1
|
|
2
|
|
3
|
Souidi M, Dubrac S, Parquet M, Milliat F, Férézou J, Sérougne C, Loison C, Riottot M, Boudem N, Bécue T, Lutton C. Effects of dietary 27-hydroxycholesterol on cholesterol metabolism and bile acid biosynthesis in the hamster. Can J Physiol Pharmacol 2003; 81:854-63. [PMID: 14614521 DOI: 10.1139/y03-079] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
27-hydroxycholesterol (27OH-Chol) is an important endogenous oxysterol resulting from the action of sterol 27-hydroxylase (CYP27A1) on cholesterol in the liver and numerous extrahepatic tissues. It may act as a modulator of cholesterol and bile acid metabolism. The effects of 27OH-Chol on the main enzymes and receptors of cholesterol metabolism were investigated by feeding male hamsters a diet supplemented with 27OH-Chol (0.1% w/w) for 1 week. Intestinal scavenger class B, type I (SR-BI) protein level was decreased (65%), but hepatic expression was increased (+34%). Liver 3β-hydroxy-3β-methyl glutaryl coenzyme A reductase (58%), cholesterol 7α-hydroxylase (54%), oxysterol 7α-hydroxylase (44%), and sterol 12α-hydroxylase (70%) activities were all decreased. Bile acid composition was changed (fourfold increase in the chenodeoxycholic/cholic acid ratio). This study demonstrates that dietary 27OH-Chol modulates major enzymes of cholesterol metabolism and alters the biliary bile acid profile, making it more hydrophobic, at least at this level of intake. Its effects on SR-BI protein levels are organ dependent. The properties of 27OH-Chol or its metabolites on cholesterol metabolism probably result from the activation of specific transcription factors. Key words: cholesterol 7α-hydroxylase (CYP7A1), sterol 12α-hydroxylase (CYP8B1), sterol 27-hydroxylase (CYP27A1), 3β-hydroxy-3β-methyl glutaryl coenzyme A reductase (HMGCoAR), scavenger receptor class B type I (SR-BI).
Collapse
Affiliation(s)
- Maâmar Souidi
- Laboratory of Physiology and Nutrition, Bâtiment 447, Université Paris-Sud, 91405 Orsay CEDEX, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Cárdenas ML. The competition plot: A kinetic method to assess whether an enzyme that catalyzes multiple reactions does so at a unique site. Methods 2001; 24:175-80. [PMID: 11384192 DOI: 10.1006/meth.2001.1178] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Enzymes often act on more than one substrate, and the question then arises as to whether this can be attributed to the existence of two different enzymes that have not been separated or, more interesting, to the presence of two different active sites in the same enzyme. The competition plot is a kinetic method that allows us to test with little experimentation whether the two reactions occur at the same site or at different sites. It consists of making mixtures of the two substrates and plotting the total rate against a parameter p that defines the concentrations of the two substrates in terms of reference concentrations chosen to give the same rates at p = 0 and p = 1, i.e., when only one of the substrates is present. With a slight modification of the equations it can also be applied to enzymes that deviate from Michaelis-Menten kinetics. If the two substrates react at the same site, the competition plot gives a horizontal straight line; i.e., the total rate is independent of p. In contrast, if the two reactions occur at two separate and independent sites a curve with a maximum is obtained; separate reactions with cross-inhibition generate curves with either maxima or minima according to whether the Michaelis constants of the two substrates are smaller or larger than their inhibition constants in the other reactions. Strategies to avoid ambiguous results and to improve the sensitivity of the plot are described. A practical example is given to facilitate the experimental protocol for this plot.
