1
|
May-Zhang LS, Yermalitsky V, Melchior JT, Morris J, Tallman KA, Borja MS, Pleasent T, Amarnath V, Song W, Yancey PG, Davidson WS, Linton MF, Davies SS. Modified sites and functional consequences of 4-oxo-2-nonenal adducts in HDL that are elevated in familial hypercholesterolemia. J Biol Chem 2019; 294:19022-19033. [PMID: 31666337 PMCID: PMC6916491 DOI: 10.1074/jbc.ra119.009424] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 10/25/2019] [Indexed: 12/18/2022] Open
Abstract
The lipid aldehyde 4-oxo-2-nonenal (ONE) is a highly reactive protein crosslinker derived from peroxidation of n-6 polyunsaturated fatty acids and generated together with 4-hydroxynonenal (HNE). Lipid peroxidation product-mediated crosslinking of proteins in high-density lipoprotein (HDL) causes HDL dysfunction and contributes to atherogenesis. Although HNE is relatively well-studied, the role of ONE in atherosclerosis and in modifying HDL is unknown. Here, we found that individuals with familial hypercholesterolemia (FH) had significantly higher ONE-ketoamide (lysine) adducts in HDL (54.6 ± 33.8 pmol/mg) than healthy controls (15.3 ± 5.6 pmol/mg). ONE crosslinked apolipoprotein A-I (apoA-I) on HDL at a concentration of > 3 mol ONE per 10 mol apoA-I (0.3 eq), which was 100-fold lower than HNE, but comparable to the potent protein crosslinker isolevuglandin. ONE-modified HDL partially inhibited HDL's ability to protect against lipopolysaccharide (LPS)-induced tumor necrosis factor α (TNFα) and interleukin-1β (IL-1β) gene expression in murine macrophages. At 3 eq, ONE dramatically decreased apoA-I exchange from HDL, from ∼46.5 to ∼18.4% (p < 0.001). Surprisingly, ONE modification of HDL or apoA-I did not alter macrophage cholesterol efflux capacity. LC-MS/MS analysis revealed that Lys-12, Lys-23, Lys-96, and Lys-226 in apoA-I are modified by ONE ketoamide adducts. Compared with other dicarbonyl scavengers, pentylpyridoxamine (PPM) most efficaciously blocked ONE-induced protein crosslinking in HDL and also prevented HDL dysfunction in an in vitro model of inflammation. Our findings show that ONE-HDL adducts cause HDL dysfunction and are elevated in individuals with FH who have severe hypercholesterolemia.
Collapse
Affiliation(s)
- Linda S May-Zhang
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232
| | - Valery Yermalitsky
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232
| | - John T Melchior
- Department of Pathology & Laboratory Medicine, University of Cincinnati, Ohio 45220
| | - Jamie Morris
- Department of Pathology & Laboratory Medicine, University of Cincinnati, Ohio 45220
| | - Keri A Tallman
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37232
| | - Mark S Borja
- Department of Chemistry & Biochemistry, California State University East Bay, Hayward, California 94542
| | - Tiffany Pleasent
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232
| | | | - Wenliang Song
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | - Patricia G Yancey
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | - W Sean Davidson
- Department of Pathology & Laboratory Medicine, University of Cincinnati, Ohio 45220
| | - MacRae F Linton
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | - Sean S Davies
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232
| |
Collapse
|
2
|
Oda MN, Budamagunta MS, Geier EG, Chandradas SH, Shao B, Heinecke JW, Voss JC, Cavigiolio G. Conservation of apolipoprotein A-I's central domain structural elements upon lipid association on different high-density lipoprotein subclasses. Biochemistry 2013; 52:6766-78. [PMID: 23984834 DOI: 10.1021/bi4007012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The antiatherogenic properties of apolipoprotein A-I (apoA-I) are derived, in part, from lipidation-state-dependent structural elements that manifest at different stages of apoA-I's progression from lipid-free protein to spherical high-density lipoprotein (HDL). Previously, we reported the structure of apoA-I's N-terminus on reconstituted HDLs (rHDLs) of different sizes. We have now investigated at the single-residue level the conformational adaptations of three regions in the central domain of apoA-I (residues 119-124, 139-144, and 164-170) upon apoA-I lipid binding and HDL formation. An important function associated with these residues of apoA-I is the activation of lecithin:cholesterol acyltransferase (LCAT), the enzyme responsible for catalyzing HDL maturation. Structural examination was performed by site-directed tryptophan fluorescence and spin-label electron paramagnetic resonance spectroscopies for both the lipid-free protein and rHDL particles 7.8, 8.4, and 9.6 nm in diameter. The two methods provide complementary information about residue side chain mobility and molecular accessibility, as well as the polarity of the local environment at the targeted positions. The modulation of these biophysical parameters yielded new insight into the importance of structural elements in the central domain of apoA-I. In particular, we determined that the loosely lipid-associated structure of residues 134-145 is conserved in all rHDL particles. Truncation of this region completely abolished LCAT activation but did not significantly affect rHDL size, reaffirming the important role of this structural element in HDL function.
