1
|
Wünkhaus D, Tang R, Nyame K, Laqtom NN, Schweizer M, Scotto Rosato A, Krogsæter EK, Wollnik C, Abu-Remaileh M, Grimm C, Hermey G, Kuhn R, Gruber-Schoffnegger D, Markmann S. TRPML1 activation ameliorates lysosomal phenotypes in CLN3 deficient retinal pigment epithelial cells. Sci Rep 2024; 14:17469. [PMID: 39080379 PMCID: PMC11289453 DOI: 10.1038/s41598-024-67479-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 07/11/2024] [Indexed: 08/02/2024] Open
Abstract
Mutations in the lysosomal membrane protein CLN3 cause Juvenile Neuronal Ceroid Lipofuscinosis (JNCL). Activation of the lysosomal ion channel TRPML1 has previously been shown to be beneficial in several neurodegenerative disease models. Here, we tested whether TRPML1 activation rescues disease-associated phenotypes in CLN3-deficient retinal pigment epithelial (ARPE-19 CLN3-KO) cells. ARPE-19 CLN3-KO cells accumulate LAMP1 positive organelles and show lysosomal storage of mitochondrial ATPase subunit C (SubC), globotriaosylceramide (Gb3), and glycerophosphodiesters (GPDs), whereas lysosomal bis(monoacylglycero)phosphate (BMP/LBPA) lipid levels were significantly decreased. Activation of TRPML1 reduced lysosomal storage of Gb3 and SubC but failed to restore BMP levels in CLN3-KO cells. TRPML1-mediated decrease of storage was TFEB-independent, and we identified TRPML1-mediated enhanced lysosomal exocytosis as a likely mechanism for clearing storage including GPDs. Therefore, ARPE-19 CLN3-KO cells represent a human cell model for CLN3 disease showing many of the described core lysosomal deficits, some of which can be improved using TRPML1 agonists.
Collapse
Affiliation(s)
| | - R Tang
- Faculty of Medicine, Walther Straub Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität, Munich, Germany
- Charles River Laboratory, Chesterford Research Park, Saffron Walden, UK
| | - K Nyame
- Department of Chemical Engineering and of Genetics and Sarafan ChEM-H, Stanford University, Stanford, CA, USA
| | - N N Laqtom
- Department of Chemical Engineering and of Genetics and Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Biological and Environmental Science & Engineering Division, King Abdullah University Of Science And Technology, Thuwal, Saudi Arabia
| | - M Schweizer
- Core Facility Morphology and Electronmicroscopy, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - A Scotto Rosato
- Faculty of Medicine, Walther Straub Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität, Munich, Germany
| | - E K Krogsæter
- Faculty of Medicine, Walther Straub Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität, Munich, Germany
- Gladstone Institutes, San Francisco, CA, USA
| | | | - M Abu-Remaileh
- Department of Chemical Engineering and of Genetics and Sarafan ChEM-H, Stanford University, Stanford, CA, USA
| | - C Grimm
- Faculty of Medicine, Walther Straub Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität, Munich, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology, Infection and Pandemic Research IIP, Munich/Frankfurt, Germany
| | - G Hermey
- Institute for Molecular and Cellular Cognition, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - R Kuhn
- Evotec SE, Hamburg, Germany
| | | | | |
Collapse
|
2
|
Synthesis of Phosphatidyl Glycerol Containing Unsymmetric Acyl Chains Using H-Phosphonate Methodology. Molecules 2022; 27:molecules27072199. [PMID: 35408598 PMCID: PMC9000858 DOI: 10.3390/molecules27072199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/15/2022] [Accepted: 03/17/2022] [Indexed: 12/10/2022] Open
Abstract
Naturally occurring phospholipids, such as phosphatidyl glycerol (PG), are gaining interest due to the roles they play in disease mechanisms. To elucidate the metabolism of PG, an optically pure material is required, but this is unfortunately not commercially available. Our previous PG synthesis route utilized phosphoramidite methodology that addressed issues surrounding fatty acid substrate scope and glycerol backbone modifications prior to headgroup phosphorylation, but faltered in the reproducibility of the overall pathway due to purification challenges. Herein, we present a robust pathway to optically pure PG in fewer steps, utilizing H-phosphonates that features a chromatographically friendly and stable triethyl ammonium H-phosphonate salt. Our route is also amendable to the simultaneous installation of different acyl chains, either saturated or unsaturated, on the glycerol backbone.
Collapse
|
3
|
Ilnytska O, Lai K, Gorshkov K, Schultz ML, Tran BN, Jeziorek M, Kunkel TJ, Azaria RD, McLoughlin HS, Waghalter M, Xu Y, Schlame M, Altan-Bonnet N, Zheng W, Lieberman AP, Dobrowolski R, Storch J. Enrichment of NPC1-deficient cells with the lipid LBPA stimulates autophagy, improves lysosomal function, and reduces cholesterol storage. J Biol Chem 2021; 297:100813. [PMID: 34023384 PMCID: PMC8294588 DOI: 10.1016/j.jbc.2021.100813] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 04/29/2021] [Accepted: 05/19/2021] [Indexed: 02/06/2023] Open
Abstract
Niemann-Pick C (NPC) is an autosomal recessive disorder characterized by mutations in the NPC1 or NPC2 genes encoding endolysosomal lipid transport proteins, leading to cholesterol accumulation and autophagy dysfunction. We have previously shown that enrichment of NPC1-deficient cells with the anionic lipid lysobisphosphatidic acid (LBPA; also called bis(monoacylglycerol)phosphate) via treatment with its precursor phosphatidylglycerol (PG) results in a dramatic decrease in cholesterol storage. However, the mechanisms underlying this reduction are unknown. In the present study, we showed using biochemical and imaging approaches in both NPC1-deficient cellular models and an NPC1 mouse model that PG incubation/LBPA enrichment significantly improved the compromised autophagic flux associated with NPC1 disease, providing a route for NPC1-independent endolysosomal cholesterol mobilization. PG/LBPA enrichment specifically enhanced the late stages of autophagy, and effects were mediated by activation of the lysosomal enzyme acid sphingomyelinase. PG incubation also led to robust and specific increases in LBPA species with polyunsaturated acyl chains, potentially increasing the propensity for membrane fusion events, which are critical for late-stage autophagy progression. Finally, we demonstrated that PG/LBPA treatment efficiently cleared cholesterol and toxic protein aggregates in Purkinje neurons of the NPC1I1061T mouse model. Collectively, these findings provide a mechanistic basis supporting cellular LBPA as a potential new target for therapeutic intervention in NPC disease.
Collapse
Affiliation(s)
- Olga Ilnytska
- Department of Nutritional Sciences, Rutgers University, New Brunswick, New Jersey, USA; Rutgers Center for Lipid Research, Rutgers University, New Brunswick, New Jersey, USA.
| | - Kimberly Lai
- Department of Nutritional Sciences, Rutgers University, New Brunswick, New Jersey, USA
| | - Kirill Gorshkov
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland, USA
| | - Mark L Schultz
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Bruce Nguyen Tran
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland, USA
| | - Maciej Jeziorek
- Department of Biological Sciences, Rutgers University, Newark, New Jersey, USA
| | - Thaddeus J Kunkel
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Ruth D Azaria
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Hayley S McLoughlin
- Department of Neurology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Miriam Waghalter
- Department of Nutritional Sciences, Rutgers University, New Brunswick, New Jersey, USA
| | - Yang Xu
- Departments of Anesthesiology and Cell Biology, New York University School of Medicine, New York, New York, USA
| | - Michael Schlame
- Departments of Anesthesiology and Cell Biology, New York University School of Medicine, New York, New York, USA
| | - Nihal Altan-Bonnet
- Laboratory of Host-Pathogen Dynamics, National Heart, Lung and Blood Institute, Bethesda, Maryland, USA
| | - Wei Zheng
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland, USA
| | - Andrew P Lieberman
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Radek Dobrowolski
- Department of Biological Sciences, Rutgers University, Newark, New Jersey, USA; Rutgers Center for Lipid Research, Rutgers University, New Brunswick, New Jersey, USA
| | - Judith Storch
- Department of Nutritional Sciences, Rutgers University, New Brunswick, New Jersey, USA; Rutgers Center for Lipid Research, Rutgers University, New Brunswick, New Jersey, USA.
