1
|
He W, Baysal C, Lobato Gómez M, Huang X, Alvarez D, Zhu C, Armario‐Najera V, Blanco Perera A, Cerda Bennaser P, Saba‐Mayoral A, Sobrino‐Mengual G, Vargheese A, Abranches R, Alexandra Abreu I, Balamurugan S, Bock R, Buyel JF, da Cunha NB, Daniell H, Faller R, Folgado A, Gowtham I, Häkkinen ST, Kumar S, Sathish Kumar R, Lacorte C, Lomonossoff GP, Luís IM, K.‐C. Ma J, McDonald KA, Murad A, Nandi S, O’Keef B, Parthiban S, Paul MJ, Ponndorf D, Rech E, Rodrigues JC, Ruf S, Schillberg S, Schwestka J, Shah PS, Singh R, Stoger E, Twyman RM, Varghese IP, Vianna GR, Webster G, Wilbers RHP, Christou P, Oksman‐Caldentey K, Capell T. Contributions of the international plant science community to the fight against infectious diseases in humans-part 2: Affordable drugs in edible plants for endemic and re-emerging diseases. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:1921-1936. [PMID: 34181810 PMCID: PMC8486237 DOI: 10.1111/pbi.13658] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/10/2021] [Accepted: 06/22/2021] [Indexed: 05/05/2023]
Abstract
The fight against infectious diseases often focuses on epidemics and pandemics, which demand urgent resources and command attention from the health authorities and media. However, the vast majority of deaths caused by infectious diseases occur in endemic zones, particularly in developing countries, placing a disproportionate burden on underfunded health systems and often requiring international interventions. The provision of vaccines and other biologics is hampered not only by the high cost and limited scalability of traditional manufacturing platforms based on microbial and animal cells, but also by challenges caused by distribution and storage, particularly in regions without a complete cold chain. In this review article, we consider the potential of molecular farming to address the challenges of endemic and re-emerging diseases, focusing on edible plants for the development of oral drugs. Key recent developments in this field include successful clinical trials based on orally delivered dried leaves of Artemisia annua against malarial parasite strains resistant to artemisinin combination therapy, the ability to produce clinical-grade protein drugs in leaves to treat infectious diseases and the long-term storage of protein drugs in dried leaves at ambient temperatures. Recent FDA approval of the first orally delivered protein drug encapsulated in plant cells to treat peanut allergy has opened the door for the development of affordable oral drugs that can be manufactured and distributed in remote areas without cold storage infrastructure and that eliminate the need for expensive purification steps and sterile delivery by injection.
Collapse
Affiliation(s)
- Wenshu He
- Department of Crop and Forest SciencesUniversity of Lleida‐Agrotecnio CERCA CenterLleidaSpain
| | - Can Baysal
- Department of Crop and Forest SciencesUniversity of Lleida‐Agrotecnio CERCA CenterLleidaSpain
| | - Maria Lobato Gómez
- Department of Crop and Forest SciencesUniversity of Lleida‐Agrotecnio CERCA CenterLleidaSpain
| | - Xin Huang
- Department of Crop and Forest SciencesUniversity of Lleida‐Agrotecnio CERCA CenterLleidaSpain
| | - Derry Alvarez
- Department of Crop and Forest SciencesUniversity of Lleida‐Agrotecnio CERCA CenterLleidaSpain
| | - Changfu Zhu
- Department of Crop and Forest SciencesUniversity of Lleida‐Agrotecnio CERCA CenterLleidaSpain
| | - Victoria Armario‐Najera
- Department of Crop and Forest SciencesUniversity of Lleida‐Agrotecnio CERCA CenterLleidaSpain
| | - Aamaya Blanco Perera
- Department of Crop and Forest SciencesUniversity of Lleida‐Agrotecnio CERCA CenterLleidaSpain
| | - Pedro Cerda Bennaser
- Department of Crop and Forest SciencesUniversity of Lleida‐Agrotecnio CERCA CenterLleidaSpain
| | - Andrea Saba‐Mayoral
- Department of Crop and Forest SciencesUniversity of Lleida‐Agrotecnio CERCA CenterLleidaSpain
| | | | - Ashwin Vargheese
- Department of Crop and Forest SciencesUniversity of Lleida‐Agrotecnio CERCA CenterLleidaSpain
| | - Rita Abranches
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaOeirasPortugal
| | - Isabel Alexandra Abreu
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaOeirasPortugal
| | - Shanmugaraj Balamurugan
- Plant Genetic Engineering LaboratoryDepartment of BiotechnologyBharathiar UniversityTamil NaduIndia
| | - Ralph Bock
- Max Planck Institute of Molecular Plant PhysiologyPotsdam‐GolmGermany
| | - Johannes F. Buyel
- Fraunhofer Institute for Molecular Biology and Applied Ecology IMEAachenGermany
- Institute for Molecular BiotechnologyRWTH Aachen UniversityAachenGermany
| | - Nicolau B. da Cunha
- Centro de Análise Proteômicas e Bioquímicas de BrasíliaUniversidade Católica de BrasíliaBrasíliaBrazil
| | - Henry Daniell
- School of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Roland Faller
- Department of Chemical EngineeringUniversity of California, DavisDavisCAUSA
| | - André Folgado
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaOeirasPortugal
| | - Iyappan Gowtham
- Plant Genetic Engineering LaboratoryDepartment of BiotechnologyBharathiar UniversityTamil NaduIndia
| | - Suvi T. Häkkinen
- Industrial Biotechnology and Food SolutionsVTT Technical Research Centre of Finland LtdEspooFinland
| | - Shashi Kumar
- International Centre for Genetic Engineering and BiotechnologyNew DelhiIndia
| | - Ramalingam Sathish Kumar
- Plant Genetic Engineering LaboratoryDepartment of BiotechnologyBharathiar UniversityTamil NaduIndia
| | - Cristiano Lacorte
- Brazilian Agriculture Research CorporationEmbrapa Genetic Resources and Biotechnology and National Institute of Science and Technology Synthetic in Biology, Parque Estação BiológicaBrasiliaBrazil
| | | | - Ines M. Luís
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaOeirasPortugal
| | - Julian K.‐C. Ma
- Institute for Infection and ImmunitySt. George’s University of LondonLondonUK
| | - Karen A. McDonald
- Department of Chemical EngineeringUniversity of California, DavisDavisCAUSA
- Global HealthShare InitiativeUniversity of California, DavisDavisCAUSA
| | - Andre Murad
- Brazilian Agriculture Research CorporationEmbrapa Genetic Resources and Biotechnology and National Institute of Science and Technology Synthetic in Biology, Parque Estação BiológicaBrasiliaBrazil
| | - Somen Nandi
- Department of Chemical EngineeringUniversity of California, DavisDavisCAUSA
- Global HealthShare InitiativeUniversity of California, DavisDavisCAUSA
| | - Barry O’Keef
- Division of Cancer Treatment and DiagnosisMolecular Targets ProgramCenter for Cancer ResearchNational Cancer Institute, and Natural Products Branch, Developmental Therapeutics ProgramNational Cancer Institute, NIHFrederickMDUSA
| | - Subramanian Parthiban
- Plant Genetic Engineering LaboratoryDepartment of BiotechnologyBharathiar UniversityTamil NaduIndia
| | - Mathew J. Paul
- Institute for Infection and ImmunitySt. George’s University of LondonLondonUK
| | - Daniel Ponndorf
- Department of Biological ChemistryJohn Innes CentreNorwich Research Park, NorwichUK
| | - Elibio Rech
- Brazilian Agriculture Research CorporationEmbrapa Genetic Resources and Biotechnology and National Institute of Science and Technology Synthetic in Biology, Parque Estação BiológicaBrasiliaBrazil
| | - Julio C.M. Rodrigues
- Brazilian Agriculture Research CorporationEmbrapa Genetic Resources and Biotechnology and National Institute of Science and Technology Synthetic in Biology, Parque Estação BiológicaBrasiliaBrazil
| | - Stephanie Ruf
- Max Planck Institute of Molecular Plant PhysiologyPotsdam‐GolmGermany
| | - Stefan Schillberg
- Fraunhofer Institute for Molecular Biology and Applied Ecology IMEAachenGermany
- Institute for PhytopathologyJustus‐Liebig‐University GiessenGiessenGermany
| | - Jennifer Schwestka
- Institute of Plant Biotechnology and Cell BiologyUniversity of Natural Resources and Life SciencesViennaAustria
| | - Priya S. Shah
- Department of Chemical EngineeringUniversity of California, DavisDavisCAUSA
- Department of Microbiology and Molecular GeneticsUniversity of California, DavisDavisCAUSA
| | - Rahul Singh
- School of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Eva Stoger
- Institute of Plant Biotechnology and Cell BiologyUniversity of Natural Resources and Life SciencesViennaAustria
| | | | - Inchakalody P. Varghese
- Plant Genetic Engineering LaboratoryDepartment of BiotechnologyBharathiar UniversityTamil NaduIndia
| | - Giovanni R. Vianna
- Brazilian Agriculture Research CorporationEmbrapa Genetic Resources and Biotechnology and National Institute of Science and Technology Synthetic in Biology, Parque Estação BiológicaBrasiliaBrazil
| | - Gina Webster
- Institute for Infection and ImmunitySt. George’s University of LondonLondonUK
| | - Ruud H. P. Wilbers
- Laboratory of NematologyPlant Sciences GroupWageningen University and ResearchWageningenThe Netherlands
| | - Paul Christou
- Department of Crop and Forest SciencesUniversity of Lleida‐Agrotecnio CERCA CenterLleidaSpain
- ICREACatalan Institute for Research and Advanced StudiesBarcelonaSpain
| | | | - Teresa Capell
- Department of Crop and Forest SciencesUniversity of Lleida‐Agrotecnio CERCA CenterLleidaSpain
| |
Collapse
|
2
|
