel.: +1-814-863-9680; Fax: +1-814-863-6103
| |
Collapse
|
27
|
Grattan BJ, Freake HC. Zinc and cancer: implications for LIV-1 in breast cancer. Nutrients 2012; 4:648-75. [PMID: 22852056 PMCID: PMC3407987 DOI: 10.3390/nu4070648] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Revised: 06/07/2012] [Accepted: 06/27/2012] [Indexed: 01/21/2023] Open
Abstract
Zinc is a trace mineral which is vital for the functioning of numerous cellular processes, is critical for growth, and may play an important role in cancer etiology and outcome. The intracellular levels of this mineral are regulated through the coordinated expression of zinc transporters, which modulate both zinc influx as well as efflux. LIV-1 (ZIP6) was first described in 1988 as an estrogen regulated gene with later work suggesting a role for this transporter in cancer growth and metastasis. Despite evidence of its potential utility as a target gene for cancer prognosis and treatment, LIV-1 has received relatively little attention, with only three prior reviews being published on this topic. Herein, the physiological effects of zinc are reviewed in light of this mineral’s role in cancer growth with specific attention being given to LIV-1 and the potential importance of this transporter to breast cancer etiology.
Collapse
Affiliation(s)
- Bruce J. Grattan
- Department of Family Medicine, Stony Brook University Hospital Medical Center, Stony Brook, New York, NY 11597, USA
- Authors to whom correspondence should be addressed; (B.J.G.); (H.C.F.); Tel.: +1-631-444-8245; Fax: +1-631-444-7552
| | - Hedley C. Freake
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06268, USA
- Authors to whom correspondence should be addressed; (B.J.G.); (H.C.F.); Tel.: +1-631-444-8245; Fax: +1-631-444-7552
| |
Collapse
|
28
|
Sankavaram K, Freake HC. The effects of transformation and ZnT-1 silencing on zinc homeostasis in cultured cells. J Nutr Biochem 2012; 23:629-34. [DOI: 10.1016/j.jnutbio.2011.03.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2010] [Revised: 09/21/2010] [Accepted: 03/03/2011] [Indexed: 01/08/2023]
|
29
|
Kara E, Ozal M, Gunay M, Kilic M, Baltaci AK, Mogulkoc R. Effects of exercise and zinc supplementation on cytokine release in young wrestlers. Biol Trace Elem Res 2011; 143:1435-1440. [PMID: 21360058 DOI: 10.1007/s12011-011-9005-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Accepted: 02/16/2011] [Indexed: 11/25/2022]
Abstract
The present study aims to examine the effect of zinc supplementation on the release of some cytokines in young wrestlers actively involved in wrestling. A total of 40 male subjects of the same age group were included in the study: half were wrestlers and the other half were not involved in sports. The subjects were equally divided into four groups and treated during an 8-week period as follows: group 1, zinc-supplemented athletes; group 2, non-supplemented athletes; group 3, zinc-supplemented sedentary subjects, and group 4, non-supplemented sedentary group. Blood samples were taken from each subject at the beginning and at the end of the study period. The serum tumor necrosis factor-α (TNF-α), interleukin-2 (IL-2), and interpheron-γ levels (IFN-γ) were determined using the enzyme-linked immunosorbent assay method. At the beginning of the study, there were no significant differences of the measured parameters between the four study groups. At the end of the study, the levels of TNF-α, IL-2, and IFN-γ were significantly higher in the two zinc-supplemented groups compared to those that did not receive supplementation, regardless of the activity status (p < 0.01).
Collapse
Affiliation(s)
- Ersan Kara
- Hasan Dogan High School of Physical Education and Sports, Karabuk University, Karabuk, Turkey.