| |
Collapse
|
4
|
Ilnytska O, Jeziorek M, Lai K, Altan-Bonnet N, Dobrowolski R, Storch J. Lysobisphosphatidic acid (LBPA) enrichment promotes cholesterol egress via exosomes in Niemann Pick type C1 deficient cells. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:158916. [PMID: 33716137 PMCID: PMC8038758 DOI: 10.1016/j.bbalip.2021.158916] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 02/06/2021] [Accepted: 02/22/2021] [Indexed: 02/07/2023]
Affiliation(s)
- Olga Ilnytska
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ 08901, USA; Rutgers Center for Lipid Research, Institute for Food Nutrition and Health, Rutgers University, New Brunswick, NJ 08901, USA
| | - Maciej Jeziorek
- Department of Biological Sciences, Rutgers University, Newark, NJ 07102, USA
| | - Kimberly Lai
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ 08901, USA
| | - Nihal Altan-Bonnet
- Laboratory of Host-Pathogen Dynamics, National Heart, Lung and Blood Institute, Bethesda, MD 20814, USA
| | - Radek Dobrowolski
- Rutgers Center for Lipid Research, Institute for Food Nutrition and Health, Rutgers University, New Brunswick, NJ 08901, USA; Department of Biological Sciences, Rutgers University, Newark, NJ 07102, USA
| | - Judith Storch
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ 08901, USA; Rutgers Center for Lipid Research, Institute for Food Nutrition and Health, Rutgers University, New Brunswick, NJ 08901, USA.
| |
Collapse
|
5
|
Gruenberg J. Life in the lumen: The multivesicular endosome. Traffic 2021; 21:76-93. [PMID: 31854087 PMCID: PMC7004041 DOI: 10.1111/tra.12715] [Citation(s) in RCA: 123] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/30/2019] [Accepted: 10/31/2019] [Indexed: 12/12/2022]
Abstract
The late endosomes/endo‐lysosomes of vertebrates contain an atypical phospholipid, lysobisphosphatidic acid (LBPA) (also termed bis[monoacylglycero]phosphate [BMP]), which is not detected elsewhere in the cell. LBPA is abundant in the membrane system present in the lumen of this compartment, including intralumenal vesicles (ILVs). In this review, the current knowledge on LBPA and LBPA‐containing membranes will be summarized, and their role in the control of endosomal cholesterol will be outlined. Some speculations will also be made on how this system may be overwhelmed in the cholesterol storage disorder Niemann‐Pick C. Then, the roles of intralumenal membranes in endo‐lysosomal dynamics and functions will be discussed in broader terms. Likewise, the mechanisms that drive the biogenesis of intralumenal membranes, including ESCRTs, will also be discussed, as well as their diverse composition and fate, including degradation in lysosomes and secretion as exosomes. This review will also discuss how intralumenal membranes are hijacked by pathogenic agents during intoxication and infection, and what is the biochemical composition and function of the intra‐endosomal lumenal milieu. Finally, this review will allude to the size limitations imposed on intralumenal vesicle functions and speculate on the possible role of LBPA as calcium chelator in the acidic calcium stores of endo‐lysosomes.
Collapse
Affiliation(s)
- Jean Gruenberg
- Biochemistry Department, University of Geneva, Geneva, Switzerland
| |
Collapse
|
6
|
Wang X, Schmitt MV, Xu L, Jiao Y, Guo L, Lienau P, Reichel A, Liu X. Quantitative molecular tissue atlas of Bis(monoacylglycero)phosphate and phosphatidylglycerol membrane lipids in rodent organs generated by methylation assisted high resolution mass spectrometry. Anal Chim Acta 2019; 1084:60-70. [PMID: 31519235 DOI: 10.1016/j.aca.2019.07.060] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 07/28/2019] [Indexed: 11/25/2022]
Abstract
Bis(monoacylglycero)phosphate (BMP) and phosphatidylglycerol (PG) are structural isomeric phospholipids with very different properties and biological functions. Due to their isomeric nature, it has thus far been challenging to simultaneously quantify BMP and PG lipids in tissue samples by mass spectrometry. Therefore, we have developed a sensitive LC-MS/MS based approach with prior methylation derivatization that is able to handle large batches of samples. Using this high throughput platform, a simulated MS/MS database was established for confident lipid assignment. In this work, we have simultaneously identified and quantified BMP and PG lipid molecules in different body tissues of rats and mice. We report for the first time a quantitative molecular atlas of BMP and PG lipids for 14 different tissues and organs in Wistar rats, NMRI and CD1 mice. Organ- and species-specificity was analyzed and compared for both lipid molecule classes. A total of 34 BMP and 10 PG molecules were quantified, with PG concentrations being generally much higher across tissues than BMP, but BMP lipids showing a much higher molecular diversity between animal organs. The large diversity of the BMP lipids with regard to their abundance and molecular composition suggests distinct biological function(s) of the individual BMP molecules in different tissues and organs of body. Particularly high tissue levels of BMP were seen in spleen, lung, liver, kidney and small intestines, i.e. tissues that are known for their high abundance and/or activity level of lysosomes late and endosomes. Elevated BMP levels in brain tissue of APP/PSEN transgenic compared to age matched wild-type mice were also observed using this platform. This analytical methodology presented a high throughput LC-based approach incorporating simulated MS/MS database to identify and quantify BMP lipids as well as PG molecules.
Collapse
Affiliation(s)
- Xueying Wang
- School of Life Sciences, Tsinghua University, China; National Protein Science Facility, Tsinghua University, Beijing, China
| | | | - Lina Xu
- School of Life Sciences, Tsinghua University, China; National Protein Science Facility, Tsinghua University, Beijing, China
| | - Yupei Jiao
- School of Life Sciences, Tsinghua University, China; National Protein Science Facility, Tsinghua University, Beijing, China
| | - Lvjun Guo
- School of Life Sciences, Tsinghua University, China; National Protein Science Facility, Tsinghua University, Beijing, China
| | - Philip Lienau
- Research Pharmacokinetics, Pharma R&D, Bayer AG, Berlin, Germany
| | - Andreas Reichel
- Research Pharmacokinetics, Pharma R&D, Bayer AG, Berlin, Germany.
| | - Xiaohui Liu
- School of Life Sciences, Tsinghua University, China; National Protein Science Facility, Tsinghua University, Beijing, China.
| |
Collapse
|
7
|
Naslavsky N, Caplan S. The enigmatic endosome - sorting the ins and outs of endocytic trafficking. J Cell Sci 2018; 131:131/13/jcs216499. [PMID: 29980602 DOI: 10.1242/jcs.216499] [Citation(s) in RCA: 202] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The early endosome (EE), also known as the sorting endosome (SE) is a crucial station for the sorting of cargoes, such as receptors and lipids, through the endocytic pathways. The term endosome relates to the receptacle-like nature of this organelle, to which endocytosed cargoes are funneled upon internalization from the plasma membrane. Having been delivered by the fusion of internalized vesicles with the EE or SE, cargo molecules are then sorted to a variety of endocytic pathways, including the endo-lysosomal pathway for degradation, direct or rapid recycling to the plasma membrane, and to a slower recycling pathway that involves a specialized form of endosome known as a recycling endosome (RE), often localized to the perinuclear endocytic recycling compartment (ERC). It is striking that 'the endosome', which plays such essential cellular roles, has managed to avoid a precise description, and its characteristics remain ambiguous and heterogeneous. Moreover, despite the rapid advances in scientific methodologies, including breakthroughs in light microscopy, overall, the endosome remains poorly defined. This Review will attempt to collate key characteristics of the different types of endosomes and provide a platform for discussion of this unique and fascinating collection of organelles. Moreover, under-developed, poorly understood and important open questions will be discussed.