Kwon KC, Daniell H. Oral Delivery of Protein Drugs Bioencapsulated in Plant Cells. Mol Ther 2016; 24:1342-50. [PMID: 27378236 PMCID: PMC5023392 DOI: 10.1038/mt.2016.115] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 05/29/2016] [Indexed: 12/11/2022] Open
Abstract
Plants cells are now approved by the FDA for cost-effective production of protein drugs (PDs) in large-scale current Good Manufacturing Practice (cGMP) hydroponic growth facilities. In lyophilized plant cells, PDs are stable at ambient temperature for several years, maintaining their folding and efficacy. Upon oral delivery, PDs bioencapsulated in plant cells are protected in the stomach from acids and enzymes but are subsequently released into the gut lumen by microbes that digest the plant cell wall. The large mucosal area of the human intestine offers an ideal system for oral drug delivery. When tags (receptor-binding proteins or cell-penetrating peptides) are fused to PDs, they efficiently cross the intestinal epithelium and are delivered to the circulatory or immune system. Unique tags to deliver PDs to human immune or nonimmune cells have been developed recently. After crossing the epithelium, ubiquitous proteases cleave off tags at engineered sites. PDs are also delivered to the brain or retina by crossing the blood–brain or retinal barriers. This review highlights recent advances in PD delivery to treat Alzheimer's disease, diabetes, hypertension, Gaucher's or ocular diseases, as well as the development of affordable drugs by eliminating prohibitively expensive purification, cold chain and sterile delivery.
Collapse
Affiliation(s)
- Kwang-Chul Kwon
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Henry Daniell
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
3
|
Xiao Y, Kwon KC, Hoffman BE, Kamesh A, Jones NT, Herzog RW, Daniell H. Low cost delivery of proteins bioencapsulated in plant cells to human non-immune or immune modulatory cells. Biomaterials 2016; 80:68-79. [PMID: 26706477 PMCID: PMC4706487 DOI: 10.1016/j.biomaterials.2015.11.051] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Revised: 11/17/2015] [Accepted: 11/29/2015] [Indexed: 02/06/2023]
Abstract
Targeted oral delivery of GFP fused with a GM1 receptor binding protein (CTB) or human cell penetrating peptide (PTD) or dendritic cell peptide (DCpep) was investigated. Presence of GFP(+) intact plant cells between villi of ileum confirm their protection in the digestive system from acids/enzymes. Efficient delivery of GFP to gut-epithelial cells by PTD or CTB and to M cells by all these fusion tags confirm uptake of GFP in the small intestine. PTD fusion delivered GFP more efficiently to most tissues or organs than the other two tags. GFP was efficiently delivered to the liver by all fusion tags, likely through the gut-liver axis. In confocal imaging studies of human cell lines using purified GFP fused with different tags, GFP signal of DCpep-GFP was only detected within dendritic cells. PTD-GFP was only detected within kidney or pancreatic cells but not in immune modulatory cells (macrophages, dendritic, T, B, or mast cells). In contrast, CTB-GFP was detected in all tested cell types, confirming ubiquitous presence of GM1 receptors. Such low-cost oral delivery of protein drugs to sera, immune system or non-immune cells should dramatically lower their cost by elimination of prohibitively expensive fermentation, protein purification cold storage/transportation and increase patient compliance.
Collapse
Affiliation(s)
- Yuhong Xiao
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kwang-Chul Kwon
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Brad E Hoffman
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Aditya Kamesh
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Noah T Jones
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Roland W Herzog
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Henry Daniell
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
4
|
Wang X, Su J, Sherman A, Rogers GL, Liao G, Hoffman BE, Leong KW, Terhorst C, Daniell H, Herzog RW. Plant-based oral tolerance to hemophilia therapy employs a complex immune regulatory response including LAP+CD4+ T cells. Blood 2015; 125:2418-27. [PMID: 25700434 PMCID: PMC4392010 DOI: 10.1182/blood-2014-08-597070] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 02/14/2015] [Indexed: 12/12/2022] Open
Abstract
Coagulation factor replacement therapy for the X-linked bleeding disorder hemophilia is severely complicated by antibody ("inhibitor") formation. We previously found that oral delivery to hemophilic mice of cholera toxin B subunit-coagulation factor fusion proteins expressed in chloroplasts of transgenic plants suppressed inhibitor formation directed against factors VIII and IX and anaphylaxis against factor IX (FIX). This observation and the relatively high concentration of antigen in the chloroplasts prompted us to evaluate the underlying tolerance mechanisms. The combination of oral delivery of bioencapsulated FIX and intravenous replacement therapy induced a complex, interleukin-10 (IL-10)-dependent, antigen-specific systemic immune suppression of pathogenic antibody formation (immunoglobulin [Ig] 1/inhibitors, IgE) in hemophilia B mice. Tolerance induction was also successful in preimmune mice but required prolonged oral delivery once replacement therapy was resumed. Orally delivered antigen, initially targeted to epithelial cells, was taken up by dendritic cells throughout the small intestine and additionally by F4/80(+) cells in the duodenum. Consistent with the immunomodulatory responses, frequencies of tolerogenic CD103(+) and plasmacytoid dendritic cells were increased. Ultimately, latency-associated peptide expressing CD4(+) regulatory T cells (CD4(+)CD25(-)LAP(+) cells with upregulated IL-10 and transforming growth factor-β (TGF-β) expression) as well as conventional CD4(+)CD25(+) regulatory T cells systemically suppressed anti-FIX responses.
Collapse
Affiliation(s)
- Xiaomei Wang
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL
| | - Jin Su
- Departments of Biochemistry and Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA
| | - Alexandra Sherman
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL
| | - Geoffrey L Rogers
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL
| | - Gongxian Liao
- Division of Immunology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston MA; and
| | - Brad E Hoffman
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL
| | - Kam W Leong
- Department of Biomedical Engineering, Columbia University, New York, NY
| | - Cox Terhorst
- Division of Immunology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston MA; and
| | - Henry Daniell
- Departments of Biochemistry and Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA
| | - Roland W Herzog
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL
| |
Collapse
|
5
|
Shenoy V, Kwon KC, Rathinasabapathy A, Lin S, Jin G, Song C, Shil P, Nair A, Qi Y, Li Q, Francis J, Katovich MJ, Daniell H, Raizada MK. Oral delivery of Angiotensin-converting enzyme 2 and Angiotensin-(1-7) bioencapsulated in plant cells attenuates pulmonary hypertension. Hypertension 2014; 64:1248-59. [PMID: 25225206 DOI: 10.1161/hypertensionaha.114.03871] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Emerging evidences indicate that diminished activity of the vasoprotective axis of the renin-angiotensin system, constituting angiotensin-converting enzyme 2 (ACE2) and its enzymatic product, angiotensin-(1-7) [Ang-(1-7)] contribute to the pathogenesis of pulmonary hypertension (PH). However, long-term repetitive delivery of ACE2 or Ang-(1-7) would require enhanced protein stability and ease of administration to improve patient compliance. Chloroplast expression of therapeutic proteins enables their bioencapsulation within plant cells to protect against gastric enzymatic degradation and facilitates long-term storage at room temperature. Besides, fusion to a transmucosal carrier helps effective systemic absorption from the intestine on oral delivery. We hypothesized that bioencapsulating ACE2 or Ang-(1-7) fused to the cholera nontoxin B subunit would enable development of an oral delivery system that is effective in treating PH. PH was induced in male Sprague Dawley rats by monocrotaline administration. Subset of animals was simultaneously treated with bioencapsulaed ACE2 or Ang-(1-7) (prevention protocol). In a separate set of experiments, drug treatment was initiated after 2 weeks of PH induction (reversal protocol). Oral feeding of rats with bioencapsulated ACE2 or Ang-(1-7) prevented the development of monocrotaline-induced PH and improved associated cardiopulmonary pathophysiology. Furthermore, in the reversal protocol, oral ACE2 or Ang-(1-7) treatment significantly arrested disease progression, along with improvement in right heart function, and decrease in pulmonary vessel wall thickness. In addition, a combination therapy with ACE2 and Ang-(1-7) augmented the beneficial effects against monocrotaline-induced lung injury. Our study provides proof-of-concept for a novel low-cost oral ACE2 or Ang-(1-7) delivery system using transplastomic technology for pulmonary disease therapeutics.