Collapse
Affiliation(s)
- M L Cárdenas
- Bioénergétique et Ingénierie des Protéines, Institut Fédératif "Biologie Structurale et Microbiologie," Centre National de la Recherche Scientifique, 31 Chemin Joseph-Aiguier, Marseille Cedex 20, 13402, France.
| |
Collapse
|
5
|
Souidi M, Parquet M, Dubrac S, Audas O, Bécue T, Lutton C. Assay of microsomal oxysterol 7alpha-hydroxylase activity in the hamster liver by a sensitive method: in vitro modulation by oxysterols. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1487:74-81. [PMID: 11004610 DOI: 10.1016/s1388-1981(00)00086-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A method of assaying hepatic cytochrome P-450, oxysterol 7alpha-hydroxylase (CYP7B), was developed by combining the use of 25-[26,27-(3)H]hydroxycholesterol as a substrate and hydroxypropyl-beta-cyclodextrin as a substrate vehicle. When these assay conditions were tested, an undesirable transformation was observed of the reaction product, 7alpha,25-dihydroxycholesterol, into 3-oxo-7alpha,25-dihydroxy-4-cholesten by the activity of 3beta-hydroxy-Delta(5)-C(27) steroid oxydoreductase, a microsomal NAD(+) and NADP(+) dependent enzyme of bile acid metabolism. A great improvement was reached by using a continuous NADPH generating system which constantly re-transforms NADP(+) into NADPH, thus inhibiting this activity. This improved CYP7B assay, comparable to our previously described assay for cholesterol 7alpha-hydroxylase (CYP7A), allowed a 3-fold increase of the apparent enzyme activity. The possibility to simultaneously measure CYP7A and CYP7B activities on the same microsomal preparation was investigated. A marked decrease (-33%) in the CYP7B activity was noticed, while that of CYP7A remained unchanged. The CYP7B activity was observed to be inhibited by cholesterol (-30%) and also by the oxysterols 7alpha-hydroxycholesterol (-21%), 7beta-hydroxycholesterol (-25%) and epicoprostanol (-20%), and by cyclosporin A (-26%). It can be concluded that this sensible and easy to perform CYP7B assay allows to observe, at least in vitro, a modulation of the enzyme activity by oxysterols.
Collapse
Affiliation(s)
- M Souidi
- Laboratoire de Physiologie de la Nutrition, Unité Associée Université Paris Sud/INRA, Bâtiment 447, Université Paris Sud, 91405 Orsay, Cedex, France
| | | | | | | | | | | |
Collapse
|
6
|
Chaplin MF, Chaudhury S, Dettmar PW, Sykes J, Shaw AD, Davies GJ. Effect of ispaghula husk on the faecal output of bile acids in healthy volunteers. J Steroid Biochem Mol Biol 2000; 72:283-92. [PMID: 10822018 DOI: 10.1016/s0960-0760(00)00035-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Faecal bile acids are associated with both colorectal cancer and serum cholesterol levels. We investigate whether dosing with ispaghula husk affects the faecal bile acid weights and concentrations in healthy adults. Sixteen healthy volunteers consumed 7.0 g/day ispaghula husk, containing 5.88 g/day Englyst-determinable dietary fibre, for the middle 8 weeks of a 12-week period. Stool samples were collected, analysed for faecal bile acids and their form and dry weight determined. Correlations between the faecal bile acids, the stool parameters and the dietary intake were tested. Ispaghula husk treatment significantly lowers faecal lithocholic and isolithocholic acids and the weighted ratio of lithocholic acids to deoxycholic acid. These effects revert towards their initial states at the end of the treatment period. These changes in the faecal bile acid profiles indicate a reduction in the hydrophobicity of the bile acids in the enterohepatic circulation.
Collapse
Affiliation(s)
- M F Chaplin
- School of Applied Science, South Bank University, Borough Road, London, UK.
