1
|
Geenen L, Nonnekens J, Konijnenberg M, Baatout S, De Jong M, Aerts A. Overcoming nephrotoxicity in peptide receptor radionuclide therapy using [ 177Lu]Lu-DOTA-TATE for the treatment of neuroendocrine tumours. Nucl Med Biol 2021; 102-103:1-11. [PMID: 34242948 DOI: 10.1016/j.nucmedbio.2021.06.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 06/21/2021] [Accepted: 06/21/2021] [Indexed: 12/29/2022]
Abstract
Peptide receptor radionuclide therapy (PRRT) is used for the treatment of patients with unresectable or metastasized somatostatin receptor type 2 (SSTR2)-expressing gastroenteropancreatic neuroendocrine tumours (GEP-NETs). The radiolabelled somatostatin analogue [177Lu]Lu-DOTA-TATE delivers its radiation dose to SSTR2-overexpressing tumour cells, resulting in selective cell killing during radioactive decay. While tumour control can be achieved in many patients, complete remissions remain rare, causing the majority of patients to relapse after a certain period of time. This raises the question whether the currently fixed treatment regime (4 × 7.4 GBq) leaves room for dose escalation as a means of improving therapy efficacy. The kidneys have shown to play an important role in defining a patient's tolerability to PRRT. As a consequence of the proximal tubular reabsorption of [177Lu]Lu-DOTA-TATE, via the endocytic megalin/cubilin receptor complex, the radionuclides are retained in the renal interstitium. This results in extended retention of radioactivity in the kidneys, generating a risk for the development of radiation nephropathy. In addition, a decreased kidney function has shown to be associated with a prolonged circulation of [177Lu]Lu-DOTA-TATE, causing increased irradiation to the bone marrow. This can on its turn lead to myelosuppression and haematological toxicity, owing to the marked radio sensitivity of the rapidly proliferating cells in the bone marrow. In contrast to external beam radiotherapy (EBRT), the exact absorbed dose limits for these critical organs (kidneys and bone marrow) in PRRT with [177Lu]Lu-DOTA-TATE are still unclear. Better insights into these uncertainties, can help in optimizing PRRT to reach its maximum therapeutic potential, while avoiding severe adverse events, like nephropathy and hematologic toxicities. In this review we focus on the nephrotoxic effects of PRRT with [177Lu]Lu-DOTA-TATE for the treatment of GEP-NETs. If the absorbed dose to the kidneys can be lowered, higher activities can be administered, enlarging the therapeutic window for PRRT. Therefore, we evaluated the renal protective potential of current and promising future strategies and discuss the importance of (renal) dosimetry in PRRT.
Collapse
Affiliation(s)
- Lorain Geenen
- Radiobiology Unit, Interdisciplinary Biosciences, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium; Department of Radiology & Nuclear Medicine, Erasmus MC, Rotterdam, the Netherlands
| | - Julie Nonnekens
- Department of Radiology & Nuclear Medicine, Erasmus MC, Rotterdam, the Netherlands; Department of Molecular Genetics, Erasmus MC, Rotterdam, the Netherlands; Oncode Institute, Erasmus MC, Rotterdam, the Netherlands
| | - Mark Konijnenberg
- Department of Radiology & Nuclear Medicine, Erasmus MC, Rotterdam, the Netherlands; Department of Medical Imaging, Radboud UMC, Nijmegen, the Netherlands
| | - Sarah Baatout
- Radiobiology Unit, Interdisciplinary Biosciences, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium; Department of Molecular Biotechnology, Faculty of Bioengineering Sciences, Ghent University, Belgium.
| | - Marion De Jong
- Department of Radiology & Nuclear Medicine, Erasmus MC, Rotterdam, the Netherlands
| | - An Aerts
- Radiobiology Unit, Interdisciplinary Biosciences, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| |
Collapse
|
2
|
Khodamoradi E, Hoseini-Ghahfarokhi M, Amini P, Motevaseli E, Shabeeb D, Musa AE, Najafi M, Farhood B. Targets for protection and mitigation of radiation injury. Cell Mol Life Sci 2020; 77:3129-3159. [PMID: 32072238 PMCID: PMC11104832 DOI: 10.1007/s00018-020-03479-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 02/04/2020] [Accepted: 02/07/2020] [Indexed: 02/06/2023]
Abstract
Protection of normal tissues against toxic effects of ionizing radiation is a critical issue in clinical and environmental radiobiology. Investigations in recent decades have suggested potential targets that are involved in the protection against radiation-induced damages to normal tissues and can be proposed for mitigation of radiation injury. Emerging evidences have been shown to be in contrast to an old dogma in radiation biology; a major amount of reactive oxygen species (ROS) production and cell toxicity occur during some hours to years after exposure to ionizing radiation. This can be attributed to upregulation of inflammatory and fibrosis mediators, epigenetic changes and disruption of the normal metabolism of oxygen. In the current review, we explain the cellular and molecular changes following exposure of normal tissues to ionizing radiation. Furthermore, we review potential targets that can be proposed for protection and mitigation of radiation toxicity.
