1
|
Asunción-Alvarez D, Palacios J, Ybañez-Julca RO, Rodriguez-Silva CN, Nwokocha C, Cifuentes F, Greensmith DJ. Calcium signaling in endothelial and vascular smooth muscle cells: sex differences and the influence of estrogens and androgens. Am J Physiol Heart Circ Physiol 2024; 326:H950-H970. [PMID: 38334967 DOI: 10.1152/ajpheart.00600.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 02/05/2024] [Accepted: 02/05/2024] [Indexed: 02/10/2024]
Abstract
Calcium signaling in vascular endothelial cells (ECs) and smooth muscle cells (VSMCs) is essential for the regulation of vascular tone. However, the changes to intracellular Ca2+ concentrations are often influenced by sex differences. Furthermore, a large body of evidence shows that sex hormone imbalance leads to dysregulation of Ca2+ signaling and this is a key factor in the pathogenesis of cardiovascular diseases. In this review, the effects of estrogens and androgens on vascular calcium-handling proteins are discussed, with emphasis on the associated genomic or nongenomic molecular mechanisms. The experimental models from which data were collected were also considered. The review highlights 1) in female ECs, transient receptor potential vanilloid 4 (TRPV4) and mitochondrial Ca2+ uniporter (MCU) enhance Ca2+-dependent nitric oxide (NO) generation. In males, only transient receptor potential canonical 3 (TRPC3) plays a fundamental role in this effect. 2) Female VSMCs have lower cytosolic Ca2+ levels than males due to differences in the activity and expression of stromal interaction molecule 1 (STIM1), calcium release-activated calcium modulator 1 (Orai1), calcium voltage-gated channel subunit-α1C (CaV1.2), Na+-K+-2Cl- symporter (NKCC1), and the Na+/K+-ATPase. 3) When compared with androgens, the influence of estrogens on Ca2+ homeostasis, vascular tone, and incidence of vascular disease is better documented. 4) Many studies use supraphysiological concentrations of sex hormones, which may limit the physiological relevance of outcomes. 5) Sex-dependent differences in Ca2+ signaling mean both sexes ought to be included in experimental design.
Collapse
Affiliation(s)
- Daniel Asunción-Alvarez
- Laboratorio de Bioquímica Aplicada, Química y Farmacia, Facultad de Ciencias de la Salud, Universidad Arturo Prat, Iquique, Chile
| | - Javier Palacios
- Laboratorio de Bioquímica Aplicada, Química y Farmacia, Facultad de Ciencias de la Salud, Universidad Arturo Prat, Iquique, Chile
| | - Roberto O Ybañez-Julca
- Departamento de Farmacología, Facultad de Farmacia y Bioquímica, Universidad Nacional de Trujillo, Trujillo, Perú
| | - Cristhian N Rodriguez-Silva
- Departamento de Farmacología, Facultad de Farmacia y Bioquímica, Universidad Nacional de Trujillo, Trujillo, Perú
| | - Chukwuemeka Nwokocha
- Department of Basic Medical Sciences Physiology Section, Faculty of Medical Sciences, The University of the West Indies, Kingston, Jamaica
| | - Fredi Cifuentes
- Laboratorio de Fisiología Experimental (EphyL), Instituto Antofagasta (IA), Universidad de Antofagasta, Antofagasta, Chile
| | - David J Greensmith
- Biomedical Research Centre, School of Science, Engineering and Environment, The University of Salford, Salford, United Kingdom
| |
Collapse
|
2
|
Vascular Ca V1.2 channels in diabetes. CURRENT TOPICS IN MEMBRANES 2022; 90:65-93. [PMID: 36368875 DOI: 10.1016/bs.ctm.2022.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Diabetic vasculopathy is a significant cause of morbidity and mortality in the diabetic population. Hyperglycemia, one of the central metabolic abnormalities in diabetes, has been associated with vascular dysfunction due to endothelial cell damage. However, studies also point toward vascular smooth muscle as a locus for hyperglycemia-induced vascular dysfunction. Emerging evidence implicates hyperglycemia-induced regulation of vascular L-type Ca2+ channels CaV1.2 as a potential mechanism for vascular dysfunction during diabetes. This chapter summarizes our current understanding of vascular CaV1.2 channels and their regulation during physiological and hyperglycemia/diabetes conditions. We will emphasize the role of CaV1.2 in vascular smooth muscle, the effects of elevated glucose on CaV1.2 function, and the mechanisms underlying its dysregulation in hyperglycemia and diabetes. We conclude by examining future directions and gaps in knowledge regarding CaV1.2 regulation in health and during diabetes.
