1
|
Itoe MA, Shaw WR, Stryapunina I, Vidoudez C, Peng D, Du EW, Rinvee TA, Singh N, Yan Y, Hulai O, Thornburg KE, Catteruccia F. Maternal lipid mobilization is essential for embryonic development in the malaria vector Anopheles gambiae. PLoS Biol 2024; 22:e3002960. [PMID: 39689130 DOI: 10.1371/journal.pbio.3002960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 01/06/2025] [Accepted: 11/29/2024] [Indexed: 12/19/2024] Open
Abstract
Lipid metabolism is an essential component in reproductive physiology. While lipid mobilization has been implicated in the growth of Plasmodium falciparum malaria parasites in their Anopheles vectors, the role of this process in the reproductive biology of these mosquitoes remains elusive. Here, we show that impairing lipolysis in Anopheles gambiae, the major malaria vector, leads to embryonic lethality. Embryos derived from females in which we silenced the triglyceride lipase AgTL2 or the lipid storage droplet AgLSD1 develop normally during early embryogenesis but fail to hatch due to severely impaired metabolism. Embryonic lethality is efficiently recapitulated by exposing adult females to broad-spectrum lipase inhibitors prior to blood feeding, unveiling lipolysis as a potential target for inducing mosquito sterility. Our findings provide mechanistic insights into the importance of maternal lipid mobilization in embryonic health that may inform studies on human reproduction.
Collapse
Affiliation(s)
- Maurice A Itoe
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - W Robert Shaw
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
- Howard Hughes Medical Institute, Boston, Massachusetts, United States of America
| | - Iryna Stryapunina
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Charles Vidoudez
- Harvard Center for Mass Spectrometry, Cambridge, Massachusetts, United States of America
| | - Duo Peng
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Esrah W Du
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Tasneem A Rinvee
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Naresh Singh
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Yan Yan
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Oleksandr Hulai
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Kate E Thornburg
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
- Howard Hughes Medical Institute, Boston, Massachusetts, United States of America
| | - Flaminia Catteruccia
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
- Howard Hughes Medical Institute, Boston, Massachusetts, United States of America
| |
Collapse
|
2
|
Yoshinaga M, Soma N, Kikuta S. Postnatal Wing Morph of Pea Aphids Regulates Hemolymph Trehalose Levels. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2024; 117:e22156. [PMID: 39387433 DOI: 10.1002/arch.22156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 09/17/2024] [Accepted: 09/25/2024] [Indexed: 10/15/2024]
Abstract
Trehalose, a nonreducing disaccharide composed of two glucose molecules, functions as a critical energy source in various insect tissues and organs and is the predominant sugar component of the hemolymph. The pea aphid, Acyrthosiphon pisum, exhibits higher hemolymph trehalose levels than other insects. However, the dynamics of hemolymph trehalose levels throughout its life stages remain unclear owing to the challenges associated with obtaining hemolymph from these small insects. Therefore, this study was conducted to quantify hemolymph trehalose levels in A. pisum using a fluorescent trehalose sensor (Tre-C04), which enhances green fluorescent protein fluorescence through the binding of trehalose to a ligand-binding protein fused to the fluorophore. Trehalose levels were successfully quantified in minimal hemolymph samples from individual aphids, with measurements spanning from the first nymphal stage to the adult stage in both the winged and wingless forms of A. pisum. Hemolymph trehalose levels remained relatively stable throughout the life cycle but exhibited a gradual increase with each developmental stage. Notably, adult winged aphids exhibited significantly higher hemolymph trehalose levels than wingless aphids. Given that wing morph determination occurs early in the nymphal stage, these findings suggest that hemolymph trehalose levels are regulated post-wing morph development. Further investigation of the expression of genes associated with trehalose metabolism revealed that trehalose phosphate synthase 2 levels were downregulated in early-stage wingless adults, whereas insulin-related peptide 5 levels were upregulated in wingless aphids. These findings indicate that A. pisum synthesizes trehalose during the winged adult stage to serve as an energy source for flight.
Collapse
Affiliation(s)
- Mayu Yoshinaga
- College of Agriculture, Ibaraki University, Ibaraki, Japan
| | - Naomi Soma
- College of Agriculture, Ibaraki University, Ibaraki, Japan
| | - Shingo Kikuta
- College of Agriculture, Ibaraki University, Ibaraki, Japan
| |
Collapse
|
3
|
Krishnan N. Endocrine Control of Lipid Metabolism. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024. [PMID: 38782869 DOI: 10.1007/5584_2024_807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Lipids are essential in insects and play pleiotropic roles in energy storage, serving as a fuel for energy-driven processes such as reproduction, growth, development, locomotion, flight, starvation response, and diapause induction, maintenance, and termination. Lipids also play fundamental roles in signal transduction, hormone synthesis, forming components of the cell membrane, and thus are essential for maintenance of normal life functions. In insects, the neuroendocrine system serves as a master regulator of most life activities, including growth and development. It is thus important to pay particular attention to the regulation of lipid metabolism through the endocrine system, especially when considering the involvement of peptide hormones in the processes of lipogenesis and lipolysis. In insects, there are several lipogenic and lipolytic hormones that are involved in lipid metabolism such as insulin-like peptides (ILPs), adipokinetic hormone (AKH), 20-hydroxyecdysone (20-HE), juvenile hormone (JH), and serotonin. Other neuropeptides such as diapause hormone-pheromone biosynthesis activating neuropeptide (DH-PBAN), CCHamide-2, short neuropeptide F, and the cytokines Unpaired 1 and 2 may play a role in inducing lipogenesis. On the other hand, neuropeptides such as neuropeptide F, allatostatin-A, corazonin, leukokinin, tachykinins, limostatins, and insulin-like growth factor (ILP6) stimulate lipolysis. This chapter briefly discusses the current knowledge of the endocrine regulation of lipid metabolism in insects that could be utilized to reveal differences between insects and mammalian lipid metabolism which may help understand human diseases associated with dysregulation of lipid metabolism. Physiological similarities of insects to mammals make them valuable model systems for studying human diseases characterized by disrupted lipid metabolism, including conditions like diabetes, obesity, arteriosclerosis, and various metabolic syndromes.
Collapse
Affiliation(s)
- Natraj Krishnan
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS, USA.
| |
Collapse
|
4
|
Dos Santos LV, Silva ERMND, Caiado MS, Rezende SRDF, de Carvalho MG, Pontes EG. Differential expression of brummer and levels of TAG in different developmental stages Aedes aegypti (Diptera: Culicidae), including fasted adults. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2024; 115:e22084. [PMID: 38288494 DOI: 10.1002/arch.22084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/19/2023] [Accepted: 01/08/2024] [Indexed: 02/01/2024]
Abstract
Lipid storage in the form of triacylglycerol (TAG) is essential for insect life, as it enables flight, development, and reproduction. The activity of the lipase brummer (bmm) has been shown to be essential to insects' homeostasis. The objective of this study was to evaluate how bmm expression occurs in Aedes aegypti larvae and adults, and to observe TAG levels during fasting in adult females. The bmm sequence was identified in A. aegypti and exhibited a patatin-like phospholipase domain reinforced by the presence of a catalytic dyad with serine and aspartate residues, revealing a high degree of similarity with other organisms. Bmm expression was differentiated in the larvae and adult fat body (FB) following TAG reserve dynamics. Bmm was expressed three times in larval stages L3, L4, and pupae compared with L1 and L2, which could indicate its role in the maturation of these insects. In the postemergence (PE) and post-blood meal (PBM) FB of adult insects, bmm expression varied over several days. PE adults showed a pronounced bmm increase from the third day onward compared with those not subjected to fasting. This was accompanied by a decrease in TAG from the third day onward, suggesting the participation of bmm. Six hours after blood feeding, TAG levels increased in mosquitos reared in the absence of sucrose, suggesting lipid accumulation to guarantee reproduction. Bmm responded positively to fasting, followed by TAG mobilization in adult FB. During the previtellogenic period, bmm levels responded to low TAG levels, unlike the PBM period.
Collapse
Affiliation(s)
- Luan Valim Dos Santos
- Departamento de Bioquímica, Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro, Brazil
| | | | - Matheus Silva Caiado
- Departamento de Bioquímica, Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro, Brazil
| | | | - Mario Geraldo de Carvalho
- Departamento de Química Orgânica, Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro, Brazil
| | - Emerson Guedes Pontes
- Departamento de Bioquímica, Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil
| |
Collapse
|
5
|
Dou X, Chen K, Brown MR, Strand MR. Multiple endocrine factors regulate nutrient mobilization and storage in Aedes aegypti during a gonadotrophic cycle. INSECT SCIENCE 2023; 30:425-442. [PMID: 36056560 DOI: 10.1111/1744-7917.13110] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
Anautogenous mosquitoes must blood feed on a vertebrate host to produce eggs. Each gonadotrophic cycle is subdivided into a sugar-feeding previtellogenic phase that produces primary follicles and a blood meal-activated vitellogenic phase in which large numbers of eggs synchronously mature and are laid. Multiple endocrine factors including juvenile hormone (JH), insulin-like peptides (ILPs), ovary ecdysteroidogenic hormone (OEH), and 20-hydroxyecdysone (20E) coordinate each gonadotrophic cycle. Egg formation also requires nutrients from feeding that are stored in the fat body. Regulation of egg formation is best understood in Aedes aegypti but the role different endocrine factors play in regulating nutrient mobilization and storage remains unclear. In this study, we report that adult female Ae. aegypti maintained triacylglycerol (TAG) stores during the previtellogenic phase of the first gonadotrophic cycle while glycogen stores declined. In contrast, TAG and glycogen stores were rapidly mobilized during the vitellogenic phase and then replenishment. Several genes encoding enzymes with functions in TAG and glycogen metabolism were differentially expressed in the fat body, which suggested regulation was mediated in part at the transcriptional level. Gain of function assays indicated that stored nutrients were primarily mobilized by adipokinetic hormone (AKH) while juvenoids and OEH regulated replenishment. ILP3 further showed evidence of negatively regulating certain lipolytic enzymes. Loss of function assays indicated AKH depends on the AKH receptor (AKHR) for function. Altogether, our results indicate that the opposing activities of different hormones regulate nutrient stores during a gonadotrophic cycle in Ae. aegypti.
Collapse
Affiliation(s)
- Xiaoyi Dou
- Department of Entomology, University of Georgia, Athens, Georgia, 30602, United States
| | - Kangkang Chen
- Department of Entomology, University of Georgia, Athens, Georgia, 30602, United States
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Mark R Brown
- Department of Entomology, University of Georgia, Athens, Georgia, 30602, United States
| | - Michael R Strand
- Department of Entomology, University of Georgia, Athens, Georgia, 30602, United States
| |
Collapse
|
6
|
Miao Z, Xiong C, Cao X, Shan T, Jin Q, Jiang H. Genome-wide identification, classification, and expression profiling of serine esterases and other esterase-related proteins in the tobacco hornworm, Manduca sexta. INSECT SCIENCE 2023; 30:338-350. [PMID: 36043911 PMCID: PMC11445795 DOI: 10.1111/1744-7917.13108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/05/2022] [Accepted: 08/14/2022] [Indexed: 06/15/2023]
Abstract
Serine esterases (SEs) are hydrolases that catalyze the conversion of carboxylic esters into acids and alcohols. Lipases and carboxylesterases constitute two major groups of SEs. Although over a hundred of insect genomes are known, systematic identification and classification of SEs are rarely performed, likely due to large size and complex composition of the gene family in each species. Considering their key roles in lipid metabolism and other physiological processes, we have categorized 144 M. sexta SEs and SE homologs (SEHs), 114 of which contain a motif of GXSXG. Multiple sequence alignment and phylogenetic tree analysis have revealed 39 neutral lipases (NLs), 3 neutral lipase homologs (NLHs), 11 acidic lipases (ALs), 3 acidic lipase homologs (ALHs), a lipase-3, a triglyceride lipase, a monoglyceride lipase, a hormone-sensitive lipase, and a GDSL lipase. Eighty-three carboxylesterase genes encode 29 α-esterases (AEs), 12 AEHs (e.g., SEH4-1-3), 20 feruloyl esterases (FEs), 2 FEHs, 2 β-esterases (BEs), 2 integument esterases (IEs), 1 IEH, 4 juvenile hormone esterases, 2 acetylcholinesterases, gliotactin, 6 neuroligins, neurotactin, and an uncharacteristic esterase homolog. In addition to these GXSXG proteins, we have identified 26 phospholipases and 13 thioesterases. Expression profiling of these genes in specific tissues and stages has provided insights into their functions including digestion, detoxification, hormone processing, neurotransmission, reproduction, and developmental regulation. In summary, we have established a framework of information on SEs and related proteins in M. sexta to stimulate their research in the model species and comparative investigations in agricultural pests or disease vectors.
