1
|
Schratter M, Lass A, Radner FPW. ABHD5-A Regulator of Lipid Metabolism Essential for Diverse Cellular Functions. Metabolites 2022; 12:1015. [PMID: 36355098 PMCID: PMC9694394 DOI: 10.3390/metabo12111015] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/19/2022] [Accepted: 10/23/2022] [Indexed: 11/12/2023] Open
Abstract
The α/β-Hydrolase domain-containing protein 5 (ABHD5; also known as comparative gene identification-58, or CGI-58) is the causative gene of the Chanarin-Dorfman syndrome (CDS), a disorder mainly characterized by systemic triacylglycerol accumulation and a severe defect in skin barrier function. The clinical phenotype of CDS patients and the characterization of global and tissue-specific ABHD5-deficient mouse strains have demonstrated that ABHD5 is a crucial regulator of lipid and energy homeostasis in various tissues. Although ABHD5 lacks intrinsic hydrolase activity, it functions as a co-activating enzyme of the patatin-like phospholipase domain-containing (PNPLA) protein family that is involved in triacylglycerol and glycerophospholipid, as well as sphingolipid and retinyl ester metabolism. Moreover, ABHD5 interacts with perilipins (PLINs) and fatty acid-binding proteins (FABPs), which are important regulators of lipid homeostasis in adipose and non-adipose tissues. This review focuses on the multifaceted role of ABHD5 in modulating the function of key enzymes in lipid metabolism.
Collapse
Affiliation(s)
- Margarita Schratter
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria
| | - Achim Lass
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria
- BioTechMed-Graz, 8010 Graz, Austria
- Field of Excellence BioHealth, 8010 Graz, Austria
| | - Franz P. W. Radner
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria
| |
Collapse
|
2
|
Du W, Lu X, Yuan T, Sun Z, Li X, Li S, Zhang Q, Tian X, Li D, Tian Y. Halogen-modified carbazole derivatives for lipid droplet-specific bioimaging and two-photon photodynamic therapy. Analyst 2021; 147:66-71. [PMID: 34821886 DOI: 10.1039/d1an01826d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Lipid droplets (LDs) are dynamic multifunctional organelles that participate in the regulation of many metabolic processes, visualization of which is necessary for biological research. In this work, a series of two-photon responsive fluorescent probes (C-H, C-Br, and C-I) based on carbazole units were designed and synthesized. Thereinto, an iodine-modified carbazole derivative C-I exhibited an exciting lipid droplet targeting ability due to its excellent lipophilicity. Meanwhile, benefiting from its larger Stokes shift and two-photon absorption cross-section, C-I was employed for two-photon confocal laser scanning microscopy (CLSM) and stimulated emission depletion (STED) microscopy imaging to observe LDs more accurately. In addition, given the heavy atom effect, C-I can effectively generate reactive oxygen species (ROS) leading to cancer cell apoptosis under near-infrared light irradiation. Notably, we explained the process of cell apoptosis through in vitro simulation experiments. This study provides a promising platform for visualization of lipid droplets.
Collapse
Affiliation(s)
- Wenli Du
- Department of Chemistry, Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, Hefei 230039, P. R. China.
| | - Xin Lu
- Department of Chemistry, Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, Hefei 230039, P. R. China.
| | - Tong Yuan
- School of Life Science, Anhui University, Hefei 230601, P. R. China
| | - Zhimin Sun
- Institutes of Physics Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei 230601, P. R. China.
| | - Xiaocheng Li
- Department of Chemistry, Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, Hefei 230039, P. R. China.
| | - Shengli Li
- Department of Chemistry, Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, Hefei 230039, P. R. China.
| | - Qiong Zhang
- Department of Chemistry, Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, Hefei 230039, P. R. China.
| | - Xiaohe Tian
- Huaxi MR Research Centre (HMRRC), Department of Radiology; Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China, 610041, China
| | - Dandan Li
- Institutes of Physics Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei 230601, P. R. China.
| | - Yupeng Tian
- Department of Chemistry, Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, Hefei 230039, P. R. China. .,State Key Laboratory of Coordination Chemistry, Nanjing University, P. R. China
| |
Collapse
|
3
|
Mei Y, Tang L, Xiao Q, Zhang Z, Zhang Z, Zang J, Zhou J, Wang Y, Wang W, Ren M. Reconstituted high density lipoprotein (rHDL), a versatile drug delivery nanoplatform for tumor targeted therapy. J Mater Chem B 2021; 9:612-633. [PMID: 33306079 DOI: 10.1039/d0tb02139c] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
rHDL is a synthesized drug delivery nanoplatform exhibiting excellent biocompatibility, which possesses most of the advantages of HDL. rHDL shows almost no toxicity and can be degraded to non-toxic substances in vivo. The severe limitation of the application of various antitumor agents is mainly due to their low bioavailability, high toxicity, poor stability, etc. Favorably, antitumor drug-loaded rHDL nanoparticles (NPs), which are known as an important drug delivery system (DDS), help to change the situation a lot. This DDS shows an outstanding active-targeting ability towards tumor cells and improves the therapeutic effect during antitumor treatment while overcoming the shortcomings mentioned above. In the following text, we will mainly focus on the various applications of rHDL in tumor targeted therapy by describing the properties, preparation, receptor active-targeting ability and antitumor effects of antineoplastic drug-loaded rHDL NPs.
Collapse
Affiliation(s)
- Yijun Mei
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Hernandez-Baixauli J, Puigbò P, Torrell H, Palacios-Jordan H, Ripoll VJR, Caimari A, Del Bas JM, Baselga-Escudero L, Mulero M. A Pilot Study for Metabolic Profiling of Obesity-Associated Microbial Gut Dysbiosis in Male Wistar Rats. Biomolecules 2021; 11:303. [PMID: 33670496 PMCID: PMC7922951 DOI: 10.3390/biom11020303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 02/06/2021] [Accepted: 02/13/2021] [Indexed: 02/07/2023] Open
Abstract
Obesity is one of the most incident and concerning disease worldwide. Definite strategies to prevent obesity and related complications remain elusive. Among the risk factors of the onset of obesity, gut microbiota might play an important role in the pathogenesis of the disease, and it has received extensive attention because it affects the host metabolism. In this study, we aimed to define a metabolic profile of the segregated obesity-associated gut dysbiosis risk factor. The study of the metabolome, in an obesity-associated gut dysbiosis model, provides a relevant way for the discrimination on the different biomarkers in the obesity onset. Thus, we developed a model of this obesity risk factors through the transference of gut microbiota from obese to non-obese male Wistar rats and performed a subsequent metabolic analysis in the receptor rats. Our results showed alterations in the lipid metabolism in plasma and in the phenylalanine metabolism in urine. In consequence, we have identified metabolic changes characterized by: (1) an increase in DG:34:2 in plasma, a decrease in hippurate, (2) an increase in 3-HPPA, and (3) an increase in o-coumaric acid. Hereby, we propose these metabolites as a metabolic profile associated to a segregated dysbiosis state related to obesity disease.
Collapse
Affiliation(s)
- Julia Hernandez-Baixauli
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, 43204 Reus, Spain; (J.H.-B.); (P.P.); (A.C.); (L.B.-E.)
| | - Pere Puigbò
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, 43204 Reus, Spain; (J.H.-B.); (P.P.); (A.C.); (L.B.-E.)
- Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain
- Department of Biology, University of Turku, 20014 Turku, Finland
| | - Helena Torrell
- Eurecat, Centre Tecnològic de Catalunya, Centre for Omic Sciences (COS), Joint Unit Universitat Rovira i Virgili−EURECAT, 43204 Reus, Spain; (H.T.); (H.P.-J.)
| | - Hector Palacios-Jordan
- Eurecat, Centre Tecnològic de Catalunya, Centre for Omic Sciences (COS), Joint Unit Universitat Rovira i Virgili−EURECAT, 43204 Reus, Spain; (H.T.); (H.P.-J.)
| | | | - Antoni Caimari
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, 43204 Reus, Spain; (J.H.-B.); (P.P.); (A.C.); (L.B.-E.)
| | - Josep M Del Bas
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, 43204 Reus, Spain; (J.H.-B.); (P.P.); (A.C.); (L.B.-E.)
| | - Laura Baselga-Escudero
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, 43204 Reus, Spain; (J.H.-B.); (P.P.); (A.C.); (L.B.-E.)
| | - Miquel Mulero
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain
| |
Collapse
|
5
|
Neutral Lipid Storage Diseases as Cellular Model to Study Lipid Droplet Function. Cells 2019; 8:cells8020187. [PMID: 30795549 PMCID: PMC6406896 DOI: 10.3390/cells8020187] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 02/14/2019] [Accepted: 02/19/2019] [Indexed: 01/10/2023] Open
Abstract
Neutral lipid storage disease with myopathy (NLSDM) and with ichthyosis (NLSDI) are rare autosomal recessive disorders caused by mutations in the PNPLA2 and in the ABHD5/CGI58 genes, respectively. These genes encode the adipose triglyceride lipase (ATGL) and α-β hydrolase domain 5 (ABHD5) proteins, which play key roles in the function of lipid droplets (LDs). LDs, the main cellular storage sites of triacylglycerols and sterol esters, are highly dynamic organelles. Indeed, LDs are critical for both lipid metabolism and energy homeostasis. Partial or total PNPLA2 or ABHD5/CGI58 knockdown is characteristic of the cells of NLSD patients; thus, these cells are natural models with which one can unravel LD function. In this review we firstly summarize genetic and clinical data collected from NLSD patients, focusing particularly on muscle, skin, heart, and liver damage due to impaired LD function. Then, we discuss how NLSD cells were used to investigate and expand the current structural and functional knowledge of LDs.
Collapse
|
6
|
Su X, Liu S, Zhang X, Lam SM, Hu X, Zhou Y, Chen J, Wang Y, Wu C, Shui G, Lu M, Pei R, Chen X. Requirement of cytosolic phospholipase A2 gamma in lipid droplet formation. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862:692-705. [DOI: 10.1016/j.bbalip.2017.03.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 03/16/2017] [Accepted: 03/18/2017] [Indexed: 01/24/2023]
|
7
|
Lipophilic phosphorescent gold(I) clusters as selective probes for visualization of lipid droplets by two-photon microscopy. J Photochem Photobiol A Chem 2017. [DOI: 10.1016/j.jphotochem.2016.08.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
8
|
Lord CC, Ferguson D, Thomas G, Brown AL, Schugar RC, Burrows A, Gromovsky AD, Betters J, Neumann C, Sacks J, Marshall S, Watts R, Schweiger M, Lee RG, Crooke RM, Graham MJ, Lathia JD, Sakaguchi TF, Lehner R, Haemmerle G, Zechner R, Brown JM. Regulation of Hepatic Triacylglycerol Metabolism by CGI-58 Does Not Require ATGL Co-activation. Cell Rep 2016; 16:939-949. [PMID: 27396333 DOI: 10.1016/j.celrep.2016.06.049] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 04/20/2016] [Accepted: 06/10/2016] [Indexed: 01/23/2023] Open
Abstract
Adipose triglyceride lipase (ATGL) and comparative gene identification 58 (CGI-58) are critical regulators of triacylglycerol (TAG) turnover. CGI-58 is thought to regulate TAG mobilization by stimulating the enzymatic activity of ATGL. However, it is not known whether this coactivation function of CGI-58 occurs in vivo. Moreover, the phenotype of human CGI-58 mutations suggests ATGL-independent functions. Through direct comparison of mice with single or double deficiency of CGI-58 and ATGL, we show here that CGI-58 knockdown causes hepatic steatosis in both the presence and absence of ATGL. CGI-58 also regulates hepatic diacylglycerol (DAG) and inflammation in an ATGL-independent manner. Interestingly, ATGL deficiency, but not CGI-58 deficiency, results in suppression of the hepatic and adipose de novo lipogenic program. Collectively, these findings show that CGI-58 regulates hepatic neutral lipid storage and inflammation in the genetic absence of ATGL, demonstrating that mechanisms driving TAG lipolysis in hepatocytes differ significantly from those in adipocytes.