Collapse
|
3
|
Stanisic J, Ivkovic T, Romic S, Zec M, Culafic T, Stojiljkovic M, Koricanac G. Beneficial effect of walnuts on vascular tone is associated with Akt signalling, voltage-dependent calcium channel LTCC and ATP-sensitive potassium channel Kv1.2. Int J Food Sci Nutr 2020; 72:324-334. [PMID: 32693647 DOI: 10.1080/09637486.2020.1796931] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Consumption of walnuts is beneficial for cardiovascular health. To study walnut effects on proteins involved in vascular tone regulation, control and fructose-fed rats were subjected to walnut diet for 6 weeks. In contrast with increased energy intake and body mass gain, aortic protein level of L-type calcium channel alpha subunit was decreased and the level of SUR2B subunit of ATP-sensitive K + channel was increased in healthy rats subjected to walnuts, together with improved Akt phosphorylation. Upon the walnut diet in rats subjected to fructose overload, the rise in energy intake and body mass gain, was followed by an increase in blood insulin. Although SUR2B level was elevated, the level of sodium-calcium exchanger NCX1 and inducible nitric oxide synthase were reduced and increased, respectively. In summary, walnut consumption was accompanied with moderate beneficial vascular effect in healthy rats, while an effect of walnut in rats with metabolic disturbances was rather controversial.
Collapse
Affiliation(s)
- Jelena Stanisic
- Laboratory for Molecular Biology and Endocrinology, Vinca Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade
| | - Tamara Ivkovic
- Laboratory for Molecular Biology and Endocrinology, Vinca Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade
| | - Snjezana Romic
- Laboratory for Molecular Biology and Endocrinology, Vinca Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade
| | - Manja Zec
- Centre of Excellence in Nutrition and Metabolism Research, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade
| | - Tijana Culafic
- Laboratory for Molecular Biology and Endocrinology, Vinca Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade
| | - Mojca Stojiljkovic
- Laboratory for Molecular Biology and Endocrinology, Vinca Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade
| | - Goran Koricanac
- Laboratory for Molecular Biology and Endocrinology, Vinca Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade
| |
Collapse
|
4
|
Abstract
Vascular smooth muscle cells (VSMCs) of small peripheral arteries contribute to blood pressure control by adapting their contractile state. These adaptations depend on the VSMC cytosolic Ca2+ concentration, regulated by complex local elementary Ca2+ signaling pathways. Ca2+ sparks represent local, transient, rapid calcium release events from a cluster of ryanodine receptors (RyRs) in the sarcoplasmic reticulum. In arterial SMCs, Ca2+ sparks activate nearby calcium-dependent potassium channels, cause membrane hyperpolarization and thus decrease the global intracellular [Ca2+] to oppose vasoconstriction. Arterial SMC Cav1.2 L-type channels regulate intracellular calcium stores content, which in turn modulates calcium efflux through RyRs. Cav3.2 T-type channels contribute to a minor extend to Ca2+ spark generation in certain types of arteries. Their localization within cell membrane caveolae is essential. We summarize present data on local elementary calcium signaling (Ca2+ sparks) in arterial SMCs with focus on RyR isoforms, large-conductance calcium-dependent potassium (BKCa) channels, and cell membrane-bound calcium channels (Cav1.2 and Cav3.2), particularly in caveolar microdomains.
Collapse
Affiliation(s)
- Gang Fan
- Charité - Universitätsmedizin Berlin, Experimental and Clinical Research Center (ECRC), a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany
| | - Yingqiu Cui
- Charité - Universitätsmedizin Berlin, Experimental and Clinical Research Center (ECRC), a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany
| | - Maik Gollasch
- Charité - Universitätsmedizin Berlin, Experimental and Clinical Research Center (ECRC), a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany
| | - Mario Kassmann
- Charité - Universitätsmedizin Berlin, Experimental and Clinical Research Center (ECRC), a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany
| |
Collapse
|
5
|
Manoury B, Idres S, Leblais V, Fischmeister R. Ion channels as effectors of cyclic nucleotide pathways: Functional relevance for arterial tone regulation. Pharmacol Ther 2020; 209:107499. [PMID: 32068004 DOI: 10.1016/j.pharmthera.2020.107499] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Accepted: 02/05/2020] [Indexed: 02/07/2023]
Abstract
Numerous mediators and drugs regulate blood flow or arterial pressure by acting on vascular tone, involving cyclic nucleotide intracellular pathways. These signals lead to regulation of several cellular effectors, including ion channels that tune cell membrane potential, Ca2+ influx and vascular tone. The characterization of these vasocontrictive or vasodilating mechanisms has grown in complexity due to i) the variety of ion channels that are expressed in both vascular endothelial and smooth muscle cells, ii) the heterogeneity of responses among the various vascular beds, and iii) the number of molecular mechanisms involved in cyclic nucleotide signalling in health and disease. This review synthesizes key data from literature that highlight ion channels as physiologically relevant effectors of cyclic nucleotide pathways in the vasculature, including the characterization of the molecular mechanisms involved. In smooth muscle cells, cation influx or chloride efflux through ion channels are associated with vasoconstriction, whereas K+ efflux repolarizes the cell membrane potential and mediates vasodilatation. Both categories of ion currents are under the influence of cAMP and cGMP pathways. Evidence that some ion channels are influenced by CN signalling in endothelial cells will also be presented. Emphasis will also be put on recent data touching a variety of determinants such as phosphodiesterases, EPAC and kinase anchoring, that complicate or even challenge former paradigms.
