1
|
Agudelo CW, Samaha G, Garcia-Arcos I. Alveolar lipids in pulmonary disease. A review. Lipids Health Dis 2020; 19:122. [PMID: 32493486 PMCID: PMC7268969 DOI: 10.1186/s12944-020-01278-8] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 05/05/2020] [Indexed: 12/15/2022] Open
Abstract
Lung lipid metabolism participates both in infant and adult pulmonary disease. The lung is composed by multiple cell types with specialized functions and coordinately acting to meet specific physiologic requirements. The alveoli are the niche of the most active lipid metabolic cell in the lung, the type 2 cell (T2C). T2C synthesize surfactant lipids that are an absolute requirement for respiration, including dipalmitoylphosphatidylcholine. After its synthesis and secretion into the alveoli, surfactant is recycled by the T2C or degraded by the alveolar macrophages (AM). Surfactant biosynthesis and recycling is tightly regulated, and dysregulation of this pathway occurs in many pulmonary disease processes. Alveolar lipids can participate in the development of pulmonary disease from their extracellular location in the lumen of the alveoli, and from their intracellular location in T2C or AM. External insults like smoke and pollution can disturb surfactant homeostasis and result in either surfactant insufficiency or accumulation. But disruption of surfactant homeostasis is also observed in many chronic adult diseases, including chronic obstructive pulmonary disease (COPD), and others. Sustained damage to the T2C is one of the postulated causes of idiopathic pulmonary fibrosis (IPF), and surfactant homeostasis is disrupted during fibrotic conditions. Similarly, surfactant homeostasis is impacted during acute respiratory distress syndrome (ARDS) and infections. Bioactive lipids like eicosanoids and sphingolipids also participate in chronic lung disease and in respiratory infections. We review the most recent knowledge on alveolar lipids and their essential metabolic and signaling functions during homeostasis and during some of the most commonly observed pulmonary diseases.
Collapse
Affiliation(s)
- Christina W Agudelo
- Department of Medicine, SUNY Downstate Health Sciences University, Brooklyn, NY, 11203, USA
| | - Ghassan Samaha
- Department of Medicine, SUNY Downstate Health Sciences University, Brooklyn, NY, 11203, USA
| | - Itsaso Garcia-Arcos
- Department of Medicine, SUNY Downstate Health Sciences University, Brooklyn, NY, 11203, USA.
| |
Collapse
|
2
|
Bridges JP, Schehr A, Wang Y, Huo L, Besnard V, Ikegami M, Whitsett JA, Xu Y. Epithelial SCAP/INSIG/SREBP signaling regulates multiple biological processes during perinatal lung maturation. PLoS One 2014; 9:e91376. [PMID: 24806461 PMCID: PMC4012993 DOI: 10.1371/journal.pone.0091376] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 02/10/2014] [Indexed: 11/19/2022] Open
Abstract
Pulmonary surfactant is required for lung function at birth and throughout postnatal life. Defects in the surfactant system are associated with common pulmonary disorders including neonatal respiratory distress syndrome and acute respiratory distress syndrome in children and adults. Lipogenesis is essential for the synthesis of pulmonary surfactant by type II epithelial cells lining the alveoli. This study sought to identify the role of pulmonary epithelial SREBP, a transcriptional regulator of cellular lipid homeostasis, during a critical time period of perinatal lung maturation in the mouse. Genome wide mRNA expression profiling of lung tissue from transgenic mice with epithelial-specific deletions of Scap (ScapΔ/Δ, resulting in inactivation of SREBP signaling) or Insig1 and Insig2 (Insig1/2Δ/Δ, resulting in activation of SREBP signaling) was assessed. Differentially expressed genes responding to SREBP perturbations were identified and subjected to functional enrichment analysis, pathway mapping and literature mining to predict upstream regulators and transcriptional networks regulating surfactant lipid homeostasis. Through comprehensive data analysis and integration, time dependent effects of epithelial SCAP/INSIG/SREBP deletion and defined SCAP/INSIG/SREBP-associated genes, bioprocesses and downstream pathways were identified. SREBP signaling influences epithelial development, cell death and cell proliferation at E17.5, while primarily influencing surfactant physiology, lipid/sterol synthesis, and phospholipid transport after birth. SREBP signaling integrated with the Wnt/β-catenin and glucocorticoid receptor signaling pathways during perinatal lung maturation. SREBP regulates perinatal lung lipogenesis and maturation through multiple mechanisms by interactions with distinct sets of regulatory partners.