Collapse
Affiliation(s)
- Ehsan Khodamoradi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mojtaba Hoseini-Ghahfarokhi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Peyman Amini
- Department of Radiology, Faculty of Paramedical, Tehran University of Medical Sciences, Tehran, Iran
| | - Elahe Motevaseli
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Dheyauldeen Shabeeb
- Department of Physiology, College of Medicine, University of Misan, Misan, Iraq
- Misan Radiotherapy Center, Misan, Iraq
| | - Ahmed Eleojo Musa
- Department of Medical Physics, Tehran University of Medical Sciences (International Campus), Tehran, Iran
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
3
|
Imig JD, Hye Khan MA, Sharma A, Fish BL, Mandel NS, Cohen EP. Radiation-induced afferent arteriolar endothelial-dependent dysfunction involves decreased epoxygenase metabolites. Am J Physiol Heart Circ Physiol 2016; 310:H1695-701. [PMID: 27106038 DOI: 10.1152/ajpheart.00023.2016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 04/18/2016] [Indexed: 01/06/2023]
Abstract
Chronic kidney disease is a known complication of hematopoietic stem cell transplant (HSCT) and can be caused by irradiation at the time of the HSCT. In our rat model there is a 6- to 8-wk latent period after irradiation that leads to the development of proteinuria, azotemia, and hypertension. The current study tested the hypothesis that decreased endothelial-derived factors contribute to impaired afferent arteriolar function in rats exposed to total body irradiation (TBI). WAG/RijCmcr rats underwent 11 Gy TBI, and afferent arteriolar responses to acetylcholine were determined at 1, 3, and 6 wk. Blood pressure and blood urea nitrogen were not different between control and irradiated rats. Afferent arteriolar diameters were not altered in irradiated rats. Impaired endothelial-dependent responses to acetylcholine were evident at 3 and 6 wk following TBI. Nitric oxide synthase (NOS), cyclooxygenase (COX), and epoxygenase (EPOX) contribution to acetylcholine dilator responses were evaluated. NOS inhibition with N(G)-nitro-l-arginine methyl ester (l-NAME) reduced acetylcholine responses by 50% in controls and 90% in 3-wk TBI rats. COX inhibition with indomethacin did not significantly alter the acetylcholine response in the presence or absence of l-NAME. EPOX inhibition with N-methylsulfonyl-6-(2-propargyloxyphenyl)hexanamide significantly decreased acetylcholine responses (35%) in controls but did not significantly alter acetylcholine responses (4%) in TBI rats. Biochemical analysis revealed decreased urinary EPOX metabolites but no change in COX, NOS, or reactive oxygen species at 3 wk TBI. Taken together, these results indicate that afferent arteriolar endothelial dysfunction involves a decrease in EPOX metabolites that precedes the development of proteinuria, azotemia, and hypertension in irradiated rats.