Collapse
Affiliation(s)
- Michael N Oda
- Children's Hospital Oakland Research Institute , Oakland, California 94609, United States
| | | | | | | | | | | | | | | |
Collapse
|
3
|
Jones MK, Catte A, Li L, Segrest JP. Dynamics of activation of lecithin:cholesterol acyltransferase by apolipoprotein A-I. Biochemistry 2009; 48:11196-210. [PMID: 19860440 DOI: 10.1021/bi901242k] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The product of transesterification of phospholipid acyl chains and unesterified cholesterol (UC) by the enzyme lecithin:cholesterol acyltransferase (LCAT) is cholesteryl ester (CE). Activation of LCAT by apolipoprotein (apo) A-I on nascent (discoidal) high-density lipoproteins (HDL) is essential for formation of mature (spheroidal) HDL during the antiatherogenic process of reverse cholesterol transport. Here we report all-atom and coarse-grained (CG) molecular dynamics (MD) simulations of HDL particles that have major implications for mechanisms of LCAT activation. Both the all-atom and CG simulations provide support for a model in which the helix 5/5 domains of apoA-I create an amphipathic "presentation tunnel" that exposes methyl ends of acyl chains at the bilayer center to solvent. Further, CG simulations show that UC also becomes inserted with high efficiency into the amphipathic presentation tunnel with its hydroxyl moiety (UC-OH) exposed to solvent; these results are consistent with trajectory analyses of the all-atom simulations showing that UC is being concentrated in the vicinity of the presentation tunnel. Finally, consistent with known product inhibition of CE-rich HDL by CE, CG simulations of CE-rich spheroidal HDL indicate partial blockage of the amphipathic presentation tunnel by CE. These results lead us to propose the following working hypothesis. After attachment of LCAT to discoidal HDL, the helix 5/5 domains in apoA-I form amphipathic presentation tunnels for migration of hydrophobic acyl chains and amphipathic UC from the bilayer to the phospholipase A2-like and esterification active sites of LCAT, respectively. This hypothesis is currently being tested by site-directed mutagenesis.
Collapse
Affiliation(s)
- Martin K Jones
- Department of Medicine and Atherosclerosis Research Unit, University ofAlabama, Birmingham, Alabama 35294, USA
| | | | | | | |
Collapse
|
4
|
Liz MA, Gomes CM, Saraiva MJ, Sousa MM. ApoA-I cleaved by transthyretin has reduced ability to promote cholesterol efflux and increased amyloidogenicity. J Lipid Res 2007; 48:2385-95. [PMID: 17693625 DOI: 10.1194/jlr.m700158-jlr200] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A fraction of plasma transthyretin (TTR) circulates in HDL through binding to apolipoprotein A-I (apoA-I). Moreover, TTR is able to cleave the C terminus of lipid-free apoA-I. In this study, we addressed the relevance of apoA-I cleavage by TTR in lipoprotein metabolism and in the formation of apoA-I amyloid fibrils. We determined that TTR may also cleave lipidated apoA-I, with cleavage being more effective in the lipid-poor prebeta-HDL subpopulation. Upon TTR cleavage, discoidal HDL particles displayed a reduced capacity to promote cholesterol efflux from cholesterol-loaded THP-1 macrophages. In similar assays, TTR-containing HDL from mice expressing human TTR in a TTR knockout background had a decreased ability to perform reverse cholesterol transport compared with similar particles from TTR knockout mice, reinforcing the notion that cleavage by TTR reduces the ability of apoA-I to promote cholesterol efflux. As amyloid deposits composed of N-terminal apoA-I fragments are common in the atherosclerotic intima, we assessed the impact of TTR cleavage on apoA-I aggregation and fibrillar growth. We determined that TTR-cleaved apoA-I has a high propensity to form aggregated particles and that it formed fibrils faster than full-length apoA-I, as assessed by electron microscopy. Our results show that apoA-I cleavage by TTR may affect HDL biology and the development of atherosclerosis by reducing cholesterol efflux and increasing the apoA-I amyloidogenic potential.