Collapse
Affiliation(s)
- Naava Naslavsky
- The Department of Biochemistry and Molecular Biology, The University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Steve Caplan
- The Department of Biochemistry and Molecular Biology, The University of Nebraska Medical Center, Omaha, NE 68198, USA .,The Fred and Pamela Buffett Cancer Center, The University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
8
|
Hickey JL, James JL, Henderson CA, Price KA, Mot AI, Buncic G, Crouch PJ, White JM, White AR, Smith TA, Donnelly PS. Intracellular Distribution of Fluorescent Copper and Zinc Bis(thiosemicarbazonato) Complexes Measured with Fluorescence Lifetime Spectroscopy. Inorg Chem 2015; 54:9556-67. [DOI: 10.1021/acs.inorgchem.5b01599] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
| | - Janine L. James
- The Florey Institute of Neuroscience and Mental Health, Parkville, Melbourne, Victoria 3052, Australia
| | | | - Katherine A. Price
- The Florey Institute of Neuroscience and Mental Health, Parkville, Melbourne, Victoria 3052, Australia
| | - Alexandra I. Mot
- The Florey Institute of Neuroscience and Mental Health, Parkville, Melbourne, Victoria 3052, Australia
| | | | - Peter J. Crouch
- The Florey Institute of Neuroscience and Mental Health, Parkville, Melbourne, Victoria 3052, Australia
| | | | - Anthony R. White
- The Florey Institute of Neuroscience and Mental Health, Parkville, Melbourne, Victoria 3052, Australia
| | | | | |
Collapse
|
9
|
Abstract
Bis(monoacylglycero)phosphate (BMP) is a structural isomer of phosphatidylglycerol (PtdGro) with an unusual sn-1:sn-1' fatty acyl configuration and is found almost exclusively in late endosomes/lysosomes. BMP comprises only about 1-2% of the total phospholipids in most mammalian cells, but accumulates in tissues of humans and animals with lysosomal storage disorders including the gangliosidoses. Total BMP content was significantly greater in cells of macrophage/microglial origin than in cells of macroglial origin. BMP composition was similar in tumorigenic/metastatic macrophages and non-tumorigenic macrophages/microglia. Finally, BMP fatty acid composition differed between cells grown in culture and obtained in vivo suggesting an influence from growth environment.
Collapse
Affiliation(s)
- Zeynep Akgoc
- Biology Department, Boston College, 140 Commonwealth Ave, MA, 02467, Chestnut Hill, USA,
| | | | | |
Collapse
|
10
|
Endosome maturation, transport and functions. Semin Cell Dev Biol 2014; 31:2-10. [DOI: 10.1016/j.semcdb.2014.03.034] [Citation(s) in RCA: 305] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 03/21/2014] [Accepted: 03/31/2014] [Indexed: 12/29/2022]
|
11
|
Duelund L, Jensen GV, Hannibal-Bach HK, Ejsing CS, Pedersen JS, Pakkanen KI, Ipsen JH. Composition, structure and properties of POPC-triolein mixtures. Evidence of triglyceride domains in phospholipid bilayers. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1828:1909-17. [PMID: 23567913 DOI: 10.1016/j.bbamem.2013.03.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2013] [Revised: 03/20/2013] [Accepted: 03/22/2013] [Indexed: 10/27/2022]
Abstract
We have in this study investigated the composition, structure and spectroscopical properties of multilamellar vesicles composed of a phospholipid, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), and up to 10mol% of triolein (TO), a triglyceride. We found in agreement with previous results that the mixtures with 10mol% TO spontaneously separate into two distinct phases, heavy (HF) and light (LF), with different densities and found this also to be the case for 2 and 5mol% TO. The compositions of the two phases were investigated by quantitative lipid mass spectrometric analysis, and with this method we found that TO had a solubility maximum of about 4mol% in the HF, whereas it was markedly up-concentrated in the LF. Electron paramagnetic resonance spectroscopy indicated POPC membranes of all tested concentrations of TO in both phases to be almost unperturbed by the presence of TO and to exist as vesicular structures containing entrapped water. Bilayer structure of the membranes was supported by small angle X-ray scattering that showed the membranes to form a lamellar phase. Fluorescence spectroscopy with the polarity sensitive dye Nile red revealed, that the LF samples with more than 5mol% TO contained pure TO domains. These observations are consistent with an earlier MD simulation study by us and our co-workers suggesting triglycerides to be located in lens shaped, blister-like domains between the two lipid bilayer leaflets (Khandelia et al. (2010) [26]).
Collapse
Affiliation(s)
- Lars Duelund
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense M, Denmark.
| | | | | | | | | | | | | |
Collapse
|
12
|
Yamashima T. Reconsider Alzheimer's disease by the 'calpain-cathepsin hypothesis'--a perspective review. Prog Neurobiol 2013; 105:1-23. [PMID: 23499711 DOI: 10.1016/j.pneurobio.2013.02.004] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 02/08/2013] [Accepted: 02/28/2013] [Indexed: 01/24/2023]
Abstract
Alzheimer's disease (AD) is characterized by slowly progressive neuronal death, but its molecular cascade remains elusive for over 100 years. Since accumulation of autophagic vacuoles (also called granulo-vacuolar degenerations) represents one of the pathologic hallmarks of degenerating neurons in AD, a causative connection between autophagy failure and neuronal death should be present. The aim of this perspective review is at considering such underlying mechanism of AD that age-dependent oxidative stresses may affect the autophagic-lysosomal system via carbonylation and cleavage of heat-shock protein 70.1 (Hsp70.1). AD brains exhibit gradual but continual ischemic insults that cause perturbed Ca(2+) homeostasis, calpain activation, amyloid β deposition, and oxidative stresses. Membrane lipids such as linoleic and arachidonic acids are vulnerable to the cumulative oxidative stresses, generating a toxic peroxidation product 'hydroxynonenal' that can carbonylate Hsp70.1. Recent data advocate for dual roles of Hsp70.1 as a molecular chaperone for damaged proteins and a guardian of lysosomal integrity. Accordingly, impairments of lysosomal autophagy and stabilization may be driven by the calpain-mediated cleavage of carbonylated Hsp70.1, and this causes lysosomal permeabilization and/or rupture with the resultant release of the cell degradation enzyme, cathepsins (calpain-cathepsin hypothesis). Here, the author discusses three topics; (1) how age-related decrease in lysosomal and autophagic activities has a causal connection to programmed neuronal necrosis in sporadic AD, (2) how genetic factors such as apolipoprotein E and presenilin 1 can facilitate lysosomal destabilization in the sequential molecular events, and (3) whether a single cascade can simultaneously account for implications of all players previously reported. In conclusion, Alzheimer neuronal death conceivably occurs by the similar 'calpain-hydroxynonenal-Hsp70.1-cathepsin cascade' with ischemic neuronal death. Blockade of calpain and/or extra-lysosomal cathepsins as well as scavenging of hydroxynonenal would become effective AD therapeutic approaches.
Collapse
Affiliation(s)
- Tetsumori Yamashima
- Department of Restorative Neurosurgery, Kanazawa University Graduate School of Medical Science, Takara-machi 13-1, Kanazawa 920-8641, Japan.
| |
Collapse
|
13
|
Abstract
The cell imposes multiple barriers to virus entry. However, viruses exploit fundamental cellular processes to gain entry to cells and deliver their genetic cargo. Virus entry pathways are largely defined by the interactions between virus particles and their receptors at the cell surface. These interactions determine the mechanisms of virus attachment, uptake, intracellular trafficking, and, ultimately, penetration to the cytosol. Elucidating the complex interplay between viruses and their receptors is necessary for a full understanding of how these remarkable agents invade their cellular hosts.
