1
|
He T, d’Uscio LV, Sun R, Santhanam AVR, Katusic ZS. Inactivation of BACE1 increases expression of endothelial nitric oxide synthase in cerebrovascular endothelium. J Cereb Blood Flow Metab 2022; 42:1920-1932. [PMID: 35673977 PMCID: PMC9536128 DOI: 10.1177/0271678x221105683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/09/2022] [Accepted: 05/13/2022] [Indexed: 11/15/2022]
Abstract
Cerebrovascular effects of β-site amyloid precursor protein-cleaving enzyme 1 (BACE1) inactivation have not been systematically studied. In the present study we employed cultured human brain microvascular endothelial cells (BMECs), BACE1-knockout (BACE1-/-) mice and conditional (tamoxifen-induced) endothelium-specific BACE1-knockout (eBACE1-/-) mice to determine effect of BACE1 inhibition on expression and function of endothelial nitric oxide synthase (eNOS). Deletion of BACE1 caused upregulation of eNOS and glypican-1 (GPC1) in human BMECs treated with BACE1-siRNA, and cerebral microvessels of male BACE1-/- mice and male eBACE1-/- mice. In addition, BACE1siRNA treatment increased NO production in human BMECs. These effects appeared to be independent of amyloid β-peptide production. Furthermore, adenoviral-mediated overexpression of BACE1 in human BMECs down-regulated GPC1 and eNOS. Treatment of human BMECs with GPC1siRNA suppressed mRNA and protein levels of eNOS. In basilar arteries of male eBACE1-/- mice, endothelium-dependent relaxations to acetylcholine and endothelium-independent relaxations to NO donor, DEA-NONOate, were not affected, consistent with unchanged expression of eNOS and phosphorylation of eNOS at Ser1177 in large cerebral arteries. In aggregate, our findings suggest that under physiological conditions, inactivation of endothelial BACE1 increases expression of eNOS in cerebral microvessels but not in large brain arteries. This effect appears to be mediated by increased GPC1 expression.
Collapse
Affiliation(s)
- Tongrong He
- Departments of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Livius V d’Uscio
- Departments of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Ruohan Sun
- Departments of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
- Department of Neurology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Anantha Vijay R Santhanam
- Departments of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Zvonimir S Katusic
- Departments of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
2
|
Carbone MG, Pagni G, Tagliarini C, Imbimbo BP, Pomara N. Can platelet activation result in increased plasma Aβ levels and contribute to the pathogenesis of Alzheimer's disease? Ageing Res Rev 2021; 71:101420. [PMID: 34371202 DOI: 10.1016/j.arr.2021.101420] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 07/18/2021] [Accepted: 08/02/2021] [Indexed: 12/12/2022]
Abstract
One of the central lesions in the brain of subjects with Alzheimer's disease (AD) is represented by aggregates of β-amyloid (Aβ), a peptide of 40-42 amino acids derived from the amyloid precursor protein (APP). The reasons why Aβ accumulates in the brain of individuals with sporadic forms of AD are unknown. Platelets are the primary source of circulating APP and, upon activation, can secrete significant amounts of Aβ into the blood which can be actively transported to the brain across the blood-brain barrier and promote amyloid deposition. Increased platelet activity can stimulate platelet adhesion to endothelial cells, trigger the recruitment of leukocytes into the vascular wall and cause perivascular inflammation, which can spread inflammation in the brain. Neuroinflammation is fueled by activated microglial cells and reactive astrocytes that release neurotoxic cytokines and chemokines. Platelet activation is also associated with the progression of carotid artery disease resulting in an increased risk of cerebral hypoperfusion which may also contribute to the AD neurodegenerative process. Platelet activation may thus be a pathophysiological mechanism of AD and for the strong link between AD and cerebrovascular diseases. Interfering with platelet activation may represent a promising potential adjunct therapeutic approach for AD.