Collapse
Affiliation(s)
- James P. Bridges
- Perinatal Institute, Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Angelica Schehr
- Perinatal Institute, Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Yanhua Wang
- Perinatal Institute, Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Liya Huo
- Perinatal Institute, Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | | | - Machiko Ikegami
- Perinatal Institute, Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Jeffrey A. Whitsett
- Perinatal Institute, Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Yan Xu
- Perinatal Institute, Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
- * E-mail:
| |
Collapse
|
3
|
Abstract
The alveolar type II epithelial (ATII) cell is highly specialised for the synthesis and storage, in intracellular lamellar bodies, of phospholipid destined for secretion as pulmonary surfactant into the alveolus. Regulation of the enzymology of surfactant phospholipid synthesis and metabolism has been extensively characterised at both molecular and functional levels, but understanding of surfactant phospholipid metabolism in vivo in either healthy or, especially, diseased lungs is still relatively poorly understood. This review will integrate recent advances in the enzymology of surfactant phospholipid metabolism with metabolic studies in vivo in both experimental animals and human subjects. It will highlight developments in the application of stable isotope-labelled precursor substrates and mass spectrometry to probe lung phospholipid metabolism in terms of individual molecular lipid species and identify areas where a more comprehensive metabolic model would have considerable potential for direct application to disease states.
Collapse
|
4
|
Iatan I, Bailey D, Ruel I, Hafiane A, Campbell S, Krimbou L, Genest J. Membrane microdomains modulate oligomeric ABCA1 function: impact on apoAI-mediated lipid removal and phosphatidylcholine biosynthesis. J Lipid Res 2011; 52:2043-55. [PMID: 21846716 DOI: 10.1194/jlr.m016196] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recent studies have identified an ABCA1-dependent, phosphatidylcholine-rich microdomain, called the "high-capacity binding site" (HCBS), that binds apoA-I and plays a pivotal role in apoA-I lipidation. Here, using sucrose gradient fractionation, we obtained evidence that both ABCA1 and [¹²⁵I]apoA-I associated with the HCBS were found localized to nonraft microdomains. Interestingly, phosphatidylcholine (PtdCho) was selectively removed from nonraft domains by apoA-I, whereas sphingomyelin and cholesterol were desorbed from both detergent-resistant membranes and nonraft domains. The modulatory role of cholesterol on apoA-I binding to ABCA1/HCBS was also examined. Loading cells with cholesterol resulted in a drastic reduction in apoA-I binding. Conversely, depletion of membrane cholesterol by methyl-β-cyclodextrin treatment resulted in a significant increase in apoA-I binding. Finally, we obtained evidence that apoA-I interaction with ABCA1 promoted the activation and gene expression of key enzymes in the PtdCho biosynthesis pathway. Taken together, these results provide strong evidence that the partitioning of ABCA1/HCBS to nonraft domains plays a pivotal role in the selective desorption of PtdCho molecules by apoA-I, allowing an optimal environment for cholesterol release and regeneration of the PtdCho-containing HCBS. This process may have important implications in preventing and treating atherosclerotic cardiovascular disease.
Collapse
Affiliation(s)
- Iulia Iatan
- Department of Biochemistry, Faculty of Medicine, McGill University Health Center/Royal Victoria Hospital, Montréal, Québec, H3A 1A1, Canada.
| | | | | | | | | | | | | |
Collapse
|
5
|
Sugimoto H, Banchio C, Vance DE. Transcriptional regulation of phosphatidylcholine biosynthesis. Prog Lipid Res 2008; 47:204-20. [PMID: 18295604 DOI: 10.1016/j.plipres.2008.01.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Phosphatidylcholine biosynthesis in animal cells is primarily regulated by the rapid translocation of CTP:phosphocholine cytidylyltransferase alpha between a soluble form that is inactive and a membrane-associated form that is activated. Until less than 10 years ago there was no information on the transcriptional regulation of phosphatidylcholine biosynthesis. Research has identified the transcription factors Sp1, Rb, TEF4, Ets-1 and E2F as enhancing the expression of the cytidylyltransferase and Net as a factor that represses cytidylyltransferase expression. Key transcription factors involved in cholesterol or fatty acid metabolism (SREBPs, LXRs, PPARs) do not have a major role in transcriptional regulation of the cytidylyltransferase. Rather than being linked to cholesterol or energy metabolism, regulation of the cytidylyltransferase is linked to the cell cycle, cell growth and differentiation. Transcriptional regulation of phospholipid biosynthesis is more elegantly understood in yeast and involves responses to inositol, choline and zinc in the culture medium.