Collapse
Affiliation(s)
- Joe Grove
- Cell Biology Unit, Medical Research Council Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, England, UK.
| | | |
Collapse
|
14
|
Mechanics and dynamics of triglyceride-phospholipid model membranes: Implications for cellular properties and function. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1808:1947-56. [PMID: 21545789 DOI: 10.1016/j.bbamem.2011.04.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Revised: 04/10/2011] [Accepted: 04/11/2011] [Indexed: 11/21/2022]
Abstract
We demonstrate here that triolein alters the mechanical properties of phospholipid membranes and induces extraordinary conformational dynamics. Triolein containing membranes exhibit fluctuations up to size range of 100μm and with the help of these are e.g. able to squeeze through narrow passages between neighbouring structures. Triolein-phosphatidylcholine membranes were found to have bending rigidity significantly lower than that of corresponding pure phosphatidylcholine membrane. Moreover, the triolein containing membranes were found to be reluctant to fuse, which is in good accordance with larger lamellar distances observed in the TOPOPC membranes. These findings suggest repulsion between adjacent membranes. We provide a comprehensive discussion on the possible explanations for the observed mechanics and dynamics in the TOPOPC system and on their potential cellular implications.
Collapse
|
15
|
Abstract
The lipid droplet (LD), an organelle that exists ubiquitously in various organisms, from bacteria to mammals, has attracted much attention from both medical and cell biology fields. The LD in white adipocytes is often treated as the prototype LD, but is rather a special example, considering that its size, intracellular localization and molecular composition are vastly different from those of non-adipocyte LDs. These differences confer distinct properties on adipocyte and non-adipocyte LDs. In this article, we address the current understanding of LDs by discussing the differences between adipocyte and non-adipocyte LDs.
Collapse
Affiliation(s)
- Michitaka Suzuki
- Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | | | | | | |
Collapse
|
16
|
Biological Function of the Cellular Lipid BMP—BMP as a Key Activator for Cholesterol Sorting and Membrane Digestion. Neurochem Res 2010; 36:1594-600. [DOI: 10.1007/s11064-010-0337-6] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2010] [Indexed: 10/18/2022]
|
17
|
Triglyceride blisters in lipid bilayers: implications for lipid droplet biogenesis and the mobile lipid signal in cancer cell membranes. PLoS One 2010; 5:e12811. [PMID: 20877640 PMCID: PMC2943900 DOI: 10.1371/journal.pone.0012811] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Accepted: 08/24/2010] [Indexed: 12/31/2022] Open
Abstract
Triglycerides have a limited solubility, around 3%, in phosphatidylcholine lipid bilayers. Using millisecond-scale course grained molecular dynamics simulations, we show that the model lipid bilayer can accommodate a higher concentration of triolein (TO) than earlier anticipated, by sequestering triolein molecules to the bilayer center in the form of a disordered, isotropic, mobile neutral lipid aggregate, at least 17 nm in diameter, which forms spontaneously, and remains stable on at least the microsecond time scale. The results give credence to the hotly debated existence of mobile neutral lipid aggregates of unknown function present in malignant cells, and to the early biogenesis of lipid droplets accommodated between the two leaflets of the endoplasmic reticulum membrane. The TO aggregates give the bilayer a blister-like appearance, and will hinder the formation of multi-lamellar phases in model, and possibly living membranes. The blisters will result in anomalous membrane probe partitioning, which should be accounted for in the interpretation of probe-related measurements.
Collapse
|
18
|
Lim PY, Louie KL, Styer LM, Shi PY, Bernard KA. Viral pathogenesis in mice is similar for West Nile virus derived from mosquito and mammalian cells. Virology 2010; 400:93-103. [PMID: 20167345 DOI: 10.1016/j.virol.2010.01.029] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2009] [Revised: 06/13/2009] [Accepted: 01/24/2010] [Indexed: 01/07/2023]
Abstract
West Nile virus (WNV) is a mosquito-borne pathogen. During replication, WNV acquires different carbohydrates and lipid membranes, depending on its mosquito or vertebrate hosts. Consequently, WNV derived from mosquito and vertebrate cell lines differ in their infectivity for dendritic cells (DCs) and induction of type I interferon (IFN-alpha/beta) in vitro. We evaluated the pathogenesis of WNV derived from mosquito (WNV(C6/36)) and vertebrate (WNV(BHK)) cell lines in mice. The tissue tropism, infectivity, clinical disease, and mortality did not differ for mice inoculated with WNV(C6/36) or WNV(BHK), and there were only minor differences in viral load and serum levels of IFN-alpha/beta. The replication kinetics of WNV(C6/36) and WNV(BHK) were equivalent in primary DCs and skin cells although primary DCs were more susceptible to WNV(C6/36) infection than to WNV(BHK) infection, suggesting that less virus is produced per infected cell for WNV(C6/36). In conclusion, viral source has minimal effect on WNV pathogenesis in vivo.
Collapse
Affiliation(s)
- Pei-Yin Lim
- Wadsworth Center, New York State Department of Health, P.O. Box 509, Albany, NY 12201, USA
| | | | | | | | | |
Collapse
|
19
|
Biazik JM, Thompson MB, Murphy CR. Lysosomal and alkaline phosphatase activity indicate macromolecule transport across the uterine epithelium in two viviparous skinks with complex placenta. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2009; 312:817-26. [DOI: 10.1002/jez.b.21297] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
20
|
Pakkanen KI, Duelund L, Vuento M, Ipsen JH. Phase coexistence in a triolein-phosphatidylcholine system. Implications for lysosomal membrane properties. Chem Phys Lipids 2009; 163:218-27. [PMID: 19962372 DOI: 10.1016/j.chemphyslip.2009.11.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2009] [Revised: 10/10/2009] [Accepted: 11/25/2009] [Indexed: 10/20/2022]
Abstract
The effects of tri- and monoglycerides on phospholipid (POPC) membranes were studied using spectroscopical methods. Triolein was found to form two types of POPC-rich membranes, both with POPC or as a three-component system with monopalmitin. These two membrane types were determined as co-existing phases based on their spontaneous and stable separation and named heavy and light phase according to their sedimentation behaviour. Marked differences were seen in the physical properties of these phases, even though only minor compositional variation was detected. The light, less polar phase was found to be less ordered and more fluid and seemed to allow significantly lower amount of water penetration into the membrane-water interface than pure POPC membrane. The heavy phase, apart from their slightly altered water penetration, resembled more a pure POPC membrane. As triglycerides are present in lysosomal membranes, the present results can be seen as an implication for polarity-based water permeability barrier possibly contributing to the integrity of lysosomes.
Collapse
Affiliation(s)
- Kirsi I Pakkanen
- Nanoscience Center, Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | | | | | | |
Collapse
|
21
|
Hullin-Matsuda F, Luquain-Costaz C, Bouvier J, Delton-Vandenbroucke I. Bis(monoacylglycero)phosphate, a peculiar phospholipid to control the fate of cholesterol: Implications in pathology. Prostaglandins Leukot Essent Fatty Acids 2009; 81:313-24. [PMID: 19857945 DOI: 10.1016/j.plefa.2009.09.006] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Revised: 09/21/2009] [Accepted: 09/21/2009] [Indexed: 12/15/2022]
Abstract
Bis(monoacylglycero)phosphate (BMP) is a structural isomer of phosphatidylglycerol that exhibits an unusual sn1:sn1' stereoconfiguration, based on the position of the phosphate moiety on its two glycerol units. Early works have underlined the high concentration of BMP in the lysosomal compartment, especially during some lysosomal storage disorders and drug-induced phospholipidosis. Despite numerous studies, both biosynthetic and degradative pathways of BMP remained not completely elucidated. More recently, BMP has been localized in the internal membranes of late endosomes where it forms specialized lipid domains. Its involvement in both dynamics and lipid/protein sorting functions of late endosomes has started to be documented, especially in the control of cellular cholesterol distribution. BMP also plays an important role in the late endosomal/lysosomal degradative pathway. Another peculiarity of BMP is to be naturally enriched in docosahexaenoic acid and/or to specifically incorporate this fatty acid compared to other polyunsaturated fatty acids, which may confer specific biophysical and functional properties to this phospholipid. This review summarizes and updates our knowledge on BMP with an emphasis on its possible implication in human health and diseases, especially in relation to cholesterol homeostasis.