Collapse
Affiliation(s)
- Caleb C Lord
- Section on Lipid Sciences, Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC 27157-1040, USA; Division of Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390-9077, USA
| | - Daniel Ferguson
- Section on Lipid Sciences, Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC 27157-1040, USA; Department of Cellular and Molecular Medicine, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Gwynneth Thomas
- Section on Lipid Sciences, Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC 27157-1040, USA
| | - Amanda L Brown
- Section on Lipid Sciences, Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC 27157-1040, USA; Department of Cellular and Molecular Medicine, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Rebecca C Schugar
- Department of Cellular and Molecular Medicine, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Amy Burrows
- Department of Cellular and Molecular Medicine, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Anthony D Gromovsky
- Department of Cellular and Molecular Medicine, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Jenna Betters
- Section on Lipid Sciences, Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC 27157-1040, USA
| | - Chase Neumann
- Department of Cellular and Molecular Medicine, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Jessica Sacks
- Department of Cellular and Molecular Medicine, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Stephanie Marshall
- Section on Lipid Sciences, Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC 27157-1040, USA; Department of Cellular and Molecular Medicine, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Russell Watts
- Group on Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Martina Schweiger
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | - Richard G Lee
- Cardiovascular Group, Antisense Drug Discovery, Ionis Pharmaceuticals, Inc., Carlsbad, CA 92010, USA
| | - Rosanne M Crooke
- Cardiovascular Group, Antisense Drug Discovery, Ionis Pharmaceuticals, Inc., Carlsbad, CA 92010, USA
| | - Mark J Graham
- Cardiovascular Group, Antisense Drug Discovery, Ionis Pharmaceuticals, Inc., Carlsbad, CA 92010, USA
| | - Justin D Lathia
- Department of Cellular and Molecular Medicine, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Takuya F Sakaguchi
- Department of Stem Cell Biology and Regenerative Medicine, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Richard Lehner
- Group on Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Guenter Haemmerle
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | - Rudolf Zechner
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | - J Mark Brown
- Department of Cellular and Molecular Medicine, Cleveland Clinic, Cleveland, OH 44195, USA.
| |
Collapse
|
9
|
Welte MA. As the fat flies: The dynamic lipid droplets of Drosophila embryos. Biochim Biophys Acta Mol Cell Biol Lipids 2015; 1851:1156-85. [PMID: 25882628 DOI: 10.1016/j.bbalip.2015.04.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 03/31/2015] [Accepted: 04/06/2015] [Indexed: 01/09/2023]
Abstract
Research into lipid droplets is rapidly expanding, and new cellular and organismal roles for these lipid-storage organelles are continually being discovered. The early Drosophila embryo is particularly well suited for addressing certain questions in lipid-droplet biology and combines technical advantages with unique biological phenomena. This review summarizes key features of this experimental system and the techniques available to study it, in order to make it accessible to researchers outside this field. It then describes the two topics most heavily studied in this system, lipid-droplet motility and protein sequestration on droplets, discusses what is known about the molecular players involved, points to open questions, and compares the results from Drosophila embryo studies to what it is known about lipid droplets in other systems.
Collapse
Affiliation(s)
- Michael A Welte
- Department of Biology University of Rochester, RC Box 270211, 317 Hutchison Hall, Rochester, NY 14627, USA.
| |
Collapse
|
10
|
Triacylglycerol Storage in Lipid Droplets in Procyclic Trypanosoma brucei. PLoS One 2014; 9:e114628. [PMID: 25493940 PMCID: PMC4262433 DOI: 10.1371/journal.pone.0114628] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 11/11/2014] [Indexed: 11/19/2022] Open
Abstract
Carbon storage is likely to enable adaptation of trypanosomes to nutritional challenges or bottlenecks during their stage development and migration in the tsetse. Lipid droplets are candidates for this function. This report shows that feeding of T. brucei with oleate results in a 4-5 fold increase in the number of lipid droplets, as quantified by confocal fluorescence microscopy and by flow cytometry of BODIPY 493/503-stained cells. The triacylglycerol (TAG) content also increased 4-5 fold, and labeled oleate is incorporated into TAG. Fatty acid carbon can thus be stored as TAG in lipid droplets under physiological growth conditions in procyclic T. brucei. β-oxidation has been suggested as a possible catabolic pathway for lipids in T. brucei. A single candidate gene, TFEα1 with coding capacity for a subunit of the trifunctional enzyme complex was identified. TFEα1 is expressed in procyclic T. brucei and present in glycosomal proteomes, Unexpectedly, a TFEα1 gene knock-out mutant still expressed wild-type levels of previously reported NADP-dependent 3-hydroxyacyl-CoA dehydrogenase activity, and therefore, another gene encodes this enzymatic activity. Homozygous Δtfeα1/Δtfeα1 null mutant cells show a normal growth rate and an unchanged glycosomal proteome in procyclic T. brucei. The decay kinetics of accumulated lipid droplets upon oleate withdrawal can be fully accounted for by the dilution effect of cell division in wild-type and Δtfeα1/Δtfeα1 cells. The absence of net catabolism of stored TAG in procyclic T. brucei, even under strictly glucose-free conditions, does not formally exclude a flux through TAG, in which biosynthesis equals catabolism. Also, the possibility remains that TAG catabolism is completely repressed by other carbon sources in culture media or developmentally activated in post-procyclic stages in the tsetse.
Collapse
|
11
|
Sahu-Osen A, Montero-Moran G, Schittmayer M, Fritz K, Dinh A, Chang YF, McMahon D, Boeszoermenyi A, Cornaciu I, Russell D, Oberer M, Carman GM, Birner-Gruenberger R, Brasaemle DL. CGI-58/ABHD5 is phosphorylated on Ser239 by protein kinase A: control of subcellular localization. J Lipid Res 2014; 56:109-21. [PMID: 25421061 PMCID: PMC4274058 DOI: 10.1194/jlr.m055004] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
CGI-58/ABHD5 coactivates adipose triglyceride lipase (ATGL). In adipocytes, CGI-58 binds to perilipin 1A on lipid droplets under basal conditions, preventing interaction with ATGL. Upon activation of protein kinase A (PKA), perilipin 1A is phosphorylated and CGI-58 rapidly disperses into the cytoplasm, enabling lipase coactivation. Because the amino acid sequence of murine CGI-58 has a predicted PKA consensus sequence of RKYS239S240, we hypothesized that phosphorylation of CGI-58 is involved in this process. We show that Ser239 of murine CGI-58 is a substrate for PKA using phosphoamino acid analysis, MS, and immunoblotting approaches to study phosphorylation of recombinant CGI-58 and endogenous CGI-58 of adipose tissue. Phosphorylation of CGI-58 neither increased nor impaired coactivation of ATGL in vitro. Moreover, Ser239 was not required for CGI-58 function to increase triacylglycerol turnover in human neutral lipid storage disorder fibroblasts that lack endogenous CGI-58. Both CGI-58 and S239A/S240A-mutated CGI-58 localized to perilipin 1A-coated lipid droplets in cells. When PKA was activated, WT CGI-58 dispersed into the cytoplasm, whereas substantial S239A/S240A-mutated CGI-58 remained on lipid droplets. Perilipin phosphorylation also contributed to CGI-58 dispersion. PKA-mediated phosphorylation of CGI-58 is required for dispersion of CGI-58 from perilipin 1A-coated lipid droplets, thereby increasing CGI-58 availability for ATGL coactivation.
Collapse
Affiliation(s)
- Anita Sahu-Osen
- Research Unit Functional Proteomics and Metabolic Pathways, Institute of Pathology, Medical University of Graz, Graz, Austria A-8036, and Omics Center Graz, BioTechMed-Graz, Graz, Austria A-8010
| | - Gabriela Montero-Moran
- Rutgers Center for Lipid Research, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901 Departments of Nutritional Sciences Rutgers, The State University of New Jersey, New Brunswick, NJ 08901
| | - Matthias Schittmayer
- Research Unit Functional Proteomics and Metabolic Pathways, Institute of Pathology, Medical University of Graz, Graz, Austria A-8036, and Omics Center Graz, BioTechMed-Graz, Graz, Austria A-8010
| | - Katarina Fritz
- Research Unit Functional Proteomics and Metabolic Pathways, Institute of Pathology, Medical University of Graz, Graz, Austria A-8036, and Omics Center Graz, BioTechMed-Graz, Graz, Austria A-8010
| | - Anna Dinh
- Rutgers Center for Lipid Research, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901 Departments of Nutritional Sciences Rutgers, The State University of New Jersey, New Brunswick, NJ 08901
| | - Yu-Fang Chang
- Rutgers Center for Lipid Research, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901 Food Science, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901
| | - Derek McMahon
- Rutgers Center for Lipid Research, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901 Departments of Nutritional Sciences Rutgers, The State University of New Jersey, New Brunswick, NJ 08901
| | | | - Irina Cornaciu
- Institute of Molecular Biosciences, University of Graz, Graz, Austria A-8010
| | - Deanna Russell
- Rutgers Center for Lipid Research, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901 Departments of Nutritional Sciences Rutgers, The State University of New Jersey, New Brunswick, NJ 08901
| | - Monika Oberer
- Institute of Molecular Biosciences, University of Graz, Graz, Austria A-8010
| | - George M Carman
- Rutgers Center for Lipid Research, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901 Food Science, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901
| | - Ruth Birner-Gruenberger
- Research Unit Functional Proteomics and Metabolic Pathways, Institute of Pathology, Medical University of Graz, Graz, Austria A-8036, and Omics Center Graz, BioTechMed-Graz, Graz, Austria A-8010
| | - Dawn L Brasaemle
- Rutgers Center for Lipid Research, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901 Departments of Nutritional Sciences Rutgers, The State University of New Jersey, New Brunswick, NJ 08901
| |
Collapse
|
12
|
Lord CC, Brown JM. Distinct roles for alpha-beta hydrolase domain 5 (ABHD5/CGI-58) and adipose triglyceride lipase (ATGL/PNPLA2) in lipid metabolism and signaling. Adipocyte 2014; 1:123-131. [PMID: 23145367 PMCID: PMC3492958 DOI: 10.4161/adip.20035] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Catabolism of stored triacylglycerol (TAG) from cytoplasmic lipid droplets is critical for providing energy substrates, membrane building blocks and signaling lipids in most cells of the body. However, the lipolytic machinery dictating TAG hydrolysis varies greatly among different cell types. Within the adipocyte, TAG hydrolysis is dynamically regulated by hormones to ensure appropriate metabolic adaptation to nutritional and physiologic cues. In other cell types such as hepatocytes, myocytes and macrophages, mobilization of stored TAG is regulated quite differently. Within the last decade, mutations in two key genes involved in TAG hydrolysis, α-β hydrolase domain 5 (ABHD5/CGI-58) and adipose triglyceride lipase (ATGL/PNPLA2), were found to cause two distinct neutral lipid storage diseases (NLSD) in humans. These genetic links, along with supporting evidence in mouse models, have prompted a number of studies surrounding the biochemical function(s) of these proteins. Although both CGI-58 and ATGL have been clearly implicated in TAG hydrolysis in multiple tissues and have even been shown to physically interact with each other, recent evidence suggests that they may also have distinct roles. The purpose of this review is to summarize the most recent insights into how CGI-58 and ATGL regulate lipid metabolism and signaling.