Collapse
Affiliation(s)
- Hiroyuki Sugimoto
- Department of Biochemistry, Dokkyo Medical University School of Medicine, Mibu 321-0293, Japan.
| | | | | |
Collapse
|
6
|
Wu Y, Xu Z, Henderson FC, Ryan AJ, Yahr TL, Mallampalli RK. Chronic Pseudomonas aeruginosa infection reduces surfactant levels by inhibiting its biosynthesis. Cell Microbiol 2006; 9:1062-72. [PMID: 17166234 DOI: 10.1111/j.1462-5822.2006.00852.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Chronic Pseudomonas aeruginosa infection, as occurs in cystic fibrosis, is associated with decreased surfactant phospholipid levels. To investigate mechanisms, we measured synthesis of dipalmitoylphosphatidylcholine (DPPC), the major surfactant phospholipid. Mice received an agarose bead slurry alone, or were infected with beads containing a clinical mucoid isolate of P. aeruginosa. Bacterial infection after 3 days resulted in a approximately 50% reduction in surfactant DPPC content versus control. These changes in surfactant were associated with co-ordinate reductions in mRNAs and immunoreactive levels for CTP: phosphocholine cytidylyltransferase (CCTalpha), the rate-regulatory enzyme required for DPPC synthesis. P. aeruginosa infection of murine lung epithelia decreased CCTalpha gene transcription without altering mRNA stability and by a mechanism other than release of a soluble extracellular inhibitor. Promoter deletional analysis revealed that P. aeruginosa activates a negative response element from -1019 to -799 bp of the CCTalpha proximal 5'-flanking region. Exposure of cells to a P. aeruginosa mutant strain producing alginate reduced CCTalpha promoter activity, whereas these effects were not observed in strains defective in alginate synthesis. Murine type II cells isolated from P. aeruginosa-infected CCTalpha promoter-beta-galactosidase transgenic mice exhibited significantly reduced CCT and beta-galactosidase enzyme activities versus control. Thus, a mucoid P. aeruginosa strain reduces mRNA synthesis of a key biosynthetic enzyme thereby decreasing levels of surfactant.
Collapse
Affiliation(s)
- Yanghong Wu
- Department of Internal Medicine, University of Iowa, Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA 52242, USA
| | | | | | | | | | | |
Collapse
|
7
|
Ryan AJ, Andrews M, Zhou J, Mallampalli RK. c-Jun N-terminal kinase regulates CTP:phosphocholine cytidylyltransferase. Arch Biochem Biophys 2006; 447:23-33. [PMID: 16466687 DOI: 10.1016/j.abb.2006.01.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2005] [Revised: 01/09/2006] [Accepted: 01/11/2006] [Indexed: 11/19/2022]
Abstract
CTP:phosphocholine cytidylyltransferase (CCTalpha) is a rate-regulatory enzyme required for phosphatidylcholine (PtdCho) synthesis. CCTalpha is also a phosphoenzyme, but the physiologic role of kinases on enzyme function remains unclear. We report high-level expression of two major isoforms of the c-Jun N-terminal kinase family (JNK1 and JNK2) in murine lung epithelia. Further, JNK1 and JNK2 phosphorylated purified CCTalpha in vitro, and this was associated with a dose-dependent decrease (approximately 40%) in CCT activity. To evaluate JNK in vivo, lung epithelial cells were infected with a replication defective adenoviral vector encoding murine JNK2 (Adv-JNK2) or an empty vector. Adv-JNK2 infection, unlike the empty vector, markedly increased JNK2 expression concomitant with increased incorporation of [32P]orthophosphate into endogenous CCTalpha. Although Adv-JNK2 infection only modestly reduced CCT activity, it reduced PtdCho synthesis by approximately 30% in cells. These observations suggest a role for JNK kinases as negative regulators of phospholipid synthesis in murine lung epithelia.