Collapse
Affiliation(s)
- Manuel Glauco Carbone
- Department of Medicine and Surgery, Division of Psychiatry, University of Insubria, Viale Luigi Borri 57, 21100, Varese, Italy; Pisa-School of Experimental and Clinical Psychiatry, University of Pisa, Via Roma 57, 56100, Pisa, Italy.
| | - Giovanni Pagni
- Pisa-School of Experimental and Clinical Psychiatry, University of Pisa, Via Roma 57, 56100, Pisa, Italy.
| | - Claudia Tagliarini
- Pisa-School of Experimental and Clinical Psychiatry, University of Pisa, Via Roma 57, 56100, Pisa, Italy.
| | | | - Nunzio Pomara
- Geriatric Psychiatry Department, Nathan Kline Institute, and Departments of Psychiatry and Pathology, NYU Grossman School of Medicine, 140 Old Orangeburg Road Orangeburg, New York, 10962, United States.
| |
Collapse
|
3
|
Page MJ, Pretorius E. Platelet Behavior Contributes to Neuropathologies: A Focus on Alzheimer's and Parkinson's Disease. Semin Thromb Hemost 2021; 48:382-404. [PMID: 34624913 DOI: 10.1055/s-0041-1733960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The functions of platelets are broad. Platelets function in hemostasis and thrombosis, inflammation and immune responses, vascular regulation, and host defense against invading pathogens, among others. These actions are achieved through the release of a wide set of coagulative, vascular, inflammatory, and other factors as well as diverse cell surface receptors involved in the same activities. As active participants in these physiological processes, platelets become involved in signaling pathways and pathological reactions that contribute to diseases that are defined by inflammation (including by pathogen-derived stimuli), vascular dysfunction, and coagulation. These diseases include Alzheimer's and Parkinson's disease, the two most common neurodegenerative diseases. Despite their unique pathological and clinical features, significant shared pathological processes exist between these two conditions, particularly relating to a central inflammatory mechanism involving both neuroinflammation and inflammation in the systemic environment, but also neurovascular dysfunction and coagulopathy, processes which also share initiation factors and receptors. This triad of dysfunction-(neuro)inflammation, neurovascular dysfunction, and hypercoagulation-illustrates the important roles platelets play in neuropathology. Although some mechanisms are understudied in Alzheimer's and Parkinson's disease, a strong case can be made for the relevance of platelets in neurodegeneration-related processes.
Collapse
Affiliation(s)
- Martin J Page
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Private Bag X1 Matieland, South Africa
| | - Etheresia Pretorius
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Private Bag X1 Matieland, South Africa
| |
Collapse
|
4
|
Platelet APP Processing: Is It a Tool to Explore the Pathophysiology of Alzheimer's Disease? A Systematic Review. Life (Basel) 2021; 11:life11080750. [PMID: 34440494 PMCID: PMC8401829 DOI: 10.3390/life11080750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 07/18/2021] [Accepted: 07/20/2021] [Indexed: 11/16/2022] Open
Abstract
The processing of the amyloid precursor protein (APP) is a critical event in the formation of amyloid plaques. Platelets contain most of the enzymatic machinery required for APP processing and correlates of intracerebral abnormalities have been demonstrated in platelets of patients with AD. The goal of the present paper was to analyze studies exploring platelet APP metabolism in Alzheimer's disease patients trying to assess potential reliable peripheral biomarkers, to offer new therapeutic solutions and to understand the pathophysiology of the AD. According to the PRISMA guidelines, we performed a systematic review through the PubMed database up to June 2020 with the search terms: "((((((APP) OR Amyloid Precursor Protein) OR AbetaPP) OR Beta Amyloid) OR Amyloid Beta) OR APP-processing) AND platelet". Thirty-two studies were included in this systematic review. The papers included are analytic observational studies, namely twenty-nine cross sectional studies and three longitudinal studies, specifically prospective cohort study. The studies converge in an almost unitary way in affirming that subjects with AD show changes in APP processing compared to healthy age-matched controls. However, the problem of the specificity and sensitivity of these biomarkers is still at issue and would deserve to be deepened in future studies.