Collapse
Affiliation(s)
- Boris Manoury
- Inserm, Umr-S 1180, Université Paris-Saclay, Châtenay-Malabry, France.
| | - Sarah Idres
- Inserm, Umr-S 1180, Université Paris-Saclay, Châtenay-Malabry, France
| | - Véronique Leblais
- Inserm, Umr-S 1180, Université Paris-Saclay, Châtenay-Malabry, France
| | | |
Collapse
|
6
|
Pustiglione Marinsek G, Moledo de Souza Abessa D, Gusso-Choueri PK, Brasil Choueri R, Nascimento Gonçalves AR, D'angelo Barroso BV, Souza Santos G, Margarete Cestari M, Galvão de Campos B, de Britto Mari R. Enteric nervous system analyses: New biomarkers for environmental quality assessment. MARINE POLLUTION BULLETIN 2018; 137:711-722. [PMID: 30503489 DOI: 10.1016/j.marpolbul.2018.11.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 11/01/2018] [Accepted: 11/08/2018] [Indexed: 06/09/2023]
Abstract
The gastrointestinal tract (GIT) of fish is a target of contaminants since it can absorb these substances. We evaluated the morphophysiological alterations in the GIT of Sphoeroides testudineus collected in two estuaries presenting differences in their environmental quality (NIA and IA). The intestine was analyzed for histological and neuronal changes; liver and gills for biochemical markers; muscle tissues for neurotoxicity and peripheral blood for genotoxic damage. The results showed alterations in the GIT of the animals collected in the IA, such as muscle tunica and goblet cell density reduction, increased intraepithelial lymphocytes density and changes in neuronal density. Furthermore, changes were observed in MTs and LPO in the gills. Thus, we suggest that TGI is functioning as a barrier that responds to ingested contaminants, in order to reduce their absorption and translocation. Thus, alterations in morphophysiological and enteric neurons in S. testudineus can be used as biomarkers of environmental contamination.
Collapse
Affiliation(s)
- Gabriela Pustiglione Marinsek
- São Paulo State University (UNESP), Institute of Biosciences, Praça Infante Dom Henrique, s/n, Parque Bitaru, São Vicente, SP, Brazil..
| | - Denis Moledo de Souza Abessa
- São Paulo State University (UNESP), Institute of Biosciences, Praça Infante Dom Henrique, s/n, Parque Bitaru, São Vicente, SP, Brazil
| | - Paloma Kachel Gusso-Choueri
- São Paulo State University (UNESP), Institute of Biosciences, Praça Infante Dom Henrique, s/n, Parque Bitaru, São Vicente, SP, Brazil
| | - Rodrigo Brasil Choueri
- Department of Marine Sciences, Federal University of São Paulo, Santos Campus (UNIFESP - Santos), Av. Almirante Saldanha da Gama, 89, CP 11030-490 Santos, SP, Brazil
| | | | - Beatriz Vivian D'angelo Barroso
- São Paulo State University (UNESP), Institute of Biosciences, Praça Infante Dom Henrique, s/n, Parque Bitaru, São Vicente, SP, Brazil
| | - Gustavo Souza Santos
- Genetics Department, Federal University of Paraná (UFPR), 81531-990 Curitiba, PR, Brazil
| | | | - Bruno Galvão de Campos
- São Paulo State University (UNESP), Institute of Biosciences, Praça Infante Dom Henrique, s/n, Parque Bitaru, São Vicente, SP, Brazil
| | - Renata de Britto Mari
- São Paulo State University (UNESP), Institute of Biosciences, Praça Infante Dom Henrique, s/n, Parque Bitaru, São Vicente, SP, Brazil
| |
Collapse
|
7
|
Vasorelaxant activities and the underlying pharmacological mechanisms of Gynura procumbens Merr. leaf extracts on rat thoracic aorta. Inflammopharmacology 2017; 27:421-431. [DOI: 10.1007/s10787-017-0422-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 11/14/2017] [Indexed: 12/22/2022]
|
8
|
Raifman TK, Kumar P, Haase H, Klussmann E, Dascal N, Weiss S. Protein kinase C enhances plasma membrane expression of cardiac L-type calcium channel, Ca V1.2. Channels (Austin) 2017; 11:604-615. [PMID: 28901828 DOI: 10.1080/19336950.2017.1369636] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
L-type-voltage-dependent Ca2+ channels (L-VDCCs; CaV1.2, α1C), crucial in cardiovascular physiology and pathology, are modulated via activation of G-protein-coupled receptors and subsequently protein kinase C (PKC). Despite extensive study, key aspects of the mechanisms leading to PKC-induced Ca2+ current increase are unresolved. A notable residue, Ser1928, located in the distal C-terminus (dCT) of α1C was shown to be phosphorylated by PKC. CaV1.2 undergoes posttranslational modifications yielding full-length and proteolytically cleaved CT-truncated forms. We have previously shown that, in Xenopus oocytes, activation of PKC enhances α1C macroscopic currents. This increase depended on the isoform of α1C expressed. Only isoforms containing the cardiac, long N-terminus (L-NT), were upregulated by PKC. Ser1928 was also crucial for the full effect of PKC. Here we report that, in Xenopus oocytes, following PKC activation the amount of α1C protein expressed in the plasma membrane (PM) increases within minutes. The increase in PM content is greater with full-length α1C than in dCT-truncated α1C, and requires Ser1928. The same was observed in HL-1 cells, a mouse atrium cell line natively expressing cardiac α1C, which undergoes the proteolytic cleavage of the dCT, thus providing a native setting for exploring the effects of PKC in cardiomyocytes. Interestingly, activation of PKC preferentially increased the PM levels of full-length, L-NT α1C. Our findings suggest that part of PKC regulation of CaV1.2 in the heart involves changes in channel's cellular fate. The mechanism of this PKC regulation appears to involve the C-terminus of α1C, possibly corroborating the previously proposed role of NT-CT interactions within α1C.