Collapse
Affiliation(s)
- Zelong Miao
- Department of Entomology and Plant Pathology, Oklahoma State University, Oklahoma, Stillwater, USA
| | - Chao Xiong
- Department of Entomology and Plant Pathology, Oklahoma State University, Oklahoma, Stillwater, USA
| | - Xiaolong Cao
- Department of Entomology and Plant Pathology, Oklahoma State University, Oklahoma, Stillwater, USA
| | - Tisheng Shan
- Department of Entomology and Plant Pathology, Oklahoma State University, Oklahoma, Stillwater, USA
| | - Qiao Jin
- Department of Entomology and Plant Pathology, Oklahoma State University, Oklahoma, Stillwater, USA
| | - Haobo Jiang
- Department of Entomology and Plant Pathology, Oklahoma State University, Oklahoma, Stillwater, USA
| |
Collapse
|
7
|
Biological Characteristics and Energy Metabolism of Migrating Insects. Metabolites 2023; 13:metabo13030439. [PMID: 36984878 PMCID: PMC10055822 DOI: 10.3390/metabo13030439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/12/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023] Open
Abstract
Through long-distance migration, insects not only find suitable breeding locations and increase the survival space and opportunities for the population but also facilitate large-scale material, energy, and information flow between regions, which is important in maintaining the stability of agricultural ecosystems and wider natural ecosystems. In this study, we summarize the changes in biological characteristics such as morphology, ovarian development, reproduction, and flight capability during the seasonal migration of the insect. In consideration of global research work, the interaction between flight and reproduction, the influence and regulation of the insulin-like and juvenile hormone on the flight and reproductive activities of migrating insects, and the types of energy substances, metabolic processes, and hormone regulation processes during insect flight are elaborated. This systematic review of the latest advances in the studies on insect migration biology and energy metabolism will help readers to better understand the biological behavior and regulation mechanism of the energy metabolism of insect migration.
Collapse
|
8
|
A Comparative Perspective on Functionally-Related, Intracellular Calcium Channels: The Insect Ryanodine and Inositol 1,4,5-Trisphosphate Receptors. Biomolecules 2021; 11:biom11071031. [PMID: 34356655 PMCID: PMC8301844 DOI: 10.3390/biom11071031] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/08/2021] [Accepted: 07/10/2021] [Indexed: 02/03/2023] Open
Abstract
Calcium (Ca2+) homeostasis is vital for insect development and metabolism, and the endoplasmic reticulum (ER) is a major intracellular reservoir for Ca2+. The inositol 1,4,5- triphosphate receptor (IP3R) and ryanodine receptor (RyR) are large homotetrameric channels associated with the ER and serve as two major actors in ER-derived Ca2+ supply. Most of the knowledge on these receptors derives from mammalian systems that possess three genes for each receptor. These studies have inspired work on synonymous receptors in insects, which encode a single IP3R and RyR. In the current review, we focus on a fundamental, common question: “why do insect cells possess two Ca2+ channel receptors in the ER?”. Through a comparative approach, this review covers the discovery of RyRs and IP3Rs, examines their structures/functions, the pathways that they interact with, and their potential as target sites in pest control. Although insects RyRs and IP3Rs share structural similarities, they are phylogenetically distinct, have their own structural organization, regulatory mechanisms, and expression patterns, which explains their functional distinction. Nevertheless, both have great potential as target sites in pest control, with RyRs currently being targeted by commercial insecticide, the diamides.
Collapse
|
9
|
Nelson JM, Saunders CJ, Johnson EC. The Intrinsic Nutrient Sensing Adipokinetic Hormone Producing Cells Function in Modulation of Metabolism, Activity, and Stress. Int J Mol Sci 2021; 22:7515. [PMID: 34299134 PMCID: PMC8307046 DOI: 10.3390/ijms22147515] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/01/2021] [Accepted: 07/07/2021] [Indexed: 11/29/2022] Open
Abstract
All organisms confront the challenges of maintaining metabolic homeostasis in light of both variabilities in nutrient supplies and energetic costs of different physiologies and behaviors. While all cells are nutrient sensitive, only relative few cells within Metazoans are nutrient sensing cells. Nutrient sensing cells organize systemic behavioral and physiological responses to changing metabolic states. One group of cells present in the arthropods, is the adipokinetic hormone producing cells (APCs). APCs possess intrinsic nutrient sensors and receive contextual information regarding metabolic state through other endocrine connections. APCs express receptors for different hormones which modulate APC physiology and the secretion of the adipokinetic hormone (AKH). APCs are functionally similar to alpha cells in the mammalian pancreas and display a similar physiological organization. AKH release results in both hypertrehalosemia and hyperlipidemia through high affinity binding to the AKH receptor (AKHR). Another hallmark of AKH signaling is heightened locomotor activity, which accompanies starvation and is thought to enhance foraging. In this review, we discuss mechanisms of nutrient sensing and modulation of AKH release. Additionally, we compare the organization of AKH/AKHR signaling in different taxa. Lastly, we consider the signals that APCs integrate as well as recent experimental results that have expanded the functional repertoire of AKH signaling, further establishing this as both a metabolic and stress hormone.
Collapse
Affiliation(s)
- Jonathan M. Nelson
- Department of Biology, Wake Forest University, Winston-Salem, NC 27109, USA; (J.M.N.); (C.J.S.)
| | - Cecil J. Saunders
- Department of Biology, Wake Forest University, Winston-Salem, NC 27109, USA; (J.M.N.); (C.J.S.)
| | - Erik C. Johnson
- Department of Biology, Wake Forest University, Winston-Salem, NC 27109, USA; (J.M.N.); (C.J.S.)
- Center of Molecular Signaling, Wake Forest University, Winston-Salem, NC 27109, USA
| |
Collapse
|
10
|
Heier C, Klishch S, Stilbytska O, Semaniuk U, Lushchak O. The Drosophila model to interrogate triacylglycerol biology. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:158924. [PMID: 33716135 DOI: 10.1016/j.bbalip.2021.158924] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 02/24/2021] [Accepted: 03/05/2021] [Indexed: 12/21/2022]
Abstract
The deposition of storage fat in the form of triacylglycerol (TAG) is an evolutionarily conserved strategy to cope with fluctuations in energy availability and metabolic stress. Organismal TAG storage in specialized adipose tissues provides animals a metabolic reserve that sustains survival during development and starvation. On the other hand, excessive accumulation of adipose TAG, defined as obesity, is associated with an increasing prevalence of human metabolic diseases. During the past decade, the fruit fly Drosophila melanogaster, traditionally used in genetics and developmental biology, has been established as a versatile model system to study TAG metabolism and the etiology of lipid-associated metabolic diseases. Similar to humans, Drosophila TAG homeostasis relies on the interplay of organ systems specialized in lipid uptake, synthesis, and processing, which are integrated by an endocrine network of hormones and messenger molecules. Enzymatic formation of TAG from sugar or dietary lipid, its storage in lipid droplets, and its mobilization by lipolysis occur via mechanisms largely conserved between Drosophila and humans. Notably, dysfunctional Drosophila TAG homeostasis occurs in the context of aging, overnutrition, or defective gene function, and entails tissue-specific and organismal pathologies that resemble human disease. In this review, we summarize the physiology and biochemistry of TAG in Drosophila and outline the potential of this organism as a model system to understand the genetic and dietary basis of TAG storage and TAG-related metabolic disorders.
Collapse
Affiliation(s)
- Christoph Heier
- Institute of Molecular Biosciences, University of Graz, NAWI Graz, Humboldtstrasse 50, A-8010 Graz, Austria; BioTechMed-Graz, Graz, Austria.
| | - Svitlana Klishch
- Department of Biochemistry and Biotechnology, Department Biochemistry 1, Faculty of Natural Sciences, Vasyl Stefanyk Precarpathian National University, 57 Shevchenka str, Ivano-Frankivsk 76018, Ukraine
| | - Olha Stilbytska
- Department of Biochemistry and Biotechnology, Department Biochemistry 1, Faculty of Natural Sciences, Vasyl Stefanyk Precarpathian National University, 57 Shevchenka str, Ivano-Frankivsk 76018, Ukraine
| | - Uliana Semaniuk
- Department of Biochemistry and Biotechnology, Department Biochemistry 1, Faculty of Natural Sciences, Vasyl Stefanyk Precarpathian National University, 57 Shevchenka str, Ivano-Frankivsk 76018, Ukraine
| | - Oleh Lushchak
- Department of Biochemistry and Biotechnology, Department Biochemistry 1, Faculty of Natural Sciences, Vasyl Stefanyk Precarpathian National University, 57 Shevchenka str, Ivano-Frankivsk 76018, Ukraine.
| |
Collapse
|
11
|
Güney G, Toprak U, Hegedus DD, Bayram Ş, Coutu C, Bekkaoui D, Baldwin D, Heckel DG, Hänniger S, Cedden D, Mutlu DA, Suludere Z. A look into Colorado potato beetle lipid metabolism through the lens of lipid storage droplet proteins. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2021; 133:103473. [PMID: 33010403 DOI: 10.1016/j.ibmb.2020.103473] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/01/2020] [Accepted: 09/17/2020] [Indexed: 06/11/2023]
Abstract
The Colorado potato beetle, Leptinotarsa decemlineata (Coleoptera: Chrysomelidae) inflicts serious damage to potato plants by feeding ravenously on their leaves. Adult L.decemlineata have a photoperiod-induced dormancy response, also known as diapause, which allows them to survive severe winter conditions by digging into soil. Most insects that undergo diapause accumulate abundant lipid reserves prior to diapause and utilize most of them during the diapause. This process is likely to be governed by the interplay of lipid storage droplet proteins (LSDs), also known as perilipins, with the help of other proteins. Here, genes encoding L. decemlineata LSD1 and LSD2 were identified. Both were expressed primarily in the fat body with LdLSD1 and LdLSD2 being primarily expressed in adult and larval stages, respectively. LdLSD1 was up-regulated in starving larvae, while LdLSD2 was primarily expressed in feeding larvae. The expression pattern of LdLSD1 in adults during feeding, diapause and post-diapause contrasted to the total body fat levels, while the expression pattern of LdLSD2 was positively correlated with total body fat levels. RNA interference (RNAi) of LdLSD2 in larvae suggested a core role for LSD2 in the protection/assembly of storage lipids as this treatment reduced overall lipid droplet volume. These data shed light on the functions of these proteins in L. decemlineata and their roles in both diapause and during starvation.
Collapse
Affiliation(s)
- Gözde Güney
- Ankara University, Molecular Entomology Lab. Faculty of Agriculture, Department of Plant Protection Diskapi Ankara, Turkey; Agriculture and Agri-Food Canada, Saskatoon Research Centre, Saskatoon, SK, Canada; Max Planck Institute for Chemical Ecology, Department of Entomology, Jena, Germany
| | - Umut Toprak
- Ankara University, Molecular Entomology Lab. Faculty of Agriculture, Department of Plant Protection Diskapi Ankara, Turkey.
| | - Dwayne D Hegedus
- Agriculture and Agri-Food Canada, Saskatoon Research Centre, Saskatoon, SK, Canada
| | - Şerife Bayram
- Ankara University, Molecular Entomology Lab. Faculty of Agriculture, Department of Plant Protection Diskapi Ankara, Turkey
| | - Cathy Coutu
- Agriculture and Agri-Food Canada, Saskatoon Research Centre, Saskatoon, SK, Canada
| | - Diana Bekkaoui
- Agriculture and Agri-Food Canada, Saskatoon Research Centre, Saskatoon, SK, Canada
| | - Doug Baldwin
- Agriculture and Agri-Food Canada, Saskatoon Research Centre, Saskatoon, SK, Canada
| | - David G Heckel
- Max Planck Institute for Chemical Ecology, Department of Entomology, Jena, Germany
| | - Sabine Hänniger
- Max Planck Institute for Chemical Ecology, Department of Entomology, Jena, Germany
| | - Doğa Cedden
- Ankara University, Molecular Entomology Lab. Faculty of Agriculture, Department of Plant Protection Diskapi Ankara, Turkey
| | | | - Zekiye Suludere
- Gazi University, Faculty of Sciences, Department of Biology, Ankara, Turkey
| |
Collapse
|
12
|
Koyama T, Texada MJ, Halberg KA, Rewitz K. Metabolism and growth adaptation to environmental conditions in Drosophila. Cell Mol Life Sci 2020; 77:4523-4551. [PMID: 32448994 PMCID: PMC7599194 DOI: 10.1007/s00018-020-03547-2] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 04/19/2020] [Accepted: 05/11/2020] [Indexed: 02/07/2023]
Abstract
Organisms adapt to changing environments by adjusting their development, metabolism, and behavior to improve their chances of survival and reproduction. To achieve such flexibility, organisms must be able to sense and respond to changes in external environmental conditions and their internal state. Metabolic adaptation in response to altered nutrient availability is key to maintaining energy homeostasis and sustaining developmental growth. Furthermore, environmental variables exert major influences on growth and final adult body size in animals. This developmental plasticity depends on adaptive responses to internal state and external cues that are essential for developmental processes. Genetic studies have shown that the fruit fly Drosophila, similarly to mammals, regulates its metabolism, growth, and behavior in response to the environment through several key hormones including insulin, peptides with glucagon-like function, and steroid hormones. Here we review emerging evidence showing that various environmental cues and internal conditions are sensed in different organs that, via inter-organ communication, relay information to neuroendocrine centers that control insulin and steroid signaling. This review focuses on endocrine regulation of development, metabolism, and behavior in Drosophila, highlighting recent advances in the role of the neuroendocrine system as a signaling hub that integrates environmental inputs and drives adaptive responses.