Collapse
Affiliation(s)
- John D Imig
- Department of Pharmacology & Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin;
| | - Md Abdul Hye Khan
- Department of Pharmacology & Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Amit Sharma
- Department of Pharmacology & Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Brian L Fish
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Neil S Mandel
- Clement J. Zablocki Veterans Affairs Medical Center and Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin; and
| | - Eric P Cohen
- Baltimore Veterans Affairs Medical Center and University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
4
|
Cohen EP, Fish BL, Imig JD, Moulder JE. Mitigation of normal tissue radiation injury: evidence from rat radiation nephropathy models. ACTA ACUST UNITED AC 2015. [DOI: 10.1007/s13566-015-0222-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
5
|
Moulder JE, Cohen EP, Fish BL. Captopril and losartan for mitigation of renal injury caused by single-dose total-body irradiation. Radiat Res 2010; 175:29-36. [PMID: 21175344 DOI: 10.1667/rr2400.1] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
It is known that angiotensin converting enzyme inhibitors (ACEIs) and angiotensin II type-1 receptor blockers (ARBs) can be used to mitigate radiation-induced renal injury. However, for a variety of reasons, these previous results are not directly applicable to the development of agents for the mitigation of injuries caused by terrorism-related radiation exposure. As part of an effort to develop an animal model that would fit the requirements of the U.S. Food and Drug Administration (FDA) "Animal Efficacy Rule", we designed new studies which used an FDA-approved ACEI (captopril) or an FDA-approved ARB (losartan, Cozaar®) started 10 days after a single total-body irradiation (TBI) at drug doses that are equivalent (on a g/m(2)/day basis) to the doses prescribed to humans. Captopril and losartan were equally effective as mitigators, with DMFs of 1.23 and 1.21, respectively, for delaying renal failure. These studies show that radiation nephropathy in a realistic rodent model can be mitigated with relevant doses of FDA-approved agents. This lays the necessary groundwork for pivotal rodent studies under the FDA Animal Efficacy Rule and provides an outline of how the FDA-required large-animal studies could be designed.
Collapse
Affiliation(s)
- John E Moulder
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA.
| | | | | |
Collapse
|
6
|
Cohen EP, Fish BL, Sharma M, Li XA, Moulder JE. Role of the angiotensin II type-2 receptor in radiation nephropathy. Transl Res 2007; 150:106-15. [PMID: 17656330 PMCID: PMC2034340 DOI: 10.1016/j.trsl.2007.03.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2006] [Revised: 02/28/2007] [Accepted: 03/02/2007] [Indexed: 01/08/2023]
Abstract
Experimental studies have shown that blockade of the angiotensin II type-1 (AT(1)) receptor is effective in the mitigation and treatment of radiation-induced chronic renal failure. Also, blockade of the angiotensin II type-2 (AT(2)) receptor with PD-123319 also had a modest, but reproducible, beneficial effect in experimental radiation nephropathy, and it might augment the efficacy of an AT(1) blocker (L-158,809). Those studies could not exclude the possibility that the effects of AT(2) blockade were nonspecific. The current studies confirm the efficacy of AT(2) blockade for mitigation of experimental radiation nephropathy but paradoxically find no detectable level of AT(2) receptor binding in renal membranes. However, the results of a bioassay showed that the circulating levels of the AT(2) blocker were orders-of-magnitude too low to block AT(1) receptors. The effect of AT(2) blockade in radiation nephropathy cannot be explained by binding to the AT(1) receptor, and the efficacy of the AT(1) blockade in the same model cannot be explained by unopposed overstimulation of the AT(2) receptor.
Collapse
Affiliation(s)
- Eric P Cohen
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | | | | | | | | |
Collapse
|
7
|
Robbins ME, Diz DI. Pathogenic role of the renin-angiotensin system in modulating radiation-induced late effects. Int J Radiat Oncol Biol Phys 2006; 64:6-12. [PMID: 16377409 DOI: 10.1016/j.ijrobp.2005.08.033] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2005] [Revised: 08/05/2005] [Accepted: 08/10/2005] [Indexed: 11/24/2022]
Affiliation(s)
- Mike E Robbins
- Department of Radiation Oncology, Brain Tumor Center of Excellence, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA.
| | | |
Collapse
|
8
|
Haysom L, Ziegler DS, Cohn RJ, Rosenberg AR, Carroll SL, Kainer G. Retinoic acid may increase the risk of bone marrow transplant nephropathy. Pediatr Nephrol 2005; 20:534-8. [PMID: 15719254 DOI: 10.1007/s00467-004-1775-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2004] [Revised: 11/04/2004] [Accepted: 11/08/2004] [Indexed: 11/29/2022]
Abstract
Bone marrow transplant nephropathy (BMTN) classically presents more than 100 days after transplantation as an acute nephritis with hypertension, azotaemia and anemia that usually results in end stage renal failure (ESRF). The risk of developing BMTN may be greater with the use of more intensive chemotherapy and higher total body and tumor bed irradiation. Cis-retinoic acid (RA) may further increase the risk of developing BMTN. Here, we report the cases of two children who developed typical clinical and biochemical features of BMTN. They were both treated for stage IV neuroblastoma with chemotherapy, bone marrow transplant (BMT) conditioning that included total body irradiation and RA therapy after BMT, although the patient in case 1 had established renal insufficiency prior to the commencement of RA. Renal biopsy of these children showed classical BMTN histology, and the renal manifestations progressed quickly; the patient in case 1 became dialysis dependent by 1 year post-bone marrow transplant. Recently, RA has been added to the post-BMT therapy in children with stage IV neuroblastoma. The occurrence of BMTN in two children treated with RA in our unit is unlikely to be coincidental. Although RA has been shown to confer a significant survival advantage in this disease, animal studies and a previous case report have suggested it could increase the toxic effects of chemotherapy and renal irradiation. It is likely that RA contributed to the deterioration in renal function in these patients.