| | | | | | | | | | | |
Collapse
|
30
|
Kinomoto T, Sawada M, Ohnishi Y, Yamaguchi T, Tsuge S, Ogawa S, Washizuka M, Minaguchi J, Mera Y, Takehana K. Effects of polaprezinc on morphological change of the tongue in zinc-deficient rats. J Oral Pathol Med 2010; 39:617-23. [PMID: 21054547 DOI: 10.1111/j.1600-0714.2010.00926.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Toshiko Kinomoto
- Central Research Laboratories, Zeria Pharmaceutical Co., Ltd., Saitama, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Zinc decreases C-reactive protein, lipid peroxidation, and inflammatory cytokines in elderly subjects: a potential implication of zinc as an atheroprotective agent. Am J Clin Nutr 2010; 91:1634-41. [PMID: 20427734 PMCID: PMC2869512 DOI: 10.3945/ajcn.2009.28836] [Citation(s) in RCA: 259] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Chronic inflammation and oxidative stress are common risk factors for atherosclerosis. Zinc is an essential micronutrient that can function as an antiinflammatory and antioxidative agent, and as such, it may have atheroprotective properties. OBJECTIVE We hypothesized that zinc down-regulates the production of atherosclerosis-related cytokines/molecules in humans. DESIGN To examine these effects, we conducted a randomized, double-blinded, placebo trial of zinc supplementation in elderly subjects. We recruited 40 healthy elderly subjects (aged 56-83 y) and randomly assigned them to 2 groups. One group was given an oral dose of 45 mg zinc/d as a gluconate for 6 mo. The other group was given a placebo. Cell culture models were conducted to study the mechanism of zinc as an atheroprotective agent. RESULTS After 6 mo of supplementation, the intake of zinc, compared with intake of placebo, increased the concentrations of plasma zinc and decreased the concentrations of plasma high-sensitivity C-reactive protein (hsCRP), interleukin (IL)-6, macrophage chemoattractant protein 1 (MCP-1), vascular cell adhesion molecule 1 (VCAM-1), secretory phospholipase A2, and malondialdehyde and hydroxyalkenals (MDA+HAE) in elderly subjects. Regression analysis showed that changes in concentrations of plasma zinc were inversely associated with changes in concentrations of plasma hsCRP, MCP-1, VCAM-1, and MDA+HAE after 6 mo of supplementation. In cell culture studies, we showed that zinc decreased the generation of tumor necrosis factor-alpha, IL-1beta, VCAM-1, and MDA+HAE and the activation of nuclear transcription factor kappaB and increased antiinflammatory proteins A20 and peroxisome proliferator-activated receptor-alpha in human monocytic leukemia THP-1 cells and human aortic endothelial cells compared with zinc-deficient cells. CONCLUSION These findings suggest that zinc may have a protective effect in atherosclerosis because of its antiinflammatory and antioxidant functions.
Collapse
|
32
|
Abstract
Zinc is essential for normal brain development. Gestational severe zinc deficiency can lead to overt fetal brain malformations. Although not teratogenic, suboptimal zinc nutrition during gestation can have long-term effects on the offspring's nervous system. This article will review current knowledge on the role of zinc in modulating neurogenesis and neuronal apoptosis as well as the proposed underlying mechanisms. A decrease in neuronal zinc causes cell cycle arrest, which in part involves a deregulation of select signals (ERK1/2, p53, and NF-kappaB). Zinc deficiency also induces apoptotic neuronal death through the intrinsic (mitochondrial) pathway, which can be triggered by the activation of the zinc-regulated enzyme caspase-3, and as a consequence of abnormal regulation of prosurvival signals (ERK1/2 and NF-kappaB). Alterations in the finely tuned processes of neurogenesis, neuronal migration, differentiation, and apoptosis, which involve the developmental shaping of the nervous system, could have a long-term impact on brain health. Zinc deficiency during gestation, even at the marginal levels observed in human populations, could increase the risk for behavioral/neurological disorders in infancy, adolescence, and adulthood.
Collapse
Affiliation(s)
- Ana M. Adamo
- Department of Biological Chemistry, IQUIFIB (UBA-CONICET), School of Pharmacy and Biochemistry, University of Buenos Aires, Junín 956, C1113AAD, Buenos Aires, Argentina
| | - Patricia I. Oteiza
- Department of Nutrition, University of California, Davis CA 95616, USA
- Department of Environmental Toxicology, University of California, Davis CA 95616, USA
- To whom correspondence should be addressed: Dr. Patricia I. Oteiza, Department of Nutrition, University of California, Davis, One Shields Av., Davis, CA, 95616, USA, Phone: 530-754-6074, Fax: 530-752-8966,
| |
Collapse
|
33
|
Dietary Zinc Deficiency and Protein-Energy Malnutrition Decrease in Vitro Murine T Lymphocyte Cell Cycle Progression. ACTA ACUST UNITED AC 2008. [DOI: 10.1300/j053v05n03_06] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
34
|
Effects of Zinc Supplementation on Clinical Outcomes in Patients Receiving Radiotherapy for Head and Neck Cancers: A Double-Blinded Randomized Study. Int J Radiat Oncol Biol Phys 2008; 70:368-73. [DOI: 10.1016/j.ijrobp.2007.06.073] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2007] [Revised: 06/26/2007] [Accepted: 06/26/2007] [Indexed: 11/19/2022]
|
35
|
Lee HG, Lee HS, Jeon SH, Chung TH, Lim YS, Huh WK. High-resolution analysis of condition-specific regulatory modules in Saccharomyces cerevisiae. Genome Biol 2008; 9:R2. [PMID: 18171483 PMCID: PMC2395236 DOI: 10.1186/gb-2008-9-1-r2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2007] [Revised: 10/15/2007] [Accepted: 01/03/2008] [Indexed: 01/11/2023] Open
Abstract
A novel approach for identifying condition-specific regulatory modules in yeast reveals functionally distinct coregulated submodules. We present an approach for identifying condition-specific regulatory modules by using separate units of gene expression profiles along with ChIP-chip and motif data from Saccharomyces cerevisiae. By investigating the unique and common features of the obtained condition-specific modules, we detected several important properties of transcriptional network reorganization. Our approach reveals the functionally distinct coregulated submodules embedded in a coexpressed gene module and provides an effective method for identifying various condition-specific regulatory events at high resolution.