Collapse
Affiliation(s)
- Tal Keren Raifman
- a Department of Physiology and Pharmacology , Sackler School of Medicine, Tel Aviv University , Tel Aviv , Israel.,b Department of Physiotherapy , Zfat Academic College , Zfat , Israel
| | - Prabodh Kumar
- a Department of Physiology and Pharmacology , Sackler School of Medicine, Tel Aviv University , Tel Aviv , Israel
| | - Hannelore Haase
- c Max Delbruck Center for Molecular Medicine (MDC) , Berlin , Germany
| | - Enno Klussmann
- c Max Delbruck Center for Molecular Medicine (MDC) , Berlin , Germany
| | - Nathan Dascal
- a Department of Physiology and Pharmacology , Sackler School of Medicine, Tel Aviv University , Tel Aviv , Israel
| | - Sharon Weiss
- a Department of Physiology and Pharmacology , Sackler School of Medicine, Tel Aviv University , Tel Aviv , Israel
| |
Collapse
|
9
|
Pericytes impair capillary blood flow and motor function after chronic spinal cord injury. Nat Med 2017; 23:733-741. [PMID: 28459438 PMCID: PMC5716958 DOI: 10.1038/nm.4331] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 03/28/2017] [Indexed: 12/19/2022]
Abstract
Blood vessels in the central nervous system (CNS) are controlled by neuronal activity. For example, widespread vessel constriction (vessel tone) is induced by brainstem neurons that release the monoamines serotonin and noradrenaline, and local vessel dilation is induced by glutamatergic neuron activity. Here we examined how vessel tone adapts to the loss of neuron-derived monoamines after spinal cord injury (SCI) in rats. We find that, months after the imposition of SCI, the spinal cord below the site of injury is in a chronic state of hypoxia owing to paradoxical excess activity of monoamine receptors (5-HT1) on pericytes, despite the absence of monoamines. This monoamine-receptor activity causes pericytes to locally constrict capillaries, which reduces blood flow to ischemic levels. Receptor activation in the absence of monoamines results from the production of trace amines (such as tryptamine) by pericytes that ectopically express the enzyme aromatic L-amino acid decarboxylase (AADC), which synthesizes trace amines directly from dietary amino acids (such as tryptophan). Inhibition of monoamine receptors or of AADC, or even an increase in inhaled oxygen, produces substantial relief from hypoxia and improves motoneuron and locomotor function after SCI.
Collapse
|
10
|
Dib I, Fauconnier ML, Sindic M, Belmekki F, Assaidi A, Berrabah M, Mekhfi H, Aziz M, Legssyer A, Bnouham M, Ziyyat A. Chemical composition, vasorelaxant, antioxidant and antiplatelet effects of essential oil of Artemisia campestris L. from Oriental Morocco. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017. [PMID: 28143473 DOI: 10.1186/s12906–017–1598–2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
BACKGROUND Artemisia campestris L. (Asteraceae) is a medicinal herb traditionally used to treat hypertension and many other diseases. Hence, this study is aimed to analyze the essential oil of A. campestris L (AcEO) and to investigate the antiplatelet, antioxidant effects and the mechanisms of its vasorelaxant effect. METHODS The chemical composition of AcEO was elucidated using GC/MS analysis. Then, the antioxidant effect was tested on DPPH radical scavenging and on the prevention of β-carotene bleaching. The antiplatelet effect was performed on the presence of the platelet agonists: thrombin and ADP. The mechanism of action of the vasorelaxant effect was studied by using the cellular blockers specified to explore the involvement of NO/GC pathway and in the presence of calcium channels blockers and potassium channels blockers. RESULTS AcEO is predominated by the volatiles: spathulenol, ß-eudesmol and p-cymene. The maximal antioxidant effect was obtained with the dose 2 mg/ml of AcEO. The dose 1 mg/ml of AcEO showed a maximum antiplatelet effect of, respectively 49.73% ±9.54 and 48.20% ±8.49 on thrombin and ADP. The vasorelaxation seems not to be mediated via NOS/GC pathway neither via the potassium channels. However, pretreatment with calcium channels blockers attenuated this effect, suggesting that the vasorelaxation is mediated via inhibition of L-type Ca2+ channels and the activation of SERCA pumps of reticulum plasma. CONCLUSION This study confirms the antioxidant, antiplatelet and vasorelaxant effects of A.campestris L essential oil. However, the antihypertensive use of this oil should be further confirmed by the chemical fractionation and subsequent bio-guided assays.