| | | | | | | | | | | |
Collapse
|
7
|
Nguyen LB, Xu G, Shefer S, Tint GS, Batta A, Salen G. Comparative regulation of hepatic sterol 27-hydroxylase and cholesterol 7alpha-hydroxylase activities in the rat, guinea pig, and rabbit: effects of cholesterol and bile acids. Metabolism 1999; 48:1542-8. [PMID: 10599986 DOI: 10.1016/s0026-0495(99)90243-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The regulation of the classic and alternative bile acid synthetic pathways by key hepatic enzyme activities (microsomal cholesterol 7alpha-hydroxylase and mitochondrial sterol 27-hydroxylase, respectively) was examined in bile acid depletion and replacement and cholesterol-feeding experiments with rats, guinea pigs, and rabbits. The bile acid pool was depleted by creating a bile fistula (BF) and collecting bile for 2 to 5 days, and it was replaced by intraduodenal infusion of the major biliary bile acids (taurocholic acid [TCA], glycochenodeoxycholic acid [GCDCA], and glycocholic acid [GCA] in the rat, guinea pig, and rabbit, respectively) at rates equivalent to the measured hepatic flux of the bile acids. To study the effects of cholesterol, the animals were fed for 7 days on a basal diet with and without 2% cholesterol. Cholesterol 7alpha-hydroxylase and sterol 27-hydroxylase activities, measured by isotope incorporation assays, were related to bile acid output and composition and hepatic cholesterol concentrations. Intraduodenal infusion of bile acids increased the output of the tested bile acids, but did not significantly change hepatic cholesterol concentrations and had no effect on sterol 27-hydroxylase activity. Neither bile acid depletion nor replacement affected sterol 27-hydroxylase activity when three different substrates (cholesterol, 5beta-cholestane-3alpha,7alpha-diol, and 5beta-cholestane-3alpha,7alpha,12alpha-triol) were tested. In contrast, feeding 2% cholesterol increased hepatic cholesterol concentrations in rats, guinea pigs, and rabbits threefold, twofold, and eightfold, respectively, and increased hepatic mitochondrial sterol 27-hydroxylase activity (conversion of cholesterol to 27-hydroxycholesterol) in all three animal models. The stimulation and feedback inhibition of cholesterol 7alpha-hydroxylase activity by bile acid depletion and replacement were observed in all three animal models, whereas the effect of cholesterol feeding was species-dependent (cholesterol 7alpha-hydroxylase activity increased in the rat, did not change in the guinea pig, and was inhibited in the rabbit). Thus, in contrast to sterol 27-hydroxylase, which was upregulated by cholesterol but not affected by bile acid depletion and replacement in all three animal models, cholesterol 7alpha-hydroxylase activity was controlled consistently and inversely by the hepatic flux of bile acids, but was species-dependent in its response to a 1-week feeding with 2% cholesterol.
Collapse
Affiliation(s)
- L B Nguyen
- Department of Medicine/Division of Gastroenterology and the Liver Center, University of Medicine and Dentistry of New Jersey-New Jersey Medical School, Newark 07103, USA
| | | | | | | | | | | |
Collapse
|
8
|
Zoltowska M, Delvin EE, Paradis K, Seidman E, Levy E. Bile duct cells: a novel in vitro model for the study of lipid metabolism and bile acid production. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 276:G407-14. [PMID: 9950814 DOI: 10.1152/ajpgi.1999.276.2.g407] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Immortalized bile duct cells (BDC), derived from transgenic mice harboring the SV40 thermosensitive immortalizing mutant gene ts458, were utilized to investigate the role of the biliary epithelium in lipid and sterol metabolism. This cell model closely resembles the in vivo situation because it expresses the specific phenotypic marker cytokeratin 19 (CK-19), exhibits the formation of bile duct-like structures, and displays well-formed microvilli projected from the apical side to central lumen. The BDC were found to incorporate [14C]oleic acid (in nmol/mg protein) into triglycerides (121 +/- 6), phospholipids (PL; 59 +/- 3), and cholesteryl ester (16 +/- 1). The medium lipid content represented 5.90 +/- 0.16% (P < 0. 005) of the total intracellular production, indicating a limited lipid export capacity. Analysis of PL composition demonstrated the synthesis of all classes of polar lipids, with phosphatidylcholine and phosphatidylethanolamine accounting for 60 +/- 1 and 24 +/- 1%, respectively, of the total. Differences in PL distribution were apparent between cells and media. Substantial cholesterol synthesis was observed in BDC, as determined by the incorporation of [14C]acetate suggesting the presence of hydroxymethylglutaryl-CoA (HMG-CoA) reductase, the rate-limiting enzyme in the cholesterol biosynthetic pathway. With the use of [14C]acetate and [14C]cholesterol as precursors, both tauro- and glycoconjugates of bile acids were synthesized, indicating the presence of cholesterol 7alpha- and 26R-hydroxylases, the key enzymes involved in bile acid formation. The transport of bile acids was not limited, as shown by their marked accumulation in the medium (>6-fold of cell content). HMG-CoA reductase (53.0 +/- 6.7), cholesterol 7alpha-hydroxylase (15. 5 +/- 0.5), and acyl-CoA:cholesterol acyltransferase (ACAT; 201.7 +/- 10.2) activities (in pmol. min-1. mg protein-1) were present in the microsomal fractions. Our data show that biliary epithelial cells actively synthesize lipids and may directly contribute bile acids to the biliary fluid in vivo. This BDC line thus represents an efficient experimental tool to evaluate biliary epithelium sterol metabolism and to study biliary physiology.