Collapse
Affiliation(s)
- Alan J Ryan
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.
| | | | | | | |
Collapse
|
8
|
Ryan A, Fisher K, Thomas C, Mallampalli R. Transcriptional repression of the CTP:phosphocholine cytidylyltransferase gene by sphingosine. Biochem J 2005; 382:741-50. [PMID: 15139854 PMCID: PMC1133833 DOI: 10.1042/bj20040105] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2004] [Revised: 04/19/2004] [Accepted: 05/13/2004] [Indexed: 11/17/2022]
Abstract
We examined the effects of the bioactive lipid, sphingosine, on the expression of the rate-limiting enzyme involved in surfactant phosphatidylcholine synthesis, CCTalpha (CTP:phosphocholine cytidylyltransferase alpha). Sphingosine decreased phosphatidylcholine synthesis by inhibiting CCT activity in primary alveolar type II epithelia. Sphingosine decreased CCTalpha protein and mRNA levels by approx. 50% compared with control. The bioactive lipid did not alter CCTalpha mRNA stability, but significantly inhibited its transcriptional rate. In murine lung epithelia, sphingosine selectively reduced CCTalpha promoter-reporter activity when transfected with a 2 kb CCTalpha promoter/luciferase gene construct. Sphingosine also decreased transgene expression in murine type II epithelia isolated from CCTalpha promoter-reporter transgenic mice harbouring this 2 kb proximal 5'-flanking sequence. Deletional analysis revealed that sphingosine responsiveness was mapped to a negative regulatory element contained within 814 bp upstream of the coding region. The results indicate that bioactive sphingolipid metabolites suppress surfactant lipid synthesis by inhibiting gene transcription of a key surfactant biosynthetic enzyme.
Collapse
Affiliation(s)
- Alan J. Ryan
- *Department of Veterans Affairs Medical Center, University of Iowa College of Medicine, Iowa City, IA 52242, U.S.A
| | - Kurt Fisher
- †Departments of Internal Medicine and Biochemistry, University of Iowa College of Medicine, Iowa City, IA 52242, U.S.A
| | - Christie P. Thomas
- †Departments of Internal Medicine and Biochemistry, University of Iowa College of Medicine, Iowa City, IA 52242, U.S.A
| | - Rama K. Mallampalli
- *Department of Veterans Affairs Medical Center, University of Iowa College of Medicine, Iowa City, IA 52242, U.S.A
- †Departments of Internal Medicine and Biochemistry, University of Iowa College of Medicine, Iowa City, IA 52242, U.S.A
- To whom correspondence should be addressed, at Pulmonary and Critical Care Division, C-33K, GH, Departments of Internal Medicine and Biochemistry (email )
| |
Collapse
|
9
|
Jackowski S, Fagone P. CTP: Phosphocholine cytidylyltransferase: paving the way from gene to membrane. J Biol Chem 2004; 280:853-6. [PMID: 15536089 DOI: 10.1074/jbc.r400031200] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Suzanne Jackowski
- Protein Science Division, Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA.
| | | |
Collapse
|
10
|
Abstract
Identification of the genes and gene products involved in the biosynthesis of phosphatidylcholine, phosphatidylethanolamine, and phosphatidylserine has lagged behind that in many other fields because of difficulties encountered in purifying the respective proteins. Nevertheless, most of these genes have now been identified. In this review article, we have highlighted important new findings on the individual enzymes and the corresponding genes of phosphatidylcholine synthesis via its two major biosynthetic pathways: the CDP-choline pathway and the methylation pathway. We also review recent studies on phosphatidylethanolamine biosynthesis by two pathways: the CDP-ethanolamine pathway, which is active in the endoplasmic reticulum, and the phosphatidylserine decarboxylase pathway, which operates in mitochondria. Finally, the two base-exchange enzymes, phosphatidylserine synthase-1 and phosphatidylserine synthase-2, that synthesize phosphatidylserine in mammalian cells are also discussed.
Collapse
Affiliation(s)
- Jean E Vance
- Department of Medicine and CIHR Group on the Molecualr and Cell Biology of Lipids, University of Alberta, Edmonton, Canada.