Collapse
|
13
|
Zhang J, Xu D, Nie J, Han R, Zhai Y, Shi Y. Comparative gene identification-58 (CGI-58) promotes autophagy as a putative lysophosphatidylglycerol acyltransferase. J Biol Chem 2014; 289:33044-53. [PMID: 25315780 DOI: 10.1074/jbc.m114.573857] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
CGI-58 is a lipid droplet-associated protein that, when mutated, causes Chanarin-Dorfman syndrome in humans, which is characterized by excessive storage of triglyceride in various tissues. However, the molecular mechanisms underlying the defect remain elusive. CGI-58 was previously reported to catalyze the resynthesis of phosphatidic acid as a lysophosphatidic acid acyltransferase. In addition to triglyceride, phosphatidic acid is also used a substrate for the synthesis of various mitochondrial phospholipids. In this report, we investigated the propensity of CGI-58 in the remodeling of various phospholipids. We found that the recombinant CGI-58 overexpressed in mammalian cells or purified from Sf9 insect cells catalyzed efficiently the reacylation of lysophosphatidylglycerol to phosphatidylglycerol (PG), which requires acyl-CoA as the acyl donor. In contrast, the recombinant CGI-58 was devoid of acyltransferase activity toward other lysophospholipids. Accordingly, overexpression and knockdown of CGI-58 adversely affected the endogenous PG level in C2C12 cells. PG is a substrate for the synthesis of cardiolipin, which is required for mitochondrial oxidative phosphorylation and mitophagy. Consequently, overexpression and knockdown of CGI-58 adversely affected autophagy and mitophagy in C2C12 cells. In support for a key role of CGI-58 in mitophagy, overexpression of CGI-58 significantly stimulated mitochondrial fission and translocation of PINK1 to mitochondria, key steps involved in mitophagy. Furthermore, overexpression of CGI-58 promoted mitophagic initiation through activation of 5'-AMP-activated protein kinase and inhibition of mTORC1 mammalian target of rapamycin complex 1 signaling, the positive and negative regulators of autophagy, respectively. Together, these findings identified novel molecular mechanisms by which CGI-58 regulates lipid homeostasis, because defective autophagy is implicated in dyslipidemia and fatty liver diseases.
Collapse
Affiliation(s)
- Jun Zhang
- the Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033 From the Beijing Key Laboratory of Gene Resource and Molecular Development and College of Life Sciences, Beijing Normal University, Beijing 100875, China and
| | - Dan Xu
- the Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033
| | - Jia Nie
- the Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033
| | - Ruili Han
- the Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033
| | - Yonggong Zhai
- From the Beijing Key Laboratory of Gene Resource and Molecular Development and College of Life Sciences, Beijing Normal University, Beijing 100875, China and
| | - Yuguang Shi
- the Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033
| |
Collapse
|
14
|
Fatty acid composition of subcutaneous adipose tissue from entire male pigs with extremely divergent levels of boar taint compounds--an exploratory study. Meat Sci 2014; 99:1-7. [PMID: 25280356 DOI: 10.1016/j.meatsci.2014.08.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 07/25/2014] [Accepted: 08/09/2014] [Indexed: 01/28/2023]
Abstract
This exploratory study investigated the variability of fatty acid composition in entire male pigs with extremely divergent levels of boar taint compounds. Fatty acids were quantified in back fat samples from 20 selected carcasses of Pietrain*F1 sired boars (average carcass weight 84 kg) with extremely low (LL) or extremely high (HH) levels of androstenone, skatole, and indole. Concentrations of polyunsaturated fatty acids (PUFA) were significantly (p<0.05) increased in LL boars (23.4%) compared to HH boars (19.7%). This was mainly due to increased levels of linoleic acid (C18:2 n-6) and α-linolenic acid (C18:3 n-3). Correspondingly, unsaturated fatty acids (SFA) were significantly lower (p<0.05) in LL boars (35.2%) compared to HH boars (37.7%). The findings are discussed with respect to potential effects on flavor formation in boar fat and meat. Further research is needed to study the gender specificity and the interplay of the synthesis and the metabolism of steroids, lipids, and the clearance of skatole in pigs.
Collapse
|
15
|
Radner FPW, Fischer J. The important role of epidermal triacylglycerol metabolism for maintenance of the skin permeability barrier function. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1841:409-15. [PMID: 23928127 DOI: 10.1016/j.bbalip.2013.07.013] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 07/22/2013] [Accepted: 07/29/2013] [Indexed: 12/29/2022]
Abstract
Survival in a terrestrial, dry environment necessitates a permeability barrier for regulated permeation of water and electrolytes in the cornified layer of the skin (the stratum corneum) to minimize desiccation of the body. This barrier is formed during cornification and involves a cross-linking of corneocyte proteins as well as an extensive remodeling of lipids. The cleavage of precursor lipids from lamellar bodies by various hydrolytic enzymes generates ceramides, cholesterol, and non-esterified fatty acids for the extracellular lipid lamellae in the stratum corneum. However, the important role of epidermal triacylglycerol (TAG) metabolism during formation of a functional permeability barrier in the skin was only recently discovered. Humans with mutations in the ABHD5/CGI-58 (α/β hydrolase domain containing protein 5, also known as comparative gene identification-58, CGI-58) gene suffer from a defect in TAG catabolism that causes neutral lipid storage disease with ichthyosis. In addition, mice with deficiencies in genes involved in TAG catabolism (Abhd5/Cgi-58 knock-out mice) or TAG synthesis (acyl-CoA:diacylglycerol acyltransferase-2, Dgat2 knock-out mice) also develop severe skin permeability barrier dysfunctions and die soon after birth due to increased dehydration. As a result of these defects in epidermal TAG metabolism, humans and mice lack ω-(O)-acylceramides, which leads to malformation of the cornified lipid envelope of the skin. In healthy skin, this epidermal structure provides an interface for the linkage of lamellar membranes with corneocyte proteins to maintain permeability barrier homeostasis. This review focuses on recent advances in the understanding of biochemical mechanisms involved in epidermal neutral lipid metabolism and the generation of a functional skin permeability barrier. This article is part of a Special Issue entitled The Important Role of Lipids in the Epidermis and their Role in the Formation and Maintenance of the Cutaneous Barrier. Guest Editors: Kenneth R. Feingold and Peter Elias.
Collapse
Affiliation(s)
- Franz P W Radner
- Institute for Human Genetics, University Medical Center Freiburg, Freiburg 79106, Germany.
| | - Judith Fischer
- Institute for Human Genetics, University Medical Center Freiburg, Freiburg 79106, Germany
| |
Collapse
|
16
|
Lord CC, Thomas G, Brown JM. Mammalian alpha beta hydrolase domain (ABHD) proteins: Lipid metabolizing enzymes at the interface of cell signaling and energy metabolism. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1831:792-802. [PMID: 23328280 DOI: 10.1016/j.bbalip.2013.01.002] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 12/07/2012] [Accepted: 01/02/2013] [Indexed: 11/16/2022]
Abstract
Dysregulation of lipid metabolism underlies many chronic diseases such as obesity, diabetes, cardiovascular disease, and cancer. Therefore, understanding enzymatic mechanisms controlling lipid synthesis and degradation is imperative for successful drug discovery for these human diseases. Genes encoding α/β hydrolase fold domain (ABHD) proteins are present in virtually all reported genomes, and conserved structural motifs shared by these proteins predict common roles in lipid synthesis and degradation. However, the physiological substrates and products for these lipid metabolizing enzymes and their broader role in metabolic pathways remain largely uncharacterized. Recently, mutations in several members of the ABHD protein family have been implicated in inherited inborn errors of lipid metabolism. Furthermore, studies in cell and animal models have revealed important roles for ABHD proteins in lipid metabolism, lipid signal transduction, and metabolic disease. The purpose of this review is to provide a comprehensive summary surrounding the current state of knowledge regarding mammalian ABHD protein family members. In particular, we will discuss how ABHD proteins are ideally suited to act at the interface of lipid metabolism and signal transduction. Although, the current state of knowledge regarding mammalian ABHD proteins is still in its infancy, this review highlights the potential for the ABHD enzymes as being attractive targets for novel therapies targeting metabolic disease.
Collapse
Affiliation(s)
- Caleb C Lord
- Department of Pathology, Section on Lipid Sciences, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Gwynneth Thomas
- Department of Pathology, Section on Lipid Sciences, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - J Mark Brown
- Department of Pathology, Section on Lipid Sciences, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| |
Collapse
|
17
|
Singh S, Sharma S, Agarwal S, Nangia A, Chander R, Varghese B. Neutral lipid storage disease with unusual presentation: report of three cases. Pediatr Dermatol 2012; 29:341-4. [PMID: 21575048 DOI: 10.1111/j.1525-1470.2011.01429.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Neutral lipid storage disease is a nonlysosomal multisystemic triglyceride storage disease. It is characterized by leukocyte vacuolization (Jordans' anomaly), variable systemic involvement, and ichthyosis. Two of our patients presented with congenital ichthyosis. Lipid vacuoles were demonstrated in granulocytes and monocytes and in basal keratinocytes on skin biopsy. They were diagnosed as Chanarin Dorfman syndrome. In contrast to these cases, the third case presented with progressive symmetric erythrokeratoderma without ichthyosis. Lipid vacuoles were demonstrated in blood cells on peripheral smear and in basal keratinocytes. Only screening of peripheral smear led to the correct diagnosis.
Collapse
Affiliation(s)
- Smita Singh
- Department of Pathology, Lady Hardinge Medical College, New Delhi, India.
| | | | | | | | | | | |
Collapse
|
18
|
Abstract
Nonalcoholic fatty liver disease (NAFLD) is becoming the most common cause of chronic liver disease in the developing world, found in 17-30% of the population in Western countries and 2-4% worldwide. Defined as the accumulation of fatty acid content greater than 5% of liver weight, NAFLD is a spectrum of disease ranging from simple steatosis to nonalcoholic steatohepatitis. The pathophysiology of NAFLD involves increased de novo synthesis of fatty acids in hepatocytes, the retention of lipids due to impaired hepatocyte apolipoprotein secretion or beta-oxidation. The well-known primary causes of NAFLD are obesity, type II diabetes, dyslipidemia, and insulin resistance. However, other less common conditions can cause a similar clinical and histologic picture, and should be considered in patients who present with NAFLD but do not have traditional risk factors. In this review, we discuss uncommon but important causes of NAFLD, including inborn errors of metabolism, iatrogenic causes, viral hepatitis, and nutritional disorders to provide practicing clinicians with an understanding of the less well recognized causes of NAFLD.