Collapse
Affiliation(s)
- Hun-Goo Lee
- School of Biological Sciences and Research Center for Functional Cellulomics, Institute of Microbiology, Seoul National University, Seoul 151-747, Republic of Korea
| | | | | | | | | | | |
Collapse
|
36
|
Vega-Robledo GB, Polo-Jiménez A, Morales-Martínez ME, Rojas-Dotor S, Rico-Rosillo G. Effect of zinc upon human and murine cell viability and differentiation. Biol Trace Elem Res 2007; 120:133-40. [PMID: 17916965 DOI: 10.1007/s12011-007-8010-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2007] [Revised: 11/30/1999] [Accepted: 07/09/2007] [Indexed: 11/25/2022]
Abstract
Most zinc studies show its benefits or changes that coincide with its deficiency, but some have reported damages by supplements. In this work, the effects of zinc in different cell lines (U-937, human monocytes, and murine bone marrow cells) were analyzed. The cells were put in their specific culture medium either alone or with a stimulant [1-phorbol 12-myristate 13-acetate (PMA) for U-937 and monocytes, granulocyte macrophage colony stimulating factor (GM-CSF) for bone marrow cells]. These preparations, with or without zinc (0.05 to 1.0 mM), were incubated and microscopically analyzed on days 3, 9, and 11. The viability of all cells cultivated with 0.05 and 0.1 mM of zinc was similar to that of the controls without zinc (90%). With 1.0 mM of zinc, the viability diminished (p < 0.005) to 80% in U-937 and to 50% in monocytes and bone marrow cells; the number of cells increased in the three lines, but there was no differentiation. We conclude that the effects observed with different doses of zinc vary not only among the different species but also according to the time the cells were exposed to the metal. The same doses of zinc can have either a stimulatory or an inhibitory effect.
Collapse
Affiliation(s)
- G B Vega-Robledo
- Coordinación de Educación Médica Continua, Facultad de Medicina, UNAM, 3er piso, Edificio B, UNAM, Delegación Coyoacán 04510, Mexico.
| | | | | | | | | |
Collapse
|
37
|
Bao B, Prasad A, Beck FWJ, Suneja A, Sarkar F. Toxic effect of zinc on NF-κB, IL-2, IL-2 receptor α, and TNF-α in HUT-78 (Th0) cells. Toxicol Lett 2006; 166:222-8. [PMID: 16930873 DOI: 10.1016/j.toxlet.2006.07.306] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2006] [Revised: 07/11/2006] [Accepted: 07/11/2006] [Indexed: 11/23/2022]
Abstract
Zinc deficiency decreased cellular immune response. Zinc supplementation reverses this response. High concentration of zinc intake is reported to alter immune response. We hypothesize that higher concentration of zinc adversely affects T-cell immune response. In this study, we examined whether higher concentration of zinc affects expression of IL-2, IL-2Ralpha, and TNF-alpha, and NF-kappaB activation in HUT-78 (Th(0)) cells. The results show that HUT-78 cells incubated in 15, 50, and 100 microM zinc medium had significantly higher intracellular zinc contents and faster growth after 4 days of incubation, compared to the cells incubated in 1 microM zinc medium. After PMA/PHA stimulation, 1 microM zinc showed significant decreases in NF-kappaB activation, and in the levels of IL-2, IL-2Ralpha, and TNF-alpha production and mRNAs compared to 15 microM zinc. The cells incubated in higher concentrations of zinc (50 and 100 microM zinc) showed mild to moderate decreases in the levels of IL-2, IL-2Ralpha, and TNF-alpha production and mRNAs, and in NF-kappaB activation compared to those incubated in 15 microM zinc medium. These data indicate that not only low level of zinc, but also high levels of zinc decrease Th1 function.