Collapse
Affiliation(s)
- Leigh Haysom
- Department of Nephrology, Sydney Children's Hospital, Randwick, N.S.W., Australia
| | | | | | | | | | | |
Collapse
|
9
|
O'Donoghue J. Relevance of external beam dose-response relationships to kidney toxicity associated with radionuclide therapy. Cancer Biother Radiopharm 2005; 19:378-87. [PMID: 15285886 DOI: 10.1089/1084978041425025] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The importance of the kidney as a dose-limiting organ is likely to increase as smaller molecular vectors and radiometals become more commonly used in targeted radionuclide therapy. Data derived from kidney irradiation by external-beam therapy (XRT) indicate that the kidney is radiosensitive. The features of radiation nephropathy seen post-treatment appear similar between local XRT, total-body irradiation (TBI), and radionuclide therapy. For uniform kidney irradiation, tolerance doses appear to be approximately 15-17 Gy in 2 Gy fractions for local XRT and probably less than this (approximately 12 Gy in 2 Gy fractions) when radiation is delivered systemically as TBI in the context of bone marrow transplant protocols. Animal studies indicate that the linear quadratic (LQ) model with an alpha/beta parameter of 1.5-3 Gy seems to adequately describe the XRT fractionation sensitivity of kidney for doses per fraction down to approximately 1 Gy, but may underestimate the effectiveness of fraction sizes less than this. Animal studies have also clarified the dose-dependency of the time to expression of radiation nephropathy and have indicated that radiation nephropathy may be alleviated by pharmacological means.
Collapse
Affiliation(s)
- Joseph O'Donoghue
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10021, USA.
| |
Collapse
|
10
|
Moulder JE, Fish BL, Cohen EP. Impact of angiotensin II type 2 receptor blockade on experimental radiation nephropathy. Radiat Res 2004; 161:312-7. [PMID: 14982483 DOI: 10.1667/rr3129] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
In the rat, blockade of angiotensin II type 1 receptors diminishes the functional changes that occur after kidney irradiation. It has been hypothesized that some of the beneficial effects of angiotensin II type 1 blockers in renal disease are caused by a rise in angiotensin II that stimulates the angiotensin II type 2 receptor. If this hypothesis applied in this model, blockade of the type 2 receptor should exacerbate radiation nephropathy and/or counteract the beneficial effects of type 1 receptor blockade. To assess this hypothesis, rats were given total-body irradiation plus bone marrow transplantation and then treated for 12 weeks with a type 1 receptor blocker (L158,809), a type 2 blocker (PD123319), both blockers, or no blockers. Rats were assessed for renal function (proteinuria, hypertension, azotemia) and renal failure for up to 62 weeks. Contrary to the hypothesis, the type 2 blocker alone produced a temporary delay in the development of radiation nephropathy, and it substantially enhanced the efficacy of the type 1 blocker. This implies that both type 1 and type 2 angiotensin receptors need to be blocked to achieve the maximum level of prophylaxis of radiation nephropathy. We speculate that the beneficial effect of the angiotensin II type 2 receptor blocker is due to a reduction in radiation-induced renal cell proliferation or fibrosis.
Collapse
MESH Headings
- Angiotensin II Type 1 Receptor Blockers
- Angiotensin II Type 2 Receptor Blockers
- Animals
- Dose-Response Relationship, Drug
- Drug Interactions
- Imidazoles/administration & dosage
- Kidney Diseases/blood
- Kidney Diseases/diagnosis
- Kidney Diseases/drug therapy
- Kidney Diseases/metabolism
- Kidney Function Tests
- Male
- Pyridines/administration & dosage
- Radiation Injuries, Experimental/blood
- Radiation Injuries, Experimental/diagnosis
- Radiation Injuries, Experimental/drug therapy
- Radiation Injuries, Experimental/metabolism
- Radiation Injuries, Experimental/prevention & control
- Radiation Protection/methods
- Radiation Tolerance/drug effects
- Rats
- Receptor, Angiotensin, Type 1/metabolism
- Receptor, Angiotensin, Type 2/metabolism
- Tetrazoles/administration & dosage
- Treatment Outcome
Collapse
Affiliation(s)
- John E Moulder
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA.