Collapse
Affiliation(s)
- Vinayak Shenoy
- Departments of Pharmacodynamics (V.S., A.R., M.J.K.), Physiology and Functional Genomics (C.S., Y.Q., M.K.R.), and Ophthalmology (P.S., Q.L.), University of Florida, Gainesville; Departments of Biochemistry and Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia (K.-C.K., S.L., G.J., H.D.); and Department of Comparative Biomedical Sciences, Louisiana State University, Baton Rouge (A.N., J.F.)
| | - Kwang-Chul Kwon
- Departments of Pharmacodynamics (V.S., A.R., M.J.K.), Physiology and Functional Genomics (C.S., Y.Q., M.K.R.), and Ophthalmology (P.S., Q.L.), University of Florida, Gainesville; Departments of Biochemistry and Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia (K.-C.K., S.L., G.J., H.D.); and Department of Comparative Biomedical Sciences, Louisiana State University, Baton Rouge (A.N., J.F.)
| | - Anandharajan Rathinasabapathy
- Departments of Pharmacodynamics (V.S., A.R., M.J.K.), Physiology and Functional Genomics (C.S., Y.Q., M.K.R.), and Ophthalmology (P.S., Q.L.), University of Florida, Gainesville; Departments of Biochemistry and Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia (K.-C.K., S.L., G.J., H.D.); and Department of Comparative Biomedical Sciences, Louisiana State University, Baton Rouge (A.N., J.F.)
| | - Shina Lin
- Departments of Pharmacodynamics (V.S., A.R., M.J.K.), Physiology and Functional Genomics (C.S., Y.Q., M.K.R.), and Ophthalmology (P.S., Q.L.), University of Florida, Gainesville; Departments of Biochemistry and Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia (K.-C.K., S.L., G.J., H.D.); and Department of Comparative Biomedical Sciences, Louisiana State University, Baton Rouge (A.N., J.F.)
| | - Guiying Jin
- Departments of Pharmacodynamics (V.S., A.R., M.J.K.), Physiology and Functional Genomics (C.S., Y.Q., M.K.R.), and Ophthalmology (P.S., Q.L.), University of Florida, Gainesville; Departments of Biochemistry and Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia (K.-C.K., S.L., G.J., H.D.); and Department of Comparative Biomedical Sciences, Louisiana State University, Baton Rouge (A.N., J.F.)
| | - Chunjuan Song
- Departments of Pharmacodynamics (V.S., A.R., M.J.K.), Physiology and Functional Genomics (C.S., Y.Q., M.K.R.), and Ophthalmology (P.S., Q.L.), University of Florida, Gainesville; Departments of Biochemistry and Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia (K.-C.K., S.L., G.J., H.D.); and Department of Comparative Biomedical Sciences, Louisiana State University, Baton Rouge (A.N., J.F.)
| | - Pollob Shil
- Departments of Pharmacodynamics (V.S., A.R., M.J.K.), Physiology and Functional Genomics (C.S., Y.Q., M.K.R.), and Ophthalmology (P.S., Q.L.), University of Florida, Gainesville; Departments of Biochemistry and Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia (K.-C.K., S.L., G.J., H.D.); and Department of Comparative Biomedical Sciences, Louisiana State University, Baton Rouge (A.N., J.F.)
| | - Anand Nair
- Departments of Pharmacodynamics (V.S., A.R., M.J.K.), Physiology and Functional Genomics (C.S., Y.Q., M.K.R.), and Ophthalmology (P.S., Q.L.), University of Florida, Gainesville; Departments of Biochemistry and Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia (K.-C.K., S.L., G.J., H.D.); and Department of Comparative Biomedical Sciences, Louisiana State University, Baton Rouge (A.N., J.F.)
| | - Yanfei Qi
- Departments of Pharmacodynamics (V.S., A.R., M.J.K.), Physiology and Functional Genomics (C.S., Y.Q., M.K.R.), and Ophthalmology (P.S., Q.L.), University of Florida, Gainesville; Departments of Biochemistry and Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia (K.-C.K., S.L., G.J., H.D.); and Department of Comparative Biomedical Sciences, Louisiana State University, Baton Rouge (A.N., J.F.)
| | - Qiuhong Li
- Departments of Pharmacodynamics (V.S., A.R., M.J.K.), Physiology and Functional Genomics (C.S., Y.Q., M.K.R.), and Ophthalmology (P.S., Q.L.), University of Florida, Gainesville; Departments of Biochemistry and Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia (K.-C.K., S.L., G.J., H.D.); and Department of Comparative Biomedical Sciences, Louisiana State University, Baton Rouge (A.N., J.F.)
| | - Joseph Francis
- Departments of Pharmacodynamics (V.S., A.R., M.J.K.), Physiology and Functional Genomics (C.S., Y.Q., M.K.R.), and Ophthalmology (P.S., Q.L.), University of Florida, Gainesville; Departments of Biochemistry and Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia (K.-C.K., S.L., G.J., H.D.); and Department of Comparative Biomedical Sciences, Louisiana State University, Baton Rouge (A.N., J.F.)
| | - Michael J Katovich
- Departments of Pharmacodynamics (V.S., A.R., M.J.K.), Physiology and Functional Genomics (C.S., Y.Q., M.K.R.), and Ophthalmology (P.S., Q.L.), University of Florida, Gainesville; Departments of Biochemistry and Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia (K.-C.K., S.L., G.J., H.D.); and Department of Comparative Biomedical Sciences, Louisiana State University, Baton Rouge (A.N., J.F.)
| | - Henry Daniell
- Departments of Pharmacodynamics (V.S., A.R., M.J.K.), Physiology and Functional Genomics (C.S., Y.Q., M.K.R.), and Ophthalmology (P.S., Q.L.), University of Florida, Gainesville; Departments of Biochemistry and Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia (K.-C.K., S.L., G.J., H.D.); and Department of Comparative Biomedical Sciences, Louisiana State University, Baton Rouge (A.N., J.F.).
| | - Mohan K Raizada
- Departments of Pharmacodynamics (V.S., A.R., M.J.K.), Physiology and Functional Genomics (C.S., Y.Q., M.K.R.), and Ophthalmology (P.S., Q.L.), University of Florida, Gainesville; Departments of Biochemistry and Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia (K.-C.K., S.L., G.J., H.D.); and Department of Comparative Biomedical Sciences, Louisiana State University, Baton Rouge (A.N., J.F.).
| |
Collapse
|
6
|
Kwon KC, Verma D, Singh ND, Herzog R, Daniell H. Oral delivery of human biopharmaceuticals, autoantigens and vaccine antigens bioencapsulated in plant cells. Adv Drug Deliv Rev 2013; 65:782-99. [PMID: 23099275 PMCID: PMC3582797 DOI: 10.1016/j.addr.2012.10.005] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Revised: 09/26/2012] [Accepted: 10/17/2012] [Indexed: 12/19/2022]
Abstract
Among 12billion injections administered annually, unsafe delivery leads to >20million infections and >100million reactions. In an emerging new concept, freeze-dried plant cells (lettuce) expressing vaccine antigens/biopharmaceuticals are protected in the stomach from acids/enzymes but are released to the immune or blood circulatory system when plant cell walls are digested by microbes that colonize the gut. Vaccine antigens bioencapsulated in plant cells upon oral delivery after priming, conferred both mucosal and systemic immunity and protection against bacterial, viral or protozoan pathogens or toxin challenge. Oral delivery of autoantigens was effective against complications of type 1 diabetes and hemophilia, by developing tolerance. Oral delivery of proinsulin or exendin-4 expressed in plant cells regulated blood glucose levels similar to injections. Therefore, this new platform offers a low cost alternative to deliver different therapeutic proteins to combat infectious or inherited diseases by eliminating inactivated pathogens, expensive purification, cold storage/transportation and sterile injections.