Collapse
Affiliation(s)
- Bin Bao
- Division of Hematology/Oncology, Wayne State University Medical School, Detroit, MI 48201, USA.
| | | | | | | | | |
Collapse
|
38
|
Beck FWJ, Li Y, Bao B, Prasad AS, Sarkar FH. Evidence for reprogramming global gene expression during zinc deficiency in the HUT-78 cell line. Nutrition 2006; 22:1045-56. [PMID: 16979875 DOI: 10.1016/j.nut.2006.08.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2006] [Revised: 08/01/2006] [Accepted: 08/02/2006] [Indexed: 10/24/2022]
Abstract
OBJECTIVE Investigations using cell lines, primary cells, animal models, and human subjects have provided data to indicate that zinc-deficient conditions affect immune functioning of myeloid and lymphoid cells. We hypothesized that zinc-deficient conditions alone may induce the expression of genes in lymphoid cells, which favor enhanced responses to myeloid molecules even in the absence of myeloid cells or myeloid factors. Our objective was to investigate the effects of low zinc-induced alterations in gene expression in a single lymphoid cell line in the absence of influences from growth factors and/or cytokines generated by other cell types also being affected by low zinc status. METHODS Microarray analysis of non-stimulated and phytohemagglutinin-p/phorbol 12-myristate 13-acetate-stimulated zinc-deficient and zinc-adequate human-derived HUT-78 (TH(0)) lymphoblasts was used to identify changes in gene expressions associated solely with zinc-deficient status in these cells. RESULTS Overall, gene expression for molecules that would increase T-lymphocyte response to signals from myeloid cells such as cytokine receptors and selected adhesion molecules were upregulated, whereas those associated with T-lymphocyte-directed immune functions, interleukin-2 and interleukin-6 receptors, the cytokine interleukin-4, and zinc finger transcription factors were downregulated. Analysis of selected data obtained from healthy, but mildly zinc-deficient human subjects corroborated observations obtained from low zinc-altered gene expression in HUT-78 cells. CONCLUSION These data provide evidence for a shift in gene expression of molecules that would increase lymphoid responses to myeloid driven pathways during periods of zinc deficiency even in the absence of myeloid-derived stimuli.
Collapse
Affiliation(s)
- Frances W J Beck
- Department of Internal Medicine, Division of Hematology, Wayne State University School of Medicine, Detroit, Michigan, USA.
| | | | | | | | | |
Collapse
|
39
|
Jaiswal AS, Narayan S. Zinc stabilizes adenomatous polyposis coli (APC) protein levels and induces cell cycle arrest in colon cancer cells. J Cell Biochem 2005; 93:345-57. [PMID: 15368361 DOI: 10.1002/jcb.20156] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
In the present study, we investigated the mechanisms by which zinc causes growth arrest in colon cancer cells. The results suggest that zinc treatment stabilizes the levels of the wild-type adenomatous polyposis coli (APC) protein at the post-translational level since the APC mRNA levels and the promoter activity of the APC gene were decreased in HCT-116 cells (which express the wild-type APC gene) after treatment with ZnCl2. Increased levels of wild-type but not truncated APC proteins were required for the ZnCl2-mediated G2/M phase arrest in different colon cancer cell lines. We further tested whether serum-stimulation, which induces cell cycle arrest in the S phase, can relieve ZnCl2-induced G2/M phase arrest of HCT-116 cells. Results showed that in the HCT-116 cells pretreated with ZnCl2, the serum-stimulation neither changed the distribution of G2/M phase arrested cells nor the increased levels of APC protein. The G2/M phase arrest correlated with retarded growth of HCT-116 cells. To further establish that wild-type APC protein plays a role in ZnCl2-induced G2/M arrest, we treated SW480 colon cancer cells that express truncated APC protein. We found that ZnCl2 treatment did not induce G2/M phase arrest in SW480 cells; however, the cell growth was retarded due to the loss of E-cadherin and alpha-tubulin levels. These results suggest that ZnCl2 inhibits the proliferation of colon cancer cells (which carry the wild-type APC gene) through stabilization of the APC protein and cell cycle arrest in the G2/M phase. On the other hand, ZnCl2 inhibits the proliferation of colon cancer cells (which carry the mutant APC gene) by disrupting cellular attachment and microtubule stability.