Collapse
|
5
|
Inyushin M, Zayas-Santiago A, Rojas L, Kucheryavykh L. On the Role of Platelet-Generated Amyloid Beta Peptides in Certain Amyloidosis Health Complications. Front Immunol 2020; 11:571083. [PMID: 33123145 PMCID: PMC7567018 DOI: 10.3389/fimmu.2020.571083] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 09/15/2020] [Indexed: 12/15/2022] Open
Abstract
As do many other immunity-related blood cells, platelets release antimicrobial peptides that kill bacteria, fungi, and even certain viruses. Here we review the literature suggesting that there is a similarity between the antimicrobials released by other blood cells and the amyloid-related Aβ peptide released by platelets. Analyzing the literature, we also propose that platelet-generated Aβ amyloidosis may be more common than currently recognized. This systemic Aβ from a platelet source may participate in various forms of amyloidosis in pathologies ranging from brain cancer, glaucoma, skin Aβ accumulation, and preeclampsia to Alzheimer’s disease and late-stage Parkinson’s disease. We also discuss the advantages and disadvantages of specific animal models for studying platelet-related Aβ. This field is undergoing rapid change, as it evaluates competing ideas in the light of new experimental observations. We summarized both in order to clarify the role of platelet-generated Aβ peptides in amyloidosis-related health disorders, which may be helpful to researchers interested in this growing area of investigation.
Collapse
Affiliation(s)
- Mikhail Inyushin
- Department of Physiology, Universidad Central del Caribe, Bayamon, Puerto Rico
| | - Astrid Zayas-Santiago
- Department of Pathology & Laboratory Medicine, Universidad Central del Caribe, Bayamon, Puerto Rico
| | - Legier Rojas
- Department of Physiology, Universidad Central del Caribe, Bayamon, Puerto Rico
| | - Lilia Kucheryavykh
- Department of Biochemistry, Universidad Central del Caribe, Bayamon, Puerto Rico
| |
Collapse
|
6
|
Inyushin M, Zayas-Santiago A, Rojas L, Kucheryavykh Y, Kucheryavykh L. Platelet-generated amyloid beta peptides in Alzheimer's disease and glaucoma. Histol Histopathol 2019; 34:843-856. [PMID: 30945258 PMCID: PMC6667289 DOI: 10.14670/hh-18-111] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Amyloid beta (Aβ) peptides have been implicated in both Alzheimer's disease (AD) and glaucoma and have been shown to be the key etiological factor in these dangerous health complications. On the other hand, it is well known that Aβ peptide can be generated from its precursor protein and massively released from the blood to nearby tissue upon the activation of platelets due to their involvement in innate immunity and inflammation processes. Here we review evidence about the development of AD and glaucoma neuronal damage showing their dependence on platelet count and activation. The correlation between the effect on platelet count and the effectiveness of anti-AD and anti-glaucoma therapies suggest that platelets may be an important player in these diseases.
Collapse
Affiliation(s)
- Mikhail Inyushin
- School of Medicine, Universidad Central del Caribe (UCC), PR, USA.
| | | | - Legier Rojas
- School of Medicine, Universidad Central del Caribe (UCC), PR, USA
| | | | | |
Collapse
|
7
|
A β Peptide Originated from Platelets Promises New Strategy in Anti-Alzheimer's Drug Development. BIOMED RESEARCH INTERNATIONAL 2017; 2017:3948360. [PMID: 29018812 PMCID: PMC5605787 DOI: 10.1155/2017/3948360] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 07/10/2017] [Indexed: 12/20/2022]
Abstract
The amyloid beta (Aβ) peptide and its deposits in the brain are known to be implicated in the neurodegeneration that occurs during Alzheimer's disease (AD). Recently, alternative theories views concerning both the source of this peptide and its functions have been developed. It has been shown that, as in all other known types of amyloidosis, the production of Aβ originates in blood cells or cells related to blood plasma, from which it can then spread from the blood to inside the brain, with the greatest concentration around brain blood vessels. In this review, we summarize research progress in this new area and outline some future perspectives. While it is still unclear whether the main source of Aβ deposits in AD is the blood, the possibility of blocking the chain of reactions that lead to constant Aβ release from the blood to the brain may be exploited in an attempt to reduce the amyloid burden in AD. Solving the problem of Aβ accumulation in this way may provide an alternative strategy for developing anti-AD drugs.