Collapse
Affiliation(s)
- Kwang-Chul Kwon
- Department of Molecular Biology and Microbiology, College of Medicine, University of Central Florida, Biomolecular Science Building, Orlando, FL 32816-2364, USA
| | - Dheeraj Verma
- Department of Molecular Biology and Microbiology, College of Medicine, University of Central Florida, Biomolecular Science Building, Orlando, FL 32816-2364, USA
| | - Nameirakpam D. Singh
- Department of Molecular Biology and Microbiology, College of Medicine, University of Central Florida, Biomolecular Science Building, Orlando, FL 32816-2364, USA
| | - Roland Herzog
- Department of Pediatrics, College of Medicine, University of Florida, Cancer and Genetics Research Complex, 2033 Mowry Road, Gainesville, FL 32610, USA
| | - Henry Daniell
- Department of Molecular Biology and Microbiology, College of Medicine, University of Central Florida, Biomolecular Science Building, Orlando, FL 32816-2364, USA
| |
Collapse
|
7
|
Kwon KC, Nityanandam R, New JS, Daniell H. Oral delivery of bioencapsulated exendin-4 expressed in chloroplasts lowers blood glucose level in mice and stimulates insulin secretion in beta-TC6 cells. PLANT BIOTECHNOLOGY JOURNAL 2013; 11:77-86. [PMID: 23078126 PMCID: PMC3535676 DOI: 10.1111/pbi.12008] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 09/13/2012] [Accepted: 09/18/2012] [Indexed: 05/19/2023]
Abstract
Glucagon-like peptide (GLP-1) increases insulin secretion but is rapidly degraded (half-life: 2 min in circulation). GLP-1 analogue, exenatide (Byetta) has a longer half-life (3.3-4 h) with potent insulinotropic effects but requires cold storage, daily abdominal injections with short shelf life. Because patients with diabetes take >60 000 injections in their life time, alternative delivery methods are highly desired. Exenatide is ideal for oral delivery because insulinotropism is glucose dependent, with reduced risk of hypoglycaemia even at higher doses. Therefore, exendin-4 (EX4) was expressed as a cholera toxin B subunit (CTB)-fusion protein in tobacco chloroplasts to facilitate bioencapsulation within plant cells and transmucosal delivery in the gut via GM1 receptors present in the intestinal epithelium. The transgene integration was confirmed by PCR and Southern blot analysis. Expression level of CTB-EX4 reached up to 14.3% of total leaf protein (TLP). Lyophilization of leaf material increased therapeutic protein concentration by 12- to 24-fold, extended their shelf life up to 15 months when stored at room temperature and eliminated microbes present in fresh leaves. The pentameric structure, disulphide bonds and functionality of CTB-EX4 were well preserved in lyophilized materials. Chloroplast-derived CTB-EX4 showed increased insulin secretion similar to the commercial EX4 in beta-TC6, a mouse pancreatic cell line. Even when 5000-fold excess dose of CTB-EX4 was orally delivered, it stimulated insulin secretion similar to the intraperitoneal injection of commercial EX4 but did not cause hypoglycaemia in mice. Oral delivery of the bioencapsulated EX4 should eliminate injections, increase patient compliance/convenience and significantly lower their cost.
Collapse
Affiliation(s)
- Kwang-Chul Kwon
- Department of Molecular Biology and Microbiology, College of Medicine, University of Central Florida, Orlando, FL 32816-2364, USA
| | - Ramya Nityanandam
- Department of Molecular Biology and Microbiology, College of Medicine, University of Central Florida, Orlando, FL 32816-2364, USA
| | - James Stewart New
- Department of Molecular Biology and Microbiology, College of Medicine, University of Central Florida, Orlando, FL 32816-2364, USA
| | - Henry Daniell
- Department of Molecular Biology and Microbiology, College of Medicine, University of Central Florida, Orlando, FL 32816-2364, USA
| |
Collapse
|
8
|
Essaka DC, White J, Rathod P, Whitmore CD, Hindsgaul O, Palcic MM, Dovichi NJ. Monitoring the uptake of glycosphingolipids in Plasmodium falciparum-infected erythrocytes using both fluorescence microscopy and capillary electrophoresis with laser-induced fluorescence detection. Anal Chem 2010; 82:9955-8. [PMID: 21043509 DOI: 10.1021/ac1021776] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The metabolism of glycosphingolipids by the malaria-causing parasite Plasmodium falciparum plays an important role in the progression of the disease. We report a new and highly sensitive method to monitor the uptake of glycosphingolipids in infected red blood cells (iRBCs). A tetramethylrhodamine-labeled glycosphingolipid (GM1-TMR) was used as a substrate. Uptake was demonstrated by fluorescence microscopy. The iRBCs were lysed with a 15% solution of saponin and washed with phosphate buffered saline to release intact parasites. The parasites were further lysed and the resulting homogenates were analyzed by capillary electrophoresis with laser-induced fluorescence detection. The lysate from erythrocytes infected at 1% parasitemia generated a signal 20 standard deviations larger than uninfected erythrocytes, which suggests that relatively low infection levels can be studied with this technique.
Collapse
Affiliation(s)
- David C Essaka
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195, USA
| | | | | | | | | | | | | |
Collapse
|
9
|
De Haan L, Hirst TR. Cholera toxin: A paradigm for multi-functional engagement of cellular mechanisms (Review). Mol Membr Biol 2009; 21:77-92. [PMID: 15204437 DOI: 10.1080/09687680410001663267] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Cholera toxin (Ctx) from Vibrio cholerae and its closely related homologue, heat-labile enterotoxin (Etx) from Escherichia coli have become superb tools for illuminating pathways of cellular trafficking and immune cell function. These bacterial protein toxins should be viewed as conglomerates of highly evolved, multi-functional elements equipped to engage the trafficking and signalling machineries of cells. Ctx and Etx are members of a larger family of A-B toxins of bacterial (and plant) origin that are comprised of structurally and functionally distinct enzymatically active A and receptor-binding B sub-units or domains. Intoxication of mammalian cells by Ctx and Etx involves B pentamer-mediated receptor binding and entry into a vesicular pathway, followed by translocation of the enzymatic A1 domain of the A sub-unit into the target cell cytosol, where covalent modification of intracellular targets leads to activation of adenylate cyclase and a sequence of events culminating in life-threatening diarrhoeal disease. Importantly, Ctx and Etx also have the capacity to induce a wide spectrum of remarkable immunological processes. With respect to the latter, it has been found that these toxins activate signalling pathways that modulate the immune system. This review explores the complexities of the cellular interactions that are engaged by these bacterial protein toxins, and highlights some of the new insights to have recently emerged.
Collapse
Affiliation(s)
- Lolke De Haan
- Department of Pathology and Microbiology, School of Medical Sciences, University of Bristol, United Kingdom
| | | |
Collapse
|
10
|
Moss J, Vaughan M. ADP-ribosylation of guanyl nucleotide-binding regulatory proteins by bacterial toxins. ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 2006; 61:303-79. [PMID: 3128060 DOI: 10.1002/9780470123072.ch6] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- J Moss
- Laboratory of Cellular Metabolism, National Heart, Lung, and Blood Institute, Bethesda, Maryland 20892
| | | |
Collapse
|
11
|
Zha Q, Ruan Y, Hartmann T, Beyreuther K, Zhang D. GM1 ganglioside regulates the proteolysis of amyloid precursor protein. Mol Psychiatry 2004; 9:946-52. [PMID: 15052275 DOI: 10.1038/sj.mp.4001509] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Plaques containing amyloid beta-peptides (Abeta) are a major feature in Alzheimer's disease (AD), and GM1 ganglioside is an important component of cellular plasma membranes and especially enriched in lipid raft. GM1-bound Abeta (GM1/Abeta), found in brains exhibiting early pathological changes of AD including diffuse plaques, has been suggested to be involved in the initiation of amyloid fibril formation in vivo by acting as a seed. However, the role of GM1 in amyloid beta-protein precursor (APP) processing is not yet defined. In this study, we report that exogenous GM1 ganglioside promotes Abeta biogenesis and decreases sAPPalpha secretion in SH-SY5Y and COS7 cells stably transfected with human APP695 cDNA without affecting full-length APP and the sAPPbeta levels. We also observe that GM1 increases extracellular levels of Abeta in primary cultures of mixed rat cortical neurons transiently transfected with human APP695 cDNA. These findings suggest a regulatory role for GM1 in APP processing pathways.