Collapse
Affiliation(s)
- Márcia Almeida Liz
- Molecular Neurobiology Group, Instituto de Biologia Molecular e Celular (IBMC), Porto, Portugal
| | | | | | | |
Collapse
|
5
|
Klon AE, Segrest JP, Harvey SC. Molecular dynamics simulations on discoidal HDL particles suggest a mechanism for rotation in the apo A-I belt model. J Mol Biol 2002; 324:703-21. [PMID: 12460572 DOI: 10.1016/s0022-2836(02)01143-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Apolipoprotein A-I (apo A-I) is the major protein component of high-density lipoprotein (HDL) particles. Elevated levels of HDL in the bloodstream have been shown to correlate strongly with a reduced risk factor for atherosclerosis. Molecular dynamics simulations have been carried out on three separate model discoidal high-density lipoprotein particles (HDL) containing two monomers of apo A-I and 160 molecules of palmitoyloleoylphosphatidylcholine (POPC), to a time-scale of 1ns. The starting structures were on the basis of previously published molecular belt models of HDL consisting of the lipid-binding C-terminal domain (residues 44-243) wrapped around the circumference of a discoidal HDL particle. Subtle changes between two of the starting structures resulted in significantly different behavior during the course of the simulation. The results provide support for the hypothesis of Segrest et al. that helical registration in the molecular belt model of apo A-I is modulated by intermolecular salt bridges. In addition, we propose an explanation for the presence of proline punctuation in the molecular belt model, and for the presence of two 11-mer helical repeats interrupting the otherwise regular pattern of 22-mer helical repeats in the lipid-binding domain of apo A-I.
Collapse
Affiliation(s)
- Anthony E Klon
- Department of Biochemistry and Molecular Genetics, The University of Alabama at Birmingham, 1918 University Blvd, 552 Basic Health Sciences Bldg, Birmingham, AL 35294-0005, USA
| | | | | |
Collapse
|
6
|
McManus DC, Scott BR, Franklin V, Sparks DL, Marcel YL. Proteolytic degradation and impaired secretion of an apolipoprotein A-I mutant associated with dominantly inherited hypoalphalipoproteinemia. J Biol Chem 2001; 276:21292-302. [PMID: 11292828 DOI: 10.1074/jbc.m100463200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have devised a combined in vivo, ex vivo, and in vitro approach to elucidate the mechanism(s) responsible for the hypoalphalipoproteinemia in heterozygous carriers of a naturally occurring apolipoprotein A-I (apoA-I) variant (Leu(159) to Arg) known as apoA-I Finland (apoA-I(FIN)). Adenovirus-mediated expression of apoA-I(FIN) decreased apoA-I and high density lipoprotein cholesterol concentrations in both wild-type C57BL/6J mice and in apoA-I-deficient mice expressing native human apoA-I (hapoA-I). Interestingly, apoA-I(FIN) was degraded in the plasma, and the extent of proteolysis correlated with the most significant reductions in murine apoA-I concentrations. ApoA-I(FIN) had impaired activation of lecithin:cholesterol acyltransferase in vitro compared with hapoA-I, but in a mixed lipoprotein preparation consisting of both hapoA-I and apoA-I(FIN) there was only a moderate reduction in the activation of this enzyme. Importantly, secretion of apoA-I was also decreased from primary apoA-I-deficient hepatocytes when hapoA-I was co-expressed with apoA-I(FIN) following infection with recombinant adenoviruses, a condition that mimics secretion in heterozygotes. Thus, this is the first demonstration of an apoA-I point mutation that decreases LCAT activation, impairs hepatocyte secretion of apoA-I, and makes apoA-I susceptible to proteolysis leading to dominantly inherited hypoalphalipoproteinemia.