Collapse
Affiliation(s)
- Takashi Koyama
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Michael J Texada
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Kenneth A Halberg
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Kim Rewitz
- Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
13
|
Toprak U, Hegedus D, Doğan C, Güney G. A journey into the world of insect lipid metabolism. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2020; 104:e21682. [PMID: 32335968 DOI: 10.1002/arch.21682] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/08/2020] [Accepted: 04/08/2020] [Indexed: 06/11/2023]
Abstract
Lipid metabolism is fundamental to life. In insects, it is critical, during reproduction, flight, starvation, and diapause. The coordination center for insect lipid metabolism is the fat body, which is analogous to the vertebrate adipose tissue and liver. Fat body contains various different cell types; however, adipocytes and oenocytes are the primary cells related to lipid metabolism. Lipid metabolism starts with the hydrolysis of dietary lipids, absorption of lipid monomers, followed by lipid transport from midgut to the fat body, lipogenesis or lipolysis in the fat body, and lipid transport from fat body to other sites demanding energy. Lipid metabolism is under the control of hormones, transcription factors, secondary messengers and posttranscriptional modifications. Primarily, lipogenesis is under the control of insulin-like peptides that activate lipogenic transcription factors, such as sterol regulatory element-binding proteins, whereas lipolysis is coordinated by the adipokinetic hormone that activates lipolytic transcription factors, such as forkhead box class O and cAMP-response element-binding protein. Calcium is the primary-secondary messenger affecting lipid metabolism and has different outcomes depending on the site of lipogenesis or lipolysis. Phosphorylation is central to lipid metabolism and multiple phosphorylases are involved in lipid accumulation or hydrolysis. Although most of the knowledge of insect lipid metabolism comes from the studies on the model Drosophila; other insects, in particular those with obligatory or facultative diapause, also have great potential to study lipid metabolism. The use of these models would significantly improve our knowledge of insect lipid metabolism.
Collapse
Affiliation(s)
- Umut Toprak
- Molecular Entomology Laboratory, Department of Plant Protection, Faculty of Agriculture, Ankara University, Ankara, Turkey
| | - Dwayne Hegedus
- Agriculture and Agri-Food Canada, Saskatoon Research Centre, Saskatoon, Saskatchewan, Canada
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Cansu Doğan
- Molecular Entomology Laboratory, Department of Plant Protection, Faculty of Agriculture, Ankara University, Ankara, Turkey
| | - Gözde Güney
- Molecular Entomology Laboratory, Department of Plant Protection, Faculty of Agriculture, Ankara University, Ankara, Turkey
| |
Collapse
|
14
|
Toprak U. The Role of Peptide Hormones in Insect Lipid Metabolism. Front Physiol 2020; 11:434. [PMID: 32457651 PMCID: PMC7221030 DOI: 10.3389/fphys.2020.00434] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 04/08/2020] [Indexed: 12/21/2022] Open
Abstract
Lipids are the primary storage molecules and an essential source of energy in insects during reproduction, prolonged periods of flight, starvation, and diapause. The coordination center for insect lipid metabolism is the fat body, which is analogous to the vertebrate adipose tissue and liver. The fat body is primarily composed of adipocytes, which accumulate triacylglycerols in intracellular lipid droplets. Genomics and proteomics, together with functional analyses, such as RNA interference and CRISPR/Cas9-targeted genome editing, identified various genes involved in lipid metabolism and elucidated their functions. However, the endocrine control of insect lipid metabolism, in particular the roles of peptide hormones in lipogenesis and lipolysis are relatively less-known topics. In the current review, the neuropeptides that directly or indirectly affect insect lipid metabolism are introduced. The primary lipolytic and lipogenic peptide hormones are adipokinetic hormone and the brain insulin-like peptides (ILP2, ILP3, ILP5). Other neuropeptides, such as insulin-growth factor ILP6, neuropeptide F, allatostatin-A, corazonin, leucokinin, tachykinins and limostatin, might stimulate lipolysis, while diapause hormone-pheromone biosynthesis activating neuropeptide, short neuropeptide F, CCHamide-2, and the cytokines Unpaired 1 and Unpaired 2 might induce lipogenesis. Most of these peptides interact with one another, but mostly with insulin signaling, and therefore affect lipid metabolism indirectly. Peptide hormones are also involved in lipid metabolism during reproduction, flight, diapause, starvation, infections and immunity; these are also highlighted. The review concludes with a discussion of the potential of lipid metabolism-related peptide hormones in pest management.
Collapse
Affiliation(s)
- Umut Toprak
- Molecular Entomology Lab., Department of Plant Protection Ankara, Faculty of Agriculture, Ankara University, Ankara, Turkey
| |
Collapse
|
15
|
Triacylglycerol Metabolism in Drosophila melanogaster. Genetics 2019; 210:1163-1184. [PMID: 30523167 DOI: 10.1534/genetics.118.301583] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Accepted: 09/11/2018] [Indexed: 12/11/2022] Open
Abstract
Triacylglycerol (TAG) is the most important caloric source with respect to energy homeostasis in animals. In addition to its evolutionarily conserved importance as an energy source, TAG turnover is crucial to the metabolism of structural and signaling lipids. These neutral lipids are also key players in development and disease. Here, we review the metabolism of TAG in the Drosophila model system. Recently, the fruit fly has attracted renewed attention in research due to the unique experimental approaches it affords in studying the tissue-autonomous and interorgan regulation of lipid metabolism in vivo Following an overview of the systemic control of fly body fat stores, we will cover lipid anabolic, enzymatic, and regulatory processes, which begin with the dietary lipid breakdown and de novo lipogenesis that results in lipid droplet storage. Next, we focus on lipolytic processes, which mobilize storage TAG to make it metabolically accessible as either an energy source or as a building block for biosynthesis of other lipid classes. Since the buildup and breakdown of fat involves various organs, we highlight avenues of lipid transport, which are at the heart of functional integration of organismic lipid metabolism. Finally, we draw attention to some "missing links" in basic neutral lipid metabolism and conclude with a perspective on how fly research can be exploited to study functional metabolic roles of diverse lipids.
Collapse
|
16
|
Lu K, Wang Y, Chen X, Zhang X, Li W, Cheng Y, Li Y, Zhou J, You K, Song Y, Zhou Q, Zeng R. Adipokinetic Hormone Receptor Mediates Trehalose Homeostasis to Promote Vitellogenin Uptake by Oocytes in Nilaparvata lugens. Front Physiol 2019; 9:1904. [PMID: 30687120 PMCID: PMC6338042 DOI: 10.3389/fphys.2018.01904] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 12/18/2018] [Indexed: 12/12/2022] Open
Abstract
Adipokinetic hormones (AKHs) are well known to mobilize lipids and carbohydrates for energy-consuming activities in insects. These neuropeptides exert their functions by interacting with AKH receptors (AKHRs) located on the plasma membrane of fat body cells, which regulates energy mobilization by stimulating lipolysis of triacylglycerols (TAG) to diacylglycerols (DAG) and conversion of glycogen into trehalose. Here, we investigated the roles of AKH/AKHR signaling system in trehalose metabolism and vitellogenesis during female reproduction in the brown planthopper, Nilaparvata lugens. Knockdown of AKHR expression by RNA interference (RNAi) resulted in a decrease of the circulating trehalose in hemolymph and significantly increased levels of two trehalases in fat bodies, indicating that the modulation of hemolymph trehalose levels by AKHR may be mediated by regulating trehalose degradation. In addition, adult females that had been injected with double-stranded RNA (dsRNA) for AKHR exhibited delayed oocyte maturation, prolonged pre-oviposition period, as well as decline in egg number and reduction in fecundity. Considering that these phenotypes resulting from AKHR silencing are similar to those of vitellogenin receptor (VgR) RNAi, we further analyzed a possible connection between AKHR and vitellogenesis. Knockdown of AKHR showed no effects on the Vg synthesis in fat bodies, whereas it significantly reduced the levels of VgR in ovaries. With RNAi-females, we observed an increase of Vg accumulation in hemolymph and a decrease of Vg deposition in ovaries. Moreover, the decrease in VgR expression and Vg incorporation by developing oocytes could be partially rescued by injection of trehalose into AKHR RNAi females. The present study has implicated trehalose in the AKH/AKHR signaling-mediated control of reproduction and provided new insight into mechanisms of AKH/AKHR regulation of trehalose metabolism in insect vitellogenesis, oocyte maturation and fecundity.
Collapse
Affiliation(s)
- Kai Lu
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ying Wang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xia Chen
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xinyu Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Wenru Li
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yibei Cheng
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yue Li
- College of Crop Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jinming Zhou
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Keke You
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yuanyuan Song
- College of Crop Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qiang Zhou
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Rensen Zeng
- College of Crop Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
17
|
Lu K, Zhang X, Chen X, Li Y, Li W, Cheng Y, Zhou J, You K, Zhou Q. Adipokinetic Hormone Receptor Mediates Lipid Mobilization to Regulate Starvation Resistance in the Brown Planthopper, Nilaparvata lugens. Front Physiol 2018; 9:1730. [PMID: 30555355 PMCID: PMC6281999 DOI: 10.3389/fphys.2018.01730] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 11/16/2018] [Indexed: 12/19/2022] Open
Abstract
Lipid storage must be efficiently mobilized to sustain the energy demands during processes of exercise or starvation. In insects, adipokinetic hormone (AKH) and brummer lipase are well-known regulators of lipid mobilization. We recently demonstrated that brummer-dependent lipolysis regulates starvation resistance in the brown planthopper, Nilaparvata lugens, one of the most destructive rice pests. The present work investigated the roles of the AKH signaling system in lipid mobilization during the starvation process in N. lugens. NlAKHR is a typical G protein-coupled receptor (GPCR) and possesses high structure and sequence similarity to other insect AKHRs. Spatial and developmental expression profiles suggested that NlAKH is released from the corpora cardiaca to activate NlAKHR mainly expressed in the fat body. Starvation significantly induced the expression of NlAKH and NlAKHR, indicating a potential role of the AKH signaling system in starvation resistance. To reveal the functions of the AKH signaling system, a double-stranded RNA (dsRNA)-mediated knockdown of NlAKHR and NlAKH peptide injection was performed. The results show NlAKHR silencing decreased the levels of 1,2-diacylglycerol (DAG) in the hemolymph and increased triacylglycerol (TAG) levels in the fat body, whereas NlAKH injection led to a critical accumulation of DAG in the hemolymph and a severe reduction of TAG content in the fat body. Knockdown of NlAKHR resulted in prolonged lifespan and high levels of whole-body TAG, indicating an inability to mobilize TAG reserves during starvation. Conversely, the NlAKH injection reduced the survival and accelerated TAG mobilization during starvation, which further confirms the role of NlAKH in lipolysis. Moreover, NlAKHR silencing caused obesity in N. lugens, whereas NlAKH injection depleted organismal TAG reserves in vivo and produced a slim phenotype. These results indicate that lipid mobilization is regulated by the AKH signaling system, which is essential for adjusting body lipid homeostasis and ensuring energy supplement during starvation in N. lugens.
Collapse
Affiliation(s)
- Kai Lu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.,College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xinyu Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xia Chen
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yue Li
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wenru Li
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yibei Cheng
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jinming Zhou
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Keke You
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Qiang Zhou
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
18
|
Panyaboriban S, Tharasanit T, Chankitisakul V, Swangchan-Uthai T, Techakumphu M. Treatment with chemical delipidation forskolin prior to cryopreservation improves the survival rates of swamp buffalo (Bubalus bubalis) and bovine (Bos indicus) in vitro produced embryos. Cryobiology 2018; 84:46-51. [DOI: 10.1016/j.cryobiol.2018.08.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/03/2018] [Accepted: 08/06/2018] [Indexed: 10/28/2022]
|
19
|
Gondim KC, Atella GC, Pontes EG, Majerowicz D. Lipid metabolism in insect disease vectors. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2018; 101:108-123. [PMID: 30171905 DOI: 10.1016/j.ibmb.2018.08.005] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 08/17/2018] [Accepted: 08/26/2018] [Indexed: 06/08/2023]
Abstract
More than a third of the world population is at constant risk of contracting some insect-transmitted disease, such as Dengue fever, Zika virus disease, malaria, Chagas' disease, African trypanosomiasis, and others. Independent of the life cycle of the pathogen causing the disease, the insect vector hematophagous habit is a common and crucial trait for the transmission of all these diseases. This lifestyle is unique, as hematophagous insects feed on blood, a diet that is rich in protein but relatively poor in lipids and carbohydrates, in huge amounts and low frequency. Another unique feature of these insects is that blood meal triggers essential metabolic processes, as molting and oogenesis and, in this way, regulates the expression of various genes that are involved in these events. In this paper, we review current knowledge of the physiology and biochemistry of lipid metabolism in insect disease vectors, comparing with classical models whenever possible. We address lipid digestion and absorption, hemolymphatic transport, and lipid storage by the fat body and ovary. In this context, both de novo fatty acid and triacylglycerol synthesis are discussed, including the related fatty acid activation process and the intracellular lipid binding proteins. As lipids are stored in order to be mobilized later on, e.g. for flight activity or survivorship, lipolysis and β-oxidation are also considered. All these events need to be finely regulated, and the role of hormones in this control is summarized. Finally, we also review information about infection, when vector insect physiology is affected, and there is a crosstalk between its immune system and lipid metabolism. There is not abundant information about lipid metabolism in vector insects, and significant current gaps in the field are indicated, as well as questions to be answered in the future.