Collapse
Affiliation(s)
- Q Zha
- 1Department of Biochemistry, Institute of Mental Health, Peking University, Beijing, China
| | | | | | | | | |
Collapse
|
12
|
Abstract
A variety of microbial pathogens, including viruses, intracellular bacteria, and prions, as well as certain secreted bacterial toxins, can now be added to the list of ligands that enter cells via caveolae or caveolae-like membrane domains. In general, the caveolae-mediated entry pathway results in transport of these microbes and toxins to intracellular destinations that are different from that of cargo entering by other means. As a result, the caveolae-mediated entry pathway can profoundly affect the host cell-pathogen interaction long after entry has occurred. Furthermore, some microbes such as SV40 that enter via cavolae will be valuable as probes to analyze certain poorly understood intracellular trafficking pathways, such as retrograde transport to the ER. Also, viruses that enter via caveolae may have unique potential as gene and drug delivery vectors. In addition, some extracellular microbial pathogens, such as Pneumocystis carinii, may also interact with host cells via caveolae. Finally, caveolae may play a role in host immune defense mechanisms.
Collapse
Affiliation(s)
- L C Norkin
- Department of Microbiology, University of Massachusetts, 203 Morrill Science Center IVN, Amherst, MA 01003-5720, USA.
| |
Collapse
|
13
|
Lencer WI, Hirst TR, Holmes RK. Membrane traffic and the cellular uptake of cholera toxin. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1450:177-90. [PMID: 10395933 DOI: 10.1016/s0167-4889(99)00070-1] [Citation(s) in RCA: 193] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
In nature, cholera toxin (CT) and the structurally related E. coli heat labile toxin type I (LTI) must breech the epithelial barrier of the intestine to cause the massive diarrhea seen in cholera. This requires endocytosis of toxin-receptor complexes into the apical endosome, retrograde transport into Golgi cisternae or endoplasmic reticulum (ER), and finally transport of toxin across the cell to its site of action on the basolateral membrane. Targeting into this pathway depends on toxin binding ganglioside GM1 and association with caveolae-like membrane domains. Thus to cause disease, both CT and LTI co-opt the molecular machinery used by the host cell to sort, move, and organize their cellular membranes and substituent components.
Collapse
Affiliation(s)
- W I Lencer
- Combined Program in Pediatric Gastroenterology, Children's Hospital, Harvard Medical School, Harvard Digestive Diseases Center, Boston, MA, USA.
| | | | | |
Collapse
|
14
|
Ravichandra B, Joshi PG. Gangliosides asymmetrically alter the membrane order in cultured PC-12 cells. Biophys Chem 1999; 76:117-32. [PMID: 10063608 DOI: 10.1016/s0301-4622(98)00222-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Exogenous gangliosides readily associate with the cell membranes and produce marked effects on cell growth and differentiation. We have studied the effect of bovine brain gangliosides (BBG) on the membrane dynamics of intact cells. The structural and dynamic changes in the cell membrane were monitored by the fluorescence probes DPH, TMA-DPH and laurdan. Incorporation of BBG into the cell membrane decreased the fluorescence intensity, lifetime and the steady state anisotropy of TMA-DPH. Analysis of the time resolved anisotropy decay by wobbling in the cone model revealed that BBG decreased the order parameter, and increased the cone angle without altering the rotational relaxation rate. The fluorescence intensity and lifetime of DPH were unaffected by BBG incorporation, however, a modest increase was observed in the steady state anisotropy. BBG incorporation reduced the total fluorescence intensity of laurdan with pronounced quenching of the 440-nm band. The wavelength sensitivity of generalized polarization of laurdan manifested an ordered liquid crystalline environment of the probe in the cell membrane. BBG incorporation reduced the GP values and augmented the liquid crystalline behavior of the cell membrane. BBG incorporation also influenced the permeability of cell membranes to cations. An influx of Na+ and Ca2+ and an efflux of K+ was observed. The data demonstrate that incorporation of gangliosides into the cell membrane substantially enhances the disorder and hydration of the lipid bilayer region near the exoplasmic surface. The inner core region near the center of the bilayer becomes slightly more ordered and remains highly hydrophobic. Such changes in the structure and dynamics of the membrane could play an important role in modulation of transmembrane signaling events by the gangliosides.
Collapse
Affiliation(s)
- B Ravichandra
- Department of Biophysics, National Institute of Mental Health and Neurosciences, Bangalore, India
| | | |
Collapse
|
15
|
Wolf AA, Jobling MG, Wimer-Mackin S, Ferguson-Maltzman M, Madara JL, Holmes RK, Lencer WI. Ganglioside structure dictates signal transduction by cholera toxin and association with caveolae-like membrane domains in polarized epithelia. J Cell Biol 1998; 141:917-27. [PMID: 9585411 PMCID: PMC2132772 DOI: 10.1083/jcb.141.4.917] [Citation(s) in RCA: 173] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/1997] [Revised: 04/01/1998] [Indexed: 02/07/2023] Open
Abstract
In polarized cells, signal transduction by cholera toxin (CT) requires apical endocytosis and retrograde transport into Golgi cisternae and perhaps ER (Lencer, W.I., C. Constable, S. Moe, M. Jobling, H.M. Webb, S. Ruston, J.L. Madara, T. Hirst, and R. Holmes. 1995. J. Cell Biol. 131:951-962). In this study, we tested whether CT's apical membrane receptor ganglioside GM1 acts specifically in toxin action. To do so, we used CT and the related Escherichia coli heat-labile type II enterotoxin LTIIb. CT and LTIIb distinguish between gangliosides GM1 and GD1a at the cell surface by virtue of their dissimilar receptor-binding B subunits. The enzymatically active A subunits, however, are homologous. While both toxins bound specifically to human intestinal T84 cells (Kd approximately 5 nM), only CT elicited a cAMP-dependent Cl- secretory response. LTIIb, however, was more potent than CT in eliciting a cAMP-dependent response from mouse Y1 adrenal cells (toxic dose 10 vs. 300 pg/well). In T84 cells, CT fractionated with caveolae-like detergent-insoluble membranes, but LTIIb did not. To investigate further the relationship between the specificity of ganglioside binding and partitioning into detergent-insoluble membranes and signal transduction, CT and LTIIb chimeric toxins were prepared. Analysis of these chimeric toxins confirmed that toxin-induced signal transduction depended critically on the specificity of ganglioside structure. The mechanism(s) by which ganglioside GM1 functions in signal transduction likely depends on coupling CT with caveolae or caveolae-related membrane domains.
Collapse
Affiliation(s)
- A A Wolf
- Combined Program in Pediatric Gastroenterology and Nutrition, Children's Hospital, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Riboni L, Bassi R, Prinetti A, Tettamanti G. Salvage of catabolic products in ganglioside metabolism: a study on rat cerebellar granule cells in culture. FEBS Lett 1996; 391:336-40. [PMID: 8765002 DOI: 10.1016/0014-5793(96)00772-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Cerebellar granule cells in culture were subjected to a pulse (0.5-4 h)-chase (0-4 h) of 10(-6) M [3H]ganglioside GM1 carrying the radioactive label at the level of NeuAc ([3H-NeuAc]GM1), Sph ([3H-Sph]GM1) or Gal ([3H-Gal]GM1) and the formed [3H]metabolites were determined. With all forms of [3H]GM1, there was formation of [3H]catabolites, including [3H]H2O and [3H]biosynthetic products obtained by recycling of [3H]NeuAc, [3H]Sph and [3H]Gal released during intralysosomal ganglioside degradation (salvage processes). Much higher amounts of [3H]H2O were produced from [3H-Gal]GM1 than [3H-Sph]GM1 and [3H-NeuAc]GM1; conversely, more products from salvage processes (polysialogangliosides GD1a, GD1b, GT1b, O-acetylated GT1b, protein-bound radioactivity) were obtained with [3H-NeuAc]GM1 than the two other forms of [3H]GM1. Liberated [3H]NeuAc produced 10-fold less tritiated water and 10-fold higher salvage products than [3H]Gal. Using [3H-NeuAc]GM1, granule cells appeared to metabolize 7.7% of membrane-incorporated exogenous GM1 per hour with a high degree of NeuAc recycling and the calculated metabolic half-life was 6.5 h.