Collapse
Affiliation(s)
- Ikram Dib
- Laboratoire de Physiologie, Génétique et Ethnopharmacologie URAC-40, Département de Biologie, Faculté des Sciences, Université Mohammed Premier, Oujda, Morocco
| | - Marie-Laure Fauconnier
- Unité de Chimie Générale et Organique, Gembloux Agro-bio Tech, Université de Liège, Gembloux, Belgium
| | - Marianne Sindic
- Laboratoire Qualité et Sécurité des Produits Alimentaires, Gembloux Agro-Bio Tech, Université de Liège, Gembloux, Belgium
| | - Fatima Belmekki
- Laboratoire de Physiologie, Génétique et Ethnopharmacologie URAC-40, Département de Biologie, Faculté des Sciences, Université Mohammed Premier, Oujda, Morocco
| | - Asmae Assaidi
- Laboratoire de Physiologie, Génétique et Ethnopharmacologie URAC-40, Département de Biologie, Faculté des Sciences, Université Mohammed Premier, Oujda, Morocco
| | - Mohamed Berrabah
- Laboratoire de Chimie du Solide Minéral et Analytique, Département de Chimie, Faculté des Sciences, Université Mohammed Premier, Oujda, Morocco
| | - Hassane Mekhfi
- Laboratoire de Physiologie, Génétique et Ethnopharmacologie URAC-40, Département de Biologie, Faculté des Sciences, Université Mohammed Premier, Oujda, Morocco
| | - Mohammed Aziz
- Laboratoire de Physiologie, Génétique et Ethnopharmacologie URAC-40, Département de Biologie, Faculté des Sciences, Université Mohammed Premier, Oujda, Morocco
| | - Abdelkhaleq Legssyer
- Laboratoire de Physiologie, Génétique et Ethnopharmacologie URAC-40, Département de Biologie, Faculté des Sciences, Université Mohammed Premier, Oujda, Morocco
| | - Mohamed Bnouham
- Laboratoire de Physiologie, Génétique et Ethnopharmacologie URAC-40, Département de Biologie, Faculté des Sciences, Université Mohammed Premier, Oujda, Morocco
| | - Abderrahim Ziyyat
- Laboratoire de Physiologie, Génétique et Ethnopharmacologie URAC-40, Département de Biologie, Faculté des Sciences, Université Mohammed Premier, Oujda, Morocco.
| |
Collapse
|
11
|
Dib I, Fauconnier ML, Sindic M, Belmekki F, Assaidi A, Berrabah M, Mekhfi H, Aziz M, Legssyer A, Bnouham M, Ziyyat A. Chemical composition, vasorelaxant, antioxidant and antiplatelet effects of essential oil of Artemisia campestris L. from Oriental Morocco. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 17:82. [PMID: 28143473 PMCID: PMC5282690 DOI: 10.1186/s12906-017-1598-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 01/21/2017] [Indexed: 12/18/2022]
Abstract
BACKGROUND Artemisia campestris L. (Asteraceae) is a medicinal herb traditionally used to treat hypertension and many other diseases. Hence, this study is aimed to analyze the essential oil of A. campestris L (AcEO) and to investigate the antiplatelet, antioxidant effects and the mechanisms of its vasorelaxant effect. METHODS The chemical composition of AcEO was elucidated using GC/MS analysis. Then, the antioxidant effect was tested on DPPH radical scavenging and on the prevention of β-carotene bleaching. The antiplatelet effect was performed on the presence of the platelet agonists: thrombin and ADP. The mechanism of action of the vasorelaxant effect was studied by using the cellular blockers specified to explore the involvement of NO/GC pathway and in the presence of calcium channels blockers and potassium channels blockers. RESULTS AcEO is predominated by the volatiles: spathulenol, ß-eudesmol and p-cymene. The maximal antioxidant effect was obtained with the dose 2 mg/ml of AcEO. The dose 1 mg/ml of AcEO showed a maximum antiplatelet effect of, respectively 49.73% ±9.54 and 48.20% ±8.49 on thrombin and ADP. The vasorelaxation seems not to be mediated via NOS/GC pathway neither via the potassium channels. However, pretreatment with calcium channels blockers attenuated this effect, suggesting that the vasorelaxation is mediated via inhibition of L-type Ca2+ channels and the activation of SERCA pumps of reticulum plasma. CONCLUSION This study confirms the antioxidant, antiplatelet and vasorelaxant effects of A.campestris L essential oil. However, the antihypertensive use of this oil should be further confirmed by the chemical fractionation and subsequent bio-guided assays.