Collapse
Affiliation(s)
- Aruna S Jaiswal
- Department of Anatomy and Cell Biology and UF Shands Cancer Center, College of Medicine, University of Florida, Gainesville, Florida 32610, USA
| | | |
Collapse
|
40
|
Scharfman HE. Functional implications of seizure-induced neurogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2004; 548:192-212. [PMID: 15250595 PMCID: PMC1839060 DOI: 10.1007/978-1-4757-6376-8_14] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The neurobiological doctrine governing the concept of neurogenesis has undergone a revolution in the past few years. What was once considered dubious is now well accepted: new neurons are born in the adult brain. Science fiction is quickly becoming a reality as scientists discover ways to convert skin, bone, or blood cells into neurons. In the epilepsy arena, widespread interest has developed because of the evidence that neurogenesis increases after seizures, trauma, and other insults or injuries that alter seizure susceptibility. This review discusses some of the initial studies in this field, and their often surprising functional implications. The emphasis will be on the granule cells of hippocampus, because they are perhaps more relevant to epilepsy than other areas in which neurogenesis occurs throughout life, the olfactory bulb and subventricular zone. In particular, the following questions will be addressed: 1. Do granule cells that are born in the adult brain become functional, and what are the limits of their function? Do they behave homogeneously? Results from our own laboratory have focused on cells that become established outside the normal boundaries of the granule cell layer, forming a group of "ectopic" granule cells in the hilar region. 2. Is increased neurogenesis beneficial, or might it actually exacerbate seizures? Evidence is presented that supports the hypothesis that new granule cells may not necessarily act to ameliorate seizures, and might even contribute to them. Furthermore, cognitive deficits following seizures might in part be due to new circuits that develop between new cells and the host brain. 3. How do the new cells interact with the host brain? Several changes occur in the dentate gyrus after seizures, and increased neurogenesis is only one of many. What is the interdependence of this multitude of changes, if any? 4. Is neurogenesis increased after seizures in man? Research suggests that the data from human epileptics are actually inconsistent with the studies in animal models of epilepsy, because there is little evidence of increased neurogenesis in epileptic tissue resected from intractable epileptics. Yet neurogenesis has been shown to occur in humans throughout adult life. What might be the reasons for these seemingly disparate results?
Collapse
Affiliation(s)
- Helen E Scharfman
- Center for Neural Recovery and Rehabilitation Research, Helen Hayes Hospital, New York State Department of Health, West Haverstraw, USA
| |
Collapse
|
41
|
Abstract
Zinc plays an important role in cell-mediated immune function. Altered cellular immune response resulting from zinc deficiency leads to frequent microbial infections, thymic atrophy, decreased natural killer activity, decreased thymic hormone activity, and altered cytokine production. In this study, we examined the effect of zinc deficiency on IL-2 and IFN-gamma in HUT-78 (Th0) and D1.1 (Th1) cell lines and TNF-alpha, IL-1 beta, and IL-8 in the HL-60 (monocyte-macrophage) cell line. The results demonstrate that zinc deficiency decreased the levels of IL-2 and IFN-gamma cytokines and mRNAs in HUT-78 after 6 h of PMA/p-phytohemagglutinin (PHA) stimulation and in D1.1 cells after 6 h of PHA/ionomycin stimulation compared with the zinc-sufficient cells. However, zinc deficiency increased the levels of TNF-alpha, IL-1 beta, and IL-8 cytokines and mRNAs in HL-60 cells after 6 h of PMA stimulation compared with zinc-sufficient cells. Actinomycin D study suggests that the changes in the levels of these cytokine mRNAs were not the result of the stability affected by zinc but might be the result of altered expression of these cytokine genes. These data demonstrate that zinc mediates positively the gene expression of IL-2 and IFN-gamma in the Th1 cell line and negatively TNF-alpha, IL-1 beta, and IL-8 in the monocyte-macrophage cell line. Our study shows that the effect of zinc on gene expression and production of cytokines is cell lineage specific.