Collapse
|
8
|
Kucheryavykh LY, Dávila-Rodríguez J, Rivera-Aponte DE, Zueva LV, Washington AV, Sanabria P, Inyushin MY. Platelets are responsible for the accumulation of β-amyloid in blood clots inside and around blood vessels in mouse brain after thrombosis. Brain Res Bull 2016; 128:98-105. [PMID: 27908798 DOI: 10.1016/j.brainresbull.2016.11.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 11/21/2016] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Platelets contain beta-amyloid precursor protein (APP) as well as Aβ peptide (Aβ) that can be released upon activation. During thrombosis, platelets are concentrated in clots and activated. METHODS We used in vivo fluorescent analysis and electron microscopy in mice to determine to what degree platelets are concentrated in clots. We used immunostaining to visualize Aβ after photothrombosis in mouse brains. RESULTS Both in vivo results and electron microscopy revealed that platelets were 300-500 times more concentrated in clots than in non-clotted blood. After thrombosis in control mice, but not in thrombocytopenic animals, Aβ immunofluorescence was present inside blood vessels in the visual cortex and around capillaries in the entorhinal cortex. CONCLUSION The increased concentration of platelets allows enhanced release of Aβ during thrombosis, suggesting an additional source of Aβ in the brains of Alzheimer's patients that may arise if frequent micro-thrombosis events occur in their brains.
Collapse
Affiliation(s)
- Lilia Y Kucheryavykh
- Department of Biochemistry, School of Medicine, Universidad Central del Caribe, Bayamon, PR 00960-6032, (P.O. Box 60327), USA.
| | - Josué Dávila-Rodríguez
- School of Medicine, Universidad Central del Caribe, Bayamon, PR 00960-6032, (P.O. Box 60327), USA.
| | - David E Rivera-Aponte
- Department of Biochemistry, School of Medicine, Universidad Central del Caribe, Bayamon, PR 00960-6032, (P.O. Box 60327), USA.
| | - Lidia V Zueva
- Department of Physics, University of Puerto Rico Rio Piedras, San Juan, PR 00936, USA.
| | - A Valance Washington
- Department of Anatomy, School of Medicine, Universidad Central del Caribe, Bayamon, PR 00960-6032, (P.O. Box 60327), USA; The Department of Biology, University of Puerto Rico Rio Piedras, San Juan, PR 00936, USA.
| | - Priscilla Sanabria
- Department of Physiology, School of Medicine, Universidad Central del Caribe, Bayamon, PR 00960-6032, (P.O. Box 60327), USA.
| | - Mikhail Y Inyushin
- Department of Physiology, School of Medicine, Universidad Central del Caribe, Bayamon, PR 00960-6032, (P.O. Box 60327), USA.