| | | | | |
Collapse
|
11
|
Abstract
Until the 1990s, chronic radiation-induced normal-tissue injury was viewed as being due solely to the delayed mitotic death of parenchymal or vascular cells; these injuries were held to be inevitable, progressive, and untreatable. It is now clear that parenchymal and vascular cells are active participants in the response to radiation injury rather than passive observers dying as they attempt to divide. This offers fundamentally new approaches to radiation injury because it allows for the possibility of pharmacological interventions directed at modulating steps in the cascade of events leading to expression of injury. Such interventions would be relevant to both cancer patients and victims of radiation accidents. Prophylaxis and treatment of chronic radiation injuries have been experimentally shown in multiple organ systems (eg, lung, kidney, soft tissue) and with fundamentally different pharmacological agents (eg, corticosteroids, angiotensin-converting enzyme inhibitors, pentoxifylline, superoxide dismutase). For the most part, this has been achieved using clinically relevant radiation and drug schedules and with agents that have already been approved for human use. Unfortunately, assessment of the utility of these agents for clinical use has been minimal, and there are no established mechanisms for any of the experimental or clinical successes. Clinical development of pharmacological approaches to modification of chronic radiation injuries could lead to significant improvement in survival and quality of life for radiotherapy patients and for victims of radiation accidents or nuclear terrorism.
Collapse
Affiliation(s)
- John E Moulder
- Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
12
|
Moulder JE, Fish BL, Regner KR, Cohen EP. Angiotensin II blockade reduces radiation-induced proliferation in experimental radiation nephropathy. Radiat Res 2002; 157:393-401. [PMID: 11893241 DOI: 10.1667/0033-7587(2002)157[0393:aibrri]2.0.co;2] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Total-body irradiation or renal irradiation is followed by a well-defined sequence of changes in renal function leading eventually to renal failure. Previous studies in a rat model have shown that inhibition of angiotensin-converting enzyme or blockade of angiotensin II receptors can prevent the structural and functional changes that occur after renal irradiation, and that these interventions are particularly important between 3 and 10 weeks after irradiation. We have now shown that in the same rat model, total-body irradiation induces proliferation of renal tubular cells (i.e., an increase in the number of cells staining positive for proliferating cell nuclear antigen) within 5 weeks after irradiation. Treatment with an angiotensin II receptor blocker delays this radiation-induced tubular proliferation and decreases its magnitude. Renal radiation also induces proliferation of glomerular cells, but the relative increase in glomerular proliferation is not as great as that seen in renal tubular cells, and the increase is not delayed or decreased by treatment with an angiotensin II receptor blocker. We hypothesize that angiotensin II receptor blockers exert their beneficial effect in radiation nephropathy by delaying the proliferation (and hence the eventual mitotic death) of renal tubular cells that have been genetically crippled by radiation.
Collapse
Affiliation(s)
- John E Moulder
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA.
| | | | | | | |
Collapse
|
13
|
Cohen EP, Fish BL, Moulder JE. The renin-angiotensin system in experimental radiation nephropathy. THE JOURNAL OF LABORATORY AND CLINICAL MEDICINE 2002; 139:251-7. [PMID: 12024113 DOI: 10.1067/mlc.2002.122279] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Irradiation of the kidneys is followed by a well-defined sequence of changes leading eventually to kidney failure. In the rat, inhibition of angiotensin-converting enzyme or blockade of angiotensin II receptors can prevent the structural and functional changes that occur after kidney irradiation. These interventions are particularly effective between 3 and 10 weeks after irradiation. However, in a series of studies with the rat model we failed to find any evidence that the renin-angiotensin system (RAS) is activated in the first 10 weeks after kidney irradiation. First, if the RAS was activated during this interval, one would expect hypertension followed by proteinuria and azotemia. However, hypertension is significant only at the end of this period and is preceded by significant proteinuria and azotemia. This evolution is not in favor of an obviously activated RAS during the 3- to 10-week postirradiation interval that is critical for interventions aimed at the RAS. Second, plasma renin activity and active plasma renin protein concentrations are not significantly increased over the first 10 weeks after irradiation. Third, whole-blood and intrarenal angiotensin II levels are not increased and may even be decreased over this interval. This last observation is particularly important because the assay used is sensitive enough to detect the effects of dietary salt manipulation. We hypothesize that even the normal activity of the RAS contributes to injury after kidney irradiation, possibly by supporting the proliferation of cells that carry potentially lethal radiation injuries.