Collapse
Affiliation(s)
- Bin Bao
- Internal Medicine Department, Wayne State University Medical School, Detroit, MI 48201, USA
| | | | | | | |
Collapse
|
42
|
Fanzo JC, Reaves SK, Cui L, Zhu L, Lei KY. p53 protein and p21 mRNA levels and caspase-3 activity are altered by zinc status in aortic endothelial cells. Am J Physiol Cell Physiol 2002; 283:C631-8. [PMID: 12107073 DOI: 10.1152/ajpcell.00248.2001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The influence of zinc status on the levels of p53, as well as downstream targets of p53 in cell repair and survival, was examined in human aortic endothelial cells (HAECs). A serum-reduced low-zinc medium (ZD) was used to deplete zinc over one passage. Other treatments included zinc-normal control (ZN), zinc-adequate (ZA), and zinc-supplemented (ZS) treatment with 3.0, 16.0, and 32.0 microM zinc, respectively. Cellular zinc levels in the ZD cells were 64% of ZN controls; levels in the ZA cells were not different, but levels in ZS cells were significantly higher (40%) than in ZN cells. No difference in p53 mRNA abundance was detected among all treatments; however, p53 nuclear protein levels were >100% higher in the ZD and ZS cells and almost 200% higher in the ZA cells than in ZN controls. In addition, p21 mRNA abundance, a downstream target of p53 protein, was increased in the ZS cells compared with both the ZN control and ZD cells. In the ZS cells, bax and mcl-1 were also approximately 50% higher compared with ZN controls, whereas bcl-2 mRNA was increased compared with ZA cells. Moreover, caspase-3 activity of ZD cells was not different from that of ZN controls but was reduced to 83 and 69% of ZN controls in ZA and ZS cells, respectively. Thus p53 protein and p53 downstream target genes appeared to be modulated by intracellular zinc status in HAECs.
Collapse
Affiliation(s)
- Jessica C Fanzo
- Department of Nutritional Sciences, University of Arizona, Tucson, Arizona 85721, USA
| | | | | | | | | |
Collapse
|
43
|
Paski SC, Xu Z. Growth factor stimulated cell proliferation is accompanied by an elevated labile intracellular pool of zinc in 3T3 cells. Can J Physiol Pharmacol 2002; 80:790-5. [PMID: 12269789 DOI: 10.1139/y02-101] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Growth factors such as platelet-derived growth factor (PDGF), epidermal growth factor (EGF), and insulin-like growth factor-I (IGF-I) are required for quiescent 3T3 cells to proliferate, but zinc deprivation impairs IGF-I-induced DNA synthesis. We recently showed that labile intracellular pool of zinc is involved in cell proliferation. Our objective was to determine whether the labile intracellular pool of zinc plays a role in growth factor (PDGF, EGF, and IGF-I) - stimulated proliferation of 3T3 cells. Quiescent 3T3 cells were cultured in DMEM with or without growth factors. Labile intracellular pool of zinc, DNA synthesis, and cell proliferation were assessed using fluorescence microscopy, 3H-thymidine incorporation, and total cell number counts, respectively. After 24 h, growth factors stimulated DNA synthesis (24%) but not cell proliferation. After 48 h, growth factors stimulated both DNA synthesis (37%) and cell proliferation (89%). In response to growth factor stimulation, the labile intracellular pool of zinc was also elevated after 24 or 48 h of treatment. In summary, growth factor (PDGF, EGF, and IGF-I) - stimulated increase in DNA synthesis and cell proliferation were accompanied by an elevated labile intracellular pool of zinc in 3T3 cells. Since elevation of the labile intracellular pool of zinc occurred along with increased DNA synthesis, but cell proliferation remained unchanged, the elevation of the labile intracellular pool of zinc likely occurred during the S phase to provide the zinc needed to support DNA synthesis and ultimately cell proliferation.Key words: PDGF, EGF, IGF-I, labile intracellular pool of zinc, cell proliferation, DNA synthesis, 3T3 cells.
Collapse
Affiliation(s)
- Shirley C Paski
- Food, Nutrition, and Health Program, The University of British Columbia, Vancouver, Canada
| | | |
Collapse
|
44
|
Field CJ, Johnson IR, Schley PD. Nutrients and their role in host resistance to infection. J Leukoc Biol 2002. [DOI: 10.1189/jlb.71.1.16] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Affiliation(s)
- Catherine J. Field
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Canada
| | - Ian R. Johnson
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Canada
| | - Patricia D. Schley
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Canada
| |
Collapse
|
45
|
Abstract
Increasing evidence shows that labile intracellular zinc is metabolically important. Depletion of labile intracellular zinc using chelators suppresses DNA synthesis. In this study, we tested the hypothesis that labile intracellular zinc could be modulated via varying zinc nutrition. This could result in an altered availability of labile intracellular zinc, which, in turn, could influence zinc-dependent cellular events involved in cell proliferation and ultimately suppress growth. Labile intracellular zinc was detected by using N-(6-methoxy-8-quinolyl)-para-toluenesulfonamide (TSQ), a membrane-permeable fluorescence probe. After 48 h culture in a zinc-depleted medium, labile intracellular zinc in 3T3 cells was diminished along with a suppressed DNA synthesis and cell proliferation. In contrast, supplementation of zinc to the zinc-depleted medium increased the labile intracellular zinc and promoted DNA synthesis and cell proliferation. Furthermore, growth factor-dependent stimulation of DNA synthesis and cell proliferation was also accompanied by increased labile intracellular zinc. Together, our data showed an association between the labile intracellular zinc, detected using TSQ, and 3T3 cell growth, suggesting that labile intracellular zinc could be an important cellular link between zinc nutrition and growth.