Collapse
Affiliation(s)
- F Hullin-Matsuda
- Université de Lyon, UMR 870 Inserm, Insa-Lyon, UMR 1135 Inra, Univ Lyon 1, Hospices Civils de Lyon, IMBL, 20 Ave A. Einstein, 69621 Villeurbanne, France
| | | | | | | |
Collapse
|
22
|
Schulze H, Kolter T, Sandhoff K. Principles of lysosomal membrane degradation: Cellular topology and biochemistry of lysosomal lipid degradation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1793:674-83. [PMID: 19014978 DOI: 10.1016/j.bbamcr.2008.09.020] [Citation(s) in RCA: 180] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 07/04/2008] [Revised: 09/24/2008] [Accepted: 09/30/2008] [Indexed: 12/17/2022]
Abstract
Cellular membranes enter the lysosomal compartment by endocytosis, phagocytosis, or autophagy. Within the lysosomal compartment, membrane components of complex structure are degraded into their building blocks. These are able to leave the lysosome and can then be utilized for the resynthesis of complex molecules or can be further degraded. Constitutive degradation of membranes occurs on the surface of intra-endosomal and intra-lysosomal membrane structures. Many integral membrane proteins are sorted to the inner membranes of endosomes and lysosome after ubiquitinylation. In the lysosome, proteins are degraded by proteolytic enzymes, the cathepsins. Phospholipids originating from lipoproteins or cellular membranes are degraded by phospholipases. Water-soluble glycosidases sequentially cleave off the terminal carbohydrate residues of glycoproteins, glycosaminoglycans, and glycosphingolipids. For glycosphingolipids with short oligosaccharide chains, the additional presence of membrane-active lysosomal lipid-binding proteins is required. The presence of lipid-binding proteins overcomes the phase problem of water soluble enzymes and lipid substrates by transferring the substrate to the degrading enzyme or by solubilizing the internal membranes. The lipid composition of intra-lysosomal vesicles differs from that of the plasma membrane. To allow at least glycosphingolipid degradation by hydrolases and activator proteins, the cholesterol content of these intraorganellar membranes decreases during endocytosis and the concentration of bis(monoacylglycero)phosphate, a stimulator of sphingolipid degradation, increases. A considerable part of our current knowledge about mechanism and biochemistry of lysosomal lipid degradation is derived from a class of human diseases, the sphingolipidoses, which are caused by inherited defects within sphingolipid and glycosphingolipid catabolism.
Collapse
Affiliation(s)
- Heike Schulze
- LIMES Program Unit Membrane Biology and Lipid Biochemistry, Laboratory of Lipid Biochemistry, Kekulé-Institut für Organische Chemie und Biochemie der Universität Bonn, Germany
| | | | | |
Collapse
|
23
|
Kolter T, Sandhoff K. Sphingolipid metabolism diseases. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2006; 1758:2057-79. [PMID: 16854371 DOI: 10.1016/j.bbamem.2006.05.027] [Citation(s) in RCA: 261] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2005] [Revised: 04/26/2006] [Accepted: 05/23/2006] [Indexed: 10/24/2022]
Abstract
Human diseases caused by alterations in the metabolism of sphingolipids or glycosphingolipids are mainly disorders of the degradation of these compounds. The sphingolipidoses are a group of monogenic inherited diseases caused by defects in the system of lysosomal sphingolipid degradation, with subsequent accumulation of non-degradable storage material in one or more organs. Most sphingolipidoses are associated with high mortality. Both, the ratio of substrate influx into the lysosomes and the reduced degradative capacity can be addressed by therapeutic approaches. In addition to symptomatic treatments, the current strategies for restoration of the reduced substrate degradation within the lysosome are enzyme replacement therapy (ERT), cell-mediated therapy (CMT) including bone marrow transplantation (BMT) and cell-mediated "cross correction", gene therapy, and enzyme-enhancement therapy with chemical chaperones. The reduction of substrate influx into the lysosomes can be achieved by substrate reduction therapy. Patients suffering from the attenuated form (type 1) of Gaucher disease and from Fabry disease have been successfully treated with ERT.
Collapse
Affiliation(s)
- Thomas Kolter
- Kekulé-Institut für Organische Chemie und Biochemie der Universität, Gerhard-Domagk-Str. 1, D-53121 Bonn, Germany.
| | | |
Collapse
|
24
|
van der Goot FG, Gruenberg J. Intra-endosomal membrane traffic. Trends Cell Biol 2006; 16:514-21. [PMID: 16949287 DOI: 10.1016/j.tcb.2006.08.003] [Citation(s) in RCA: 136] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2006] [Accepted: 08/17/2006] [Indexed: 01/08/2023]
Abstract
Following endocytosis, ubiquitinated signaling receptors are incorporated within intraluminal vesicles of forming multivesicular endosomes. These vesicles then follow the pathway from early to late endosomes, remaining within the endosomal lumen, and are eventually delivered to lysosomes, where they are degraded together with their protein cargo. However, intraluminal vesicles do not always end up in lysosomes for degradation; they can also fuse back with the limiting membrane of late endosomes. This route, which might be regulated by lyso-bisphosphatidic acid and its putative effector Alix, can be hijacked by the anthrax toxin and vesicular stomatitis virus and is presumably exploited by proteins and lipids that transit through intraluminal vesicles. Alternatively, these vesicles can be released extracellularly, like HIV in macrophages, upon fusion of endosomes or lysosomes with the plasma membrane.
Collapse
Affiliation(s)
- F Gisou van der Goot
- Department of Microbiology and Molecular Medicine, University of Geneva, 1 rue Michel Servet, 1211 Geneva
| | | |
Collapse
|
25
|
Sandhoff K, Kolter T. Biosynthesis and degradation of mammalian glycosphingolipids. Philos Trans R Soc Lond B Biol Sci 2003; 358:847-61. [PMID: 12803917 PMCID: PMC1693173 DOI: 10.1098/rstb.2003.1265] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Glycolipids are a large and heterogeneous family of sphingolipids that form complex patterns on eukaryotic cell surfaces. This molecular diversity is generated by only a few enzymes and is a paradigm of naturally occurring combinatorial synthesis. We report on the biosynthetic principles leading to this large molecular diversity and focus on sialic acid-containing glycolipids of the ganglio-series. These glycolipids are particularly concentrated in the plasma membrane of neuronal cells. Their de novo synthesis starts with the formation of the membrane anchor, ceramide, at the endoplasmic reticulum (ER) and is continued by glycosyltransferases of the Golgi complex. Recent findings from genetically engineered mice are discussed. The constitutive degradation of glycosphingolipids (GSLs) occurs in the acidic compartments, the endosomes and the lysosomes. Here, water-soluble glycosidases sequentially cleave off the terminal carbohydrate residues from glycolipids. For glycolipid substrates with short oligosaccharide chains, the additional presence of membrane-active sphingolipid activator proteins (SAPs) is required. A considerable part of our current knowledge about glycolipid degradation is derived from a class of human diseases, the sphingolipidoses, which are caused by inherited defects within this pathway. A new post-translational modification is the attachment of glycolipids to proteins of the human skin.
Collapse
Affiliation(s)
- Konrad Sandhoff
- Kekulé-Institut für Organische Chemie und Biochemie der Universität, Gerhard-Domagk-Strasse 1, 53121 Bonn, Germany.
| | | |
Collapse
|
26
|
Käkelä R, Somerharju P, Tyynelä J. Analysis of phospholipid molecular species in brains from patients with infantile and juvenile neuronal-ceroid lipofuscinosis using liquid chromatography-electrospray ionization mass spectrometry. J Neurochem 2003; 84:1051-65. [PMID: 12603829 DOI: 10.1046/j.1471-4159.2003.01602.x] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Phospholipids (PL) in cerebral cortex from patients with infantile (INCL or CLN1) and juvenile (JNCL or CLN3) forms of neuronal ceroid-lipofuscinosis (NCL) and controls were analysed by normal phase HPLC and on-line electrospray ionization ion-trap mass spectrometric detection (LC-ESI-MS). The method provided quantitative data on numerous molecular species of different PL classes, which are not achieved by using the conventional chromatographic methods. Compared with the controls, the INCL brains contained proportionally more phosphatidylcholine (PC), and less phosphatidylethanolamine (PE) and phosphatidylserine (PS). Different molecular species of PC, PE, PS, phosphatidylinositol and sphingomyelin were quantified using multiple internal PL standards that differed in fatty acyl chain length and thus allowed correction for chain length dependency of instrument response. In INCL cortex, which had lost 65% of the normal PL content, the proportions of polyunsaturated molecular species, especially the PS and PE that contained docosahexaenoic acid (22:6n-3), were dramatically decreased. The membranes may have adapted to this alteration by increasing the proportions of PL molecules substituted with monounsaturated and short-chain fatty acids. Lysobisphosphatidic acid was highly elevated in the INCL brain and consisted mostly of polyunsaturated species. It is possible that changes in the composition of PL membranes accelerate progression of INCL by altering signalling and membrane trafficking in neurons.