Collapse
Affiliation(s)
- L Riboni
- Department of Medical Chemistry and Biochemistry, Medical School, University of Milan, Italy
| | | | | | | |
Collapse
|
17
|
Gillard BK, Thurmon LT, Harrell RG, Capetanaki Y, Saito M, Yu RK, Marcus DM. Biosynthesis of glycosphingolipids is reduced in the absence of a vimentin intermediate filament network. J Cell Sci 1994; 107 ( Pt 12):3545-55. [PMID: 7706405 DOI: 10.1242/jcs.107.12.3545] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Our previous observations on the immunocytochemical colocalization of intermediate filaments and glycosphingolipids led us to analyze the role of filaments in the biosynthesis and intracellular transport of glycosphingolipids. Cells with (vim+) and without (vim-) vimentin intermediate filaments were cloned from the adrenal carcinoma cell line SW13. There was no difference between vim+ and vim- cells in the proportion of newly synthesized C6-NBD-glucosylceramide transported to the plasma membrane. The vim+ cells synthesized glycosphingolipids, especially lactosylceramide and globotriosylceramide, and to a lesser extent GM3 ganglioside, more rapidly than vim- cells. The altered rate of biosynthesis did not result from differences in the levels of the glycosyltransferases that synthesize those compounds. To determine whether the presence of a vimentin network was responsible for the differences in biosynthesis, mouse vimentin cDNA was transfected into vim- cells. Transfected cells that expressed a mouse vimentin network demonstrated a twofold or greater increase in the rate of biosynthesis of neutral glycosphingolipids and gangliosides. There was no difference between vim+ and vim- cells in the synthesis of ceramide or sphingomyelin, or in their content of phospholipids or cholesterol. The nature of the biochemical defect(s) underlying the diminished incorporation of radiolabeled sugars into glycosphingolipids is unclear. Possibilities include alterations in the ultrastructure of the Golgi and/or abnormalities in a portion of the endocytic pathway.
Collapse
Affiliation(s)
- B K Gillard
- Department of Medicine, Baylor College of Medicine, Houston, Texas
| | | | | | | | | | | | | |
Collapse
|
18
|
Novak A, Callahan JW, Lowden JA. Classification of disorders of GM2 ganglioside hydrolysis using 3H-GM2 as substrate. BIOCHIMICA ET BIOPHYSICA ACTA 1994; 1199:215-23. [PMID: 8123671 DOI: 10.1016/0304-4165(94)90118-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Rates of GM2 ganglioside hydrolysis by fibroblasts from normal controls and patients with GM2 gangliosidosis were measured in situ, with cells growing in tissue culture by assaying the decrease in cell-incorporated 3H-GM2 over time, and in vitro by assaying the rate of 3H-GM2 hydrolysis using fibroblast extracts in the presence of no additives, sodium taurocholate, and GM2 activator protein. In tissue culture, normal cells hydrolyzed cell-incorporated GM2 while fibroblasts from patients with GM2 gangliosidosis did not. The half life of GM2 in normal fibroblasts was 78 hours. In vitro, only normal fibroblast extracts hydrolyzed GM2 in the absence of additives. In the presence of 10 mM sodium taurocholate, rates of GM2 hydrolysis by normal fibroblast extracts were increased 5-16-fold, fibroblast extracts from AB and B1 variant patients hydrolyzed GM2 at normal rates, cell extracts from patients with Tay-Sachs disease hydrolyzed GM2 at nearly normal rates, and cell extracts from Sandhoff disease patients hydrolyzed GM2 at about 10% of normal rates. In the presence of 1 microgram of GM2 activator, rates of GM2 hydrolysis by normal fibroblast extracts were increased 8-25-fold, fibroblast extracts from a patient with the AB variant hydrolyzed GM2 at normal rates, and cell extracts from other variants of GM2 gangliosidosis did not hydrolyze GM2. The results suggest that measuring the persistence of 3H-GM2 in tissue culture over time will detect any variant of GM2 gangliosidosis and may be the ideal way to test for the presence of this disease. Variants can be distinguished by assaying the hydrolysis of 3H-GM2 using cell extracts in the absence of additives, with sodium taurocholate, and with activator.
Collapse
Affiliation(s)
- A Novak
- Division of Neurosciences, Hospital for Sick Children, Toronto, Canada
| | | | | |
Collapse
|
19
|
Saqr HE, Pearl DK, Yates AJ. A review and predictive models of ganglioside uptake by biological membranes. J Neurochem 1993; 61:395-411. [PMID: 8336130 DOI: 10.1111/j.1471-4159.1993.tb02140.x] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- H E Saqr
- Division of Neuropathology, Ohio State University, Columbus
| | | | | |
Collapse
|
20
|
|
21
|
Sonnino S, Chigorno V, Valsecchi M, Pitto M, Tettamanti G. Specific ganglioside-cell protein interactions: a study performed with GM1 ganglioside derivative containing photoactivable azide and rat cerebellar granule cells in culture. Neurochem Int 1992; 20:315-21. [PMID: 1304328 DOI: 10.1016/0197-0186(92)90046-t] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The incubation of cultured rat cerebellar granule cells with a photoreactive derivative of radiolabeled GM1 ganglioside, [3H]GM1(N3), followed by illumination, led to the specific association of ganglioside to cell proteins. After 30 min of incubation only a few out of the cell proteins became radiolabeled. Two of these, at apparent molecular weights of 95 and 112 kDa, are interacting with the portion of associated ganglioside that is released by trypsin treatment; others, in the region between 31 and 44 kDa, are probably bound to molecules of ganglioside inserted into the outer membrane layer, thus showing that the ganglioside association to the cell surface is a selective phenomenon, involving specific proteins. Increasing the incubation time up to 24 h resulted in a larger number of radiolabeled proteins, probably as a consequence of the internalization and metabolic processing of administered [3H]GM1(N3). In fact, photoreactive and radioactive metabolic derivatives of [3H]GM1(N3) can also interact with a number of proteins. After 24 h incubation, some radioactivity was also associated to cytosolic proteins. Again in this case the interaction with proteins seems to be a specific process involving only a few out of the total cytosolic proteins.
Collapse
Affiliation(s)
- S Sonnino
- Department of Medical Chemistry and Biochemistry, Medical School, University of Milan, Italy
| | | | | | | | | |
Collapse
|
22
|
Valsecchi M, Chigorno V, Sonnino S, Tettamanti G. Rat cerebellar granule cells in culture associate and metabolize differently exogenous GM1 ganglioside molecular species containing a C18 or C20 long chain base. Chem Phys Lipids 1992; 60:247-52. [PMID: 1505063 DOI: 10.1016/0009-3084(92)90076-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A study has been made of the association properties of the two GM1 ganglioside molecular species GM1-C18 and GM1-C20 (containing C18 and C20 long chain bases, respectively) to rat cerebellar granule cells in culture. Both gangliosides recognized, to the same extent, and associated with them to give a form of association, the trypsin-labile form. This form was removed by treatment with trypsin enzyme. Both gangliosides associated stably with the cells to become components of the cell membranes. Although similar amounts of the two gangliosides entered the cells, being then metabolized, the time course of the association was different for the two gangliosides: after 15 h of ganglioside-cell incubation the amount of GM1-C18 inserted into the cell membrane was 2.43 times higher than that of GM1-C20.
Collapse
Affiliation(s)
- M Valsecchi
- Department of Medical Chemistry and Biochemistry, Medical School, University of Milan, Italy
| | | | | | | |
Collapse
|
23
|
Pacuszka T, Fishman PH. Metabolism of cholesterol, phosphatidylethanolamine and stearylamine analogues of GM1 ganglioside by rat glioma C6 cells. BIOCHIMICA ET BIOPHYSICA ACTA 1991; 1083:153-60. [PMID: 2036449 DOI: 10.1016/0005-2760(91)90036-h] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Tritium-labeled neoglycolipids consisting of the oligosaccharide of ganglioside GM1 attached to cholesterol (GM1OSNH-X-CHOL), phosphatidylethanolamine (GM1OS-PE) and stearylamine (GM1OSNHC18) were synthesized and their uptake and metabolism by GM1-deficient rat glioma C6 cells were determined. When the neoglycolipids were added to serum-free culture medium, all three were rapidly taken up by the cells and initially inserted into the plasma membrane based on their resistance to trypsin and their ability to bind cholera toxin. With time, the neoglycolipids underwent internalization as the ratio of cell-associated radioactivity to cell surface toxin binding increased; this process was slow for GM1OSNH-X-CHOL and GM1OS-PE and rapid for GM1OSNHC18. Analysis of lipids extracted from the cells indicated that the neoglycolipids also underwent metabolism to GD1aOS-based analogues. In addition, GM1OSNH-X-CHOL and GM1OSNHC18 were degraded to their GM2OS-based analogues, whereas GM2OS-PE was not detected. In contrast, large amounts of 3H were recovered in the medium from cells treated with GM1OS-PE and the label was associated with material that behaved neither as an oligosaccharide or a neoglycolipid. In the presence of monensin or chloroquine, metabolism of the three neoglycolipids was inhibited. Thus, GM1OS-based neoglycolipids were taken up by the cells, internalized and sorted both to the Golgi apparatus (sialylated to GD1aOS-based analogues) and to lysosomes (hydrolyzed to GM2OS-based analogues). The rate and extent of these processes, however, were strongly influenced by the nature of lipid moiety.