Collapse
Affiliation(s)
- D C McManus
- Lipoprotein and Atherosclerosis Research Group, Department of Pathology, University of Ottawa Heart Institute, Ottawa, Ontario K1Y 4W7, Canada
| | | | | | | | | |
Collapse
|
7
|
Sviridov D, Hoang A, Sawyer WH, Fidge NH. Identification of a sequence of apolipoprotein A-I associated with the activation of Lecithin:Cholesterol acyltransferase. J Biol Chem 2000; 275:19707-12. [PMID: 10781581 DOI: 10.1074/jbc.m000962200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We aimed to distinguish between the effects of mutations in apoA-I on the requirements for the secondary structure and a specific amino acid sequence for lecithin:cholesterol acyltransferase (LCAT) activation. Several mutants were constructed targeting region 140-150: (i) two mutations affecting alpha-helical structure, deletion of amino acids 140-150 and substitution of Ala(143) for proline; (ii) two mutations not affecting alpha-helical structure, substitution of Val(149) for arginine and substitution of amino acids 63-73 for sequence 140-150; and (iii) a mutation in a similar region away from the target area, deletion of amino acids 63-73. All mutations affecting region 140-150 resulted in a 4-42-fold reduction in LCAT activation. Three mutations, apoA-I(Delta140-150), apoA-I(P143A), and apoA-I(140-150 --> 63-73), affected both the apparent V(max) and K(m), whereas the mutation apoA-I(R149V) affected only the V(max). The mutation apoA-I(Delta63-73) caused only a 5-fold increase in the K(m). All mutants, except apoA-I(P143A) and apoA-I(Delta63-73), were active in phospholipid binding assay. All mutants, except apoA-I(P143A), formed normal discoidal complexes with phospholipid. The mutation apoA-I(Delta63-73) caused a significant reduction in the stability of apoA-I.phospholipid complexes in denaturation experiments. Combined, our results strongly suggest that although the correct conformation and orientation of apoA-I in the complex with lipids are crucial for activation of LCAT, when these conditions are fulfilled, activation also strongly depends on the sequence that includes amino acids 140-150.
Collapse
Affiliation(s)
- D Sviridov
- Baker Medical Research Institute, Melbourne 8008 and the Department of Biochemistry, University of Melbourne, Parkville 3052, Victoria, Australia.
| | | | | | | |
Collapse
|
8
|
Lee M, Uboldi P, Giudice D, Catapano AL, Kovanen PT. Identification of domains in apoA-I susceptible to proteolysis by mast cell chymase: implications for HDL function. J Lipid Res 2000. [DOI: 10.1016/s0022-2275(20)32040-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
9
|
McManus DC, Scott BR, Frank PG, Franklin V, Schultz JR, Marcel YL. Distinct central amphipathic alpha-helices in apolipoprotein A-I contribute to the in vivo maturation of high density lipoprotein by either activating lecithin-cholesterol acyltransferase or binding lipids. J Biol Chem 2000; 275:5043-51. [PMID: 10671546 DOI: 10.1074/jbc.275.7.5043] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Recombinant adenoviruses with cDNAs for human apolipoprotein A-I (wild type (wt) apoA-I) and three mutants, referred to as Delta4-5A-I, Delta5-6A-I, and Delta6-7A-I, that have deletions removing regions coding for amino acids 100-143, 122-165, and 144-186, respectively, were created to study structure/function relationships of apoA-I in vivo. All mutants were expressed at lower concentrations than wt apoA-I in plasma of fasting apoA-I-deficient mice. The Delta5-6A-I mutant was found primarily in the lipid-poor high density lipoprotein (HDL) pool and at lower concentrations than Delta4-5A-I and Delta6-7A-I that formed more buoyant HDL(2/3) particles. At an elevated adenovirus dose and earlier blood sampling from fed mice, both Delta5-6A-I and Delta6-7A-I increased HDL-free cholesterol and phospholipid but not cholesteryl ester. In contrast, wt apoA-I and Delta4-5A-I produced significant increases in HDL cholesteryl ester. Further analysis showed that Delta6-7A-I and native apoA-I could bind similar amounts of phospholipid and cholesterol that were reduced slightly for Delta5-6A-I and greatly for Delta4-5A-I. We conclude from these findings that amino acids (aa) 100-143, specifically helix 4 (aa 100-121), contributes to the maturation of HDL through a role in lipid binding and that the downstream sequence (aa 144-186) centered around helix 6 (aa 144-165) is responsible for the activation of lecithin-cholesterol acyltransferase.