Collapse
Affiliation(s)
- M Zoltowska
- Departments of Nutrition, Biochemistry, and Pediatrics, Centre de Recherche, Hôpital Ste-Justine, Université de Montréal, Montreal, Quebec, Canada H3T 1C5
| | | | | | | | | |
Collapse
|
9
|
Christenson LK, McAllister JM, Martin KO, Javitt NB, Osborne TF, Strauss JF. Oxysterol regulation of steroidogenic acute regulatory protein gene expression. Structural specificity and transcriptional and posttranscriptional actions. J Biol Chem 1998; 273:30729-35. [PMID: 9804848 DOI: 10.1074/jbc.273.46.30729] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Oxysterols exert a major influence over cellular cholesterol homeostasis. We examined the effects of oxysterols on the expression of steroidogenic acute regulatory protein (StAR), which increases the delivery of cholesterol to sterol-metabolizing P450s in the mitochondria. 22(R)-hydroxycholesterol (22(R)-OHC), 25-OHC, and 27-OHC each increased steroidogenic factor-1 (SF-1)-mediated StAR gene transactivation by approximately 2-fold in CV-1 cells. In contrast, cholesterol, progesterone, and the 27-OHC metabolites, 27-OHC-5beta-3-one and 7alpha,27-OHC, had no effect. Unlike our findings in CV-1 cells, SF-1-dependent StAR promoter activity was not augmented by 27-OHC in COS-1 cells, Y-1 cells, BeWo choriocarcinoma cells, Chinese hamster ovary (CHO) cells, and human granulosa cells. Studies examining the metabolism of 27-OHC indicated that CV-1 cells formed a single polar metabolite, 3beta-OH-5-cholestenoic acid from radiolabeled 27-OHC. However, this metabolite inhibited StAR promoter activity in CV-1, COS-1 and CHO cells. Because 7alpha,27-OHC was unable to increase SF-1-dependent StAR promoter activity, we examined 27-OHC 7alpha-hydroxylase in COS-1 and CHO cells. COS-1 cells contained high 7alpha-hydroxylase activity, whereas the enzyme was undetectable in CHO cells. The hypothesis that oxysterols act in CV-1 cells to increase StAR promoter activity by reducing nuclear levels of sterol regulatory element binding protein was tested. This notion was refuted when it was discovered that sterol regulatory element binding protein-1a is a potent activator of the StAR promoter in CV-1, COS-1, and human granulosa cells. Human granulosa and theca cells, which express endogenous SF-1, contained more than 5-fold more StAR protein following addition of 27-OHC, whereas StAR mRNA levels remained unchanged. We conclude that 1) there are cell-specific effects of oxysterols on SF-1-dependent transactivation; 2) the ability to increase transactivation is limited to certain oxysterols; 3) there are cell-specific pathways of oxysterol metabolism; and 4) oxysterols elevate StAR protein levels through posttranscriptional actions.