Collapse
Affiliation(s)
- Ikram Dib
- Laboratoire de Physiologie, Génétique et Ethnopharmacologie URAC-40, Département de Biologie, Faculté des Sciences, Université Mohammed Premier, Oujda, Morocco
| | - Marie-Laure Fauconnier
- Unité de Chimie Générale et Organique, Gembloux Agro-bio Tech, Université de Liège, Gembloux, Belgium
| | - Marianne Sindic
- Laboratoire Qualité et Sécurité des Produits Alimentaires, Gembloux Agro-Bio Tech, Université de Liège, Gembloux, Belgium
| | - Fatima Belmekki
- Laboratoire de Physiologie, Génétique et Ethnopharmacologie URAC-40, Département de Biologie, Faculté des Sciences, Université Mohammed Premier, Oujda, Morocco
| | - Asmae Assaidi
- Laboratoire de Physiologie, Génétique et Ethnopharmacologie URAC-40, Département de Biologie, Faculté des Sciences, Université Mohammed Premier, Oujda, Morocco
| | - Mohamed Berrabah
- Laboratoire de Chimie du Solide Minéral et Analytique, Département de Chimie, Faculté des Sciences, Université Mohammed Premier, Oujda, Morocco
| | - Hassane Mekhfi
- Laboratoire de Physiologie, Génétique et Ethnopharmacologie URAC-40, Département de Biologie, Faculté des Sciences, Université Mohammed Premier, Oujda, Morocco
| | - Mohammed Aziz
- Laboratoire de Physiologie, Génétique et Ethnopharmacologie URAC-40, Département de Biologie, Faculté des Sciences, Université Mohammed Premier, Oujda, Morocco
| | - Abdelkhaleq Legssyer
- Laboratoire de Physiologie, Génétique et Ethnopharmacologie URAC-40, Département de Biologie, Faculté des Sciences, Université Mohammed Premier, Oujda, Morocco
| | - Mohamed Bnouham
- Laboratoire de Physiologie, Génétique et Ethnopharmacologie URAC-40, Département de Biologie, Faculté des Sciences, Université Mohammed Premier, Oujda, Morocco
| | - Abderrahim Ziyyat
- Laboratoire de Physiologie, Génétique et Ethnopharmacologie URAC-40, Département de Biologie, Faculté des Sciences, Université Mohammed Premier, Oujda, Morocco.
| |
Collapse
|
12
|
Dai R, Wang T, Si X, Jia Y, Wang L, Yuan Y, Lin Q, Yang C. Vasodilatory effects and underlying mechanisms of the ethyl acetate extracts from Gastrodia elata. Can J Physiol Pharmacol 2016; 95:564-571. [PMID: 28177685 DOI: 10.1139/cjpp-2016-0407] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The objective of this study was to assess the ethyl acetate extracts of Gastrodia elata Blume (GEB) on vascular tone and the mechanisms involved. GEB was extracted with 95% EtOH followed by a further extraction with ethyl acetate. The effects of GEB and its ingredients on the isometric tensions of the aortic rings from rats were measured. The ethyl acetate extract of GEB induced a vasodilatory effect on rat aorta, which was partially dependent on endothelium. Four chemical compounds isolated from GEB were identified as 3,4-dihydroxybenzaldehyde (DB), 4-hydroxybenzaldehyde (HB), 4-methoxybenzyl alcohol (MA), and 4,4'-dihydroxydiphenyl methane (DM), respectively. All of these compounds induced vasodilatations, which were dependent on the endothelium to different degrees. After pretreatment with Nω-nitro-l-arginine methyl ester, indomethacin, or methylene blue, the vasodilatations induced by DB, HB, and MA were significantly decreased. In addition, the contractions of the rat aortic rings due to Ca2+ influx and intracellular Ca2+ release were also inhibited by DM. Furthermore, the administration of DB significantly enhanced the productions of nitric oxide (NO) and the activities of the endothelial NO synthase in aorta and in endothelial cells. Thus, GEB may play an important role in the amelioration of hypertension by modulating vascular tones.