Collapse
Affiliation(s)
- T Pacuszka
- Membrane Biochemistry Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | | |
Collapse
|
24
|
Koval M, Pagano RE. Intracellular transport and metabolism of sphingomyelin. BIOCHIMICA ET BIOPHYSICA ACTA 1991; 1082:113-25. [PMID: 2007175 DOI: 10.1016/0005-2760(91)90184-j] [Citation(s) in RCA: 177] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
SM is unique among the phospholipids because it is restricted to the lumenal aspect of organelles involved in the secretory and endocytic pathways. Given the intracellular sites of SM biosynthesis and hydrolysis, and the interconnections between these sites by vesicle-mediated transport pathways, the basic mechanism for maintaining the intracellular distribution of SM seems clear. It remains to be determined how SM metabolism and transport are coordinated to maintain the SM content of each organelle. For example, the size of the SM pool at the cell surface is maintained by regulation of at least five processes: transport of newly synthesized SM from the Golgi apparatus, plasma membrane lipid recycling, local SM synthesis, local SM hydrolysis, and SM transport from the cell surface to lysosomes. Although SM cannot undergo spontaneous transbilayer movement, SM metabolism generates both DAG, Cer and (indirectly) SPhB which can rapidly 'flip-flop', and thus gain access to the cytoplasmic leaflet of a membrane. It is of particular interest that these lipid species may be involved in the regulation of PK-C, suggesting that SM metabolism could play a role in signal transduction. However, physiological effects of endogenous Cer and SPhB remain elusive, even though the pharmacological effect of SPhB on PK-C is well established. Aside from the direct generation of second messengers, stimulation of SM hydrolysis has also been shown to induce cholesterol movement from the cell surface to intracellular membranes. It is not known whether this reflects the possibility that cholesterol may act as a second messenger. Alternatively, this phenomenon suggests that SM metabolism may cause rapid changes in the physical properties of the cell surface. For example, erythrocytes extensively treated with exogenously-added SMase will undergo endovesiculation It is tempting to speculate that any involvement of SM in the regulation of intracellular processes requires a combination of both the generation of biochemical second messengers and the alteration of membrane biophysical properties that can result from SM metabolism.
Collapse
Affiliation(s)
- M Koval
- Carnegie Institution of Washington, Department of Embryology, Baltimore, MD 21210-3301
| | | |
Collapse
|
25
|
Yuasa H, Scheinberg DA, Houghton AN. Gangliosides of T lymphocytes: evidence for a role in T-cell activation. TISSUE ANTIGENS 1990; 36:47-56. [PMID: 2270542 DOI: 10.1111/j.1399-0039.1990.tb01799.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- H Yuasa
- Memorial Sloan-Kettering Cancer Center, New York, NY
| | | | | |
Collapse
|
26
|
Giglioni A, Chigorno V, Pitto M, Valsecchi M, Palestini P, Ghidoni R. Effect of the different supramolecular organization on the uptake and metabolization of exogenous GM1 ganglioside by human fibroblasts. Chem Phys Lipids 1990; 55:207-13. [PMID: 2090360 DOI: 10.1016/0009-3084(90)90080-b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In this report we have investigated the differences in the uptake and metabolization of exogenous GM1 by human fibroblasts, as a function of its supramolecular organization in solution. For this we used a tritium labelled GM1, given alone or inserted in dispersions of phosphatidylcholine (PC) or sulphatide. The addition of fetal calf serum (FCS) to these dispersions was also studied. With respect to GM1 pure micelles, the presence in the medium of a sulphatide/GM1, 10:1 molar ratio, greatly increased the incorporation of GM1-associated radioactivity by the cultured cells. Conversely, the presence of PC dramatically diminished the GM1 incorporation values. The metabolization of exogenous GM1 was favoured by the presence of FCS, regardless of the presence of sulphatide. The obtained data provide useful information on the appropriate procedure for feeding cultured fibroblasts with gangliosides.
Collapse
Affiliation(s)
- A Giglioni
- Department of Medical Chemistry and Biochemistry, Medical School, University of Milan, Italy
| | | | | | | | | | | |
Collapse
|
27
|
Dekker A, Manthorpe M, Varon S. Reversibility of ganglioside effects on astrocyte morphology. J Neurosci Res 1990; 26:349-55. [PMID: 2398513 DOI: 10.1002/jnr.490260312] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The B-subunit of cholera toxin (BCT) induces a morphological change in cultured rat cerebral astrocytes from flat (epithelioid) to stellate (process-bearing). This stellation is reversed by the gangliosides GM1 and GD1a at concentrations of 10 microM or higher. Upon changing to a ganglioside-free medium, the flat astrocytes reacquire the stellate morphology within 3 hr, indicating that the antistellation effect of gangliosides is reversible. The possibility that this reversibility was due to a loss of exogenously acquired gangliosides from the cell membrane can be ruled out since pretreatment with GM1, but not GD1a, which does not bind BCT, results in an increased responsiveness to BCT, which was identical whether measured immediately after withdrawal of the ganglioside or 3 hr later. Asialo-GM1, which neither binds BCT nor reverses BCT-induced stellation by itself, prevents the return to stellation after withdrawal of the gangliosides. These data suggest that while gangliosides remain associated with the cell, their effect on astrocytes can change from opposing to permitting the stellate morphology.
Collapse
Affiliation(s)
- A Dekker
- Department of Biology, University of California, San Diego, La Jolla 92093
| | | | | |
Collapse
|
28
|
Affiliation(s)
- R E Brown
- Hormel Institute University of Minnesota, Austin 55912
| |
Collapse
|
29
|
Skaper SD, Leon A, Toffano G. Ganglioside function in the development and repair of the nervous system. From basic science to clinical application. Mol Neurobiol 1989; 3:173-99. [PMID: 2684226 DOI: 10.1007/bf02935630] [Citation(s) in RCA: 100] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Gangliosides play important roles in the normal physiological operations of the nervous system, in particular that of the brain. Changes in ganglioside composition occur in the mammalian brain not only during development, but also in aging and in several neuropathological situations. Gangliosides may modulate the ability of the brain to modify its response to cues or signals from the microenvironment. For example, cultured neurons are known to respond to exogenous ganglioside with changes characteristic of cell differentiation. Gangliosides can amplify the responses of neurons to extrinsic protein factors (neuronotrophic factors) that are normal constituents of the neuron's environment. The systemic administration of monosialoganglioside also potentiates trophic actions in vivo and improves neural responses following various types of injury to the adult mammalian central nervous system. The possible molecular mechanism(s) underlying the ganglioside effects may reflect an action in modulating ligand-receptor linked transfer of information across the plasma membrane of the cell.
Collapse
Affiliation(s)
- S D Skaper
- Fidia Research Laboratories, Department of CNS Research, Abano Terme, Italy
| | | | | |
Collapse
|
30
|
Skaper SD, Facci L, Favaron M, Leon A. Inhibition of DNA synthesis in C6 glioma cells following cellular incorporation of GM1 ganglioside and choleragenoid exposure. J Neurochem 1988; 51:688-97. [PMID: 2842453 DOI: 10.1111/j.1471-4159.1988.tb01799.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The B subunit of cholera toxin, which is multivalent and binds specifically to GM1 ganglioside on the cell surface, has previously been used as a ganglioside-specific probe to regulate DNA synthesis in thymocytes and fibroblasts. To explore in more detail this growth-regulatory action of gangliosides, C6 glioma cells (which are GM1 ganglioside deficient) were used as a model system. When cultures of C6 cells were first treated with GM1, followed by exposure to the B subunit, proliferation was inhibited, as measured by 3H-labeled thymidine incorporation into DNA. Pretreatment of the cells with 50 microM GM1 for 15 min (followed by washing with fetal calf serum) and incubation with 1 microgram/ml of B subunit for 21 h was sufficient to reduce DNA synthesis to 15% of control values (and confirmed by autoradiographic analysis), although maximal inhibition could be achieved with as little as 30 min exposure to B, followed by washing. Furthermore, the B subunit inhibited the response of the C6 cells to basic fibroblast growth factor only following GM1 pretreatment. The B subunit-induced inhibition of DNA synthesis was specific for the ganglioside GM1, and was unrelated to increases of cyclic AMP. These results demonstrate that cell-incorporated GM1 ganglioside may act as a receptor capable of undergoing a specific ligand interaction, subsequently affecting molecular processes at the nuclear level.