Collapse
Affiliation(s)
- Jacob M. Kneeman
- Gastrointestinal Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Joseph Misdraji
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Kathleen E. Corey
- Massachusetts General Hospital, 55 Fruit Street, BLK 4, Boston, MA 02114-2696, USA
| |
Collapse
|
19
|
Oberer M, Boeszoermenyi A, Nagy HM, Zechner R. Recent insights into the structure and function of comparative gene identification-58. Curr Opin Lipidol 2011; 22:149-58. [PMID: 21494142 PMCID: PMC5808844 DOI: 10.1097/mol.0b013e328346230e] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
PURPOSE OF REVIEW Comparative gene identification-58 (CGI-58) is an important player in lipid metabolism. It acts as activator of triglyceride hydrolases and as acyl-CoA-dependent lysophosphatidic acid acyltransferase. This review aims at establishing a structure-function relationship of this still rather enigmatic protein based on recent studies characterizing different functions of CGI-58. RECENT FINDINGS Novel studies confirm the important regulatory role of CGI-58 as activator of the triglyceride hydrolase adipose triglyceride lipase. New evidence, corroborated by the characterization of a CGI-58 knockout mouse model, also suggests the existence of yet unknown lipases that are activated by CGI-58. Additionally, CGI-58 was identified to exert acyl-CoA-dependent lysophosphatidic acid acyltransferase activity, which implies possible roles in triglyceride or phospholipid synthesis or signaling processes. Unlike mammalian CGI-58 proteins, orthologs from plants and yeast additionally act as weak triglyceride and phospholipid hydrolases. A first three-dimensional model was calculated and allows preliminary structural considerations for the functions of CGI-58. SUMMARY Despite important progress concerning the different biochemical functions of CGI-58, the physiological importance of these activities requires better characterization. Furthermore, three-dimensional structural data for CGI-58 are required to unveil the molecular mechanism of how CGI-58 acts as activator of lipases and exerts its enzymatic functions.
Collapse
Affiliation(s)
- Monika Oberer
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50/3, 8010 Graz, Austria
| | - Andras Boeszoermenyi
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50/3, 8010 Graz, Austria
| | - Harald Manuel Nagy
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50/3, 8010 Graz, Austria
| | - Rudolf Zechner
- Institute of Molecular Biosciences, University of Graz, Heinrichstrasse 31, 8010 Graz, Austria
| |
Collapse
|
20
|
Radner FP, Grond S, Haemmerle G, Lass A, Zechner R. Fat in the skin: Triacylglycerol metabolism in keratinocytes and its role in the development of neutral lipid storage disease. DERMATO-ENDOCRINOLOGY 2011; 3:77-83. [PMID: 21695016 PMCID: PMC3117006 DOI: 10.4161/derm.3.2.15472] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Revised: 03/10/2011] [Accepted: 03/11/2011] [Indexed: 12/11/2022]
Abstract
Keratinocyte differentiation is essential for skin development and the formation of the skin permeability barrier. This process involves an orchestrated remodeling of lipids. The cleavage of precursor lipids from lamellar bodies by β-glucocerebrosidase, sphingomyelinase, phospholipases and sterol sulfatase generates ceramides, non-esterified fatty acids and cholesterol for the lipid-containing extracellular matrix, the lamellar membranes in the stratum corneum. The importance of triacylglycerol (TAG) hydrolysis for the formation of a functional permeability barrier was only recently appreciated. Mice with defects in TAG synthesis (acyl-CoA:diacylglycerol acyltransferase-2-knock-out) or TAG catabolism (comparative gene identification-58, -CGI-58-knock-out) develop severe permeability barrier defects and die soon after birth because of desiccation. In humans, mutations in the CGI-58 gene also cause (non-lethal) neutral lipid storage disease with ichthyosis. As a result of defective TAG synthesis or catabolism, humans and mice lack ω-(O)-acylceramides, which are essential lipid precursors for the formation of the corneocyte lipid envelope. This structure plays an important role in linking the lipid-enriched lamellar membranes to highly cross-linked corneocyte proteins. This review focuses on the current knowledge of biochemical mechanisms that are essential for epidermal neutral lipid metabolism and the formation of a functional skin permeability barrier.
Collapse
Affiliation(s)
- Franz Pw Radner
- Institute of Molecular Biosciences; University of Graz; Graz, Austria
| | | | | | | | | |
Collapse
|
21
|
Fullerton MD, Bakovic M. Complementation of the metabolic defect in CTP:phosphoethanolamine cytidylyltransferase (Pcyt2)-deficient primary hepatocytes. Metabolism 2010; 59:1691-700. [PMID: 20427062 DOI: 10.1016/j.metabol.2010.03.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2010] [Revised: 03/26/2010] [Accepted: 03/30/2010] [Indexed: 11/22/2022]
Abstract
The CTP:phosphoethanolamine cytidylyltransferase gene (Pcyt2) regulates the synthesis of CDP-ethanolamine, which is combined with diacylglycerol (DAG) to form the membrane phospholipid phosphatidylethanolamine (PE) via the de novo Kennedy pathway. [¹⁴C]Ethanolamine and [³H]glycerol radiolabeling experiments established that PE synthesis and turnover are reduced in primary hepatocytes isolated from Pcyt2-deficient (Pcyt2+/⁻) mice relative to littermate controls. [³H]Glycerol radiolabeling revealed an increased formation of both DAG and triglyceride (TAG) and only increased turnover of DAG, consistent with elevated TAG accumulation. [³H]Acetate radiolabeling showed that de novo fatty acid (FA) synthesis also increased in Pcyt2-deficient hepatocytes. Overexpression of a Myc/His-tagged Pcyt2 complementary DNA into deficient hepatocytes increased Pcyt2 protein expression; normalized PE synthesis and turnover; and reduced FA, DAG, and TAG synthesis. Although increased Pcyt2-myc/His complementary DNA expression normalized lipid homeostasis, a Pcyt2 mutant with 60% catalytic activity (H244Y) was unable to normalize any of the parameters investigated. Only when PE synthesis was fully reestablished did the lipogenic gene expression and the formation of FA, DAG, and TAG revert to the levels of wild-type hepatocytes. These data unambiguously establish that the TAG accumulation present in Pcyt2-deficient hepatocytes is a direct consequence of Pcyt2 gene deficiency and reduced functioning of the de novo Kennedy pathway.
Collapse
Affiliation(s)
- Morgan D Fullerton
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario N1G2W1, Canada
| | | |
Collapse
|
22
|
Redaelli C, Coleman RA, Moro L, Dacou-Voutetakis C, Elsayed SM, Prati D, Colli A, Mela D, Colombo R, Tavian D. Clinical and genetic characterization of Chanarin-Dorfman syndrome patients: first report of large deletions in the ABHD5 gene. Orphanet J Rare Dis 2010; 5:33. [PMID: 21122093 PMCID: PMC3019207 DOI: 10.1186/1750-1172-5-33] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Accepted: 12/01/2010] [Indexed: 12/02/2022] Open
Abstract
Background Chanarin-Dorfman syndrome (CDS) is a rare autosomal recessive disorder characterized by nonbullous congenital ichthyosiform erythroderma (NCIE) and an intracellular accumulation of triacylglycerol (TG) droplets in most tissues. The clinical phenotype involves multiple organs and systems, including liver, eyes, ears, skeletal muscle and central nervous system (CNS). Mutations in ABHD5/CGI58 gene are associated with CDS. Methods Eight CDS patients belonging to six different families from Mediterranean countries were enrolled for genetic study. Molecular analysis of the ABHD5 gene included the sequencing of the 7 coding exons and of the putative 5' regulatory regions, as well as reverse transcript-polymerase chain reaction analysis and sequencing of normal and aberrant ABHD5 cDNAs. Results Five different mutations were identified, four of which were novel, including two splice-site mutations (c.47+1G>A and c.960+5G>A) and two large deletions (c.898_*320del and c.662-1330_773+46del). All the reported mutations are predicted to be pathogenic because they lead to an early stop codon or a frameshift producing a premature termination of translation. While nonsense, missense, frameshift and splice-site mutations have been identified in CDS patients, large genomic deletions have not previously been described. Conclusions These results emphasize the need for an efficient approach for genomic deletion screening to ensure an accurate molecular diagnosis of CDS. Moreover, in spite of intensive molecular screening, no mutations were identified in one patient with a confirmed clinical diagnosis of CDS, appointing to genetic heterogeneity of the syndrome.
Collapse
Affiliation(s)
- Chiara Redaelli
- Department of Psychology, Catholic University of the Sacred Heart, Milan, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Lass A, Zimmermann R, Oberer M, Zechner R. Lipolysis - a highly regulated multi-enzyme complex mediates the catabolism of cellular fat stores. Prog Lipid Res 2010; 50:14-27. [PMID: 21087632 PMCID: PMC3031774 DOI: 10.1016/j.plipres.2010.10.004] [Citation(s) in RCA: 460] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 10/12/2010] [Accepted: 10/13/2010] [Indexed: 12/17/2022]
Abstract
Lipolysis is the biochemical pathway responsible for the catabolism of triacylglycerol (TAG) stored in cellular lipid droplets. The hydrolytic cleavage of TAG generates non-esterified fatty acids, which are subsequently used as energy substrates, essential precursors for lipid and membrane synthesis, or mediators in cell signaling processes. Consistent with its central importance in lipid and energy homeostasis, lipolysis occurs in essentially all tissues and cell types, it is most abundant, however, in white and brown adipose tissue. Over the last 5years, important enzymes and regulatory protein factors involved in lipolysis have been identified. These include an essential TAG hydrolase named adipose triglyceride lipase (ATGL) [annotated as patatin-like phospholipase domain-containing protein A2], the ATGL activator comparative gene identification-58 [annotated as α/β hydrolase containing protein 5], and the ATGL inhibitor G0/G1 switch gene 2. Together with the established hormone-sensitive lipase [annotated as lipase E] and monoglyceride lipase, these proteins constitute the basic "lipolytic machinery". Additionally, a large number of hormonal signaling pathways and lipid droplet-associated protein factors regulate substrate access and the activity of the "lipolysome". This review summarizes the current knowledge concerning the enzymes and regulatory processes governing lipolysis of fat stores in adipose and non-adipose tissues. Special emphasis will be given to ATGL, its regulation, and physiological function.
Collapse
Affiliation(s)
- Achim Lass
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | | | | | | |
Collapse
|
24
|
García-Arcos I, González-Kother P, Aspichueta P, Rueda Y, Ochoa B, Fresnedo O. Lipid Analysis Reveals Quiescent and Regenerating Liver-Specific Populations of Lipid Droplets. Lipids 2010; 45:1101-8. [DOI: 10.1007/s11745-010-3492-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Accepted: 10/19/2010] [Indexed: 12/29/2022]
|
25
|
Brown JM, Betters JL, Lord C, Ma Y, Han X, Yang K, Alger HM, Melchior J, Sawyer J, Shah R, Wilson MD, Liu X, Graham MJ, Lee R, Crooke R, Shulman GI, Xue B, Shi H, Yu L. CGI-58 knockdown in mice causes hepatic steatosis but prevents diet-induced obesity and glucose intolerance. J Lipid Res 2010; 51:3306-15. [PMID: 20802159 DOI: 10.1194/jlr.m010256] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Mutations of Comparative Gene Identification-58 (CGI-58) in humans cause triglyceride (TG) accumulation in multiple tissues. Mice genetically lacking CGI-58 die shortly after birth due to a skin barrier defect. To study the role of CGI-58 in integrated lipid and energy metabolism, we utilized antisense oligonucleotides (ASOs) to inhibit CGI-58 expression in adult mice. Treatment with two distinct CGI-58-targeting ASOs resulted in ∼80-95% knockdown of CGI-58 protein expression in both liver and white adipose tissue. In chow-fed mice, ASO-mediated depletion of CGI-58 did not alter weight gain, plasma TG, or plasma glucose, yet raised hepatic TG levels ∼4-fold. When challenged with a high-fat diet (HFD), CGI-58 ASO-treated mice were protected against diet-induced obesity, but their hepatic contents of TG, diacylglycerols, and ceramides were all elevated, and intriguingly, their hepatic phosphatidylglycerol content was increased by 10-fold. These hepatic lipid alterations were associated with significant decreases in hepatic TG hydrolase activity, hepatic lipoprotein-TG secretion, and plasma concentrations of ketones, nonesterified fatty acids, and insulin. Additionally, HFD-fed CGI-58 ASO-treated mice were more glucose tolerant and insulin sensitive. Collectively, this work demonstrates that CGI-58 plays a critical role in limiting hepatic steatosis and maintaining hepatic glycerophospholipid homeostasis and has unmasked an unexpected role for CGI-58 in promoting HFD-induced obesity and insulin resistance.