Collapse
Affiliation(s)
- Reijo Käkelä
- Institute of Biomedicine/Biochemistry, Biomedicum Helsinki, University of Helsinki, Haartmaninkatu 8, 00014 Helsinki, Finland
| | | | | |
Collapse
|
27
|
Simons M, Kramer EM, Macchi P, Rathke-Hartlieb S, Trotter J, Nave KA, Schulz JB. Overexpression of the myelin proteolipid protein leads to accumulation of cholesterol and proteolipid protein in endosomes/lysosomes: implications for Pelizaeus-Merzbacher disease. J Cell Biol 2002; 157:327-36. [PMID: 11956232 PMCID: PMC2199249 DOI: 10.1083/jcb.200110138] [Citation(s) in RCA: 133] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Duplications and overexpression of the proteolipid protein (PLP) gene are known to cause the dysmyelinating disorder Pelizaeus-Merzbacher disease (PMD). To understand the cellular response to overexpressed PLP in PMD, we have overexpressed PLP in BHK cells and primary cultures of oligodendrocytes with the Semliki Forest virus expression system. Overexpressed PLP was routed to late endosomes/lysosomes and caused a sequestration of cholesterol in these compartments. Similar results were seen in transgenic mice overexpressing PLP. With time, the endosomal/lysosomal accumulation of cholesterol and PLP led to an increase in the amount of detergent-insoluble cellular cholesterol and PLP. In addition, two fluorescent sphingolipids, BODIPY-lactosylceramide and -galactosylceramide, which under normal conditions are sorted to the Golgi apparatus, were missorted to perinuclear structures. This was also the case for the lipid raft marker glucosylphosphatidylinositol-yellow fluorescence protein, which under normal steady-state conditions is localized on the plasma membrane and to the Golgi complex. Taken together, we show that overexpression of PLP leads to the formation of endosomal/lysosomal accumulations of cholesterol and PLP, accompanied by the mistrafficking of raft components. We propose that these accumulations perturb the process of myelination and impair the viability of oligodendrocytes.
Collapse
Affiliation(s)
- Mikael Simons
- Department of Neurology, University of Tübingen, 72076 Tübingen, Germany.
| | | | | | | | | | | | | |
Collapse
|
28
|
Lusa S, Blom TS, Eskelinen EL, Kuismanen E, Månsson JE, Simons K, Ikonen E. Depletion of rafts in late endocytic membranes is controlled by NPC1-dependent recycling of cholesterol to the plasma membrane. J Cell Sci 2001; 114:1893-900. [PMID: 11329376 DOI: 10.1242/jcs.114.10.1893] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
In mammalian cells, cholesterol is thought to associate with sphingolipids to form lateral membrane domains termed rafts. Increasing evidence suggests that rafts regulate protein interactions, for example, during signalling, intracellular transport and host-pathogen interactions. Rafts are present in cholesterol-sphingolipid-enriched membranes, including early and recycling endosomes, but whether rafts are found in late endocytic organelles has not been analyzed. In this study, we analyzed the association of cholesterol and late endosomal proteins with low-density detergent-resistant membranes (DRMs) in normal cells and in cells with lysosomal cholesterol-sphingolipid accumulation. In normal cells, the majority of [(3)H]cholesterol released from [(3)H]cholesterol ester-LDL associated with detergent-soluble membranes, was rapidly transported to the plasma membrane and became increasingly insoluble with time. In Niemann-Pick C1 (NPC1) protein-deficient lipidosis cells, the association of LDL-cholesterol with DRMs was enhanced and its transport to the plasma membrane was inhibited. In addition, the NPC1 protein was normally recovered in detergent-soluble membranes and its association with DRMs was enhanced by lysosomal cholesterol loading. Moreover, lysosomal cholesterol deposition was kinetically paralleled by the sequestration of sphingolipids and formation of multilamellar bodies in late endocytic organelles. These results suggest that late endocytic organelles are normally raft-poor and that endocytosed LDL-cholesterol is efficiently recycled to the plasma membrane in an NPC1-dependent process. The cholesterol-sphingolipid accumulation characteristic to NPC disease, and potentially to other sphingolipidoses, causes an overcrowding of rafts forming lamellar bodies in the degradative compartments.
Collapse
Affiliation(s)
- S Lusa
- Dept of Molecular Medicine, National Public Health Institute, Helsinki, Finland
| | | | | | | | | | | | | |
Collapse
|
29
|
Allan D, Obradors MJ. Enzyme distributions in subcellular fractions of BHK cells infected with Semliki forest virus: evidence for a major fraction of sphingomyelin synthase in the trans-golgi network. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1450:277-87. [PMID: 10395939 DOI: 10.1016/s0167-4889(99)00057-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BHK cells either untreated or infected with Semliki Forest virus have been fractionated on sucrose density gradients. Virus infection caused an increase in density of a membrane fraction enriched in sphingomyelin (SM), cholesterol, SM synthase and sialyltransferase activity. This increase in density was related to incorporation of viral proteins into this fraction, which is likely to contain trans-Golgi network (TGN) membranes. In contrast, glucosylceramide synthase and galactosyltransferase activities (markers for cis/medial and trans-Golgi respectively) underwent no density shift and alkaline phosphodiesterase, a plasma membrane marker, was only slightly density-shifted in infected cells. When cells were incubated with NBD-ceramide to enable them to synthesise NBD-SM and then washed with albumin to remove surface label, fluorescence in untreated cells was concentrated in a single juxtanuclear spot but in infected cells this region of bright fluorescence was larger and extended around the nucleus. After fractionation of these cells, NBD-SM (but only a small proportion of the NBD-ceramide) was found to be shifted into the higher density fraction in infected cells. This work provides further evidence that SM synthase is not mainly localised in the early Golgi cisternae as previously thought, but is associated more with a cholesterol-rich compartment which could be the TGN.
Collapse
Affiliation(s)
- D Allan
- Department of Physiology, University College London, Rockefeller Building, University St, London WC1E 6JJ, UK.
| | | |
Collapse
|
30
|
Miro Obradors MJ, Sillence D, Howitt S, Allan D. The subcellular sites of sphingomyelin synthesis in BHK cells. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1359:1-12. [PMID: 9398080 DOI: 10.1016/s0167-4889(97)00088-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The subcellular distributions of the enzymes which synthesise sphingomyelin (SM) and glucosylceramide (GluCer) from ceramide have been assessed in BHK cells. On a sucrose density gradient GluCer synthase (a marker of the cis/medial Golgi apparatus) and the trans-Golgi marker galactosyltransferase showed an similar monotonic distribution. In contrast, SM synthase showed two peaks of activity, a minor one which migrated with the Golgi markers and a major one which had a density close to that of plasma membrane markers (sphingomyelin, cholesterol, PtdSer, ganglioside GM3 and alkaline phosphodiesterase). When cell homogenates were treated with digitonin, the sedimentation characteristics of the Golgi markers was largely unaffected whereas the plasma membrane markers and the main peak of SM synthase activity were shifted to higher density. In contrast, when cells were treated with brefeldin A (BFA) the Golgi markers were shifted to higher density but not the plasma membrane markers or the main peak of SM synthase. These results suggest that the bulk of SM synthase activity in BHK cells is not associated with the Golgi cisternae but with a cell compartment which is relatively rich in cholesterol (e.g., plasma membrane, endosomes or trans-Golgi network.) Further experiments in which cells were treated with sphingomyelinase provided evidence that SM synthase activity was in an internal compartment and not at the plasma membrane.