Collapse
Affiliation(s)
- Eric P Cohen
- Department of Medicine, Division of Nephrology, Medical College of Wisconsin, Froedtert Memorial Lutheran Hospital, 9200 West Wisconsin Avenue, Milwaukee, WI 53226, USA.
| | | | | |
Collapse
|
14
|
Stone HB, McBride WH, Coleman CN. Modifying normal tissue damage postirradiation. Report of a workshop sponsored by the Radiation Research Program, National Cancer Institute, Bethesda, Maryland, September 6-8, 2000. Radiat Res 2002; 157:204-23. [PMID: 11835685 DOI: 10.1667/0033-7587(2002)157[0204:mntdp]2.0.co;2] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Late effects that develop in normal tissues adjacent to the tumor site in the months to years after radiotherapy can reduce the quality of life of cancer survivors. They can be dose-limiting and debilitating or life-threatening. There is now evidence that some late effects may be preventable or partially reversible. A workshop, "Modifying Normal Tissue Damage Postirradiation", was sponsored by the Radiation Research Program of the National Cancer Institute to identify the current status of and research needs and opportunities in this area. Mechanistic, genetic and physiological studies of the development of late effects are needed and will provide a rational basis for development of treatments. Interdisciplinary teams will be needed to carry out this research, including pathologists, physiologists, geneticists, molecular biologists, experts in functional imaging, wound healing, burn injury, molecular biology, and medical oncology, in addition to radiation biologists, physicists and oncologists. The participants emphasized the need for developing and choosing appropriate models, and for radiation dose-response studies to determine whether interventions remain effective at the radiation doses used clinically. Both preclinical and clinical studies require long-term follow-up, and easier-to-use, more objective clinical scoring systems must be developed and standardized. New developments in biomedical imaging should provide useful tools in all these endeavors. The ultimate goals are to improve the quality of life and efficacy of treatment for cancer patients treated with radiotherapy.
Collapse
Affiliation(s)
- Helen B Stone
- Radiation Research Program, National Cancer Institute, 6130 Executive Boulevard, 6010, Bethesda, Maryland 20892-7440, USA.
| | | | | |
Collapse
|
15
|
Abstract
Studies have shown that angiotensin-converting enzyme inhibitors and an angiotensin II receptor blocker can delay, but cannot reverse, the progression of experimentally induced radiation nephropathy. In an effort to find a method for reversing injury, three agents were tested in a rat model of radiation nephropathy. Pirfenidone (a phenyl-pyridone antifibrotic) and thiaproline (an inhibitor of collagen deposition) were not capable of retarding the development of radiation nephropathy. However, all-trans retinoic acid (an anti-inflammatory agent) exacerbated radiation nephropathy. We speculated that the detrimental effects of retinoic acid might be the result of stimulation of renal cell proliferation. However, retinoic acid had no effect on tubular or glomerular cell proliferation in normal animals and did not enhance radiation-induced proliferation. A recent report that retinoic acids inhibit nitric oxide production suggested an alternative mechanism, since inhibition of production of nitric oxide is known to exacerbate radiation nephropathy. Experiments demonstrated that retinoic acid exacerbated the radiation-induced drop in renal production of nitric oxide, suggesting that the detrimental effect of all-trans retinoic acid might be explained by inhibition of renal nitric oxide activity. Particularly in view of the recent clinical report of enhancement of radiation nephropathy by retinoic acid in patients receiving bone marrow transplantation, the combination of retinoic acid and renal irradiation should be carried out with great caution.