Collapse
Affiliation(s)
- D C McManus
- Lipoprotein and Atherosclerosis Research Group and the Department of Pathology and Laboratory Medicine, University of Ottawa Heart Institute, Ottawa, Ontario K1Y 4W7, Canada
| | | | | | | | | | | |
Collapse
|
10
|
Daum U, Leren TP, Langer C, Chirazi A, Cullen P, Pritchard PH, Assmann G, von Eckardstein A. Multiple dysfunctions of two apolipoprotein A-I variants, apoA-I(R160L)Oslo and apoA-I(P165R), that are associated with hypoalphalipoproteinemia in heterozygous carriers. J Lipid Res 1999. [DOI: 10.1016/s0022-2275(20)32453-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
11
|
Frank PG, N'Guyen D, Franklin V, Neville T, Desforges M, Rassart E, Sparks DL, Marcel YL. Importance of central alpha-helices of human apolipoprotein A-I in the maturation of high-density lipoproteins. Biochemistry 1998; 37:13902-9. [PMID: 9753480 DOI: 10.1021/bi981205b] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
We have studied the role of amphipathic alpha-helices in the ability of apoA-I to promote cholesterol efflux from human skin fibroblasts and activate lecithin:cholesterol acyltransferase (LCAT). Three apoA-I mutants were designed, each by deletion of a pair of predicted adjacent central alpha-helices [Delta(100-143), Delta(122-165), Delta(144-186)], and expressed in Escherichia coli. This strategy was used to minimize disruption of the predicted secondary structure of the resulting protein. These three central deletion mutants have been previously shown to be expressed as stable folded proteins but to exhibit altered phospholipid-binding properties. When recombined with phospholipids to form homogeneous LpA-I containing equivalent amounts of POPC and tested for their ability to promote diffusional cholesterol efflux from normal [3H]cholesterol-labeled fibroblasts, each mutant and the wild-type recombinant protein (Rec.-apoA-I) promoted cholesterol efflux with very similar rates at all the concentrations tested. These experiments showed that all LpA-I could acquire cellular cholesterol with similar affinity and binding capacity. However, when the cell-incubated LpA-I were incubated with purified LCAT, two mutants, Delta(122-165) and Delta(144-186), appeared incapable of activating the enzyme. To directly determine their ability to activate LCAT, each mutant and the control were recombined with equivalent amounts of cholesterol and phospholipid and incubated with the purified enzyme. The results show that whereas deletion of residues 100-143 has little effect on LCAT activation, deletion of residues 122-165 or 144-186 results in an inability of the mutants to promote cholesterol esterification. In conclusion, our results show that no specific sequence in the central domain of apoA-I is required for efficient diffusional cholesterol efflux from normal fibroblasts; however, residues 144-186 appear critical for optimum LCAT activation and cholesteryl ester accumulation. Since deletion of residues 144-186 also perturbs phospholipid association and prevents the formation of large LpA-I particles [Frank, P. G., Bergeron, J., Emmanuel, F., Lavigne, J. P., Sparks, D. L., Denèfle, P., Rassart, E., and Marcel, Y. L. (1997) Biochemistry 36, 1798-1806], the data show that this pair of alpha-helices plays an important role in the maturation of HDL. Sequence analysis of these apoA-I helices further identifies specific residues that appear essential to this activity.
Collapse
Affiliation(s)
- P G Frank
- Lipoprotein & Atherosclerosis Group, University of Ottawa Heart Institute, Ontario, Canada
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Affiliation(s)
- A Jonas
- Department of Biochemistry, College of Medicine at Urban-Champaign, University of Illinois 61801, USA
| |
Collapse
|
13
|
Abstract
Oxidative damage to apolipoprotein A-I that occurs in vivo commonly involves methionine oxidation, and is accompanied by alterations in structure, lipid association, and cholesterol efflux function. We have used the enzyme peptide methionine sulfoxide reductase (PMSR) to reverse this damage, and shown by a variety of criteria that enzyme treatment restores the primary, secondary, and tertiary structure and lipid association characteristic of the native unoxidized protein. Lipid-associated as well as lipid-free apolipoprotein A-I reacts with PMSR, suggesting that enzymatic reduction of oxidized apolipoprotein A-I in high density lipoproteins can result in restoration of biological activity and the ability to promote cholesterol efflux from cells.