| | | |
Collapse
|
11
|
Seashols SJ, del Castillo Olivares A, Gil G, Barbour SE. Regulation of group VIA phospholipase A2 expression by sterol availability. Biochim Biophys Acta Mol Cell Biol Lipids 2004; 1684:29-37. [PMID: 15450207 DOI: 10.1016/j.bbalip.2004.05.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2003] [Revised: 05/06/2004] [Accepted: 05/28/2004] [Indexed: 11/17/2022]
Abstract
Several lines of evidence suggest that glycerophospholipid mass is maintained through the coordinate regulation of CTP:phosphocholine cytidylyltransferase-alpha (CTalpha) and the group VIA calcium-independent phospholipase A2 (iPLA2). CTalpha expression is modulated by sterol and this is mediated in part through sterol regulatory element binding proteins (SREBP). In this report, we investigate the possibility that iPLA2 expression is controlled in a similar manner. When Chinese hamster ovary (CHO) cells were cultured under sterol-depleted conditions, iPLA2 catalytic activity, mRNA, and protein were induced by between two- and threefold. These inductions were suppressed when the cells were supplemented with exogenous sterols. Luciferase reporter assays indicated that sterol depletion induced transcription of iPLA2, an analysis of the 5' flanking region suggested that the iPLA2 gene contained a putative sterol regulatory element (SRE), and electrophoretic mobility shift assay (EMSA) analysis indicated that this element can bind SREBP-2. Notably, a mutant CHO cell line (SRD4) that constitutively generates mature SREBP proteins exhibited increased iPLA2 activity and expression compared to wild-type cells. These data suggest that iPLA2 expression is regulated in a manner consistent with other important genes in sterol and glycerophospholipid metabolism. Such coordinate regulation may be essential for maintaining the lipid composition of cell membranes.
Collapse
Affiliation(s)
- Sarah J Seashols
- Department of Biochemistry, Medical College of Virginia Campus, Virginia Commonwealth University, VCU, Box 980614, Richmond, VA 23298-0614, USA
| | | | | | | |
Collapse
|
12
|
Guthmann F, Schachtrup C, Tölle A, Wissel H, Binas B, Kondo H, Owada Y, Spener F, Rüstow B. Phenotype of palmitic acid transport and of signalling in alveolar type II cells from E/H-FABP double-knockout mice: contribution of caveolin-1 and PPARgamma. Biochim Biophys Acta Mol Cell Biol Lipids 2004; 1636:196-204. [PMID: 15164767 DOI: 10.1016/j.bbalip.2003.10.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2003] [Revised: 10/10/2003] [Accepted: 10/23/2003] [Indexed: 11/19/2022]
Abstract
Based on the assumption that fatty-acid-binding proteins (FABPs) of the epidermal-type (E-FABP) and heart-type (H-FABP) in murine alveolar type II (TII) cells mediate the synthesis of dipalmitoyl phosphatidylcholine (DPPC), the main surfactant phospholipid, we analysed TII cells isolated from wild-type (wt) and E/H-FABP double-knockout (double-ko) mice. Application of labelled palmitic acid to these cells revealed a drop in uptake, beta-oxidation, and incorporation into neutral lipids and total phosphatidylcholine (PC) of TII cells from double-ko mice. Whereas incorporation of labelled palmitic acid into DPPC remained unchanged, degradation studies demonstrated a substantial shift in DPPC synthesis from de novo to reacylation. In addition, increased expression of mRNAs and proteins of caveolin-1 and PPARgamma, and an increase of the mRNA encoding fatty acid translocase (FAT) was observed in the double-ko phenotype. As caveolin-1 interacted with PPARgamma, we assumed that FAT, caveolin-1, and PPARgamma form a signalling chain for fatty acid or drug. Consequently, PPARgamma-selective pioglitazone was added to the diet of double-ko mice. We found that further activation of PPARgamma could 'heal' the E/H-FABP double-ko effect in these TII cells as transport and utilisation of labelled palmitic acid restored a wt phenocopy. This indicated that E-FABP and/or H-FABP are involved in the mediation of DPPC synthesis in wt TII cells.
Collapse
Affiliation(s)
- Florian Guthmann
- Clinic for Neonatology, Charité Campus Mitte, Humboldt-Universität zu Berlin, 10098 Berlin, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Birner R, Daum G. Biogenesis and cellular dynamics of aminoglycerophospholipids. INTERNATIONAL REVIEW OF CYTOLOGY 2003; 225:273-323. [PMID: 12696595 DOI: 10.1016/s0074-7696(05)25007-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Aminoglycerophospholipids phosphatidylserine (PtdSer), phosphatidylethanolamine (PtdEtn), and phosphatidylcholine (PtdCho) comprise about 80% of total cellular phospholipids in most cell types. While the major function of PtdCho in eukaryotes and PtdEtn in prokaryotes is that of bulk membrane lipids, PtdSer is a minor component and appears to play a more specialized role in the plasma membrane of eukaryotes, e.g., in cell recognition processes. All three aminoglycerophospholipid classes are essential in mammals, whereas prokaryotes and lower eukaryotes such as yeast appear to be more flexible regarding their aminoglycerophospholipid requirement. Since different subcellular compartments of eukaryotes, namely the endoplasmic reticulum and mitochondria, contribute to the biosynthetic sequence of aminoglycerophospholipid formation, intracellular transport, sorting, and specific function of these lipids in different organelles are of special interest.