Collapse
Affiliation(s)
- Katia C Gondim
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| | - Georgia C Atella
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Emerson G Pontes
- Departamento de Bioquímica, Instituto de Química, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, Brazil
| | - David Majerowicz
- Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
20
|
Lehmann M. Endocrine and physiological regulation of neutral fat storage in Drosophila. Mol Cell Endocrinol 2018; 461:165-177. [PMID: 28893568 PMCID: PMC5756521 DOI: 10.1016/j.mce.2017.09.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 09/06/2017] [Accepted: 09/08/2017] [Indexed: 12/20/2022]
Abstract
After having revolutionized our understanding of the mechanisms of animal development, Drosophila melanogaster has more recently emerged as an equally valid genetic model in the field of animal metabolism. An increasing number of studies have revealed that many signaling pathways that control metabolism in mammals, including pathways controlled by nutrients (insulin, TOR), steroid hormone, glucagon, and hedgehog, are functionally conserved between mammals and Drosophila. In fact, genetic screens and analyses in Drosophila have identified new players and filled in gaps in the signaling networks that control metabolism. This review focuses on data that show how these networks control the formation and breakdown of triacylglycerol energy stores in the fat tissue of Drosophila.
Collapse
Affiliation(s)
- Michael Lehmann
- Department of Biological Sciences, SCEN 601, 1 University of Arkansas, Fayetteville, AR 72701, USA.
| |
Collapse
|
21
|
Meneghel M, Dall’Acqua PC, Ambrogi M, Leão BC, Rocha-Frigoni NA, Mingoti GZ. Lipid content and cryotolerance of in vitro-produced bovine embryos treated with forskolin before vitrification. PESQUISA VETERINARIA BRASILEIRA 2017. [DOI: 10.1590/s0100-736x2017000400015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
ABSTRACT: The aim of the present study was to evaluate the intracytoplasmic lipid content, development and cryotolerance of in vitro-produced bovine embryos treated with different concentrations of forskolin before vitrification. Embryos were produced from abattoir-derived ovaries and allocated into four groups. In the treatment groups, forskolin was added to the in vitro culture medium on Day 6 and incubated for 24 hours in one of the following concentrations: 2.5μM (Forsk 2.5 group), 5.0μM (Forsk 5.0 group) or 10.0μM (Forsk 10.0 group). Embryos from the control group were cultured without forskolin. On Day 7 of culture, the expanded blastocysts were stained with the lipophilic dye Sudan Black B for determination of the intracytoplasmic lipid content or were cryopreserved via the Vitri-Ingá® procedure. Although there were no significant differences (P>0.05) in the blastocyst rates between the Control group (44.9%) and the other treatments, the embryo production was lower (P<0.05) in Forsk 10.0 group (38.8%) compared to Forsk 2.5 (50.5%) and Forsk 5.0 (54.7%) groups. The intracytoplasmic lipid content (expressed in arbitrary units of pixels) in blastocysts from the Control group (1.00±0.03) was similar (P>0.05) to that found in Forsk 2.5 (0.92±0.03) and Forsk 10.0 groups (1.06±0.03) groups; however the lipid accumulation in blastocysts from Forsk 5.0 group (0.82±0.04) was lower than in the Control group (P<0.05). Based on these results, Forsk 5.0 treatment was tested for cryotolerance and it was observed that the blastocoel re-expansion rate evaluated 24 hours after warming was greater (P<0.05) in Forsk 5.0 group (72.2%) compared to the Control group (46.2%). In conclusion, pre-treatment with forskolin at a concentration of 5.0 μM for 24 hours before vitrification is effective in reducing the intracytoplasmic lipid content and, consequently, improves cryotolerance of IVP bovine embryos.
Collapse
|
22
|
Caers J, Janssen T, Van Rompay L, Broeckx V, Van Den Abbeele J, Gäde G, Schoofs L, Beets I. Characterization and pharmacological analysis of two adipokinetic hormone receptor variants of the tsetse fly, Glossina morsitans morsitans. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2016; 70:73-84. [PMID: 26690928 DOI: 10.1016/j.ibmb.2015.11.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 11/05/2015] [Accepted: 11/30/2015] [Indexed: 06/05/2023]
Abstract
Adipokinetic hormones (AKH) are well known regulators of energy metabolism in insects. These neuropeptides are produced in the corpora cardiaca and perform their hormonal function by interacting with specific G protein-coupled receptors (GPCRs) at the cell membranes of target tissues, mainly the fat body. Here, we investigated the sequences, spatial and temporal distributions, and pharmacology of AKH neuropeptides and receptors in the tsetse fly, Glossina morsitans morsitans. The open reading frames of two splice variants of the Glomo-akh receptor (Glomo-akhr) gene and of the AKH neuropeptide encoding genes, gmmhrth and gmmakh, were cloned. Both tsetse AKHR isoforms show strong sequence conservation when compared to other insect AKHRs. Glomo-AKH prepropeptides also have the typical architecture of AKH precursors. In an in vitro Ca(2+) mobilization assay, Glomo-AKH neuropeptides activated each receptor isoform up to nanomolar concentrations. We identified structural features of tsetse AKH neuropeptides essential for receptor activation in vitro. Gene expression profiles suggest a function for AKH signaling in regulating Glossina energy metabolism, where AKH peptides are released from the corpora cardiaca and activate receptors mainly expressed in the fat body. This analysis of the ligand-receptor coupling, expression, and pharmacology of the two Glomo-AKHR variants facilitates further elucidation of the function of AKH in G. m. morsitans.
Collapse
Affiliation(s)
- Jelle Caers
- Functional Genomics and Proteomics, Department of Biology, KU Leuven, Naamsestraat 59, 3000, Leuven, Belgium.
| | - Tom Janssen
- Functional Genomics and Proteomics, Department of Biology, KU Leuven, Naamsestraat 59, 3000, Leuven, Belgium.
| | - Liesbeth Van Rompay
- Functional Genomics and Proteomics, Department of Biology, KU Leuven, Naamsestraat 59, 3000, Leuven, Belgium.
| | - Valérie Broeckx
- Functional Genomics and Proteomics, Department of Biology, KU Leuven, Naamsestraat 59, 3000, Leuven, Belgium.
| | - Jan Van Den Abbeele
- Unit of Veterinary Protozoology, Department of Biomedical Sciences, Institute of Tropical Medicine, Nationalestraat 155, 2000, Antwerpen, Belgium; Laboratory of Zoophysiology, Department of Physiology, University of Ghent, Krijgslaan 281, 9000, Ghent, Belgium.
| | - Gerd Gäde
- Department of Biological Sciences, University of Cape Town, Private Bag, 7701, Rondebosch, South Africa.
| | - Liliane Schoofs
- Functional Genomics and Proteomics, Department of Biology, KU Leuven, Naamsestraat 59, 3000, Leuven, Belgium.
| | - Isabel Beets
- Functional Genomics and Proteomics, Department of Biology, KU Leuven, Naamsestraat 59, 3000, Leuven, Belgium.
| |
Collapse
|
23
|
Soulages JL, Wu Z, Firdaus SJ, Mahalingam R, Arrese EL. Monoacylglycerol and diacylglycerol acyltransferases and the synthesis of neutral glycerides in Manduca sexta. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2015; 62:194-210. [PMID: 25263765 PMCID: PMC4377122 DOI: 10.1016/j.ibmb.2014.09.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 09/09/2014] [Accepted: 09/15/2014] [Indexed: 05/06/2023]
Abstract
The insect fat body and the adipose tissue of vertebrates store fatty acids (FA) as triacylglycerols (TG). However, the fat body of most insects has the unique ability to rapidly produce and secrete large amounts of diacylglycerol (DG). Monoacylglycerol acyltransferase (MGAT), which catalyzes the synthesis of DG from MG, and a diacylglycerol acyltransferase (DGAT), which catalyzes the synthesis of TG from DG, are key enzymes in the metabolism of neutral glycerides. However, very little is known about these acyltransferases in insects. In the present study we have cloned two predicted MGATs and a DGAT from Manduca sexta and compared their sequences with predicted MGAT and DGAT homologs from a number of insect species. The comparison suggested that insects may only have a single DGAT gene, DGAT1. The apparent absence of a DGAT2 gene in insects would represent a major difference with vertebrates, which contain DGAT1 and DGAT2 genes. Insects seem to have a single MGAT gene which is similar to the MGAT2 of vertebrates. A number of conserved phosphorylation sites of potential physiological significance were identified among insect proteins and among insect and vertebrate proteins. DGAT1 and MGAT are expressed in fat body, midgut and ovaries. The relative rates of utilization of FAs for the synthesis of DG and TG correlated with the relative expression levels of MGAT and DGAT suggesting that regulation of the expression levels of these acyltransferases could be determining whether the fat body secretes DG or stores fatty acids as TG. The expression patterns of the acyltransferases suggest a role of the monoacylglycerol pathway in the production and mobilization of DG in M. sexta fat body.
Collapse
Affiliation(s)
- Jose L Soulages
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA.
| | - Zengying Wu
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Sarah J Firdaus
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Ramamurthy Mahalingam
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Estela L Arrese
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA
| |
Collapse
|
24
|
Arrese EL, Saudale FZ, Soulages JL. Lipid Droplets as Signaling Platforms Linking Metabolic and Cellular Functions. Lipid Insights 2014; 7:7-16. [PMID: 25221429 PMCID: PMC4161058 DOI: 10.4137/lpi.s11128] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The main cells of the adipose tissue of animals, adipocytes, are characterized by the presence of large cytosolic lipid droplets (LDs) that store triglyceride (TG) and cholesterol. However, most cells have LDs and the ability to store lipids. LDs have a well-known central role in storage and provision of fatty acids and cholesterol. However, the complexity of the regulation of lipid metabolism on the surface of the LDs is still a matter of intense study. Beyond this role, a number of recent studies have suggested that LDs have major functions in other cellular processes, such as protein storage and degradation, infection, and immunity. Thus, our perception of LDs has been radically transformed from simple globules of fat to highly dynamic organelles of unexpected complexity. Here, we compiled some recent evidence supporting the emerging view that LDs act as platforms connecting a number of relevant metabolic and cellular functions.
Collapse
Affiliation(s)
- Estela L Arrese
- Department of Biochemistry and Molecular Biology; Oklahoma State University; Stillwater, OK, 74078, USA
| | - Fredy Z Saudale
- Department of Biochemistry and Molecular Biology; Oklahoma State University; Stillwater, OK, 74078, USA
| | - Jose L Soulages
- Department of Biochemistry and Molecular Biology; Oklahoma State University; Stillwater, OK, 74078, USA
| |
Collapse
|
25
|
Baumbach J, Xu Y, Hehlert P, Kühnlein RP. Gαq, Gγ1 and Plc21C control Drosophila body fat storage. J Genet Genomics 2014; 41:283-92. [PMID: 24894355 DOI: 10.1016/j.jgg.2014.03.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 02/26/2014] [Accepted: 03/09/2014] [Indexed: 01/27/2023]
Abstract
Adaptive mobilization of body fat is essential for energy homeostasis in animals. In insects, the adipokinetic hormone (Akh) systemically controls body fat mobilization. Biochemical evidence supports that Akh signals via a G protein-coupled receptor (GPCR) called Akh receptor (AkhR) using cyclic-AMP (cAMP) and Ca(2+) second messengers to induce storage lipid release from fat body cells. Recently, we provided genetic evidence that the intracellular calcium (iCa(2+)) level in fat storage cells controls adiposity in the fruit fly Drosophila melanogaster. However, little is known about the genes, which mediate Akh signalling downstream of the AkhR to regulate changes in iCa(2+). Here, we used thermogenetics to provide in vivo evidence that the GPCR signal transducers G protein α q subunit (Gαq), G protein γ1 (Gγ1) and Phospholipase C at 21C (Plc21C) control cellular and organismal fat storage in Drosophila. Transgenic modulation of Gαq, Gγ1 and Plc21C affected the iCa(2+) of fat body cells and the expression profile of the lipid metabolism effector genes midway and brummer, which results in severely obese or lean flies. Moreover, functional impairment of Gαq, Gγ1 and Plc21C antagonised Akh-induced fat depletion. This study characterizes Gαq, Gγ1 and Plc21C as anti-obesity genes and supports the model that Akh employs the Gαq/Gγ1/Plc21C module of iCa(2+) control to regulate lipid mobilization in adult Drosophila.