Collapse
|
31
|
Abstract
An analysis of lipid distribution in the membranes of BHK cells has been carried out based on published information concerning the lipid composition of cells and subcellular fractions. This work may be useful in the quantitative analysis of cell fractionation studies and for the interpretation of the results of experiments involving the breakdown of specific pools of lipid by lipases.
Collapse
Affiliation(s)
- D Allan
- Department of Physiology, University College London, UK
| |
Collapse
|
32
|
Waite M, Osthoff G, Sisson P, Thuren T. Action of lysosomal phospholipase A1 on bis(monoacylglycerol)phosphate. BIOCHIMICA ET BIOPHYSICA ACTA 1992; 1128:281-4. [PMID: 1420302 DOI: 10.1016/0005-2760(92)90319-q] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Bis(monoacylglycerol)phosphate (BMP) in macrophages is known to rapidly turn over its acyl moiety(s) located at primary positions of the glycerols, yet the glycerols and phosphate remain stable within the BMP molecule. Here we examine whether the phospholipase A1 isolated from rat-liver lysosomes is capable of deacylating BMP. By comparison with the precursor of BMP, phosphatidylglycerol, BMP is a very poor substrate for the phospholipase A1. We conclude, therefore, that a direct deacylation of the acyl groups at the primary alcohol level of the glycerol probably does not occur, but postulate that transacylations may occur to account for the removal of the acyl moiety.
Collapse
Affiliation(s)
- M Waite
- Department of Biochemistry, Bowman Gray School of Medicine, Wake Forest University, Winston-Salem, NC 27157-1016
| | | | | | | |
Collapse
|
33
|
Kasurinen J. A novel fluorescent fatty acid, 5-methyl-BDY-3-dodecanoic acid, is a potential probe in lipid transport studies by incorporating selectively to lipid classes of BHK cells. Biochem Biophys Res Commun 1992; 187:1594-601. [PMID: 1417832 DOI: 10.1016/0006-291x(92)90485-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The 5-methyl-BDY-3-dodecanoic acid (B12FA) labelling of BHK cell lipids was analyzed by thin layer and reverse phase column chromatography. Incorporation to phospholipids was selective: over 90% of B12FA label was enriched in phosphatidylcholine. The major molecular species of PC was that containing palmitate as the unlabelled fatty acid. Small amounts of label was also found in other phosphoglycerides, but not in sphingomyelin. Triglycerides and diglycerides constituted the main B12FA-labelled neutral lipid classes; however, no label was found in cholesterol esters. B12FA was degraded to shorter homologues, which had significantly slower lipid incorporation rates. B12FA-labelled cells displayed in a microscope initially green reticular type fluorescence, but later red spherical structures, representing neutral lipid droplets, could also be seen. It is concluded that B12FA does not incorporate indiscriminately to all lipid classes of BHK cells, but is enriched to PC, diglycerides and triglycerides, which could be utilized in studies on lipid transport as well as metabolism.
Collapse
Affiliation(s)
- J Kasurinen
- Department of Medical Chemistry, University of Helsinki Siltavuorenpenger 10 A, Finland
| |
Collapse
|
34
|
Kasurinen J, Somerharju P. Metabolism of pyrenyl fatty acids in baby hamster kidney fibroblasts. Effect of the acyl chain length. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)50464-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
35
|
Thornburg T, Miller C, Thuren T, King L, Waite M. Glycerol reorientation during the conversion of phosphatidylglycerol to bis(monoacylglycerol)phosphate in macrophage-like RAW 264.7 cells. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(20)89576-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
36
|
Metabolism of phosphatidylglycerol and bis(monoacylglycero)-phosphate in macrophage subcellular fractions. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(18)45800-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
37
|
Nakagawa Y, Waku K. The metabolism of glycerophospholipid and its regulation in monocytes and macrophages. Prog Lipid Res 1989; 28:205-43. [PMID: 2694177 DOI: 10.1016/0163-7827(89)90013-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Y Nakagawa
- Faculty of Pharmaceutical Sciences, Teikyo University, Kanagawa, Japan
| | | |
Collapse
|
38
|
Cochran FR, Connor JR, Roddick VL, Waite BM. Lyso(bis)phosphatidic acid: a novel source of arachidonic acid for oxidative metabolism by rabbit alveolar macrophages. Biochem Biophys Res Commun 1985; 130:800-6. [PMID: 3927910 DOI: 10.1016/0006-291x(85)90487-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
To identify the source of arachidonic acid utilized for eicosanoid production, rabbit alveolar macrophages were challenged with 1.0 microM 12-O-tetradecanoylphorbol-13-acetate (TPA) or 3.8 microM Ca+2 ionophore A23187 for 3 h. Upon stimulation with TPA, a loss of [3H]arachidonic acid from phosphatidylcholine, phosphatidylethanolamine, lyso(bis)phosphatidic acid, and phosphatidylserine/phosphatidylinositol was observed. Although calcium ionophore stimulated the liberation of arachidonate solely from phosphatidyl-ethanolamine and phosphatidylcholine, it proved to be a poor stimulus for macrophage-synthesis of eicosanoids. Our evidence suggests that degradation of phosphatidylinositol and lyso(bis)phosphatidic acid induced by TPA yields a source of arachidonate which is the preferred substrate for oxidative metabolism by the cyclooxygenase and lipoxygenase pathways.
Collapse
|
39
|
|
40
|
Beranek SR, Becker MM, Kling D, Gamble W. Phospholipid and glyceride biosynthesis in 2,4,5,2',4',5'-hexachlorobiphenyl-treated human skin fibroblasts. ENVIRONMENTAL RESEARCH 1984; 34:103-109. [PMID: 6426945 DOI: 10.1016/0013-9351(84)90079-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
2,4,5,2',4',5'-Hexachlorobiphenyl (HCB) was taken up by cultured human skin fibroblasts ( A61437 ; GM488 ). HCB caused enhanced incorporation of [2-14C]acetate into phospholipids and glycerides at low concentration and reduced incorporation at high concentrations. sn-[U-14C]Glycerol-3-phosphate incorporation into phospholipids was inhibited. No significant change in total cellular phospholipids was observed. Triglyceride cellular content was increased 29%. The observed stimulation and inhibition of phosphoglyceride synthesis are similar to results obtained with rat liver microsomes.
Collapse
|
41
|
7 Synthesis of Phospholipids in Animal Cells. ACTA ACUST UNITED AC 1983. [DOI: 10.1016/s1874-6047(08)60305-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
42
|
Bass H, Coakley W, Moore J, Tilley D. Hyperthermia-induced changes in the morphology of CHO-K1 and their refractile inclusions. J Therm Biol 1982. [DOI: 10.1016/0306-4565(82)90030-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
43
|
Chen WW, Decker GL. Abnormalities of lysosomes in human diploid fibroblasts from patients with Farber's disease. BIOCHIMICA ET BIOPHYSICA ACTA 1982; 718:185-92. [PMID: 6814495 DOI: 10.1016/0304-4165(82)90218-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
An accumulation of ceramide associated with the deficiency of acid ceramidase has been demonstrated in cultured diploid skin fibroblasts from a patient with Farber's disease. We extend this observation to investigate the lysosomal localization of accumulated ceramide and the abnormalities of lysosomes caused by this ceramide accumulation in Farber's diseased fibroblasts. We have found that the lysosomal fraction isolated from Farber's diseased fibroblasts by a subcellular fractionation procedure is markedly low in density compared with that of normal fibroblasts and is separated from other subcellular organelles. Ultrastructural studies of the isolated lysosomal fraction from Farber's diseased fibroblasts showed a mixed population of intact and swollen vesicles with a lysosomal appearance. Examination under high magnification clearly demonstrated lysosomal inclusions which contain lamellar and curvilinear membranes and resembled those seen in the intact fibroblasts. Subcellular localization of Farber's fibroblasts showed that the accumulated [3H]ceramide from the culture medium was predominantly localized in the lysosomal fraction with a markedly low density and very little was found to be associated with other cellular membranes. Our finding that ceramide is accumulated in the lysosomal fraction of Farber's fibroblasts and that these cells also show membranous inclusions strongly suggests that the accumulation of ceramide is directly involved in the formation of lysosomal inclusions.