Collapse
Affiliation(s)
- J Mark Brown
- Departments of Pathology Section on Lipid Sciences, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Identification of a novel splicing isoform of murine CGI-58. FEBS Lett 2010; 584:903-10. [PMID: 20083112 DOI: 10.1016/j.febslet.2009.12.058] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Revised: 12/13/2009] [Accepted: 12/23/2009] [Indexed: 11/23/2022]
Abstract
The comparative gene identification-58 (CGI-58) gene, mutations of which are linked to Chanarin-Dorfman syndrome, encodes a protein of the alpha/beta hydrolase domain subfamily. We report here a new alternative splicing isoform of the murine CGI-58 gene, termed mCGI-58S. Sequence comparison indicates the lack of second and third exons in this cDNA variant. While the full-length protein displayed perilipin-dependent localization to lipid droplets, mCGI-58S showed a predominant cytoplasmic staining when expressed in cells. mCGI-58S was incapable of activating adipose triglyceride lipase but retained the capacity to acylate lysophosphatidic acid. Overexpression of mCGI-58S failed to promote lipid droplet turnover and loss of intracellular triacylglycerols. These results suggest that this splicing event may be involved in the regulation of lipid homeostasis.
Collapse
|
27
|
Montero-Moran G, Caviglia JM, McMahon D, Rothenberg A, Subramanian V, Xu Z, Lara-Gonzalez S, Storch J, Carman GM, Brasaemle DL. CGI-58/ABHD5 is a coenzyme A-dependent lysophosphatidic acid acyltransferase. J Lipid Res 2009; 51:709-19. [PMID: 19801371 DOI: 10.1194/jlr.m001917] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Mutations in human CGI-58/ABHD5 cause Chanarin-Dorfman syndrome (CDS), characterized by excessive storage of triacylglycerol in tissues. CGI-58 is an alpha/beta-hydrolase fold enzyme expressed in all vertebrates. The carboxyl terminus includes a highly conserved consensus sequence (HXXXXD) for acyltransferase activity. Mouse CGI-58 was expressed in Escherichia coli as a fusion protein with two amino terminal 6-histidine tags. Recombinant CGI-58 displayed acyl-CoA-dependent acyltransferase activity to lysophosphatidic acid, but not to other lysophospholipid or neutral glycerolipid acceptors. Production of phosphatidic acid increased with time and increasing concentrations of recombinant CGI-58 and was optimal between pH 7.0 and 8.5. The enzyme showed saturation kinetics with respect to 1-oleoyl-lysophosphatidic acid and oleoyl-CoA and preference for arachidonoyl-CoA and oleoyl-CoA. The enzyme showed slight preference for 1-oleoyl lysophosphatidic acid over 1-palmitoyl, 1-stearoyl, or 1-arachidonoyl lysophosphatidic acid. Recombinant CGI-58 showed intrinsic fluorescence for tryptophan that was quenched by the addition of 1-oleoyl-lysophosphatidic acid, oleoyl-CoA, arachidonoyl-CoA, and palmitoyl-CoA, but not by lysophosphatidyl choline. Expression of CGI-58 in fibroblasts from humans with CDS increased the incorporation of radiolabeled fatty acids released from the lipolysis of stored triacylglycerols into phospholipids. CGI-58 is a CoA-dependent lysophosphatidic acid acyltransferase that channels fatty acids released from the hydrolysis of stored triacylglycerols into phospholipids.
Collapse
Affiliation(s)
- Gabriela Montero-Moran
- Rutgers Center for Lipid Research, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Fullerton MD, Hakimuddin F, Bonen A, Bakovic M. The development of a metabolic disease phenotype in CTP:phosphoethanolamine cytidylyltransferase-deficient mice. J Biol Chem 2009; 284:25704-13. [PMID: 19625253 DOI: 10.1074/jbc.m109.023846] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phosphatidylethanolamine (PE) is an important inner membrane phospholipid mostly synthesized de novo via the PE-Kennedy pathway and by the decarboxylation of phosphatidylserine. CTP:phosphoethanolamine cytidylyltransferase (Pcyt2) catalyzes the formation of CDP-ethanolamine, which is often the rate regulatory step in the PE-Kennedy pathway. In the current investigation, we show that the reduced CDP-ethanolamine formation in Pcyt2(+/-) mice limits the rate of PE synthesis and increases the availability of diacylglycerol. This results in the increased formation of triglycerides, which is facilitated by stimulated de novo fatty acid synthesis and increased uptake of pre-existing fatty acids. Pcyt2(+/-) mice progressively accumulate more diacylglycerol and triglycerides with age and have modified fatty acid composition, predominantly in PE and triglycerides. Pcyt2(+/-) additionally have an inherent blockage in fatty acid utilization as energy substrate and develop impaired tolerance to glucose and insulin at an older age. Accordingly, gene expression analyses demonstrated the up-regulation of the main lipogenic genes and down-regulation of mitochondrial fatty acid beta-oxidation genes. These data demonstrate for the first time that to preserve membrane PE phospholipids, Pcyt2 deficiency generates compensatory changes in triglyceride and energy substrate metabolism, resulting in a progressive development of liver steatosis, hypertriglyceridemia, obesity, and insulin resistance, the main features of the metabolic syndrome.
Collapse
Affiliation(s)
- Morgan D Fullerton
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | | | | | | |
Collapse
|
29
|
Affiliation(s)
- Yi Guo
- Gladstone Institute of Cardiovascular Disease, 1650 Owens Street, San Francisco, CA 94158, USA.
| | | | | | | |
Collapse
|
30
|
Yamaguchi T, Osumi T. Chanarin–Dorfman syndrome: Deficiency in CGI-58, a lipid droplet-bound coactivator of lipase. Biochim Biophys Acta Mol Cell Biol Lipids 2009; 1791:519-23. [DOI: 10.1016/j.bbalip.2008.10.012] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2008] [Revised: 10/28/2008] [Accepted: 10/29/2008] [Indexed: 11/28/2022]
|
31
|
PAT proteins, an ancient family of lipid droplet proteins that regulate cellular lipid stores. Biochim Biophys Acta Mol Cell Biol Lipids 2009; 1791:419-40. [PMID: 19375517 DOI: 10.1016/j.bbalip.2009.04.002] [Citation(s) in RCA: 515] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2008] [Revised: 02/24/2009] [Accepted: 04/08/2009] [Indexed: 02/07/2023]
Abstract
The PAT family of lipid droplet proteins includes 5 members in mammals: perilipin, adipose differentiation-related protein (ADRP), tail-interacting protein of 47 kDa (TIP47), S3-12, and OXPAT. Members of this family are also present in evolutionarily distant organisms, including insects, slime molds and fungi. All PAT proteins share sequence similarity and the ability to bind intracellular lipid droplets, either constitutively or in response to metabolic stimuli, such as increased lipid flux into or out of lipid droplets. Positioned at the lipid droplet surface, PAT proteins manage access of other proteins (lipases) to the lipid esters within the lipid droplet core and can interact with cellular machinery important for lipid droplet biogenesis. Genetic variations in the gene for the best-characterized of the mammalian PAT proteins, perilipin, have been associated with metabolic phenotypes, including type 2 diabetes mellitus and obesity. In this review, we discuss how the PAT proteins regulate cellular lipid metabolism both in mammals and in model organisms.
Collapse
|
32
|
Akiyama M, Sakai K, Takayama C, Yanagi T, Yamanaka Y, McMillan JR, Shimizu H. CGI-58 is an alpha/beta-hydrolase within lipid transporting lamellar granules of differentiated keratinocytes. THE AMERICAN JOURNAL OF PATHOLOGY 2008; 173:1349-60. [PMID: 18832586 DOI: 10.2353/ajpath.2008.080005] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
CGI-58 is the causative molecule underlying Dorfman-Chanarin syndrome, a neutral lipid storage disease exhibiting apparent clinical features of ichthyosis. CGI-58, associated with triacylglycerol hydrolysis, has an alpha/beta-hydrolase fold and is also known as the alpha/beta-hydrolase domain-containing protein 5. The purpose of this study was to elucidate the function of CGI-58 and the pathogenic mechanisms of ichthyosis in Dorfman-Chanarin syndrome. Using an anti-CGI-58 antibody, we found CGI-58 to be expressed in the upper epidermis, predominantly in the granular layer cells, as well as in neurons and hepatocytes. Immunoelectron microscopy revealed that CGI-58 was also localized to the lamellar granules (LGs), which are lipid transport and secretion granules found in keratinocytes. CGI-58 expression was markedly reduced in the epidermis of patients with harlequin ichthyosis, demonstrating defective LG formation. In cultured keratinocytes, CGI-58 expression was mildly up-regulated under high Ca(2+) conditions and markedly up-regulated in three-dimensional, organotypic cultures. In the developing human epidermis, CGI-58 immunostaining was observed at an estimated gestational age of 49 days, and CGI-58 mRNA expression was up-regulated concomitantly with both epidermal stratification and keratinocyte differentiation. CGI-58 knockdown reduced expression of keratinocyte differentiation/keratinization markers in cultured human keratinocytes. Our results indicate that CGI-58 is expressed and packaged into LGs during keratinization and likely plays crucial role(s) in keratinocyte differentiation and LG lipid metabolism, contributing to skin lipid barrier formation.
Collapse
Affiliation(s)
- Masashi Akiyama
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan.
| | | | | | | | | | | | | |
Collapse
|
33
|
Ghosh AK, Ramakrishnan G, Chandramohan C, Rajasekharan R. CGI-58, the causative gene for Chanarin-Dorfman syndrome, mediates acylation of lysophosphatidic acid. J Biol Chem 2008; 283:24525-33. [PMID: 18606822 DOI: 10.1074/jbc.m801783200] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
cgi-58 (comparative gene identification-58) is a member of alpha/beta-hydrolase family of proteins. Mutations in CGI-58 are shown to be responsible for a rare genetic disorder known as Chanarin-Dorfman syndrome, characterized by an excessive accumulation of triacylglycerol in several tissues and ichthyosis. We have earlier reported that YLR099c encoding Ict1p in Saccharomyces cerevisiae can acylate lysophosphatidic acid to phosphatidic acid. Here we report that human CGI-58 is closely related to ICT1. To understand the biochemical function of cgi-58, the gene was overexpressed in Escherichia coli, and the purified recombinant protein was found to specifically acylate lysophosphatidic acid in an acyl-CoA-dependent manner. Overexpression of CGI-58 in S. cerevisiae showed an increase in the formation of phosphatidic acid resulting in an overall increase in the total phospholipids. However, the triacylglycerol level was found to be significantly reduced. In addition, the physiological significance of cgi-58 in mice white adipose tissue was studied. We found soluble lysophosphatidic acid acyltransferase activity in mouse white adipose tissue. Immunoblot analysis using anti-Ict1p antibodies followed by mass spectrometry of the immunocross-reactive protein in lipid droplets revealed its identity as cgi-58. These observations suggest the existence of an alternate cytosolic phosphatidic acid biosynthetic pathway in the white adipose tissue. Collectively, these results reveal the role of cgi-58 as an acyltransferase.