Collapse
Affiliation(s)
- Jens Baumbach
- Abteilung Molekulare Entwicklungsbiologie, Forschungsgruppe Molekulare Physiologie, Max-Planck-Institut für biophysikalische Chemie, Göttingen 37077, Germany
| | - Yanjun Xu
- Abteilung Molekulare Entwicklungsbiologie, Forschungsgruppe Molekulare Physiologie, Max-Planck-Institut für biophysikalische Chemie, Göttingen 37077, Germany
| | - Philip Hehlert
- Abteilung Molekulare Entwicklungsbiologie, Forschungsgruppe Molekulare Physiologie, Max-Planck-Institut für biophysikalische Chemie, Göttingen 37077, Germany
| | - Ronald P Kühnlein
- Abteilung Molekulare Entwicklungsbiologie, Forschungsgruppe Molekulare Physiologie, Max-Planck-Institut für biophysikalische Chemie, Göttingen 37077, Germany.
| |
Collapse
|
26
|
Wu Z, Soulages JL, Joshi BD, Daniel SM, Hager ZJ, Arrese EL. TGL-mediated lipolysis in Manduca sexta fat body: possible roles for lipoamide-dehydrogenase (LipDH) and high-density lipophorin (HDLp). INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2014; 45:58-68. [PMID: 24333838 PMCID: PMC3932539 DOI: 10.1016/j.ibmb.2013.12.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 11/26/2013] [Accepted: 12/02/2013] [Indexed: 06/03/2023]
Abstract
Triglyceride-lipase (TGL) is a major fat body lipase in Manduca sexta. The knowledge of how TGL activity is regulated is very limited. A WWE domain, presumably involved in protein-protein interactions, has been previously identified in the N-terminal region of TGL. In this study, we searched for proteins partners that interact with the N-terminal region of TGL. Thirteen proteins were identified by mass spectrometry, and the interaction with four of these proteins was confirmed by immunoblot. The oxidoreductase lipoamide-dehydrogenase (LipDH) and the apolipoprotein components of the lipid transporter, HDLp, were among these proteins. LipDH is the common component of the mitochondrial α-keto acid dehydrogenase complexes whereas HDLp occurs in the hemolymph. However, subcellular fractionation demonstrated that these two proteins are relatively abundant in the soluble fraction of fat body adipocytes. The cofactor lipoate found in typical LipDH substrates was not detected in TGL. However, TGL proved to have critical thiol groups. Additional studies with inhibitors are consistent with the notion that LipDH acting as a diaphorase could preserve the activity of TGL by controlling the redox state of thiol groups. On the other hand, when TG hydrolase activity of TGL was assayed in the presence of HDLp, the production of diacylglycerol (DG) increased. TGL-HDLp interaction could drive the intracellular transport of DG. TGL may be directly involved in the lipoprotein assembly and loading with DG, a process that occurs in the fat body and is essential for insects to mobilize fatty acids. Overall the study suggests that TGL occurs as a multi-protein complex supported by interactions through the WWE domain.
Collapse
Affiliation(s)
- Zengying Wu
- Department of Biochemistry and Molecular Biology, Oklahoma State University, 246 Noble Research Center, Stillwater, OK 74078, USA
| | - Jose L Soulages
- Department of Biochemistry and Molecular Biology, Oklahoma State University, 246 Noble Research Center, Stillwater, OK 74078, USA
| | - Bharat D Joshi
- Department of Biochemistry and Molecular Biology, Oklahoma State University, 246 Noble Research Center, Stillwater, OK 74078, USA
| | - Stuart M Daniel
- Department of Biochemistry and Molecular Biology, Oklahoma State University, 246 Noble Research Center, Stillwater, OK 74078, USA
| | - Zachary J Hager
- Department of Biochemistry and Molecular Biology, Oklahoma State University, 246 Noble Research Center, Stillwater, OK 74078, USA
| | - Estela L Arrese
- Department of Biochemistry and Molecular Biology, Oklahoma State University, 246 Noble Research Center, Stillwater, OK 74078, USA.
| |
Collapse
|
27
|
Vinokurov K, Bednářová A, Tomčala A, Stašková T, Krishnan N, Kodrík D. Role of adipokinetic hormone in stimulation of salivary gland activities: the fire bug Pyrrhocoris apterus L. (Heteroptera) as a model species. JOURNAL OF INSECT PHYSIOLOGY 2014; 60:58-67. [PMID: 24269343 DOI: 10.1016/j.jinsphys.2013.11.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 11/08/2013] [Accepted: 11/11/2013] [Indexed: 06/02/2023]
Abstract
The effect of adipokinetic hormone (Pyrap-AKH) in stimulating the function of insect salivary glands (SGs) in extra-oral digestive processes was studied in the firebug, Pyrrhocoris apterus L. (Heteroptera). The analyses were performed on samples of SGs and extracts of linden seeds, a natural source of the bug's food. The SGs from 3-day old P. apterus females (when the food ingestion culminates), primarily contained polygalacturonase (PG) enzyme activity, whereas the level of lipase, peptidase, amylase and α-glucosidase was negligible. The transcription of PG mRNA and enzymatic activity were significantly increased in SGs after Pyrap-AKH treatment. The piercing and sucking of linden seeds by the bugs stimulated the intrinsic enzymatic cocktail of seeds (lipase, peptidase, amylase, glucosidase), and moreover the activity of these enzymes was significantly enhanced when the seeds were fed on by the Pyrap-AKH treated bugs. Similarly, a significant increase in PG activity was recorded in linden seeds fed on by hormonally-treated bugs or when injected by SG extract from hormonally treated ones as compared to untreated controls. The mechanism of AKH action in SGs is unknown, but likely involves cAMP (and excludes cGMP) as a second messenger, since the content of this compound doubled in SGs after Pyrap-AKH treatment. This new and as yet undescribed function of AKH in SGs is compared with the effect of this hormone on digestive processes in the midgut elucidated earlier.
Collapse
Affiliation(s)
- Konstantin Vinokurov
- Institute of Entomology, Biology Centre, Academy of Sciences, Branišovská 31, 370 05 České Budějovice, Czech Republic
| | - Andrea Bednářová
- Institute of Entomology, Biology Centre, Academy of Sciences, Branišovská 31, 370 05 České Budějovice, Czech Republic; Faculty of Science, University of South Bohemia, Branišovská 31, 370 05 České Budějovice, Czech Republic; Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS 39762, USA
| | - Aleš Tomčala
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences, Flemingovo Sq. 2, 166 10 Praha 6, Czech Republic
| | - Tereza Stašková
- Institute of Entomology, Biology Centre, Academy of Sciences, Branišovská 31, 370 05 České Budějovice, Czech Republic
| | - Natraj Krishnan
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS 39762, USA
| | - Dalibor Kodrík
- Institute of Entomology, Biology Centre, Academy of Sciences, Branišovská 31, 370 05 České Budějovice, Czech Republic; Faculty of Science, University of South Bohemia, Branišovská 31, 370 05 České Budějovice, Czech Republic.
| |
Collapse
|
28
|
Lin P, Chen X, Moktan H, Arrese EL, Duan L, Wang L, Soulages JL, Zhou DH. Membrane attachment and structure models of lipid storage droplet protein 1. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1838:874-81. [PMID: 24333382 DOI: 10.1016/j.bbamem.2013.12.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 11/29/2013] [Accepted: 12/05/2013] [Indexed: 02/08/2023]
Abstract
Neutral lipid triglycerides, a main reserve for fat and energy, are stored in organelles called lipid droplets. The storage and release of triglycerides are actively regulated by several proteins specific to the droplet surface, one of which in insects is PLIN1. PLIN1 plays a key role in the activation of triglyceride hydrolysis upon phosphorylation. However, the structure of PLIN1 and its relation to functions remain elusive due to its insolubility and crystallization difficulty. Here we report the first solid-state NMR study on the Drosophila melanogaster PLIN1 in combination with molecular dynamics simulation to show the structural basis for its lipid droplet attachment. NMR spin diffusion experiments were consistent with the predicted membrane attachment motif of PLIN1. The data indicated that PLIN1 has close contact with the terminal methyl groups of the phospholipid acyl chains. Structure models for the membrane attachment motif were generated based on hydrophobicity analysis and NMR membrane insertion depth information. Simulated NMR spectra from a trans-model agreed with experimental spectra. In this model, lipids from the bottom leaflet were very close to the surface in the region enclosed by membrane attachment motif. This may imply that in real lipid droplet, triglyceride molecules might be brought close to the surface by the same mechanism, ready to leave the droplet in the event of lipolysis. Juxtaposition of triglyceride lipase structure to the trans-model suggested a possible interaction of a conserved segment with the lipase by electrostatic interactions, opening the lipase lid to expose the catalytic center.
Collapse
Affiliation(s)
- Penghui Lin
- Department of Physics, 230 L Henry Bellmon Research Center, Oklahoma State University, Stillwater, OK 74078, USA
| | - Xiao Chen
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Hem Moktan
- Department of Physics, 230 L Henry Bellmon Research Center, Oklahoma State University, Stillwater, OK 74078, USA
| | - Estela L Arrese
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Lian Duan
- Department of Physics, 230 L Henry Bellmon Research Center, Oklahoma State University, Stillwater, OK 74078, USA
| | - Liying Wang
- Department of Physics, 230 L Henry Bellmon Research Center, Oklahoma State University, Stillwater, OK 74078, USA; State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Wuhan Center for Magnetic Resonance, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Jose L Soulages
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Donghua H Zhou
- Department of Physics, 230 L Henry Bellmon Research Center, Oklahoma State University, Stillwater, OK 74078, USA.
| |
Collapse
|
29
|
Yang H, He X, Yang J, Deng X, Liao Y, Zhang Z, Zhu C, Shi Y, Zhou N. Activation of cAMP-response element-binding protein is positively regulated by PKA and calcium-sensitive calcineurin and negatively by PKC in insect. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2013; 43:1028-1036. [PMID: 24018109 DOI: 10.1016/j.ibmb.2013.08.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 08/27/2013] [Accepted: 08/29/2013] [Indexed: 06/02/2023]
Abstract
The cAMP response element binding protein, CREB, is a G protein-coupled receptor (GPCR) signal-activated transcription factor implicated in the control of many biological processes. In the current study, we constructed a cAMP response element (CRE)-driven luciferase assay system for GPCR characterization in insect cells. Our results indicated that Gs-coupled Bombyx adipokinetic hormone receptor (AKHR) and corazonin receptor could effectively initiate CRE-driven luciferase transcription, but forskolin, a reagent widely used to activate adenylyl cyclase in mammalian systems, failed to induce luciferase activity in insect cells co-transfected with a CRE-driven reporter construct upon agonist treatment. Further investigation revealed that the specific protein kinase C (PKC) inhibitors exhibited stimulatory effects on CRE-driven reporter transcription, and blockage of Ca(2+) signals and inhibition of Ca(2+)-dependent calcineurin resulted in a significant decrease in the luciferase activity. Taken together, these results suggest that PKC likely acts as a negative regulator to modulate CREB activation; in contrast, Ca(2+) signals and Ca(2+)-dependent calcineurin, in addition to PKA, essentially contribute to the positive regulation of CREB activity. This study presents evidence to elucidate the underlying molecular mechanism by which CREB activation is regulated in insects.