Collapse
|
44
|
Joutti A, Vainio P, Brotherus JR, Paltauf F, Kinnunen PK. The active site and the phospholipid activation of rat liver lysosomal lipase are not stereospecific. Chem Phys Lipids 1981; 29:235-9. [PMID: 7296725 DOI: 10.1016/0009-3084(81)90054-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The stereochemical specificity of lysosomal lipase of rat liver was investigated using enantiomeric triacylglycerol analogs, sn-1-alkyl-2,3-diacylglycerol and sn-3-alkyl-1,2-diacylglycerol as substrates. Lysosomal lipase utilized both substrates with equal rates. The dependence of the activity of lysosomal lipase on the stereoconfiguration of activating acidic phospholipid was also studied. Our results showed that both sn-3-phospholipids (diphosphatidylglycerol, phosphatidylserine) and sn-1-phospholipids (bis(monoacylglycero)phosphate (BMP)) were efficient activators of this enzyme and thus the stereochemical configuration of the activating phospholipid is not important. Accordingly, the rat liver lysosomal lipase lacks stereospecificity with respect to both the triacylglycerol substrate and the acidic phospholipid activator.
Collapse
|
45
|
Nilsson O, Fredman P, Klinghardt GW, Dreyfus H, Svennerholm L. Chloroquine-induced accumulation of gangliosides and phospholipids in skeletal muscles. Quantitative determination and characterization of stored lipids. EUROPEAN JOURNAL OF BIOCHEMISTRY 1981; 116:565-71. [PMID: 7262076 DOI: 10.1111/j.1432-1033.1981.tb05373.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
High doses of the lysosomotropic drug chloroquine result in lipid storage in many organs in animals. We used miniature pigs, type Göttingen, to study the lipid accumulation in skeletal muscle after chloroquine intoxication for more than 200 days. The lipids of the quadriceps muscle in intoxicated and in age-matched control pigs were characterized and determined. The lipid storage was larger in skeletal muscle than in any other organ of the intoxicated pigs. The concentration of phospholipids was increased threefold, acidic phospholipids relatively more than neutral ones. The lysosome-specific acidic phospholipid bis(monoacylglyceryl)phosphate content was almost 50-fold larger in the intoxicated pigs than in the controls. Cholesterol was increased slightly more than the phospholipids, but there was no particular accumulation of cholesteryl esters, which has been shown to occur in the liver. For the first time a storage of gangliosides, relatively more pronounced than of other lipids, was demonstrated in skeletal muscle in the drug-induced lipidosis. The concentration of total gangliosides was increased 10--15-fold, and the pattern of gangliosides showed some distinct changes resulting in at least a 100-fold increase in the concentration of ganglioside GM2 (II3NeuAc-GgOse4Cer).
Collapse
|
46
|
Chen WW, Moser AB, Moser HW. Role of lysosomal acid ceramidase in the metabolism of ceramide in human skin fibroblasts. Arch Biochem Biophys 1981; 208:444-55. [PMID: 7259198 DOI: 10.1016/0003-9861(81)90531-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
47
|
Ellingson JS. Identification of N-acylethanolamine phosphoglycerides and acylphosphatidylglycerol as the phospholipids which disappear as Dictyostelium discoideum cells aggregate. Biochemistry 1980; 19:6176-82. [PMID: 7470456 DOI: 10.1021/bi00567a035] [Citation(s) in RCA: 35] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The cellular slime mold Dictyostelium discoideum contains a phospholipid fraction which comprises 10% of the phospholipids in the early developing amoebae and disappears during the aggregation stage of development. As a first step in studying its metabolism, the composition of the fraction has been determined. It was easily isolated by preparative silicic acid thin-layer chromatography because its Rf was considerably higher than most commonly encountered phospholipids. Its Rf was the same as synthetic phosphatidyl-N-acylethanolamine and synthetic acylphosphatidylglycerol (also called semilysobisphosphatidic acid). Strong absorption peaks characteristic of amide bonds in the infrared spectrum of the isolated D. discoideum phospholipid showed that N-acylethanolamine phosphoglycerides were present. The presence of acylphosphatidylglycerol was revealed when mild alkaline hydrolysis of the lipid fraction produced glycerophosphorylglycerol as the only water-soluble, phosphate-containing product. The composition of the fraction was determined by chemical analysis and thin-layer chromatography of the intact phospholipids and their partially or completely hydrolyzed products. The composition of the fraction was 30% diacylglycerophosphoryl-N-acylethanolamine, 50% alkenylacylglycerophosphoryl-N-acylethanolamine, and 20% acylphosphatidylglycerol. The stereoconfiguration of the glycerophosphorylglycerol moiety of the acylphosphatidylglycerol was found to be sn-3-glycerophosphoryl-sn-1'-glycerol.
Collapse
|
48
|
Somerharju P, Renkonen O. Conversion of phosphatidylglycerol lipids to bis(monoacylglycero)phosphate in vivo. BIOCHIMICA ET BIOPHYSICA ACTA 1980; 618:407-19. [PMID: 7397205 DOI: 10.1016/0005-2760(80)90259-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Liposomes containing either 32P-labeled diphosphatidylglycerol (cardiolipin) or 32P-labeled phosphatidyl-rac-(1)-glycerol were injected into the circulation of rats. Analysis of the liver lipids 2-3 after injection showed incorporation of the 32P label from both lipids to a lipid which had chromatographic properties identical with bis(monoacylglycero)phosphate. Stereochemical analysis of this lipid indicated that its backbone was sn-glycero-1-phospho-1'-glycerol. Cultured hamster fibroblasts (BHK cells) were incubated in a medium containing lyso[32P]phosphatidyl-rac-(1)-glycerol and the formation of radioactive lipids in the cells was followed. Bis(monoacylglycero) phosphate was the major 32P-labelled lipid formed: as much as 36.4% of the lyso[32P]phosphatidyl-rac-(1)-glycerol absorbed to the cells was converted to bis(monoacylglycero)phosphate. Similar results were obtained with lyso[32P]phosphatidyl-sn-1-glycerol as a precursor. Stereoanalysis of the bis(monoacylglycero)-[32P]-phosphate formed from either precursor indicated that this lipid was a derivative of sn-glycero-1-phospho-1'-glycerol. These results establish phosphatidylglycerol, diphosphatidylglycerol and lysophosphatidylglycerol as precursors of bis-(monoacyl-sn-glycero-1)phosphate in vivo. The mechanism of the conversion of lysophosphatidylglycerol to bis-(monoacyl-sn-glycero-1)phosphate was studied by using 32P,3H-labeled lysophosphatidyl-rac-(1)-glycerol as a precursor. Both labels were incorporated to bis(monoacylglycero)phosphate with similar efficiency, which suggests that rearrangement, rather than replacement, of the (originally acylated) sn-glycero-3-phospho moiety of the precursor is the essential reaction in the biosynthesis of the sn-glycero-1-phospho-1'-glycerol backbone of bis(monoacylglycero) phosphate.
Collapse
|
49
|
Matsuzawa Y, Hostetler KY. Studies on drug-induced lipidosis: subcellular localization of phospholipid and cholesterol in the liver of rats treated with chloroquine or 4,4'-bis (diethylaminoethoxy)alpha, beta-diethyldiphenylethane. J Lipid Res 1980. [DOI: 10.1016/s0022-2275(20)39826-6] [Citation(s) in RCA: 63] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
50
|
|