Collapse
Affiliation(s)
- Rong Dai
- a Department of Pharmacology, Yunnan University of Traditional Chinese Medicine, Kunming 650500, P.R. China
| | - Ting Wang
- b Ethnic Drug Screening & Pharmacology Center, Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, Yunnan Minzu University, Kunming 650500, P.R. China
| | - Xiaoqin Si
- a Department of Pharmacology, Yunnan University of Traditional Chinese Medicine, Kunming 650500, P.R. China
| | - Yuanyuan Jia
- a Department of Pharmacology, Yunnan University of Traditional Chinese Medicine, Kunming 650500, P.R. China
| | - Lili Wang
- a Department of Pharmacology, Yunnan University of Traditional Chinese Medicine, Kunming 650500, P.R. China
| | - Yan Yuan
- b Ethnic Drug Screening & Pharmacology Center, Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, Yunnan Minzu University, Kunming 650500, P.R. China
| | - Qing Lin
- a Department of Pharmacology, Yunnan University of Traditional Chinese Medicine, Kunming 650500, P.R. China
| | - Cui Yang
- b Ethnic Drug Screening & Pharmacology Center, Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, Yunnan Minzu University, Kunming 650500, P.R. China
| |
Collapse
|
13
|
Gan L, Wang ZH, Zhang H, Zhou X, Zhou H, Sun C, Si J, Zhou R, Ma CJ, Li J. Endothelium-independent vasorelaxant effect of 20(S)-protopanaxadiol on isolated rat thoracic aorta. Acta Pharmacol Sin 2016; 37:1555-1562. [PMID: 27616575 DOI: 10.1038/aps.2016.74] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 06/30/2016] [Indexed: 12/15/2022]
Abstract
AIM Ginsenosides are considered to be the major pharmacologically active ginseng constituents, whereas 20(S)-protopanaxadiol [20(S)-PPD] is the active metabolite of ginsenosides in gut. In this study we investigated the effect of 20(S)-PPD on isolated rat thoracic aortas as well as its vasorelaxant mechanisms. METHODS Aortic rings with or without endothelium were prepared from Wistar rats and suspended in organ-chambers. The changes in tension of the preparations were recorded through isometric transducers connected to a data acquisition system. The aortic rings were precontracted with phenylephrine (PE, 1 μmol/L) or high-K+ (80 mmol/L). RESULTS Application of 20(S)-PPD (21.5-108.5 μmol/L) caused concentration-dependent vasodilation of endothelium-intact aortic rings precontracted with PE or high-K+, which resulted in the EC50 values of 90.4 or 46.5 μmol/L, respectively. The removal of endothelium had no effect on 20(S)-PPD-induced relaxation. The vasorelaxant effect of 20(S)-PPD was also not influenced by the preincubation with β-adrenergic receptor antagonist propranolol, or with ATP-sensitive K+ channel blocker glibenclamide, voltage-dependent K+ channel blocker 4-AP and inward rectifier K+ channel blocker BaCl2, whereas it was significantly attenuated by the preincubation with Ca2+-activated K+ (BKCa) channel blocker TEA (1 mmol/L). Furthermore, the inhibition of NO synthesis, cGMP and prostacyclin pathways did not affect the vasorelaxant effect of 20(S)-PPD. In Ca2+-free solution, 20(S)-PPD (108.5 μmol/L) markedly decreased the extracellular Ca2+-induced contraction in aortic rings precontracted with PE or high-K+ and reduced PE-induced transient contraction. Voltage-dependent Ca2+ channel antagonist nifedipine inhibited PE-induced contraction; further inhibition was observed after the application of receptor-operated Ca2+ channel inhibitor SK&F 96365 or 20(S)-PPD. CONCLUSION 20(S)-PPD induces vasorelaxation via an endothelium-independent pathway. The inhibition of voltage-dependent Ca2+ channels and receptor-operated Ca2+ channels and the activation of Ca2+-activated K+ channels are probably involved in the relaxation.
Collapse
|
14
|
Garcia DC, Pereira AC, Gutierrez SJ, Barbosa-Filho JM, Lemos VS, Côrtes SF. Structure-related blockage of calcium channels by vasodilator alkamides in mice mesenteric artery. Vascul Pharmacol 2016; 82:60-5. [DOI: 10.1016/j.vph.2016.05.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 04/21/2016] [Accepted: 05/07/2016] [Indexed: 01/06/2023]
|
15
|
Kumrungsee T, Akiyama S, Saiki T, Omae M, Hamasawa K, Matsui T. Vasorelaxant Effect of 5'-Methylthioadenosine Obtained from Candida utilis Yeast Extract through the Suppression of Intracellular Ca(2+) Concentration in Isolated Rat Aorta. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:3362-3370. [PMID: 27066696 DOI: 10.1021/acs.jafc.6b00679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Our study is the first to demonstrate the vasorelaxant effect of Candida utilis yeast extract on rat aorta (EC50 of 7.2 ± 3.2 mg/mL). Among five identified compounds, 5'-methylthioadenosine (MTA) exhibited comparable vasorelaxant effect (EC50 of 190 ± 40 μM) with adenosine, a known vasodilator, on 1 μM phenylephrine (PE)-contracted Sprague-Dawley rat aortic rings. MTA induced vasorelaxation in an endothelium-independent manner and independent of the adenosine receptors. MTA reduced a CaCl2-induced vasocontraction stimulated by 1 μM PE, whereas the effect was abolished in a 60 mM KCl-induced vasocontraction. This indicates that MTA was not involved in the suppression of extracellular Ca(2+) influx. MTA significantly (P < 0.01) attenuated the PE-induced activation of calmodulin-dependent kinase II (CaMK II) in aortic rings and inhibited the phosphorylation of L-type Ca(2+) channel (VDCC). In conclusion, the underlying mechanism(s) of MTA-induced vasorelaxation involves the inhibition of Ca(2+)/CaMK II/VDCC phosphorylation pathway, resulting in the suppression of intracellular Ca(2+) concentration in aortic rings.