Collapse
Affiliation(s)
- Huipeng Yang
- Institute of Biochemistry, College of Life Science, Zijingang Campus, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Bednářová A, Kodrík D, Krishnan N. Adipokinetic hormone exerts its anti-oxidative effects using a conserved signal-transduction mechanism involving both PKC and cAMP by mobilizing extra- and intracellular Ca2+ stores. Comp Biochem Physiol C Toxicol Pharmacol 2013; 158:142-9. [PMID: 23845878 DOI: 10.1016/j.cbpc.2013.07.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 07/03/2013] [Accepted: 07/03/2013] [Indexed: 01/10/2023]
Abstract
The involvement of members of the adipokinetic hormone (AKH) family in regulation of response to oxidative stress (OS) has been reported recently. However, despite these neuropeptides being the best studied family of insect hormones, their precise signaling pathways in their OS responsive role remain to be elucidated. In this study, we have used an in vitro assay to determine the importance of extra and intra-cellular Ca(2+) stores as well as the involvement of protein kinase C (PKC) and cyclic adenosine 3',5'-monophosphate (cAMP) pathways by which AKH exerts its anti-oxidative effects. Lipid peroxidation product (4-HNE) was significantly enhanced and membrane fluidity reduced in microsomal fractions of isolated brains (CNS) of Pyrrhocoris apterus when treated with hydrogen peroxide (H2O2), whereas these biomarkers of OS were reduced to control levels when H2O2 was co-treated with Pyrap-AKH. The effects of mitigation of OS in isolated CNS by AKH were negated when these treatments were conducted in the presence of Ca(2+) channel inhibitors (CdCl2 and thapsigargin). Presence of either bisindolylmaliemide or chelyrythrine chloride (inhibitors of PKC) in the incubating medium also compromised the anti-oxidative function of AKH. However, supplementing the medium with either phorbol myristate acetate (PMA, an activator of PKC) or forskolin (an activator of cAMP) restored the protective effects of exogenous AKH treatment by reducing 4-HNE levels and increasing membrane fluidity to control levels. Taken together, our results strongly implicate the importance of both PKC and cAMP pathways in AKHs' anti-oxidative action by mobilizing both extra and intra-cellular stores of Ca(2+).
Collapse
Affiliation(s)
- Andrea Bednářová
- Institute of Entomology, Biology Centre, Academy of Science, Branišovská 31, České Budějovice, 370 05-CZ, Czech Republic; Faculty of Science, South Bohemian University, Branišovská 31, České Budějovice, 370 05-CZ, Czech Republic; Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, MS 39762, USA
| | | | | |
Collapse
|
31
|
Forskolin effect on the cryosurvival of in vitro-produced bovine embryos in the presence or absence of fetal calf serum. ZYGOTE 2012; 22:146-57. [DOI: 10.1017/s0967199412000354] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
SummaryThe objective of this study was to assess the viability and cryotolerance of zebu embryos produced in vitro with or without the addition of fetal calf serum (FCS) and forskolin (F). Embryos produced in vivo were used as a control. Presumptive zygotes were cultured in modified synthetic oviductal fluid supplemented with amino acids (SOFaa), bovine serum albumin (BSA) and with (2.5%) or without (0%) FCS. On day 6 of growth, the embryos from each group were divided into treatments with or without 10 μM F to induce embryonic lipolysis, comprising a total of four experimental groups: 2.5% FCS, 0% FCS, 2.5% + F and 0% + F. For vitrification, embryos were exposed to vitrification solution 1 (5 M EG (ethylene glycol)) for 3 min and then transferred to vitrification solution 2 (7 M EG, 0.5 M galactose solution and 18% (w/v) Ficoll 70) before being introduced to liquid nitrogen. The presence of FCS in the culture medium resulted in the production of embryos with a similar rate of damaged cells compared with in vivo-produced embryos. After vitrification, the 2.5% FCS group had a significantly higher rate of damaged cells when compared with the other groups (P < 0.05). The results of this experiment indicated that the omission of FCS and the addition of forskolin do not have deleterious effect on embryo production rates. In addition, embryos produced in the presence of FCS had greater sensitivity to cryopreservation, but this effect was reversed when forskolin was added to the medium, which improved embryo survival without affecting embryo development and quality after vitrification.
Collapse
|
32
|
Kühnlein RP. Thematic review series: Lipid droplet synthesis and metabolism: from yeast to man. Lipid droplet-based storage fat metabolism in Drosophila. J Lipid Res 2012; 53:1430-6. [PMID: 22566574 DOI: 10.1194/jlr.r024299] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The fruit fly Drosophila melanogaster is an emerging model system in lipid metabolism research. Lipid droplets are omnipresent and dynamically regulated organelles found in various cell types throughout the complex life cycle of this insect. The vital importance of lipid droplets as energy resources and storage compartments for lipoanabolic components has recently attracted research attention to the basic enzymatic machinery, which controls the delicate balance between triacylglycerol deposition and mobilization in flies. This review aims to present current insights in experimentally supported and inferred biological functions of lipogenic and lipolytic enzymes as well as regulatory proteins, which control the lipid droplet-based storage fat turnover in Drosophila.
Collapse
Affiliation(s)
- Ronald P Kühnlein
- Research Group Molecular Physiology, Department of Molecular Developmental Biology, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany.
| |
Collapse
|
33
|
Vandamme J, Castermans D, Thevelein JM. Molecular mechanisms of feedback inhibition of protein kinase A on intracellular cAMP accumulation. Cell Signal 2012; 24:1610-8. [PMID: 22522182 DOI: 10.1016/j.cellsig.2012.04.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Revised: 03/22/2012] [Accepted: 04/04/2012] [Indexed: 01/13/2023]
Abstract
The cAMP-protein kinase A (PKA) pathway is a major signalling pathway in the yeast Saccharomyces cerevisiae, but also in many other eukaryotic cell types, including mammalian cells. Since cAMP plays a crucial role as second messenger in the regulation of this pathway, its levels are strictly controlled, both in the basal condition and after induction by agonists. A major factor in the down-regulation of the cAMP level after stimulation is PKA itself. Activation of PKA triggers feedback down-regulation of the increased cAMP level, stimulating its return to the basal concentration. This is accomplished at different levels. The best documented mechanisms are: inhibition of cAMP synthesis by down-regulation of adenylate cyclase and/or its regulatory proteins, stimulation of cAMP breakdown by phosphodiesterases and spatial regulation of cAMP levels in the cell by A-Kinase Anchoring Proteins (AKAPs). In this review we describe these processes in detail for S. cerevisiae, for cells of mammals and selected other organisms, and we hint at other possible targets for feedback regulation of intracellular cAMP levels.
Collapse
|
34
|
Lapointe JF, Dunphy GB, Mandato CA. Hemocyte-hemocyte adhesion and nodulation reactions of the greater wax moth, Galleria mellonella are influenced by cholera toxin and its B-subunit. RESULTS IN IMMUNOLOGY 2012; 2:54-65. [PMID: 24371567 DOI: 10.1016/j.rinim.2012.02.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Revised: 02/15/2012] [Accepted: 02/17/2012] [Indexed: 10/28/2022]
Abstract
Nodulation, the lepidopteran insect immune response to large numbers of microbes in the blood (hemolymph) consists of the coordination of the blood cell (hemocyte) types the granular cells and plasmatocytes in terms of granular cell-bacteria adhesion and hemocyte-hemocyte adhesion (microaggregation). Hemocyte-microbe adhesion is influenced by the secondary messenger, cAMP, and cAMP-dependent protein kinase A. In the present study, cholera toxin, an AB5 protein known to indirectly stimulate adenylate cyclase, is used to examine the hemocyte responses to glass, bacteria and hemocyte-hemocyte microaggregates. In vitro, this toxin induces a bimodal hemocyte adhesion response that varies with the holotoxin concentration in terms of the individual and aggregated hemocyte adhesion responses: the lower CTX concentration (1.2 nM) increases microaggregate adhesion and decreases individual hemocyte binding to glass, as does higher concentrations (6-120 nM), however microaggregates induced by lower concentrations do not adhere to glass. Cholera toxin-induced microaggregation is inhibited by RGDS, suggestive of integrin involvement. In vivo, cholera toxin (1.2-120 nM) injected into larvae induces also a bimodal hemocytic response: low levels (1.2-6 nM) cause reduced hemocyte adhesion, while high levels (12-120 nM) increase hemocyte release or mobilization of adhesive hemocyte counts in the hemolymph. Increasing levels of cholera toxin concomitantly injected with the non-pathogenic bacterium, Bacillus subtilis produces a bimodal pattern in bacterial removal from the hemolymph which correlates with nodule frequency in larvae injected with cholera toxin only. The effects of higher concentrations of cholera toxin in vitro (6-120 nM) and in vivo (12-120 nM) are mediated by the B-subunit, whereas the isolated A-subunit has no effect on hemocyte activity. Cholera toxin and its individual subunits did not detectably alter levels of intracellular cAMP in the hemocytes, suggesting a cAMP-independent mechanism stimulating the nodulation response.
Collapse
Affiliation(s)
- Jason F Lapointe
- Department of Anatomy and Cell Biology, McGill University, 3640 University Street, Montreal, Quebec, Canada H3A 2B2
| | - Gary B Dunphy
- Department of Natural Resource Sciences, Macdonald Campus of McGill University, 21, 111 Lakeshore Road, Ste. Anne de Bellevue, Québec, Canada H9X 3V9
| | - Craig A Mandato
- Department of Anatomy and Cell Biology, McGill University, 3640 University Street, Montreal, Quebec, Canada H3A 2B2
| |
Collapse
|
35
|
Shi Y, Huang H, Deng X, He X, Yang J, Yang H, Shi L, Mei L, Gao J, Zhou N. Identification and functional characterization of two orphan G-protein-coupled receptors for adipokinetic hormones from silkworm Bombyx mori. J Biol Chem 2011; 286:42390-42402. [PMID: 22009754 PMCID: PMC3234951 DOI: 10.1074/jbc.m111.275602] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Revised: 09/29/2011] [Indexed: 11/06/2022] Open
Abstract
Adipokinetic hormones (AKHs) are the best studied insect neuropeptides with the function of mobilizing lipids and carbohydrates during energy-expensive activities and modulating fundamental physiological processes, such as sugar homeostasis, lipid metabolism, and reproduction. Three distinct cDNAs encoding the prepro-Bombyx AKH1-3 have been cloned and confirmed by mass spectrometric methods. Our previous research suggested the Bombyx AKH receptor is activated by AKH1 and AKH2 with high affinity but by AKH3 with quite low affinity. In this study, using stable functional expression of the receptors in HEK293 cells, we have now identified AKH3 as a specific ligand for two orphan G-protein-coupled receptors, and we therefore named them AKHR2a and AKHR2b, respectively. We demonstrated that both AKHR2a and AKHR2b were activated by AKH3 at high affinity and by AKH1 and AKH2 at low affinity, leading to an increase of intracellular cAMP levels and activation of ERK1/2 and receptor internalization, but they were not activated by Bombyx corazonin. Conversely, the Bombyx corazonin receptor was activated by corazonin but not by AKH1-3. Quantitative RT-PCR revealed that AKHR2a and AKHR2b were both highly expressed in the testis but were also detected at low levels in other tissues. These results will lead to a better understanding of the AKH/AKHR system in the regulation of fundamental physiological processes.
Collapse
Affiliation(s)
- Ying Shi
- Institute of Biochemistry, College of Life Sciences, Zijingang Campus, Zhejiang University, Hangzhou, Zhejiang, 310058
| | - Haishan Huang
- Zhejiang Provincial Key Laboratory for Model Organisms, School of Life Sciences, Wenzhou Medical College, Wenzhou, Zhejiang, 325035
| | - Xiaoyan Deng
- Institute of Biochemistry, College of Life Sciences, Zijingang Campus, Zhejiang University, Hangzhou, Zhejiang, 310058
| | - Xiaobai He
- Institute of Biochemistry, College of Life Sciences, Zijingang Campus, Zhejiang University, Hangzhou, Zhejiang, 310058
| | - Jingwen Yang
- College of Animal Sciences, Zijingang Campus, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Huipeng Yang
- Institute of Biochemistry, College of Life Sciences, Zijingang Campus, Zhejiang University, Hangzhou, Zhejiang, 310058
| | - Liangen Shi
- College of Animal Sciences, Zijingang Campus, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Lijuan Mei
- Institute of Biochemistry, College of Life Sciences, Zijingang Campus, Zhejiang University, Hangzhou, Zhejiang, 310058; Zhejiang Provincial Key Laboratory for Model Organisms, School of Life Sciences, Wenzhou Medical College, Wenzhou, Zhejiang, 325035
| | - Jimin Gao
- Zhejiang Provincial Key Laboratory for Model Organisms, School of Life Sciences, Wenzhou Medical College, Wenzhou, Zhejiang, 325035.
| | - Naiming Zhou
- Institute of Biochemistry, College of Life Sciences, Zijingang Campus, Zhejiang University, Hangzhou, Zhejiang, 310058.
| |
Collapse
|
36
|
Huang H, He X, Deng X, Li G, Ying G, Sun Y, Shi L, Benovic JL, Zhou N. Bombyx adipokinetic hormone receptor activates extracellular signal-regulated kinase 1 and 2 via G protein-dependent PKA and PKC but β-arrestin-independent pathways. Biochemistry 2010; 49:10862-72. [PMID: 21126059 DOI: 10.1021/bi1014425] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Neuropeptides of the adipokinetic hormone (AKH) family are among the best studied hormone peptides. They play important roles in insect hemolymph sugar homeostasis, larval lipolysis, and storage-fat mobilization. Mechanistic investigations have shown that, upon AKH stimulation, adipokinetic hormone receptor (AKHR) couples to a Gs protein and enhances adenylate cyclase activity, leading to intracellular cAMP accumulation. However, the underlying molecular mechanism by which this signaling pathway connects to extracellular signal-regulated kinase 1/2 (ERK1/2) remains to be elucidated. Using HEK293 cells stably or transiently expressing AKHR, we demonstrated that activation of AKHR elicited transient phosphorylation of ERK1/2. Our investigation indicated that AKHR-mediated activation of ERK1/2 was significantly inhibited by H-89 (protein kinase A inhibitor), Go6983, and GF109203X (protein kinase C inhibitors) but not by U73122 (PLC inhibitor) or FIPI (PLD inhibitor). Moreover, AKHR-induced ERK1/2 phosphorylation was blocked by the calcium chelators EGTA and BAPTA-AM. Furthermore, ERK1/2 activation in both transiently and stably AKHR-expressing HEK293 cells was found to be sensitive to pretreatment of pertussis toxin, whereas AKHR-mediated ERK1/2 activation was insensitive to siRNA-induced knockdown of β-arrestins and to pretreatment of inhibitors of EGFR, Src, and PI3K. On the basis of our data, we propose that activated AKHR signals to ERK1/2 primarily via PKA- and calcium-involved PKC-dependent pathways. Our current study provides the first in-depth study defining the mechanisms of AKH-mediated ERK activation through the Bombyx AKHR.