| |
Collapse
|
9
|
Salameh TS, Banks WA. Delivery of therapeutic peptides and proteins to the CNS. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2014; 71:277-99. [PMID: 25307220 PMCID: PMC6087545 DOI: 10.1016/bs.apha.2014.06.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Peptides and proteins have potent effects on the brain after their peripheral administration, suggesting that they may be good substrates for the development of CNS therapeutics. Major hurdles to such development include their relation to the blood-brain barrier (BBB) and poor pharmacokinetics. Some peptides cross the BBB by transendothelial diffusion and others cross in the blood-to-brain direction by saturable transporters. Some regulatory proteins are also transported across the BBB and antibodies can enter the CNS via the extracellular pathways. Glycoproteins and some antibody fragments can be taken up and cross the BBB by mechanisms related to adsorptive endocytosis/transcytosis. Many peptides and proteins are transported out of the CNS by saturable efflux systems and enzymatic activity in the blood, CNS, or BBB are substantial barriers to others. Both influx and efflux transporters are altered by various substances and in disease states. Strategies that manipulate these interactions between the BBB and peptides and proteins provide many opportunities for the development of therapeutics. Such strategies include increasing transendothelial diffusion of small peptides, upregulation of saturable influx transporters with allosteric regulators and other posttranslational means, use of vectors and other Trojan horse strategies, inhibition of efflux transporters including with antisense molecules, and improvement in pharmacokinetic parameters to overcome short half-lives, tissue sequestration, and enzymatic degradation.
Collapse
Affiliation(s)
- Therese S Salameh
- Geriatric Research Educational and Clinical Center, Veterans Affairs Puget Sound Health Care System, University of Washington, Seattle, Washington USA; Department of Medicine, Division of Gerontology and Geriatric Medicine, University of Washington, Seattle, Washington, USA
| | - William A Banks
- Geriatric Research Educational and Clinical Center, Veterans Affairs Puget Sound Health Care System, University of Washington, Seattle, Washington USA; Department of Medicine, Division of Gerontology and Geriatric Medicine, University of Washington, Seattle, Washington, USA.
| |
Collapse
|
10
|
The role of inflammatory processes in Alzheimer's disease. Inflammopharmacology 2012; 20:109-26. [PMID: 22535513 DOI: 10.1007/s10787-012-0130-z] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2011] [Accepted: 03/05/2012] [Indexed: 02/07/2023]
Abstract
It has become increasingly clear that inflammatory processes play a significant role in the pathophysiology of Alzheimer's disease (AD). Neuroinflammation is characterized by the activation of astrocytes and microglia and the release of proinflammatory cytokines and chemokines. Vascular inflammation, mediated largely by the products of endothelial activation, is accompanied by the production and the release of a host of inflammatory factors which contribute to vascular, immune, and neuronal dysfunction. The complex interaction of these processes is still only imperfectly understood, yet as the mechanisms continue to be elucidated, targets for intervention are revealed. Although many of the studies to date on therapeutic or preventative strategies for AD have been narrowly focused on single target therapies, there is accumulating evidence to suggest that the most successful treatment strategy will likely incorporate a sequential, multifactorial approach, addressing direct neuronal support, general cardiovascular health, and interruption of deleterious inflammatory pathways.
Collapse
|
11
|
Ma JF, Wang HM, Li QY, Zhang Y, Pan J, Qiang Q, Xin XY, Tang HD, Ding JQ, Chen SD. Starvation triggers Abeta42 generation from human umbilical vascular endothelial cells. FEBS Lett 2010; 584:3101-6. [PMID: 20621836 DOI: 10.1016/j.febslet.2010.05.048] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Revised: 05/21/2010] [Accepted: 05/24/2010] [Indexed: 12/19/2022]
Abstract
Cerebral amyloid angiopathy is a common feature in Alzheimer's disease (AD), which is characterized by amyloid deposit around brain vessels including capillaries. The origin of the amyloid protein of CAA remains controversial. In our work, we provide data to show that primary umbilical vein endothelial cells (HUVEC) harbor APP processing secretases and can produce Abeta(42) under starvation. Starvation can increase the secretion of Abeta(42) by altering the expression of beta-secretases (BACE1) and gamma-secretases (APH and PEN2). This process is regulated by macroautophagy. Suppression of macroautophagy induction by 3MA further increased the level of Abeta(42) produced under starvation in HUVECs. These results suggest that starvation-induced Abeta(42) secretion might contribute to the formation of CAA and hence vascular degeneration in AD.