Collapse
Affiliation(s)
- Shirley C. Paski
- Food, Nutrition, and Health Program, The University of British Columbia, B.C. V6T 1Z4, Vancouver, Canada
| | | |
Collapse
|
46
|
Prasad AS, Bao B, Beck FW, Sarkar FH. Zinc activates NF-kappaB in HUT-78 cells. THE JOURNAL OF LABORATORY AND CLINICAL MEDICINE 2001; 138:250-6. [PMID: 11574819 DOI: 10.1067/mlc.2001.118108] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Zinc is essential for human health, and its deficiency in human beings results in growth failure, immune disorders affecting Th1 functions, decreased interleukin-2 (IL-2) production, and cognitive impairment. Nearly 2000 transcription factors require zinc for their structural integrity; however, it is not known whether cellular zinc deficiency results in any change in activation of any of the transcription factors. Inasmuch as NF-kappaB binds to the promoter enhancer area of IL-2 and IL-2Ralpha genes, we investigated the effect of zinc deficiency on activation of NF-kappaB and its binding to DNA in HUT-78, a Th0 malignant human lymphoblastoid cell line. We show here for the first time that in zinc-deficient HUT-78 cells, phosphorylated IkappaB, and IKK, ubiquitinated IkappaB and binding of NF-kappaB to DNA were all significantly decreased. Zinc increased the translocation of NF-kappaB from cytosol to nucleus. We also demonstrate that the binding of recombinant NF-kappaB (p50)(2) to DNA in HUT-78 cells was zinc specific. We conclude that zinc plays an important role in the activation of NF-kappaB in HUT-78 cells.
Collapse
Affiliation(s)
- A S Prasad
- Department of Medicine, Division of Hematology-Oncology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | | | | | | |
Collapse
|
47
|
Fanzo JC, Reaves SK, Cui L, Zhu L, Wu JY, Wang YR, Lei KY. Zinc status affects p53, gadd45, and c-fos expression and caspase-3 activity in human bronchial epithelial cells. Am J Physiol Cell Physiol 2001; 281:C751-7. [PMID: 11502552 DOI: 10.1152/ajpcell.2001.281.3.c751] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study was designed to examine the influence of zinc depletion and supplementation on the expression of p53 gene, target genes of p53, and caspase-3 activity in normal human bronchial epithelial (NHBE) cells. A serum-free, low-zinc medium containing 0.4 micromol/l of zinc [zinc deficient (ZD)] was used to deplete cellular zinc over one passage. In addition, cells were cultured for one passage in media containing 4.0 micromol/l of zinc [zinc normal (ZN)], which represents normal culture concentrations (Clonetics); 16 micromol/l of zinc [zinc adequate (ZA)], which represents normal human plasma zinc levels; or 32 micromol/l of zinc [zinc supplemented (ZS)], which represents the high end of plasma zinc levels attainable by oral supplementation in humans. Compared with ZN cells, cellular zinc levels were 76% lower in ZD cells but 3.5-fold and 6-fold higher in ZA and ZS cells, respectively. Abundances of p53 mRNA and nuclear p53 protein were elevated in treatment groups compared with controls (ZN). For p53 mRNA abundance, the highest increase (3-fold) was observed in ZD cells. In contrast, the highest increase (17-fold) in p53 nuclear protein levels was detected in ZS cells. Moreover, gadd45 mRNA abundance was moderately elevated in ZD and ZA cells and was not altered in ZS cells compared with ZN cells. Furthermore, the only alteration in c-fos mRNA and caspase-3 activity was the twofold increase and the 25% reduction, respectively, detected in ZS compared with ZN cells. Thus p53, gadd45, and c-fos and caspase-3 activity appeared to be modulated by cellular zinc status in NHBE cells.