Collapse
Affiliation(s)
- Haishan Huang
- Institute of Biochemistry, College of Life Sciences, Zijingang Campus, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
The fat body plays major roles in the life of insects. It is a dynamic tissue involved in multiple metabolic functions. One of these functions is to store and release energy in response to the energy demands of the insect. Insects store energy reserves in the form of glycogen and triglycerides in the adipocytes, the main fat body cell. Insect adipocytes can store a great amount of lipid reserves as cytoplasmic lipid droplets. Lipid metabolism is essential for growth and reproduction and provides energy needed during extended nonfeeding periods. This review focuses on energy storage and release and summarizes current understanding of the mechanisms underlying these processes in insects.
Collapse
|
38
|
Molecular and functional characterization of adipokinetic hormone receptor and its peptide ligands in Bombyx mori. FEBS Lett 2009; 583:1463-8. [PMID: 19345219 DOI: 10.1016/j.febslet.2009.03.060] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2009] [Revised: 03/25/2009] [Accepted: 03/26/2009] [Indexed: 11/20/2022]
Abstract
Neuropeptides of the adipokinetic hormone (AKH) family are among the best studied hormone peptides, but its signaling pathways remain to be elucidated. In this study, we molecularly characterized the signaling of Bombyx AKH receptor (AKHR) and its peptide ligands in HEK293 cells. In HEK293 cells stably expressing AKHR, AKH1 stimulation not only led to a ligand concentration dependent mobilization of intracellular Ca(2+) and cAMP accumulation, but also elicited transient activation of extracellular signal-regulated kinase 1/2 (ERK1/2) pathway. We observed that AKH receptor was rapidly internalized after AKH1 stimulation. We further demonstrated that AKH2 exhibited high activities in cAMP accumulation and ERK1/2 activation on AKHR comparable to AKH1, whereas AKH3 was much less effective.
Collapse
|
39
|
Arrese EL, Rivera L, Hamada M, Mirza S, Hartson SD, Weintraub S, Soulages JL. Function and structure of lipid storage droplet protein 1 studied in lipoprotein complexes. Arch Biochem Biophys 2008; 473:42-7. [PMID: 18342616 DOI: 10.1016/j.abb.2008.02.036] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2008] [Revised: 02/25/2008] [Accepted: 02/26/2008] [Indexed: 11/18/2022]
Abstract
Triglycerides (TG) stored in lipid droplets (LDs) are the main energy reserve in all animals. The mechanism by which animals mobilize TG is complex and not fully understood. Several proteins surrounding the LDs have been implicated in TG homeostasis such as mammalian perilipin A and insect lipid storage proteins (Lsd). Most of the knowledge on LD-associated proteins comes from studies using cells or LDs leaving biochemical properties of these proteins uncharacterized. Here we describe the purification of recombinant Lsd1 and its reconstitution with lipids to form lipoprotein complexes suitable for functional and structural studies. Lsd1 in the lipid bound state is a predominately alpha-helical protein. Using lipoprotein complexes containing triolein it is shown that PKA mediated phosphorylation of Lsd1 promoted a 1.7-fold activation of the main fat body lipase demonstrating the direct link between Lsd1 phosphorylation and activation of lipolysis. Serine 20 was identified as the Lsd1-phosphorylation site triggering this effect.
Collapse
Affiliation(s)
- Estela L Arrese
- Department of Biochemistry and Molecular Biology, Oklahoma State University, 246 Noble Research Center, Stillwater, OK 74078, USA.
| | | | | | | | | | | | | |
Collapse
|
40
|
Men H, Agca Y, Riley LK, Critser JK. Improved survival of vitrified porcine embryos after partial delipation through chemically stimulated lipolysis and inhibition of apoptosis. Theriogenology 2006; 66:2008-16. [PMID: 16870242 DOI: 10.1016/j.theriogenology.2006.05.018] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2005] [Accepted: 05/22/2006] [Indexed: 11/24/2022]
Abstract
Mechanical removal of intracellular lipids has been the most effective approach to increase the cryosurvival of porcine embryos. In this experiment, we tested the hypotheses that the cryosurvival of porcine embryos can be improved after partial delipation through chemically stimulated lipolysis and that the survival can be further improved by inhibition of apoptosis. Porcine embryos were produced in vitro using sow oocytes. On Day 5 of embryonic development, embryos were cultured in the presence of 10 microM forskolin for 24h. On Day 6 blastocysts were vitrified using an open pulled straw (OPS) method and warmed blastocysts were cultured 18 h for them to recover. A caspase inhibitor, benzyloxycarbonyl-Val-Ala-Asp-fluoromethyl ketone (Z-VAD-FMK) was used at 20 microM during vitrification and subsequent culture to inhibit apoptosis. A 2 x 2 x 2 factorial design experiment was conducted to examine the effect of chemical delipation, vitrification and apoptosis inhibition. We also measured the lipolytic activity of porcine embryos cultured with or without forskolin. Chemical delipation increased the cryosurvival of porcine embryos compared to the controls (71.2+/-2.8% versus 37.1+/-5.1%). Apoptosis inhibition increased the ability of blastocysts to fully recover (23.8+/-3.1% versus 14.6+/-4.3%). However, there was no interaction between chemical delipation and apoptosis inhibition. Lipolytic agent treatment increased the lipolytic activity of porcine blastocysts. In conclusion, cryosurvival of porcine embryos was improved by partial delipation through chemical stimulation of lipolysis or apoptosis inhibition.
Collapse
Affiliation(s)
- Hongsheng Men
- Comparative Medicine Center, University of Missouri-Columbia, 1600 E. Rollins Street, Columbia, MO 65211, USA
| | | | | | | |
Collapse
|
41
|
Patel RT, Soulages JL, Arrese EL. Adipokinetic hormone-induced mobilization of fat body triglyceride stores in Manduca sexta: role of TG-lipase and lipid droplets. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2006; 63:73-81. [PMID: 16983668 DOI: 10.1002/arch.20143] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Triglycerides (TG) stores build up in the insect fat body as lipid droplets at times of excess of food. The mobilization of fat body triglyceride (TG) is stimulated by adipokinetic hormones (AKH). The action of AKH involves a rapid activation of cAMP-dependent protein kinase (PKA). Recent in vitro studies have shown that PKA phosphorylates and activates the TG-lipase substrate, the lipid droplets. Conversely, purified TG-lipase from Manduca sexta fat body is phosphorylated by PKA in vitro but is not activated. This study was directed to learn whether or not AKH promotes a change in the state of phosphorylation of the lipase in vivo, and what are the relative contributions of cytosol and lipid droplets to the overall increase of lipolysis triggered by AKH. TG-lipase activity of fat body cytosols isolated from control and AKH-treated insects was determined against the native substrate, in vivo [3H]-TG radiolabeled lipid droplets, obtained from control and AKH-treated insects. The lipase activity of the system composed of AKH-cytosol and AKH-lipid droplets (11.1 +/- 2.1 nmol TG/min-mg) was 3.1-fold higher than that determined with control cytosol and lipid droplets (3.6 +/- 0.5 nmol TG/min-mg). Evaluation of the role of AKH-induced changes in the lipid droplets on lipolysis showed that changes in the lipid droplets are responsible for 70% of the lipolytic response to AKH. The remaining 30% appears to be due to AKH-dependent changes in the cytosol. However, the phosphorylation level of the TG-lipase was unchanged by AKH, indicating that phosphorylation of the TG-lipase plays no role in the activation of lipolysis induced by AKH.
Collapse
Affiliation(s)
- Rajesh T Patel
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA
| | | | | |
Collapse
|
42
|
Arrese EL, Patel RT, Soulages JL. The main triglyceride-lipase from the insect fat body is an active phospholipase A(1): identification and characterization. J Lipid Res 2006; 47:2656-67. [PMID: 17005997 DOI: 10.1194/jlr.m600161-jlr200] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The main triglyceride-lipase (TG-lipase) from the fat body of Manduca sexta has been identified as the homolog of Drosophila melanogaster CG8552. This protein is conserved among insects and also shares significant sequence similarity with vertebrate phospholipases (PLs) from the phosphatidic acid preferring-phospholipase A1 (PA-PLA(1)) family. It is shown here that the TG-lipase is also a PL. TG-lipase and PL activities copurify and are inhibited by, or resistant to, the same lipase inhibitors, indicating that both activities are catalyzed by the same enzyme and active site. The PL activity of TG-lipase corresponded to PL type A(1). The concentration dependence of lipase activity with TG and PL micellar substrates showed saturation kinetics, with apparent K(m) values of 152 +/- 11 and 7.8 +/- 1.1 muM, respectively. TG-lipase was able to hydrolyze the major phospholipid components of the lipid droplets, phosphatidylcholine and phosphatidylethanolamine. The enzyme hydrolyzes 77 molecules of TG for every molecule of PL contained in the lipid droplets. It was observed that the activation of lipolysis in vivo is accompanied by activation of the hydrolysis of phospholipids of the lipid droplets. These results suggest that the PL activity of the insect TG-lipase could be required to allow access of the lipase to TG molecules contained in the core of the lipid droplets.
Collapse
Affiliation(s)
- Estela L Arrese
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA.
| | | | | |
Collapse
|
43
|
Auerswald L, Siegert KJ, Gäde G. Activation of triacylglycerol lipase in the fat body of a beetle by adipokinetic hormone. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2005; 35:461-470. [PMID: 15804579 DOI: 10.1016/j.ibmb.2005.01.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2005] [Accepted: 01/21/2005] [Indexed: 05/24/2023]
Abstract
The activation of triacylglycerol lipase and the stimulation of proline synthesis in the fat body of the fruit beetle Pachnoda sinuata by the endogenous octapeptide hormone Melme-CC (pQLNYSPDWa), which belongs to the family of insect adipokinetic hormones, were studied, and the correlation of both events investigated. At rest, the activity of triacylglycerol lipase in the fat body of the beetle was higher than in the fat body of the American cockroach, Periplaneta americana, but lower than in the migratory locust, Locusta migratoria. Triacylglycerol lipase of the beetle is activated by: (a) injection of synthetic Melme-CC and (b) the stimulus of flight. Activation of lipase by Melme-CC is time-dependent. Injection of cpt-cAMP activates triacylglycerol lipase in the fat body and causes an increase in the concentration of proline in the haemolymph at the expense of alanine. In contrast, injection of F-inositol-1,4,5-phosphate does not affect the activation state of lipase, nor the levels of amino acids in the haemolymph. High doses of octopamine do not activate lipase. Furthermore, activity of fat body lipase and proline concentration in the haemolymph both follow a circadian rhythm: both parameters are high in the morning, whereas they are low in the evening. When transfer of Melme-CC, released from the corpora cardiaca, to the thorax/abdomen is prevented by neck-ligation, the activity of lipase, as well as the circulating proline levels are low. Regression analysis revealed that activity of triacylglycerol lipase is positively correlated to proline concentration in the haemolymph, whereas there is a negative correlation of the enzyme activity and alanine level in the haemolymph. From these results we conclude that the activation of fat body triacylglycerol lipase by Melme-CC in P. sinuata stimulates proline synthesis. Proline is one of the major substrates to power flight activity in the beetle.