Collapse
Affiliation(s)
- Ruth Birner
- Institut für Biochemie, Technische Universität Graz, Petersgasse 12/2, A-8010 Graz, Austria
| | | |
Collapse
|
14
|
Bakovic M, Waite K, Vance DE. Oncogenic Ha-Ras transformation modulates the transcription of the CTP:phosphocholine cytidylyltransferase alpha gene via p42/44MAPK and transcription factor Sp3. J Biol Chem 2003; 278:14753-61. [PMID: 12584202 DOI: 10.1074/jbc.m300162200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
We have shown previously that expression of the murine CTP:phosphocholine cytidylyltransferase (CT) alpha gene is regulated during cell proliferation (Golfman, L. S., Bakovic, M., and Vance, D. E. (2001) J. Biol. Chem. 276, 43688-43692). We have now characterized the role of Ha-Ras in the transcriptional regulation of the CTalpha gene. The expression of CTalpha and CTbeta2 proteins and mRNAs was stimulated in C3H10T1/2 murine fibroblasts expressing oncogenic Ha-Ras. Incubation of cells with the specific inhibitor (PD98059) of p42/44(MAPK) decreased the expression of both CT isoforms. Transfection of fibroblasts with CTalpha promoter-luciferase constructs resulted in an approximately 2-fold enhanced luciferase expression in Ha-Ras-transformed, compared with nontransformed, fibroblasts. Electromobility shift assays indicated enhanced binding of the Sp3 transcription factor to the CTalpha promoter in Ha-Ras-transformed cells. Expression of several forms of Sp3 was increased in nuclear extracts of Ha-Ras-transformed fibroblasts compared with nontransformed cells. Tyrosine phosphorylation of one Sp3 form was decreased, whereas phosphorylation of two other forms of Sp3 was increased in nuclear extracts of Ha-Ras-transformed cells. When control fibroblasts were transfected with a Sp3-expressing plasmid, an enhanced expression of CTalpha and CTbeta was observed. However, the expression of CTalpha or CTbeta was not increased in Ha-Ras-transformed cells transfected with a Sp3 plasmid presumably because expression was already maximally enhanced. The results suggest that Sp3 is a downstream effector of a Ras/p42/44(MAPK) signaling pathway which increases CTalpha gene transcription.
Collapse
Affiliation(s)
- Marica Bakovic
- Department of Biochemistry and Canadian Institutes of Health Research Group on Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, Alberta T6G 2S2, Canada
| | | | | |
Collapse
|
15
|
Golfman LS, Bakovic M, Vance DE. Transcription of the CTP:phosphocholine cytidylyltransferase alpha gene is enhanced during the S phase of the cell cycle. J Biol Chem 2001; 276:43688-92. [PMID: 11557772 DOI: 10.1074/jbc.m108170200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have studied the transcription of the CTP:phosphocholine cytidylyltransferase alpha (CTalpha) gene in C3H10T1/2 fibroblasts as a function of the cell cycle. The cells were incubated for 48 h with 0.5% fetal bovine serum. The cells were induced into the G(1) phase of the cell cycle by the addition of medium with 10% fetal bovine serum. The cells began the synthesis of DNA after 12 h. At 16 and 20 h there was an increased amount of CTalpha mRNA that coincided with an increase in the expression of CTalpha proximal promoter-luciferase constructs (-201/+38 and -130/+38). Luciferase constructs with the basal promoter (-52/+38) showed no change in activity during the cell cycle. Incorporation of [(3)H]choline into phosphatidylcholine began to increase by 8 h after the addition of serum and peaked at 18 h. The mass of phosphatidylcholine nearly doubled between 8 and 26 h after addition of serum. CT activity increased by 6 h after serum addition and was maintained until 22 h. Thus, the increase of phosphatidylcholine biosynthesis in the G(1) phase of the cell cycle is not due to enhanced transcription of the CTalpha gene. Instead increased transcription of the CTalpha gene occurred during the S phase of the cell cycle in preparation for mitosis.
Collapse
Affiliation(s)
- L S Golfman
- CIHR Group on Molecular and Cell Biology of Lipids, Department of Biochemistry, University of Alberta, Edmonton, Alberta T6H 5S3, Canada
| | | | | |
Collapse
|
16
|
|