Collapse
Affiliation(s)
- L K Christenson
- Center for Research on Reproduction and Women's Health, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
| | | | | | | | | | | |
Collapse
|
10
|
Pikuleva IA, Babiker A, Waterman MR, Björkhem I. Activities of recombinant human cytochrome P450c27 (CYP27) which produce intermediates of alternative bile acid biosynthetic pathways. J Biol Chem 1998; 273:18153-60. [PMID: 9660774 DOI: 10.1074/jbc.273.29.18153] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The primary physiological significance of cytochrome P450c27 (CYP27) has been associated with its role in the degradation of the side chain of C27 steroids in the hepatic bile acid biosynthesis pathway, which begins with 7alpha-hydroxylation of cholesterol in liver. However, recognition that in humans P450c27 is a widely or ubiquitously expressed mitochondrial P450, and that there are alternative pathways of bile acid synthesis which begin with 27-hydroxylation of cholesterol catalyzed by P450c27, suggests the need to reevaluate the role of this enzyme and its catalytic properties. 27-Hydroxycholesterol was thought to be the only product formed upon reaction of P450c27 with cholesterol. However, the present study demonstrates that recombinant human P450c27 is also able to further oxidize 27-hydroxycholesterol giving first an aldehyde and then 3beta-hydroxy-5-cholestenoic acid. Kinetic data indicate that in a reconstituted system, after 27-hydroxycholesterol is formed from cholesterol, it is released from the P450 and then competes with cholesterol for reentry the enzyme active site for further oxidation. Under subsaturating substrate concentrations, the efficiencies of oxidation of 27-hydroxycholesterol and 3beta-hydroxy-5-cholestenal to the acid by human P450c27 are greater than the efficiency of hydroxylation of cholesterol to 27-hydroxycholesterol indicating that the first hydroxylation step in the overall conversion of cholesterol into 3beta-hydroxy-5-cholestenoic acid is rate-limiting. Interestingly, 3beta-hydroxy-5-cholestenoic acid was found to be further metabolized by the recombinant human P450c27, giving two monohydroxylated products with the hydroxyl group introduced at different positions on the steroid nucleus.
Collapse
Affiliation(s)
- I A Pikuleva
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, USA
| | | | | | | |
Collapse
|
11
|
Abstract
The addition of a 7-hydroxyl group is an early and often rate-limiting step in the synthesis of bile acids. This reaction is catalysed by two cytochrome P450 enzymes known as cholesterol 7 alpha-hydroxylase and oxysterol 7 alpha-hydroxylase. cDNAs encoding these proteins have been isolated and used to define two evolutionarily conserved pathways that produce 7 alpha-hydroxylated bile acids.
Collapse
Affiliation(s)
- M Schwarz
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas 75235-9046, USA
| | | | | |
Collapse
|
12
|
Chaplin MF. Bile acids, fibre and colon cancer: the story unfolds. JOURNAL OF THE ROYAL SOCIETY OF HEALTH 1998; 118:53-61. [PMID: 9724940 DOI: 10.1177/146642409811800111] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Are the changes in faecal bile acid concentrations the cause of colorectal cancer or one of its effects? This is an area of controversy mainly due to the lack of a clear explanation as to how the bile acid concentrations are controlled under different circumstances. This review presents an outline of the evidence that bile acids are both a causal factor in colorectal cancer and that their concentrations are affected by it in a synergistic manner. It also offers an explanation of how some dietary fibre protects against colorectal cancer.
Collapse
Affiliation(s)
- M F Chaplin
- Food Research Centre, South Bank University, London
| |
Collapse
|
13
|
|
14
|
|
15
|
Martin KO, Reiss AB, Lathe R, Javitt NB. 7 alpha-hydroxylation of 27-hydroxycholesterol: biologic role in the regulation of cholesterol synthesis. J Lipid Res 1997. [DOI: 10.1016/s0022-2275(20)37229-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|