Collapse
Affiliation(s)
- Jian-Fang Ma
- Department of Neurology & Institute of Neurology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Amyloid precursor protein mediates a tyrosine kinase-dependent activation response in endothelial cells. J Neurosci 2009; 29:14451-62. [PMID: 19923279 DOI: 10.1523/jneurosci.3107-09.2009] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Amyloid precursor protein (APP) is a ubiquitously expressed type 1 integral membrane protein. It has the ability to bind numerous extracellular matrix components and propagate signaling responses via its cytoplasmic phospho-tyrosine, (682)YENPTY(687), binding motif. We recently demonstrated increased protein levels of APP, phosphorylated APP (Tyr682), and beta-amyloid (Abeta) in brain vasculature of atherosclerotic and Alzheimer's disease (AD) tissue colocalizing primarily within the endothelial layer. This study demonstrates similar APP changes in peripheral vasculature from human and mouse apoE(-/-) aorta, suggesting that APP-related changes are not restricted to brain vasculature. Therefore, primary mouse aortic endothelial cells and human umbilical vein endothelial cells were used as a model system to examine the function of APP in endothelial cells. APP multimerization with an anti-N-terminal APP antibody, 22C11, to simulate ligand binding stimulated an Src kinase family-dependent increase in protein phospho-tyrosine levels, APP phosphorylation, and Abeta secretion. Furthermore, APP multimerization stimulated increased protein levels of the proinflammatory proteins, cyclooxygenase-2 and vascular cell adhesion molecule-1 also in an Src kinase family-dependent manner. Endothelial APP was also involved in mediating monocytic cell adhesion. Collectively, these data demonstrate that endothelial APP regulates immune cell adhesion and stimulates a tyrosine kinase-dependent response driving acquisition of a reactive endothelial phenotype. These APP-mediated events may serve as therapeutic targets for intervention in progressive vascular changes common to cerebrovascular disease and AD.
Collapse
|
13
|
Austin SA, Combs CK. Amyloid precursor protein mediates monocyte adhesion in AD tissue and apoE(-)/(-) mice. Neurobiol Aging 2008; 31:1854-66. [PMID: 19058878 DOI: 10.1016/j.neurobiolaging.2008.10.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2008] [Revised: 10/07/2008] [Accepted: 10/17/2008] [Indexed: 10/21/2022]
Abstract
Amyloid precursor protein (APP) is a type 1 integral membrane protein, which is highly conserved and ubiquitously expressed. Numerous data suggest it functions in cellular adhesion. For example, APP binds components of the extracellular matrix to propagate intracellular signaling responses. In order to investigate adhesion-related changes in inflamed vasculature, brains from apolipoprotein E(-/-) (apoE(-/-)) mice were examined for changes related to APP then compared to human Alzheimer's disease (AD) brains. Cerebrovasculature from mouse apoE(-)/(-) and human AD brains revealed strong immunoreactivity for APP, APP phosphorylated at tyrosine residue 682 (pAPP) and Aβ. Further, Western blot analyses from mouse apoE(-/-) and AD brains showed statistically higher protein levels of APP, pAPP and increased APP association with the tyrosine kinase, Src. Lastly, utilizing a modified Stamper-Woodruff adhesion assay, we demonstrated that adhesion of monocytic cells to apoE(-/-) and AD brain endothelium is partially APP dependent. These data suggest that endothelial APP function coupled with increased Aβ production are involved in the vascular dysfunction associated with atherosclerosis and AD.
Collapse
Affiliation(s)
- Susan A Austin
- Department of Pharmacology, Physiology & Therapeutics, University of North Dakota, School of Medicine and Health Sciences, 504 Hamline St., Room 116, Grand Forks, ND 58203, United States
| | | |
Collapse
|
14
|
|
15
|
Abstract
The amyloid precursor protein (APP) gene and its protein products have multiple functions in the central nervous system and fulfil criteria as neuractive peptides: presence, release and identity of action. There is increased understanding of the role of secretases (proteases) in the metabolism of APP and the production of its peptide fragments. The APP gene and its products have physiological roles in synaptic action, development of the brain, and in the response to stress and injury. These functions reveal the strategic importance of APP in the workings of the brain and point to its evolutionary significance.