Collapse
Affiliation(s)
- S D Skaper
- Fidia Research Laboratories, Department of CNS Research, Abano Terme, Italy
| | | | | | | |
Collapse
|
31
|
Swindell RT, Bell VC, Slaughter S, Albers-Jackson B. Incorporation of 14C-galactose into gangliosides of rabbit lens. Curr Eye Res 1987; 6:451-6. [PMID: 3581867 DOI: 10.3109/02713688709025201] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Rabbit lenses were incubated in organ culture with 14C-galactose for 6, 12 and 20 hours. Gangliosides were extracted using the Folch-Suzuki method, purified by dialysis and analyzed by thin-layer chromatography. Six radioactive bands, including the origin, were observed. Tentative identification of these bands as N-acetylneuraminylgalactosylglucosylceramide (GM3), N-acetylgalactosaminyl-(N-acetylneuraminyl)-galactosylglucosylceramide (GM2), galactosyl-N-acetylgalactosaminyl-(N-acetylneuraminyl)- galactosylglucosylceramide (GM1), N-acetylneuraminylgalactosyl-N- acetylgalactosaminyl-(N-acetylneuraminyl)-galactosylglucosylceramide (GD1a), N-acetylneuraminylgalactosyl-N-acetylgalactosaminyl-(N- acetylneuraminyl-N-acetylneuraminyl)-galactosylglucosylceramide (GT) was made by comparison with authentic standard gangliosides. Galactose incorporation into GM3 and GM2 increased during the first 12 hours but decreased during the period from 12 to 20 hours. GD1a and GT incorporated the greatest amount of label during the period from 12 to 20 hours. Incorporation of labeled galactose into GM1 was nearly constant during this time period. Specific activities for GM1, GM3 and GT were nearly the same at 6 hours and were about half those of GM2 and GD1a for the same time period.
Collapse
|
32
|
|
33
|
Sharom FJ, Ross TE. Association of gangliosides with the lymphocyte plasma membrane studied using radiolabels and spin labels. BIOCHIMICA ET BIOPHYSICA ACTA 1986; 854:287-97. [PMID: 3002469 DOI: 10.1016/0005-2736(86)90122-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Gangliosides are known to act as potent suppressors of lectin-stimulated lymphocyte activation when added to the culture medium. Since this effect may be mediated via ganglioside association with (or insertion into) the plasma membrane, we have used 3H- and spin-labelled derivatives of mixed gangliosides to probe the nature of this interaction. Gangliosides bind rapidly to the lymphocyte membrane and show no preference for association with either inside-out or right-side-out membrane vesicles. Around 20% of the bound gangliosides can be removed by repetitive washing, and a further 22-28% by treatment with pronase for 1 h, suggesting that this fraction is tightly bound to membrane proteins at the cell surface. The ESR spectrum of membrane-bound gangliosides did not resemble the spin-exchanged spectrum of micellar spin-labelled gangliosides in aqueous solution, but was similar to that seen for 5 mol% ganglioside spin label in liposomes of egg phosphatidylcholine. This suggests that the bulk of the membrane-bound gangliosides are inserted and molecular dispersed in the lymphocyte membrane. Binding of wheat-germ agglutinin to lymphocyte-associated gangliosides results in specific immobilization of the carbohydrate headgroup, while concanavalin A and other lectins have little or no effect on oligosaccharide mobility. Membrane-inserted gangliosides show a response to lectin binding which is qualitatively different from that seen for gangliosides in bilayers of phosphatidylcholine.
Collapse
|
34
|
Spiegel S, Blumenthal R, Fishman PH, Handler JS. Gangliosides do not move from apical to basolateral plasma membrane in cultured epithelial cells. BIOCHIMICA ET BIOPHYSICA ACTA 1985; 821:310-8. [PMID: 4063368 DOI: 10.1016/0005-2736(85)90101-4] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Both qualitative and quantitative approaches were used to ascertain whether gangliosides, incorporated into the apical plasma membrane of cultured epithelial cells from kidney of toad (A6) and dog (MDCK), were able to redistribute past the tight junctions to the basolateral membrane. The apical surfaces of confluent epithelia were exposed to rhodaminyl gangliosides and the distribution of the inserted gangliosides was assessed qualitatively by fluorescence microscopy. All of the fluorescence was confined to the apical surface for at least 1 h after the fluorescent gangliosides had become incorporated; none appeared on the basolateral surface. These observations were confirmed by incubating the cells with anti-rhodamine antibodies and 125I-labeled protein A. In order to quantitate further the ganglioside distribution, binding assays were performed using 125I-labeled cholera toxin, which binds specifically to ganglioside GM1. Exogenous GM1 added to the apical membrane was not detected on the basolateral membrane 4 h after its incorporation even though there was extensive disappearance of the inserted ganglioside, presumably through endocytosis. To directly examine the behaviour of endogenous gangliosides, the apical surface of the epithelial cells was exposed to bacterial neuraminidase, which hydrolyzes more complex gangliosides to GM1. The cells exhibited a 10-fold increase in binding of cholera toxin to their apical surface, but no increase in binding to their basolateral surface. Thus, no cellular pathways for movement from apical to basolateral plasma membrane appear to be available for implanted or endogenous gangliosides.
Collapse
|
35
|
Kobayashi T, Shinnoh N, Goto I, Kuroiwa Y. Hydrolysis of galactosylceramide is catalyzed by two genetically distinct acid beta-galactosidases. J Biol Chem 1985. [DOI: 10.1016/s0021-9258(18)95690-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
36
|
Chigorno V, Pitto M, Cardace G, Acquotti D, Kirschner G, Sonnino S, Ghidoni R, Tettamanti G. Association of gangliosides to fibroblasts in culture: A study performed with GM1 [14C]-labelled at the sialic acid acetyl group. Glycoconj J 1985. [DOI: 10.1007/bf01049274] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
37
|
Raghavan S, Krusell A, Lyerla TA, Bremer EG, Kolodny EH. GM2-ganglioside metabolism in cultured human skin fibroblasts: unambiguous diagnosis of GM2-gangliosidosis. BIOCHIMICA ET BIOPHYSICA ACTA 1985; 834:238-48. [PMID: 3995063 DOI: 10.1016/0005-2760(85)90161-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The metabolism of GM2-ganglioside was studied in situ using cultured skin fibroblasts from normal individuals and patients with different forms of GM2-gangliosidosis. [3H]Sphingosine-labeled GM2 was provided in the culture medium to confluent cells in 6-cm petri dishes. After 10 days, the cells were washed free of radioactivity and harvested by trypsinization. The cellular lipids were extracted and analyzed for radioactivity in GM2 and its metabolic products. In fibroblasts from healthy subjects, 50-60% of the total cellular radioactivity was found in the neutral glycosphingolipids, ceramide, sphingomyelin and fatty acids. Degradation of the labeled GM2 progressed rapidly via GM3, ceramide dihexoside and ceramide monohexoside with a build-up of radioactivity mainly in the ceramide pool of the cell. The labeled ceramide is also reutilized for the synthesis of ceramide trihexoside, globoside and sphingomyelin or is converted to fatty acid and incorporated in ester linkages. In contrast, cells from patients with GM2-gangliosidosis representing Tay-Sachs, Sandhoff and AB variant forms of the disease did not metabolize the ingested labeled GM2-like controls. Nearly all of the radioactivity was present in the ganglioside fraction in the lipid extracts from these cells and consisted of unhydrolyzed GM2. High-performance liquid chromatographic analysis of monosialogangliosides from cells grown without added labeled GM2 in the medium indicated accumulation of endogenously synthesized GM2 in cell lines from all patients with GM2 gangliosidosis compared to healthy controls. This approach provides a reliable tool for pre- and post-natal diagnosis of all forms of GM2-gangliosidosis without ambiguity.
Collapse
|
38
|
Clarke JT, Cook HW, Spence MW. Studies on the turnover and subcellular localization of membrane gangliosides in cultured neuroblastoma cells. Neurochem Res 1985; 10:427-38. [PMID: 4000396 DOI: 10.1007/bf00964610] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
To compare the subcellular distribution of endogenously synthesized and exogenous gangliosides, cultured murine neuroblastoma cells (N1E-115) were incubated in suspension for 22 h in the presence of D-[1-3H]galactose or [3H]GM1 ganglioside, transferred to culture medium containing no radioisotope for periods of up to 72 hr, and then subjected to subcellular fractionation and analysis of lipid-sialic acid and radiolabeled ganglioside levels. The results indicated that GM2 and GM3 were the principal gangliosides in the cells with only traces of GM1 and small amounts of disialogangliosides present. About 50% of the endogenously synthesized radiolabelled ganglioside in the four major subcellular membrane fractions studied was recovered from plasma membrane and only 10-15% from the crude mitochondrial membrane fraction. In contrast, 45% of the exogenous [3H]GM1 taken up into the same subcellular membrane fractions was recovered from the crude mitochondrial fraction; less than 15% was localized in the plasma membrane fraction. The results are similar to those obtained from previously reported studies on membrane phospholipid turnover. They suggest that exogenous GM1 ganglioside, like exogenous phosphatidylcholine, does not intermix freely with any quantitatively major pool of endogenous membrane lipid.
Collapse
|
39
|
|