Collapse
Affiliation(s)
- John E Moulder
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA.
| | | | | | | | | |
Collapse
|
16
|
Robbins ME, Zhao W, Davis CS, Toyokuni S, Bonsib SM. Radiation-induced kidney injury: a role for chronic oxidative stress? Micron 2002; 33:133-41. [PMID: 11567882 DOI: 10.1016/s0968-4328(01)00006-3] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Kidney irradiation clearly leads to a progressive reduction in function associated with concomitant glomerulosclerosis and/or tubulointerstitial fibrosis. However, the particular cell types, mediators and/or mechanisms involved in the development and progression of radiation nephropathy remain ill defined. Angiotensin II (Ang II) plays a major pathogenic role; administration of Ang II blockers markedly abrogates the severity of radiation nephropathy in experimental models. Both ionizing radiation and Ang II signal via generation of reactive oxygen species (ROS). Thus, we hypothesized that localized kidney irradiation might lead to a chronic oxidative stress. In view of the difficulty in measuring ROS in vivo we adopted an indirect immunohistochemical approach in which we used a monoclonal antibody specific for 8-hydroxy-2'-deoxyguanosine (8-OHdG), one of the most commonly used markers of DNA oxidation. The right kidney of 7-8 week-old male Sprague-Dawley rats was removed. Five to 6 weeks later the remaining hypertrophied kidney was irradiated with single doses of 0-20.0 Gy X-rays. Groups of rats, three per dose, were killed at 4, 8, 16 and 24 weeks post-irradiation, their kidneys fixed, and sections stained with the 8-OHdG-specific antibody N45.1. For quantitation of glomerular DNA oxidation with the N45.1 antibody stained sections, 50 glomeruli/animal were counted. The presence of any intensely stained nuclei within the glomerular tuft was scored as positive. Quantitation of tubular DNA oxidation employed a 10 x 10 point ocular grid. Sections were examined at 400 magnification; 250 tubular profiles were counted. All tubules with any nuclear staining were scored as positive.Sham-irradiated kidneys showed little evidence of DNA oxidation over the experimental period. In contrast, localized kidney irradiation led to a marked, dose-independent increase in glomerular and tubular cell nuclear DNA oxidation. This increase was evident at the first time point studied, i.e. 4 weeks after irradiation, and persisted for up to 24 weeks postirradiation. DNA oxidation in the irradiated kidney was only seen in apparently viable glomerular and tubular cells. Thus, while from 16 to 24 weeks post-irradiation structural alterations had progressed to glomerular sclerosis and tubular atrophy, positive staining for 8-OHdG was not observed in severely atrophic tubules. Similarly, fewer positive staining cells were noted in glomeruli undergoing sclerosis, while none were seen in totally sclerotic glomeruli. These data support the hypothesis that renal irradiation is associated with a chronic and persistent oxidative stress.
Collapse
Affiliation(s)
- Mike E Robbins
- Free Radical and Radiation Biology Program, Department of Radiology, The University of Iowa, B-180 ML, Iowa City, IA 52242, USA.
| | | | | | | | | |
Collapse
|
17
|
Molteni A, Moulder JE, Cohen EP, Fish BL, Taylor JM, Veno PA, Wolfe LF, Ward WF. Prevention of radiation-induced nephropathy and fibrosis in a model of bone marrow transplant by an angiotensin II receptor blocker. Exp Biol Med (Maywood) 2001; 226:1016-23. [PMID: 11743137 DOI: 10.1177/153537020122601108] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Nephropathy, interstitial pneumopathy, and renal and lung fibrosis are major complications of bone marrow transplantation (BMT). This study evaluated the antifibrotic property of an angiotensin II (A2) type-1 receptor blocker (L-159,809) and compared it with those of Captopril and Enalapril, two angiotensin-converting enzyme (ACE) inhibitors, in a rat model of BMT. Male WAG/Rij/MCW rats received a preparative regimen of 60 mg/kg body wt of cytoxan (i.p., Days 9 and 8) and 18.5 Gy of total body irradiation (TBI) in six twice daily fractions (Days 2, 1, and 0) followed immediately (Day 0) by BMT. Modifiers were given in drinking water from Day 10 until autopsy, 8 weeks after BMT. Rats treated with TBI plus cytoxan alone developed severe nephropathy. Trichrome staining showed marked collagen deposition in glomeruli, renal interstitium, and renal arteries and arterioles (especially in their adventitia). Collagen deposition and renal damage were markedly reduced by the three modifiers. Of the three, L-158,809-treated rats had slightly thinner vessels and slightly less collagen than nonirradiated normal controls. The study shows the effectiveness of these drugs in the protection of the renal parenchyma from the development of radiation-induced fibrosis. It also indicates a role for angiotensin II in the modulation of collagen synthesis.