Collapse
Affiliation(s)
- P K Panegyres
- Department of Neuropathology, Royal Perth Hospital, Western Australia.
| |
Collapse
|
16
|
Banks WA, Farr SA, Morley JE. Permeability of the blood-brain barrier to albumin and insulin in the young and aged SAMP8 mouse. J Gerontol A Biol Sci Med Sci 2000; 55:B601-6. [PMID: 11129390 DOI: 10.1093/gerona/55.12.b601] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The decrease in the insulin cerebrospinal fluid/serum ratio seen in Alzheimer's disease has been suggested as a mechanism by which brain glucose utilization could be perturbed. Insulin is transported across the blood-brain barrier (BBB) by a system that is altered by pathophysiological events. We used SAMP8 mice, a strain that by 8-12 months of age develops severe deficits in learning and memory, to determine whether the insulin transporter or BBB integrity was altered with aging. BBB integrity was measured by injecting radioactive albumin intravenously, washing out the vascular space up to 17 hours later, and measuring brain/serum ratios. This very sensitive method found no increase in the permeability of the BBB to albumin in young and aged SAMP8 mice. This compares with previous studies in humans with Alzheimer's disease and in other colonies of SAMP8 mice that have found evidence for BBB disruption. For radioactively labeled insulin, we used multiple-time regression analysis to measure both the unidirectional influx rate (Ki) and the reversible binding to brain endothelium (Vi). A non-significant decrease in the transport rate for whole brain occurred in aged SAMP8 mice. Ki and Vi values significantly varied among brain regions and the Ki for the thalamus and the Vi for the cerebellum and thalamus were higher in aged mice. We conclude that alterations in BBB integrity or the activity of the BBB insulin transporter do not underlie the deficits in learning and memory seen in the aged SAMP8 mouse.
Collapse
Affiliation(s)
- W A Banks
- GRECC, Veterans Affairs Medical Center-St. Louis and Saint Louis University School of Medicine, Department of Internal Medicine, Missouri, USA.
| | | | | |
Collapse
|
17
|
Davies TA, Long HJ, Eisenhauer PB, Hastey R, Cribbs DH, Fine RE, Simons ER. Beta amyloid fragments derived from activated platelets deposit in cerebrovascular endothelium: usage of a novel blood brain barrier endothelial cell model system. Amyloid 2000; 7:153-65. [PMID: 11019856 DOI: 10.3109/13506120009146830] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Amyloid precursor protein (A betaPP) processing results in generation of amyloid beta peptide (A beta) which deposits in the brain parenchyma and cerebrovasculature of patients with Alzheimer's disease (AD). Evidence that the vascular deposits derive in part from A betaPP fragments originating from activated platelets includes findings that individuals who have had multiple small strokes have a higher prevalence of AD compared to individuals who have taken anti-platelet drugs. Thus, determination of whether platelet A betaPP fragments are capable of traversing the blood-brain barrier (BBB) is critical. We have established that activated platelets from patients with AD retain more surface transmembrane-bound A betaPP (mA betaPP) than control platelets. We report here that this mA betaPP can be cleaved to A beta-containing fragments which pass through a novel BBB model system. This model utilizes human BBB endothelial cells (BEC) isolated from brains of patients with AD. These BEC, after exposure to activated platelets which have been surface-labeled with fluorescein and express surface-retained mA betaPP, cleave fluorescein-tagged surface proteins, including mA betaPP, resulting in passage to the BEC layer The data confirm that BEC contribute to processing of platelet-derived mA betaPP and show that the processing yields A beta containing fragments which could potentially contribute to cerebrovascular A beta deposition.
Collapse
Affiliation(s)
- T A Davies
- Biochemistry Department, Boston University School of Medicine, MA 02118, USA.
| | | | | | | | | | | | | |
Collapse
|