Collapse
Affiliation(s)
- J C Fanzo
- Department of Nutritional Sciences, University of Arizona, Tucson, Arizona 85721, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
Nutritional deficiency of zinc is widespread throughout developing countries, and zinc-deficient persons have increased susceptibility to a variety of pathogens. Zinc deficiency in an experimental human model caused an imbalance between Th1 and Th2 functions. Production of interferon-gamma and interleukin (IL)-2 (products of Th1) were decreased, whereas production of IL-4, IL-6, and IL-10 (products of Th2) were not affected during zinc deficiency. Zinc deficiency decreased natural killer cell lytic activity and percentage of precursors of cytolytic T cells. In HuT-78, a Th0 cell line, zinc deficiency decreased gene expression of thymidine kinase, delayed cell cycle, and decreased cell growth. Gene expression of IL-2 and IL-2 receptors (both alpha and beta) and binding of NF-kappaB to DNA were decreased by zinc deficiency in HuT-78. Decreased production of IL-2 in zinc deficiency may be due to decreased activation of NF-kappaB and subsequent decreased gene expression of IL-2 and IL-2 receptors.
Collapse
Affiliation(s)
- A S Prasad
- Wayne State University, University Health Center, Detroit, MI 48201, USA.
| |
Collapse
|
49
|
Reaves SK, Fanzo JC, Arima K, Wu JY, Wang YR, Lei KY. Expression of the p53 tumor suppressor gene is up-regulated by depletion of intracellular zinc in HepG2 cells. J Nutr 2000; 130:1688-94. [PMID: 10867037 DOI: 10.1093/jn/130.7.1688] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Expression and activation of the p53 tumor suppressor protein are modulated by various cellular stimuli. The objective of this work was to examine the influence of zinc depletion on the expression of p53 in HepG2 cells. Two different low Zn (ZD) media, Zn-free Opti-MEM and a ZD medium containing Chelex-100 treated serum, were used to deplete cellular zinc over one passage. Cellular zinc levels of ZD cells were significantly lower than in their controls in both the Opti-MEM and Chelex studies. p53 mRNA abundance was 187% higher in ZD Opti-MEM cells and >100% higher in ZD Chelex cells compared with their respective controls. To examine whether the effects were specific to zinc depletion, a third, zinc-replenished group (ZDA) was included in the Opti-MEM study in which cells were cultured in ZD media for nearly one passage before a change was made to zinc-adequate (ZA) medium for the last 24 h. Zinc levels in the ZDA cells were significantly higher than in ZD cells, and p53 mRNA abundance was normalized to control levels. Nuclear p53 protein levels were >100% higher in the ZD Opti-MEM cells than in ZA cells. Interestingly, the ZDA Opti-MEM cells had significantly lower levels of nuclear p53 protein than both the ZA and ZD cells. These data suggest that expression of p53, a critical component in the maintenance of genomic stability, may be affected by reductions in cellular zinc.
Collapse
Affiliation(s)
- S K Reaves
- Department of Nutritional Sciences, University of Arizona, Tucson, AZ 85721, USA
| | | | | | | | | | | |
Collapse
|
50
|
Abstract
The inhibition of growth is a cardinal symptom of zinc deficiency. In animals fed a zinc-inadequate diet, both food intake and growth are reduced within 4-5 d. Despite the concomitant reduction in food intake and growth, reduced energy intake is not the limiting factor in growth, because force-feeding a zinc-inadequate diet to animals fails to maintain growth. Hence, food intake and growth appear to be regulated by zinc through independent, although well coordinated, mechanisms. Despite the long-term study of zinc metabolism, the first limiting role of zinc in cell proliferation remains undefined. Zinc participates in the regulation of cell proliferation in several ways; it is essential to enzyme systems that influence cell division and proliferation. Removing zinc from the extracellular milieu results in decreased activity of deoxythymidine kinase and reduced levels of adenosine(5')tetraphosphate(5')-adenosine. Hence, zinc may directly regulate DNA synthesis through these systems. Zinc also influences hormonal regulation of cell division. Specifically, the pituitary growth hormone (GH)-insulin-like growth factor-I (IGF-I) axis is responsive to zinc status. Both increased and decreased circulating concentrations of GH have been observed in zinc deficiency, although circulating IGF-I concentrations are consistently decreased. However, growth failure is not reversed by maintaining either GH or IGF-I levels through exogenous administration, which suggests the defect occurs in hormone signaling. Zinc appears to be essential for IGF-I induction of cell proliferation; the site of regulation is postreceptor binding. Overall, the evidence suggests that reduced zinc availability affects membrane signaling systems and intracellular second messengers that coordinate cell proliferation in response to IGF-I.
Collapse
Affiliation(s)
- R S MacDonald
- Nutritional Sciences Program, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|