Collapse
Affiliation(s)
- A Molteni
- Department of Pathology, University of Missouri at Kansas City, Kansas City, Missouri 64106, USA.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Datta PK, Moulder JE, Fish BL, Cohen EP, Lianos EA. Induction of heme oxygenase 1 in radiation nephropathy: role of angiotensin II. Radiat Res 2001; 155:734-9. [PMID: 11302771 DOI: 10.1667/0033-7587(2001)155[0734:iohoir]2.0.co;2] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Datta, P. K., Moulder, J. E., Fish, B. L., Cohen, E. P. and Lianos, E. A. Induction of Heme Oxygenase 1 in Radiation Nephropathy: Role of Angiotensin II. Radiat. Res. 155, 734-739 (2001). In a rat model of radiation-induced nephropathy, we investigated changes in expression of heme oxygenase 1 (Hmox1, also known as HO-1), an enzyme that catalyzes conversion of heme into biliverdin, carbon monoxide and iron. The study explored whether radiation induces Hmox1 expression in the irradiated kidney and whether angiotensin II (AII) mediates Hmox1 expression in glomeruli isolated from irradiated kidneys. To assess the effects of radiation on Hmox1 expression, rats received 20 Gy bilateral renal irradiation and were randomized to groups receiving an AII type 1 (AT(1)) receptor antagonist (L-158,809) or no treatment. Drug treatment began 9 days prior to bilateral renal irradiation and continued for the duration of the study. Estimation of Hmox1 levels in glomerular protein lysates assessed by Western blot analysis revealed a significant increase in Hmox1 protein at 50 and 65 days postirradiation. In animals treated with the AT(1) receptor antagonist, there was no induction of Hmox1, suggesting that AII may be a mediator of Hmox1 induction. To confirm that AII stimulates Hmox1 expression, animals were infused with 200, 400 or 800 ng/kg min(-1) of AII for 18-19 days, and Hmox1 protein levels in glomeruli were assessed. There was a significant induction of Hmox1 in glomeruli of animals infused with 800 ng/kg min(-1) of AII. These studies demonstrate that glomerular Hmox1 expression is elevated in the middle phase of radiation nephropathy and that AII can increase glomerular Hmox1 levels.
Collapse
Affiliation(s)
- P K Datta
- Division of Nephrology, Department of Medicine, Robert Wood Johnson Medical School/UMDNJ, One Robert Wood Johnson Place, New Brunswick, NJ 08903, USA
| | | | | | | | | |
Collapse
|
19
|
Juckett MB, Cohen EP, Keever-Taylor CA, Zheng Y, Lawton CA, Moulder JE, Klein J. Loss of renal function following bone marrow transplantation: an analysis of angiotensin converting enzyme D/I polymorphism and other clinical risk factors. Bone Marrow Transplant 2001; 27:451-6. [PMID: 11313676 DOI: 10.1038/sj.bmt.1702797] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2000] [Accepted: 10/28/2000] [Indexed: 12/31/2022]
Abstract
Chronic renal failure is an acknowledged late complication of BMT. It is related to the intensive chemotherapy, radiation and supporting medications. Polymorphism in the angiotensin converting enzyme (ACE) gene is associated with progression of nephropathy caused by diabetes and IgA nephropathy. We sought to determine whether ACE genotype and other clinical factors were associated with loss of renal function after BMT. We determined the genotype of 106 adult allogeneic BMT recipients, who received a similar preparative regimen, survived 1 year, and had assessment of renal function up to 3 years after BMT. We found that the distribution of genotypes was similar to the general population; 29%, 51%, and 20% for the DD, DI, and II genotypes, respectively. There was no statistical difference in patient survival between the three groups. Among all patients, the average creatinine clearance declined from 124 (95% CI 117, 131) to 89 (95% CI 78, 100) ml/min over the 36 months after BMT. Decline in renal function over time was less for patients with the DD compared to the II genotype (P = 0.040). Renal function in patients with the DD genotype was also better than those with the DI genotype, but this was of borderline statistical significance (P = 0.055). Renal shielding reduced decline in renal function compared to no shielding (P = 0.026). We conclude that the ACE genotype does not seem to influence survival, but the DD genotype may be protective against renal injury after BMT. Furthermore, we confirm that renal shielding during TBI reduces the renal injury after BMT.
Collapse
Affiliation(s)
- M B Juckett
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Affiliation(s)
- E P Cohen
- Medical College of Wisconsin and Froedtert Memorial Lutheran Hospital, Milwaukee 53226, USA.
| |
Collapse
|