Collapse
Affiliation(s)
- Ananda K Ghosh
- Department of Biochemistry, Indian Institute of Science, Bangalore 562, India
| | | | | | | |
Collapse
|
34
|
Elias PM, Williams ML, Holleran WM, Jiang YJ, Schmuth M. Pathogenesis of permeability barrier abnormalities in the ichthyoses: inherited disorders of lipid metabolism. J Lipid Res 2008; 49:697-714. [PMID: 18245815 DOI: 10.1194/jlr.r800002-jlr200] [Citation(s) in RCA: 142] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Many of the ichthyoses are associated with inherited disorders of lipid metabolism. These disorders have provided unique models to dissect physiologic processes in normal epidermis and the pathophysiology of more common scaling conditions. In most of these disorders, a permeability barrier abnormality "drives" pathophysiology through stimulation of epidermal hyperplasia. Among primary abnormalities of nonpolar lipid metabolism, triglyceride accumulation in neutral lipid storage disease as a result of a lipase mutation provokes a barrier abnormality via lamellar/nonlamellar phase separation within the extracellular matrix of the stratum corneum (SC). Similar mechanisms account for the barrier abnormalities (and subsequent ichthyosis) in inherited disorders of polar lipid metabolism. For example, in recessive X-linked ichthyosis (RXLI), cholesterol sulfate (CSO(4)) accumulation also produces a permeability barrier defect through lamellar/nonlamellar phase separation. However, in RXLI, the desquamation abnormality is in part attributable to the plurifunctional roles of CSO(4) as a regulator of both epidermal differentiation and corneodesmosome degradation. Phase separation also occurs in type II Gaucher disease (GD; from accumulation of glucosylceramides as a result of to beta-glucocerebrosidase deficiency). Finally, failure to assemble both lipids and desquamatory enzymes into nascent epidermal lamellar bodies (LBs) accounts for both the permeability barrier and desquamation abnormalities in Harlequin ichthyosis (HI). The barrier abnormality provokes the clinical phenotype in these disorders not only by stimulating epidermal proliferation, but also by inducing inflammation.
Collapse
Affiliation(s)
- Peter M Elias
- Dermatology Services, Veterans Affairs Medical Center, University of California, San Francisco, CA, USA.
| | | | | | | | | |
Collapse
|
35
|
Brasaemle DL. Thematic review series: Adipocyte Biology. The perilipin family of structural lipid droplet proteins: stabilization of lipid droplets and control of lipolysis. J Lipid Res 2007; 48:2547-59. [PMID: 17878492 DOI: 10.1194/jlr.r700014-jlr200] [Citation(s) in RCA: 734] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The majority of eukaryotic cells synthesize neutral lipids and package them into cytosolic lipid droplets. In vertebrates, triacylglycerol-rich lipid droplets of adipocytes provide a major energy storage depot for the body, whereas cholesteryl ester-rich droplets of many other cells provide building materials for local membrane synthesis and repair. These lipid droplets are coated with one or more of five members of the perilipin family of proteins: adipophilin, TIP47, OXPAT/MLDP, S3-12, and perilipin. Members of this family share varying levels of sequence similarity, lipid droplet association, and functions in stabilizing lipid droplets. The most highly studied member of the family, perilipin, is the most abundant protein on the surfaces of adipocyte lipid droplets, and the major substrate for cAMP-dependent protein kinase [protein kinase A (PKA)] in lipolytically stimulated adipocytes. Perilipin serves important functions in the regulation of basal and hormonally stimulated lipolysis. Under basal conditions, perilipin restricts the access of cytosolic lipases to lipid droplets and thus promotes triacylglycerol storage. In times of energy deficit, perilipin is phosphorylated by PKA and facilitates maximal lipolysis by hormone-sensitive lipase and adipose triglyceride lipase. A model is discussed whereby perilipin serves as a dynamic scaffold to coordinate the access of enzymes to the lipid droplet in a manner that is responsive to the metabolic status of the adipocyte.
Collapse
Affiliation(s)
- Dawn L Brasaemle
- Department of Nutritional Sciences and the Rutgers Center for Lipid Research, Rutgers, the State University of New Jersey, New Brunswick, NJ 08901, USA.
| |
Collapse
|
36
|
Brown JM, Chung S, Das A, Shelness GS, Rudel LL, Yu L. CGI-58 facilitates the mobilization of cytoplasmic triglyceride for lipoprotein secretion in hepatoma cells. J Lipid Res 2007; 48:2295-305. [PMID: 17664529 DOI: 10.1194/jlr.m700279-jlr200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Comparative Gene Identification-58 (CGI-58) is a member of the alpha/beta-hydrolase family of proteins. Mutations in the human CGI-58 gene are associated with Chanarin-Dorfman syndrome, a rare autosomal recessive genetic disease in which excessive triglyceride (TG) accumulation occurs in multiple tissues. In this study, we investigated the role of CGI-58 in cellular lipid metabolism in several cell models and discovered a role for CGI-58 in promoting the packaging of cytoplasmic TG into secreted lipoprotein particles in hepatoma cells. Using both gain-of-function and loss-of-function approaches, we demonstrate that CGI-58 facilitates the depletion of cellular TG stores without altering cellular cholesterol or phospholipid accumulation. This depletion of cellular TG is attributable solely to augmented hydrolysis, whereas TG synthesis was not affected by CGI-58. Furthermore, CGI-58-mediated TG hydrolysis can be completely inhibited by the known lipase inhibitors diethylumbelliferyl phosphate and diethyl-p-nitrophenyl phosphate, but not by p-chloro-mercuribenzoate. Intriguingly, CGI-58-driven TG hydrolysis was coupled to increases in both fatty acid oxidation and secretion of TG. Collectively, this study reveals a role for CGI-58 in coupling lipolytic degradation of cytoplasmic TG to oxidation and packaging into TG-rich lipoproteins for secretion in hepatoma cells.
Collapse
Affiliation(s)
- J Mark Brown
- Department of Pathology, Section on Lipid Sciences, Wake Forest University School of Medicine, Winston-Salem, NC 27157-1040, USA
| | | | | | | | | | | |
Collapse
|
37
|
Cermelli S, Guo Y, Gross SP, Welte MA. The lipid-droplet proteome reveals that droplets are a protein-storage depot. Curr Biol 2006; 16:1783-95. [PMID: 16979555 DOI: 10.1016/j.cub.2006.07.062] [Citation(s) in RCA: 388] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2006] [Revised: 07/26/2006] [Accepted: 07/27/2006] [Indexed: 01/11/2023]
Abstract
BACKGROUND Lipid droplets are ubiquitous organelles that are among the basic building blocks of eukaryotic cells. Despite central roles for cholesterol homeostasis and lipid metabolism, their function and protein composition are poorly understood. RESULTS We purified lipid droplets from Drosophila embryos and analyzed the associated proteins by capillary LC-MS-MS. Important functional groups include enzymes involved in lipid metabolism, signaling molecules, and proteins related to membrane trafficking. Unexpectedly, histones H2A, H2Av, and H2B were present. Using biochemistry, genetics, real-time imaging, and cell biology, we confirm that roughly 50% of certain embryonic histones are physically attached to lipid droplets, a localization conserved in other fly species. Histone association with droplets starts during oogenesis and is prominent in early embryos, but it is undetectable in later stages or in cultured cells. Histones on droplets are not irreversibly trapped; quantitation of droplet histone levels and transplantation experiments suggest that histones are transferred from droplets to nuclei as development proceeds. When this maternal store of histones is unavailable because lipid droplets are mislocalized, zygotic histone production starts prematurely. CONCLUSIONS Because we uncover a striking proteomic similarity of Drosophila droplets to mammalian lipid droplets, Drosophila likely provides a good model for understanding droplet function in general. Our analysis also reveals a new function for these organelles; the massive nature of histone association with droplets and its developmental time-course suggest that droplets sequester maternally provided proteins until they are needed. We propose that lipid droplets can serve as transient storage depots for proteins that lack appropriate binding partners in the cell. Such sequestration may provide a general cellular strategy for handling excess proteins.
Collapse
Affiliation(s)
- Silvia Cermelli
- Department of Developmental and Cell Biology, 2222 Natural Sciences I, University of California, Irvine, Irvine, California 92697, USA
| | | | | | | |
Collapse
|
38
|
Schweiger M, Schreiber R, Haemmerle G, Lass A, Fledelius C, Jacobsen P, Tornqvist H, Zechner R, Zimmermann R. Adipose triglyceride lipase and hormone-sensitive lipase are the major enzymes in adipose tissue triacylglycerol catabolism. J Biol Chem 2006; 281:40236-41. [PMID: 17074755 DOI: 10.1074/jbc.m608048200] [Citation(s) in RCA: 536] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mobilization of free fatty acids from adipose triacylglycerol (TG) stores requires the activities of triacylglycerol lipases. In this study, we demonstrate that adipose triglyceride lipase (ATGL) and hormone-sensitive lipase (HSL) are the major enzymes contributing to TG breakdown in in vitro assays and in organ cultures of murine white adipose tissue (WAT). To differentiate between ATGL- and HSL-specific activities in cytosolic preparations of WAT and to determine the relative contribution of these TG hydrolases to the lipolytic catabolism of fat, mutant mouse models lacking ATGL or HSL and a mono-specific, small molecule inhibitor for HSL (76-0079) were used. We show that 76-0079 had no effect on TG catabolism in HSL-deficient WAT but, in contrast, essentially abolished free fatty acid mobilization in ATGL-deficient fat. CGI-58, a recently identified coactivator of ATGL, stimulates TG hydrolase activity in wild-type and HSL-deficient WAT but not in ATGL-deficient WAT, suggesting that ATGL is the sole target for CGI-58-mediated activation of adipose lipolysis. Together, ATGL and HSL are responsible for more than 95% of the TG hydrolase activity present in murine WAT. Additional known or unknown lipases appear to play only a quantitatively minor role in fat cell lipolysis.