Collapse
Affiliation(s)
- A B Sigalov
- Biomedical Department, AMW Co. Ltd., Moscow, Russia.
| | | |
Collapse
|
14
|
Sorci-Thomas MG, Curtiss L, Parks JS, Thomas MJ, Kearns MW, Landrum M. The hydrophobic face orientation of apolipoprotein A-I amphipathic helix domain 143-164 regulates lecithin:cholesterol acyltransferase activation. J Biol Chem 1998; 273:11776-82. [PMID: 9565601 DOI: 10.1074/jbc.273.19.11776] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Apolipoprotein A-I (apoA-I) activates the plasma enzyme lecithin:cholesterol acyltransferase (LCAT), catalyzing the rapid conversion of lipoprotein cholesterol to cholesterol ester. Structural mutants of apoA-I have been used to study the details of apoA-I-LCAT-catalyzed cholesterol ester formation. Several studies have shown that the alpha-helical segments corresponding to amino acids 143-164 and 165-186 (repeats 6 and 7) are essential for LCAT activation. In the present studies, we examined how the orientation of the hydrophobic face, independent of an increase in overall hydrophobicity, affects LCAT activation. We designed, expressed, and characterized a mutant, reverse of 6 apoA-I (RO6 apoA-I), in which the primary amino acid sequence of repeat 6 (amino acids 143-164) was reversed from its normal orientation. This mutation rotates the hydrophobic face of repeat 6 approximately 80 degrees. Lipid-free RO6 apoA-I showed a marked stabilization when denatured by guanidine hydrochloride, but showed significant destabilization to guanidine hydrochloride denaturation in the lipid-bound state compared with wild-type apoA-I. Recombinant high density lipoprotein discs (rHDL) formed from RO6 apoA-I, sn-1-palmitoyl-sn-2-oleoyl phosphati-dylcholine, and cholesterol were approximately 12 A smaller than wild-type apoA-I rHDL. The reduced size suggests that one of the repeats did not effectively participate in phospholipid binding and organization. The sn-1-palmitoyl-sn-2-oleoyl phosphatidylcholine RO6 rHDL were a less effective substrate for LCAT. Mapping the entire lipid-free and lipid-bound RO6 apoA-I with a series of monoclonal antibodies revealed that both the lipid-free and lipid-bound RO6 apoA-I displayed altered or absent epitopes in domains within and adjacent to repeat 6. Together, these results suggest that the proper alignment and orientation of the hydrophobic face of repeat 6 is an important determinant for maintaining and stabilizing helix-bilayer and helix-helix interactions.
Collapse
Affiliation(s)
- M G Sorci-Thomas
- Department of Pathology and Comparative Medicine, Wake Forest University School of Medicine, Winston-Salen, North Carolina 27157, USA.
| | | | | | | | | | | |
Collapse
|
15
|
Wang G, Sparrow JT, Cushley RJ. The helix-hinge-helix structural motif in human apolipoprotein A-I determined by NMR spectroscopy. Biochemistry 1997; 36:13657-66. [PMID: 9354635 DOI: 10.1021/bi971151q] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The conformation of a synthetic peptide of 46 residues from apoA-I was investigated by fluorescence, CD, and 2D NMR spectroscopies in lipid-mimetic environments. ApoA-I(142-187) is mainly unstructured in water but helical in SDS or dodecylphosphocholine (DPC), although the peptide only associates with DPC at approximately the critical micellar concentration. Solution structures of apoA-I(142-187) were determined by distance geometry calculations based on 450 (in DPC-d38) or 397 (in SDS-d25) NOE-derived distance restraints, respectively. Backbone RMSDs for superimposing the two helical regions 146-162 and 168-182 are 0.98 +/- 0.22 (2.38 +/- 0.20) and 1.99 +/- 0.42 (2.02 +/- 0.21) A in DPC (SDS), respectively. No interhelical NOE was found, suggesting that helix-helix interactions between the two helical domains in apoA-I(142-187) are unlikely. Similar average, curved helix-hinge-helix structures were found in both SDS and DPC micelles with the hydrophobic residues occupying the concave face, indicating that hydrophobic interactions dominate. Intermolecular NOESY experiments, performed in the presence of 50% protonated SDS, confirm that the two amphipathic helices and Y166 in the hinge all interact with the micelle. The involvement of Y166 in lipid binding is supported by fluorescence spectroscopy as well. On the basis of all the data above, we propose a model for the peptide-lipid complexes wherein the curved amphipathic helix-hinge-helix structural motif straddles the micelle. The peptide-aided signal assignment achieved for apoA-I(122-187) (66mer) and apoA-I suggests that such a structural motif is retained in the longer peptide and most likely in the intact protein.
Collapse
Affiliation(s)
- G Wang
- Institute of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
| | | | | |
Collapse
|