Collapse
Affiliation(s)
- Lutz Auerswald
- Zoology Department, University of Cape Town, Rondebosch 7701, South Africa.
| | | | | |
Collapse
|
44
|
Patel RT, Soulages JL, Hariharasundaram B, Arrese EL. Activation of the lipid droplet controls the rate of lipolysis of triglycerides in the insect fat body. J Biol Chem 2005; 280:22624-31. [PMID: 15829485 DOI: 10.1074/jbc.m413128200] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The hydrolysis of triglyceride (TG) stored in the lipid droplets of the insect fat body is under hormonal regulation by the adipokinetic hormone (AKH), which triggers a rapid activation cAMP-dependent kinase cascade (protein kinase A (PKA)). The role of phosphorylation on two components of the lipolytic process, the TG-lipase and the lipid droplet, was investigated in fat body adipocytes. The activity of purified TG-lipase determined using in vivo TG-radiolabeled lipid droplets was unaffected by the phosphorylation of the lipase. However, the activity of purified lipase was 2.4-fold higher against lipid droplets isolated from hormone-stimulated fat bodies than against lipid droplets isolated from unstimulated tissue. In vivo stimulation of lipolysis promotes a rapid phosphorylation of a lipid droplet protein with an apparent mass of 42-44 kDa. This protein was identified as "Lipid Storage Droplet Protein 1" (Lsdp1). In vivo phosphorylation of this protein reached a peak approximately 10 min after the injection of AKH. Supporting a role of Lsdp1 in lipolysis, maximum TG-lipase activity was also observed with lipid droplets isolated 10 min after hormonal stimulation. The activation of lipolysis was reconstituted in vitro using purified insect PKA and TG-lipase and lipid droplets. In vitro phosphorylation of lipid droplets catalyzed by PKA enhanced the phosphorylation of Lsdp1 and the lipolytic rate of the lipase, demonstrating a prominent role PKA and protein phosphorylation on the activation of the lipid droplets. AKH-induced changes in the properties of the substrate do not promote a tight association of the lipase with the lipid droplets. It is concluded that the lipolysis in fat body adipocytes is controlled by the activation of the lipid droplet. This activation is achieved by PKA-mediated phosphorylation of the lipid droplet. Lsdp1 is the main target of PKA, suggesting that this protein is a major player in the activation of lipolysis in insects.
Collapse
Affiliation(s)
- Rajesh T Patel
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, 74078, USA
| | | | | | | |
Collapse
|
45
|
Patel R, Soulages JL, Wells MA, Arrese EL. cAMP-dependent protein kinase of Manduca sexta phosphorylates but does not activate the fat body triglyceride lipase. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2004; 34:1269-1279. [PMID: 15544940 DOI: 10.1016/j.ibmb.2004.08.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2004] [Revised: 08/18/2004] [Accepted: 08/27/2004] [Indexed: 05/24/2023]
Abstract
cAMP-dependent-protein kinase (PKA) is a central player of the adipokinetic signal that controls the mobilization of stored lipids in the fat body. Previous studies showed that adipokinetic hormone (AKH) rapidly activates PKA from the fat body of Manduca sexta (Arrese et al. (J. Lipid. Res. 40(3): 556)). As a part of our investigation on lipolysis in insects, here we report the purification and characterization of the catalytic subunit of PKA from the fat body of M. sexta and its role in the direct activation of the TG lipase in vitro. PKA was purified to apparent homogeneity and the identity of the protein was confirmed by MALDI-TOF and Western blot analysis. The enzyme showed a high affinity for Mg-ATP (Km = 39 microM) and Kemptide (Km = 31 microM) and was strongly inhibited by the PKA specific inhibitors PKI 5-24 and H89. Manduca sexta PKA only recognized serine residues as phosphate acceptor; theronine or tyrosine containing peptides were not phosphorylated. Purified fat body TG-lipase proved to be a good substrate of the purified kinase. However, phosphorylation of the lipase did not enhance the lipolytic activity of the enzyme in vitro. These results suggest that, besides lipase phosphorylation, the mechanism of AKH-induced activation of the lipolysis requires the involvement of other proteins and/or signals.
Collapse
Affiliation(s)
- Rajesh Patel
- Department of Biochemistry and Molecular Biology, Oklahoma State University, 246 Noble Research Center, Stillwater, OK 74078, USA
| | | | | | | |
Collapse
|
46
|
Nakamatsu Y, Tanaka T. Venom of Euplectrus separatae causes hyperlipidemia by lysis of host fat body cells. JOURNAL OF INSECT PHYSIOLOGY 2004; 50:267-275. [PMID: 15081819 DOI: 10.1016/j.jinsphys.2003.12.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2003] [Revised: 12/17/2003] [Accepted: 12/18/2003] [Indexed: 05/24/2023]
Abstract
Although the lepidopteran larva Pseudaletia separata is attacked by the gregarious ectoparasitoid Euplectrus separatae, it continues to feed and grow. Lipid concentration in the hemolymph of the parasitized host was higher than that of the nonparasitized host from 3 to 8 days after parasitization. Artificial injection of parasitoid venom also elevated lipid concentration in the host hemolymph. One day after venom injection the host's fat body contained many lipid particles, but most of the lipid particles disappeared 7 days later. Light microscopy and transmission electron microscopy showed the lipid particles leaving the fat body cells as a result of the lysis of the fat body cells. These results suggest that the venom elevated the lipid concentration in the host hemolymph by provoking the release of lipid particles from the fat body. Though most of the lipid particles were freely floating in the host hemolymph, a portion of the released lipid particles were phagocytized by hemocytes. The amount of lipid that was loaded to lipophorin in the hemolymph of the venom-injected host was measured, but it was not sufficient to explain the high lipid titer in the hemolymph of parasitized and venom-injected host larvae. The fact that parasitoid larva consumed many hemocytes as evidenced by their presence in the midgut supported the hypothesis that the parasitoid larvae fed on the host hemolymph containing the free lipid particles, the hemocytes phagocytizing the lipid particles, and the lipid-loaded lipophorin. The possibility of the venom contribution to the disruption of the intercellular matrix was examined. The venom showed high activity of matrix metalloproteinase (MMP), especially when it was mixed with the hemolymph of non-parasitized 5th instar larvae. We suggest that the MMP in the venom was activated by some components of the host hemolymph. On the other hand, the venom mixed with hemolymph could not decompose gelatin on zymography, suggesting that the venom-MMP is a different type from gelatinase. Activity of phospholipases A(2), B, C and hyaluronidase were measured with agar plates. High activities of phospholipase B and hyaluronidase were detected. These results suggest that the venom-MMP initially attacked the specific site of the intercellular-matrix of the fat body, and then the hyaluronidase and the phospholipase B cause lysis of the fat body cell, allowing lipid particles to be released into the host hemolymph.
Collapse
Affiliation(s)
- Y Nakamatsu
- Applied Entomology, Graduate School of Bio-Agricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan.
| | | |
Collapse
|
47
|
Abstract
Neuropeptides of the adipokinetic hormone (AKH) family regulate inter alia mobilisation of various substrates from stores in the fat body of insects during episodes of flight. How is this achieved? In insects which exclusively oxidise carbohydrates for flight (cockroaches), or which oxidise carbohydrates in conjunction with lipids (locusts) or proline (a number of beetles), the endogenous AKHs bind to a G(q)-protein-coupled receptor, activate a phospholipase C and the resulting inositol trisphosphate releases Ca(2+) from internal stores. In addition, influx of extracellular Ca(2+) is increased and, via a kinase cascade, glycogen phosphorylase is activated, glucose-1-phosphate produced, and transformed to trehalose, which is released into the haemolymph. In locusts, additionally, adenylate cyclase is activated and cyclic AMP is synthesised. In insects which use lipids for sustained flight (locust, tobacco hornworm moth) or proline for flight (certain beetles), adenylate cyclase is activated after the AKHs bind to their respective G(s)-protein-coupled receptor. The resulting cyclic AMP, together with the messengers intra- and extracellular Ca(2+), activate a triacylglycerol lipase, which results in the production of 1,2 diacylglycerols (in locusts, moths) or (hypothetically) free fatty acids (fruit beetle).
Collapse
Affiliation(s)
- Gerd Gäde
- Department of Zoology, University of Cape Town, ZA-7701, Rondebosch, South Africa.
| | | |
Collapse
|
48
|
Auerswald L, Gäde G. The role of Ins(1,4,5)P(3) in signal transduction of the metabolic neuropeptide Mem-CC in the cetoniid beetle, Pachnoda sinuata. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2002; 32:1793-1803. [PMID: 12429131 DOI: 10.1016/s0965-1748(02)00138-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
We have investigated the role of inositol triphosphate, Ins(1,4,5)P(3), in the transduction of the hypertrehalosaemic and hyperprolinaemic signal of the endogenous neuropeptide Mem-CC in the cetoniid beetle Pachnoda sinuata. Flight and injection of Mem-CC into the haemocoel of the beetle induce an increase of Ins(1,4,5)P(3) levels in the fat body of the beetle. When Mem-CC is co-injected with U 73122, which is an inhibitor of phospholipase C, this effect is abolished. Mem-CC also elevates Ins(1,4,5)P(3) concentration in fat body pieces in vitro. The increase in Ins(1,4,5)P(3) levels is tissue-specific and does not occur in brain and flight muscles. Elevation of the Ins(1,4,5)P(3) levels upon injection of Mem-CC is time- and dose-dependent: the maximum response is reached after 3 min and a dose of 10 pmol is needed. Compounds that mimic the action of cAMP (cpt-cAMP, forskolin) do not influence the concentration of Ins(1,4,5)P(3), while those that stimulate G-proteins (aluminium fluoride and cholera toxin) cause an increase of Ins(1,4,5)P(3) levels. The application (in vivo and in vitro) of F-Ins(1,4,5)P(3), an Ins(1,4,5)P(3) analogue that penetrates the cell membrane, causes a mobilisation of carbohydrate reserves via the activation of glycogen phosphorylase but does not stimulate proline synthesis. In addition, U 73122 abolishes the hypertrehalosaemic but not the hyperprolinaemic effect of Mem-CC. The results suggest that the hypertrehalosaemic signal of Mem-CC is mediated via an increase of Ins(1,4,5)P(3) levels in the fat body of P. sinuata.
Collapse
Affiliation(s)
- Lutz Auerswald
- Zoology Department, University of Cape Town, Rondebosch 7701, South Africa.
| | | |
Collapse
|
49
|
Gäde G, Auerswald L. Beetles' choice--proline for energy output: control by AKHs. Comp Biochem Physiol B Biochem Mol Biol 2002; 132:117-29. [PMID: 11997215 DOI: 10.1016/s1096-4959(01)00541-3] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Many beetle species use proline and carbohydrates in a varying ratio to power flight. The degree of contribution of either fuel varies widely between species. In contrast, dung beetle species investigated, thus far, do not have any carbohydrate reserves and rely completely on proline to power energy-costly activities such as flight and, probably, walking and ball-rolling. While the fruit beetle, Pachnoda sinuata, uses proline and carbohydrates equally during flight, proline is solely oxidised during endothermic pre-flight warm-up, as well as during flight after prolonged starvation. Thus, proline seems to be the essential fuel for activity in beetles, even in flightless ones and in those that use proline in combination with carbohydrates; the latter can be completely substituted by proline in certain circumstances. It is apparent from the rapid decline of energy substrates in flight muscles and haemolymph after the onset of flight that mobilisation of stored fuels of the fat body is necessary for prolonged flight periods. This task is performed by AKH-type neuropeptides. In beetles, like in other insects, these peptides mobilise glycogen via activation of glycogen phosphorylase. They also stimulate proline synthesis from alanine and acetyl-CoA in the fat body. Acetyl-CoA is derived from the beta-oxidation of fatty acids and we propose that the neuropeptides activate triacylglycerol lipase.
Collapse
Affiliation(s)
- Gerd Gäde
- Zoology Department, University of Cape Town, South Africa.
| | | |
Collapse
|
50
|
Van der Horst DJ, Van Marrewijk WJ, Diederen JH. Adipokinetic hormones of insect: release, signal transduction, and responses. INTERNATIONAL REVIEW OF CYTOLOGY 2002; 211:179-240. [PMID: 11597004 DOI: 10.1016/s0074-7696(01)11019-3] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Flight activity of insects provides an attractive yet relatively simple model system for regulation of processes involved in energy metabolism. This is particularly highlighted during long-distance flight, for which the locust constitutes a well-accepted model insect. Peptide adipokinetic hormones (AKHs) are synthesized and stored by neurosecretory cells of the corpus cardiacum, a neuroendocrine gland connected with the insect brain. The actions of these hormones on their fat body target cells trigger a number of coordinated signal transduction processes which culminate in the mobilization of both carbohydrate (trehalose) and lipid (diacylglycerol). These substrates fulfill differential roles in energy metabolism of the contracting flight muscles. The molecular mechanism of diacylglycerol transport in insect blood involving a reversible conversion of lipoproteins (lipophorins) has revealed a novel concept for lipid transport in the circulatory system. In an integrative approach, recent advances are reviewed on the consecutive topics of biosynthesis, storage, and release of insect AKHs, AKH signal transduction mechanisms and metabolic responses in fat body cells, and the dynamics of reversible lipophorin conversions in the insect blood.
Collapse
Affiliation(s)
- D J Van der Horst
- Department of Biochemical Physiology, Faculty of Biology and Institute of Biomembranes, Utrecht University, The Netherlands
| | | | | |
Collapse
|