Collapse
Affiliation(s)
- Martina Schweiger
- Institute of Molecular Biosciences, University of Graz, A-8010 Graz, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Demerjian M, Crumrine DA, Milstone LM, Williams ML, Elias PM. Barrier dysfunction and pathogenesis of neutral lipid storage disease with ichthyosis (Chanarin-Dorfman syndrome). J Invest Dermatol 2006; 126:2032-8. [PMID: 16741516 DOI: 10.1038/sj.jid.5700332] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Neutral lipid storage disease with ichthyosis (NLSDI; Chanarin-Dorfman syndrome) is an ichthyosiform syndrome, often associated with mutations in a lipid hydrolase, CGI-58. The presence of oil red O-positive, neutral lipid droplets in tissue biopsies, and/or in leukocytes on blood smears, coupled with a constellation of multisystem abnormalities and a pruritic ichthyosiform erythroderma, are together diagnostic of NLSDI. We investigated the pathogenesis of the ichthyosiform erythroderma in patients from three unrelated kindreds with a clinical diagnosis of NLSDI. Basal permeability barrier function and stratum corneum (SC) integrity were abnormal, but barrier recovery rates were faster than normal, as in atopic dermatitis. The basal barrier abnormality was linked to the secretion of lipid micro-inclusions, first segregated within lamellar bodies (LB), which then form a non-lamellar phase within the SC interstices, shown by combined ruthenium tetroxide post-fixation and lipid-retaining resin-white embedding. With colloidal lanthanum nitrate perfusion, excess water/solute movement was restricted to the SC interstices, and further localized to non-lamellar domains. Phase separation of excess stored lipid provides a unifying pathogenic mechanism not only for NLSDI, but also in several other inherited ichthyosiform disorders of lipid metabolism, such as recessive X-linked ichthyosis and type 2 Gaucher's disease.
Collapse
|
40
|
Abstract
The hydrolysis of fat stored in adipose tissues is crucial for providing energy during fasting and exercise, and dysregulation of fat breakdown may contribute to metabolic disease. In this issue of Cell Metabolism, report that CGI-58/ABHD5, a lipid-droplet-associated protein that is mutated in a rare disease characterized by excess lipid storage, activates adipose triglyceride lipase and thus may regulate fat mobilization.
Collapse
Affiliation(s)
- Chi-Liang Eric Yen
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA
| | | |
Collapse
|
41
|
Lass A, Zimmermann R, Haemmerle G, Riederer M, Schoiswohl G, Schweiger M, Kienesberger P, Strauss JG, Gorkiewicz G, Zechner R. Adipose triglyceride lipase-mediated lipolysis of cellular fat stores is activated by CGI-58 and defective in Chanarin-Dorfman Syndrome. Cell Metab 2006; 3:309-19. [PMID: 16679289 DOI: 10.1016/j.cmet.2006.03.005] [Citation(s) in RCA: 695] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2006] [Revised: 03/15/2006] [Accepted: 03/17/2006] [Indexed: 12/23/2022]
Abstract
Adipose triglyceride lipase (ATGL) was recently identified as an important triacylglycerol (TG) hydrolase promoting the catabolism of stored fat in adipose and nonadipose tissues. We now demonstrate that efficient ATGL enzyme activity requires activation by CGI-58. Mutations in the human CGI-58 gene are associated with Chanarin-Dorfman Syndrome (CDS), a rare genetic disease where TG accumulates excessively in multiple tissues. CGI-58 interacts with ATGL, stimulating its TG hydrolase activity up to 20-fold. Alleles of CGI-58 carrying point mutations associated with CDS fail to activate ATGL. Moreover, CGI-58/ATGL coexpression attenuates lipid accumulation in COS-7 cells. Antisense RNA-mediated reduction of CGI-58 expression in 3T3-L1 adipocytes inhibits TG mobilization. Finally, expression of functional CGI-58 in CDS fibroblasts restores lipolysis and reverses the abnormal TG accumulation typical for CDS. These data establish an important biochemical function for CGI-58 in the lipolytic degradation of fat, implicating this lipolysis activator in the pathogenesis of CDS.
Collapse
Affiliation(s)
- Achim Lass
- Institute of Molecular Biosciences, University of Graz, Heinrichstrasse 31, A-8010 Graz, Austria
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Nagura M, Saito M, Iwamori M, Sakakihara Y, Igarashi T. Alterations of fatty acid metabolism and membrane fluidity in peroxisome-defective mutant ZP102 cells. Lipids 2004; 39:43-50. [PMID: 15055234 DOI: 10.1007/s11745-004-1200-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We investigated lipid composition and FA metabolism in Chinese hamster ovary CHO-K1) cells and Pex5-mutated CHO-K1 (ZP102) cells to clarify the biochemical bases of peroxisome biogenesis disorders (PBD). ZP102 cells have defective peroxisomes and exhibit impairments of peroxisomal beta-oxidation of FA and plasmalogen biosynthesis. In addition, we identified FA metabolic alterations in the synthesis of several classes of lipids in ZP102 cells. The concentration of FFA in ZP102 cells was twice that in CHO-K1 cells, but methyl esters and TAG were decreased in ZP102 cells in comparison with control cells. Also, ceramide monohexoside (CMH) concentration with ZP102 cells was significantly increased compared with the control cells. The FA molecular species, particularly the saturated to unsaturated ratios, of individual lipids also differed between the two cell types. The rate of incorporation of [14C]-labeled saturated acids into sphingomyelin (SM) and CMH in ZP102 cells was higher than that in CHO-K1 cells. Lignoceric acid incorporated into cells was predominantly utilized for the synthesis of SM at 24 h after removal of [14C]lignoceric acid from the culture medium. ZP102 cells showed higher fluorescence anisotropy of 1,3,5-diphenylhexatriene, corresponding to lower membrane mobility than in CHO-K1 cells. In particular, alteration of lipid metabolism by a Pex5 mutation enhanced metabolism of saturated FA and sphingolipids. This may be related to the reduced membrane fluidity of ZP102 cells, which has been implicated in the dysfunction of membrane-linked processes in PBD.
Collapse
Affiliation(s)
- Michiaki Nagura
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | | | | | | | | |
Collapse
|
43
|
Srinivasan R, Hadzić N, Fischer J, Knisely AS. Steatohepatitis and unsuspected micronodular cirrhosis in Dorfman-Chanarin syndrome with documented ABHD5 mutation. J Pediatr 2004; 144:662-5. [PMID: 15127008 DOI: 10.1016/j.jpeds.2004.01.036] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Mutation in ABHD5 causes Dorfman-Chanarin syndrome (DCS), a multisystem triglyceride storage disorder. Ultrastructural study of leukocytes confirmed DCS in a child homozygous for a novel ABHD5 mutation, with ichthyosis, developmental delay, and steatohepatitis with cirrhosis, manifest only as elevated aminotranferase levels. We recommend early assessment for liver disease in DCS.
Collapse
Affiliation(s)
- Ramesh Srinivasan
- Department of Child Health, King's College Hospital, Denmark Hill, London, United Kingdom
| | | | | | | |
Collapse
|
44
|
Caux F, Selma ZB, Laroche L, Prud'homme JF, Fischer J. CGI-58/ABHD5 gene is mutated in Dorfman-Chanarin syndrome. ACTA ACUST UNITED AC 2004; 129A:214. [PMID: 15316960 DOI: 10.1002/ajmg.a.30228] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
45
|
Liu P, Ying Y, Zhao Y, Mundy DI, Zhu M, Anderson RGW. Chinese hamster ovary K2 cell lipid droplets appear to be metabolic organelles involved in membrane traffic. J Biol Chem 2003; 279:3787-92. [PMID: 14597625 DOI: 10.1074/jbc.m311945200] [Citation(s) in RCA: 427] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The principal lipids in animal cell lipid droplets are cholesterol, cholesterol ester, and triglyceride, but the protein composition of this compartment is largely unknown. Here we report on the proteomic analysis of lipid droplets. Using a combination of mass spectrometry and immunoblotting, we identify nearly 40 specifically associated proteins in droplets isolated from Chinese hamster ovary K2 cells grown in normal medium. The proteins fall in to five groups: structural molecules of the droplet-like adipose differentiation-related protein; multiple enzymes involved in the synthesis, storage, utilization, and degradation of cholesterol esters and triglycerides; multiple, different Rab GTPases known to be involved in regulating membrane traffic; signaling molecules such as p50RhoGAP; and a group of proteins that do not fit any classification but include proteins often found in caveolae/rafts such as caveolin-1 and 2 and flotillin-1. The proteome of droplets isolated from cells grown in the presence of oleate is largely the same except for an increase in the amount of adipose differentiation-related protein, caveolin-1, and a protein thought to be involved in phospholipid recycling called CGI-58. Based on the protein profile, the lipid droplet appears to be a complex, metabolically active organelle that is directly involved in membrane traffic and possibly phospholipid recycling. We propose the name adiposome for this organelle.
Collapse
Affiliation(s)
- Pingsheng Liu
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9039, USA
| | | | | | | | | | | |
Collapse
|
46
|
Lefèvre C, Jobard F, Caux F, Bouadjar B, Karaduman A, Heilig R, Lakhdar H, Wollenberg A, Verret JL, Weissenbach J, Özgüc M, Lathrop M, Prud'homme JF, Fischer J. Mutations in CGI-58, the gene encoding a new protein of the esterase/lipase/thioesterase subfamily, in Chanarin-Dorfman syndrome. Am J Hum Genet 2001; 69:1002-12. [PMID: 11590543 PMCID: PMC1274347 DOI: 10.1086/324121] [Citation(s) in RCA: 335] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2001] [Accepted: 08/29/2001] [Indexed: 11/03/2022] Open
Abstract
Chanarin-Dorfman syndrome (CDS) is a rare autosomal recessive form of nonbullous congenital ichthyosiform erythroderma (NCIE) that is characterized by the presence of intracellular lipid droplets in most tissues. We previously localized a gene for a subset of NCIE to chromosome 3 (designated "the NCIE2 locus"), in six families. Lipid droplets were found in five of these six families, suggesting a diagnosis of CDS. Four additional families selected on the basis of a confirmed diagnosis of CDS also showed linkage to the NCIE2 locus. Linkage-disequilibrium analysis of these families, all from the Mediterranean basin, allowed us to refine the NCIE2 locus to an approximately 1.3-Mb region. Candidate genes from the interval were screened, and eight distinct mutations in the recently identified CGI-58 gene were found in 13 patients from these nine families. The spectrum of gene variants included insertion, deletion, splice-site, and point mutations. The CGI-58 protein belongs to a large family of proteins characterized by an alpha/beta hydrolase fold. CGI-58 contains three sequence motifs that correspond to a catalytic triad found in the esterase/lipase/thioesterase subfamily. Interestingly, CGI-58 differs from other members of the esterase/lipase/thioesterase subfamily in that its putative catalytic triad contains an asparagine in place of the usual serine residue.
Collapse
Affiliation(s)
- Caroline Lefèvre
- Centre National de Génotypage, Genoscope and Centre National de la Recherche Scientifique Unité Mixte de Recherche 8030, and Généthon, Evry, France; Department of Dermatology and Laboratory of Immunology, Unité Propre de Recherche de l'Enseignement Supérieur Equipe d'Acceuil 2361, University of Paris XIII, Bobigny, France; Department of Dermatology, Bab-el-Oued Hospital, Algiers; Department of Dermatology and DNA/Cell Bank Tübiak, Hacettepe University, Ankara; Department of Dermatology, Ibn Rochd, Casablanca; Department of Dermatology, Ludwig-Maximillian University, Munich; and Department of Dermatology, Centre Hospitalier Universitaire d'Angers, Angers, France
| | - Florence Jobard
- Centre National de Génotypage, Genoscope and Centre National de la Recherche Scientifique Unité Mixte de Recherche 8030, and Généthon, Evry, France; Department of Dermatology and Laboratory of Immunology, Unité Propre de Recherche de l'Enseignement Supérieur Equipe d'Acceuil 2361, University of Paris XIII, Bobigny, France; Department of Dermatology, Bab-el-Oued Hospital, Algiers; Department of Dermatology and DNA/Cell Bank Tübiak, Hacettepe University, Ankara; Department of Dermatology, Ibn Rochd, Casablanca; Department of Dermatology, Ludwig-Maximillian University, Munich; and Department of Dermatology, Centre Hospitalier Universitaire d'Angers, Angers, France
| | - Frédéric Caux
- Centre National de Génotypage, Genoscope and Centre National de la Recherche Scientifique Unité Mixte de Recherche 8030, and Généthon, Evry, France; Department of Dermatology and Laboratory of Immunology, Unité Propre de Recherche de l'Enseignement Supérieur Equipe d'Acceuil 2361, University of Paris XIII, Bobigny, France; Department of Dermatology, Bab-el-Oued Hospital, Algiers; Department of Dermatology and DNA/Cell Bank Tübiak, Hacettepe University, Ankara; Department of Dermatology, Ibn Rochd, Casablanca; Department of Dermatology, Ludwig-Maximillian University, Munich; and Department of Dermatology, Centre Hospitalier Universitaire d'Angers, Angers, France
| | - Bakar Bouadjar
- Centre National de Génotypage, Genoscope and Centre National de la Recherche Scientifique Unité Mixte de Recherche 8030, and Généthon, Evry, France; Department of Dermatology and Laboratory of Immunology, Unité Propre de Recherche de l'Enseignement Supérieur Equipe d'Acceuil 2361, University of Paris XIII, Bobigny, France; Department of Dermatology, Bab-el-Oued Hospital, Algiers; Department of Dermatology and DNA/Cell Bank Tübiak, Hacettepe University, Ankara; Department of Dermatology, Ibn Rochd, Casablanca; Department of Dermatology, Ludwig-Maximillian University, Munich; and Department of Dermatology, Centre Hospitalier Universitaire d'Angers, Angers, France
| | - Aysen Karaduman
- Centre National de Génotypage, Genoscope and Centre National de la Recherche Scientifique Unité Mixte de Recherche 8030, and Généthon, Evry, France; Department of Dermatology and Laboratory of Immunology, Unité Propre de Recherche de l'Enseignement Supérieur Equipe d'Acceuil 2361, University of Paris XIII, Bobigny, France; Department of Dermatology, Bab-el-Oued Hospital, Algiers; Department of Dermatology and DNA/Cell Bank Tübiak, Hacettepe University, Ankara; Department of Dermatology, Ibn Rochd, Casablanca; Department of Dermatology, Ludwig-Maximillian University, Munich; and Department of Dermatology, Centre Hospitalier Universitaire d'Angers, Angers, France
| | - Roland Heilig
- Centre National de Génotypage, Genoscope and Centre National de la Recherche Scientifique Unité Mixte de Recherche 8030, and Généthon, Evry, France; Department of Dermatology and Laboratory of Immunology, Unité Propre de Recherche de l'Enseignement Supérieur Equipe d'Acceuil 2361, University of Paris XIII, Bobigny, France; Department of Dermatology, Bab-el-Oued Hospital, Algiers; Department of Dermatology and DNA/Cell Bank Tübiak, Hacettepe University, Ankara; Department of Dermatology, Ibn Rochd, Casablanca; Department of Dermatology, Ludwig-Maximillian University, Munich; and Department of Dermatology, Centre Hospitalier Universitaire d'Angers, Angers, France
| | - Hakima Lakhdar
- Centre National de Génotypage, Genoscope and Centre National de la Recherche Scientifique Unité Mixte de Recherche 8030, and Généthon, Evry, France; Department of Dermatology and Laboratory of Immunology, Unité Propre de Recherche de l'Enseignement Supérieur Equipe d'Acceuil 2361, University of Paris XIII, Bobigny, France; Department of Dermatology, Bab-el-Oued Hospital, Algiers; Department of Dermatology and DNA/Cell Bank Tübiak, Hacettepe University, Ankara; Department of Dermatology, Ibn Rochd, Casablanca; Department of Dermatology, Ludwig-Maximillian University, Munich; and Department of Dermatology, Centre Hospitalier Universitaire d'Angers, Angers, France
| | - Andreas Wollenberg
- Centre National de Génotypage, Genoscope and Centre National de la Recherche Scientifique Unité Mixte de Recherche 8030, and Généthon, Evry, France; Department of Dermatology and Laboratory of Immunology, Unité Propre de Recherche de l'Enseignement Supérieur Equipe d'Acceuil 2361, University of Paris XIII, Bobigny, France; Department of Dermatology, Bab-el-Oued Hospital, Algiers; Department of Dermatology and DNA/Cell Bank Tübiak, Hacettepe University, Ankara; Department of Dermatology, Ibn Rochd, Casablanca; Department of Dermatology, Ludwig-Maximillian University, Munich; and Department of Dermatology, Centre Hospitalier Universitaire d'Angers, Angers, France
| | - Jean-Luc Verret
- Centre National de Génotypage, Genoscope and Centre National de la Recherche Scientifique Unité Mixte de Recherche 8030, and Généthon, Evry, France; Department of Dermatology and Laboratory of Immunology, Unité Propre de Recherche de l'Enseignement Supérieur Equipe d'Acceuil 2361, University of Paris XIII, Bobigny, France; Department of Dermatology, Bab-el-Oued Hospital, Algiers; Department of Dermatology and DNA/Cell Bank Tübiak, Hacettepe University, Ankara; Department of Dermatology, Ibn Rochd, Casablanca; Department of Dermatology, Ludwig-Maximillian University, Munich; and Department of Dermatology, Centre Hospitalier Universitaire d'Angers, Angers, France
| | - Jean Weissenbach
- Centre National de Génotypage, Genoscope and Centre National de la Recherche Scientifique Unité Mixte de Recherche 8030, and Généthon, Evry, France; Department of Dermatology and Laboratory of Immunology, Unité Propre de Recherche de l'Enseignement Supérieur Equipe d'Acceuil 2361, University of Paris XIII, Bobigny, France; Department of Dermatology, Bab-el-Oued Hospital, Algiers; Department of Dermatology and DNA/Cell Bank Tübiak, Hacettepe University, Ankara; Department of Dermatology, Ibn Rochd, Casablanca; Department of Dermatology, Ludwig-Maximillian University, Munich; and Department of Dermatology, Centre Hospitalier Universitaire d'Angers, Angers, France
| | - Meral Özgüc
- Centre National de Génotypage, Genoscope and Centre National de la Recherche Scientifique Unité Mixte de Recherche 8030, and Généthon, Evry, France; Department of Dermatology and Laboratory of Immunology, Unité Propre de Recherche de l'Enseignement Supérieur Equipe d'Acceuil 2361, University of Paris XIII, Bobigny, France; Department of Dermatology, Bab-el-Oued Hospital, Algiers; Department of Dermatology and DNA/Cell Bank Tübiak, Hacettepe University, Ankara; Department of Dermatology, Ibn Rochd, Casablanca; Department of Dermatology, Ludwig-Maximillian University, Munich; and Department of Dermatology, Centre Hospitalier Universitaire d'Angers, Angers, France
| | - Mark Lathrop
- Centre National de Génotypage, Genoscope and Centre National de la Recherche Scientifique Unité Mixte de Recherche 8030, and Généthon, Evry, France; Department of Dermatology and Laboratory of Immunology, Unité Propre de Recherche de l'Enseignement Supérieur Equipe d'Acceuil 2361, University of Paris XIII, Bobigny, France; Department of Dermatology, Bab-el-Oued Hospital, Algiers; Department of Dermatology and DNA/Cell Bank Tübiak, Hacettepe University, Ankara; Department of Dermatology, Ibn Rochd, Casablanca; Department of Dermatology, Ludwig-Maximillian University, Munich; and Department of Dermatology, Centre Hospitalier Universitaire d'Angers, Angers, France
| | - Jean-François Prud'homme
- Centre National de Génotypage, Genoscope and Centre National de la Recherche Scientifique Unité Mixte de Recherche 8030, and Généthon, Evry, France; Department of Dermatology and Laboratory of Immunology, Unité Propre de Recherche de l'Enseignement Supérieur Equipe d'Acceuil 2361, University of Paris XIII, Bobigny, France; Department of Dermatology, Bab-el-Oued Hospital, Algiers; Department of Dermatology and DNA/Cell Bank Tübiak, Hacettepe University, Ankara; Department of Dermatology, Ibn Rochd, Casablanca; Department of Dermatology, Ludwig-Maximillian University, Munich; and Department of Dermatology, Centre Hospitalier Universitaire d'Angers, Angers, France
| | - Judith Fischer
- Centre National de Génotypage, Genoscope and Centre National de la Recherche Scientifique Unité Mixte de Recherche 8030, and Généthon, Evry, France; Department of Dermatology and Laboratory of Immunology, Unité Propre de Recherche de l'Enseignement Supérieur Equipe d'Acceuil 2361, University of Paris XIII, Bobigny, France; Department of Dermatology, Bab-el-Oued Hospital, Algiers; Department of Dermatology and DNA/Cell Bank Tübiak, Hacettepe University, Ankara; Department of Dermatology, Ibn Rochd, Casablanca; Department of Dermatology, Ludwig-Maximillian University, Munich; and Department of Dermatology, Centre Hospitalier Universitaire d'Angers, Angers, France
| |
Collapse
|
47
|
Igal RA, Caviglia JM, de Gómez Dumm INT, Coleman RA. Diacylglycerol generated in CHO cell plasma membrane by phospholipase C is used for triacylglycerol synthesis. J Lipid Res 2001. [DOI: 10.1016/s0022-2275(20)32339-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
48
|
Gibbons GF, Islam K, Pease RJ. Mobilisation of triacylglycerol stores. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1483:37-57. [PMID: 10601694 DOI: 10.1016/s1388-1981(99)00182-1] [Citation(s) in RCA: 202] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Triacylglycerol (TAG) is an energy dense substance which is stored by several body tissues, principally adipose tissue and the liver. Utilisation of stored TAG as an energy source requires its mobilisation from these depots and transfer into the blood plasma. The means by which TAG is mobilised differs in adipose tissue and liver although the regulation of lipid metabolism in each of these organs is interdependent and synchronised in an integrated manner. This review deals principally with the mechanism of hepatic TAG mobilisation since this is a rapidly expanding area of research and may have important implications for the regulation of plasma very-low-density lipoprotein metabolism. TAG mobilisation plays an important role in fuel selection in non-hepatic tissues such as cardiac muscle and pancreatic islets and these aspects are also reviewed briefly. Finally, studies of certain rare inherited disorders of neutral lipid storage and mobilisation may provide useful information about the normal enzymology of TAG mobilisation in healthy tissues.
Collapse
Affiliation(s)
- G F Gibbons
- Metabolic Research Laboratory, Oxford Lipid Metabolism Group, University of Oxford, Radcliffe Infirmary, Woodstock Road, Oxford, UK.
| | | | | |
Collapse
|
49
|
Ishida-Yamamoto A, Tanaka H, Nakane H, Takahashi H, Iizuka H. Inherited disorders of epidermal keratinization. J Dermatol Sci 1998; 18:139-54. [PMID: 9865446 DOI: 10.1016/s0923-1811(98)00041-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
There have been a number of major discoveries recently in the field of dermatological science which have enabled us to determine the causes of inherited skin diseases of previously unknown etiology. In this paper we will review some important aspects of the biology of epidermal differentiation and the recent advances in understanding of the molecular mechanism underlying genetic diseases of keratinization.
Collapse
|