Collapse
Affiliation(s)
- Thanutchaporn Kumrungsee
- Faculty of Agriculture, Graduate School of Kyushu University , 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | - Sayaka Akiyama
- Faculty of Agriculture, Graduate School of Kyushu University , 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | - Tomomi Saiki
- KOHJIN Life Sciences Company Ltd. , Saiki-Factory, 1-6 Higashihama, Saiki-shi, Oita 876-8580, Japan
| | - Masato Omae
- KOHJIN Life Sciences Company Ltd. , Saiki-Factory, 1-6 Higashihama, Saiki-shi, Oita 876-8580, Japan
| | - Kazuhiro Hamasawa
- KOHJIN Life Sciences Company Ltd. , Saiki-Factory, 1-6 Higashihama, Saiki-shi, Oita 876-8580, Japan
| | - Toshiro Matsui
- Faculty of Agriculture, Graduate School of Kyushu University , 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| |
Collapse
|
16
|
Chen YC, Zhu W, Zhong SP, Zheng FC, Gao FF, Zhang YM, Xu H, Zheng YS, Shi GG. Characterization and bioactivity of novel calcium antagonists - N-methoxy-benzyl haloperidol quaternary ammonium salt. Oncotarget 2015; 6:43759-69. [PMID: 26544729 PMCID: PMC4791264 DOI: 10.18632/oncotarget.6086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 10/06/2015] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND AND PURPOSE Calcium antagonists play an important role in clinical practice. However, most of them have serious side effects. We have synthesized a series of novel calcium antagonists, quaternary ammonium salt derivatives of haloperidol with N-p-methoxybenzyl (X1), N-m-methoxybenzyl (X2) and N-o-methoxybenzyl (X3) groups. The objective of this study was to investigate the bioactivity of these novel calcium antagonists, especially the vasodilation activity and cardiac side-effects. The possible working mechanisms of these haloperidol derivatives were also explored. EXPERIMENTAL APPROACH Novel calcium antagonists were synthesized by amination. Compounds were screened for their activity of vasodilation on isolated thoracic aortic ring of rats. Their cardiac side effects were explored. The patch-clamp, confocal laser microscopy and the computer-fitting molecular docking experiments were employed to investigate the possible working mechanisms of these calcium antagonists. RESULTS The novel calcium antagonists, X1, X2 and X3 showed stronger vasodilation effect and less cardiac side effect than that of classical calcium antagonists. They blocked L-type calcium channels with an potent effect order of X1 > X2 > X3. Consistently, X1, X2 and X3 interacted with different regions of Ca2+-CaM-CaV1.2 with an affinity order of X1 > X2 > X3. CONCLUSIONS The new halopedidol derivatives X1, X2 and X3 are novel calcium antagonists with stronger vasodilation effect and less cardiac side effect. They could have wide clinical application.
Collapse
Affiliation(s)
- Yi-Cun Chen
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Wei Zhu
- Geneheal Biotechnology Co., Ltd, Guangzhou 510000, Guangdong, China
| | - Shu-Ping Zhong
- Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, USA
| | - Fu-Chun Zheng
- Department of Pharmacy, the First Affiliated Hospital, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Fen-Fei Gao
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Yan-Mei Zhang
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Han Xu
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Yan-Shan Zheng
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Gang-Gang Shi
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, Guangdong, China
- Department of Cardiovascular Diseases, the First Affiliated Hospital, Shantou University Medical College, Shantou 515041, Guangdong, China
| |
Collapse
|
17
|
Jiang M, Wan F, Wang F, Wu Q. Irisin relaxes mouse mesenteric arteries through endothelium-dependent and endothelium-independent mechanisms. Biochem Biophys Res Commun 2015; 468:832-6. [PMID: 26582714 DOI: 10.1016/j.bbrc.2015.11.040] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 11/08/2015] [Indexed: 02/07/2023]
Abstract
Irisin, a newly discovered myokine, has been shown to produce modest weight loss and improve glucose intolerance in mice. The purpose of this study was to investigate the effects of irisin on vascular activity and the mechanisms involved. Experiments were performed on mouse mesenteric arteries. We demonstrated that irisin induced relaxation in mesenteric arteries with or without endothelium in a concentration-dependent manner. It was further demonstrated that the irisin-induced vasorelaxation effects on endothelium-intact mesenteric arteries were reduced by pretreatment with Nω-nitro-L-arginine methyl ester (L-NAME) or 1H-[1, 2, 4] oxadizolo [4, 3-a] quinoxalin-1-one (ODQ). However, pretreatment with indomethacin (INDO), a nonselective cyclooxygenase inhibitor did not modulate irisin-induced relaxation. In addition, the contraction due to extracellular Ca(2+) influx and intracellular Ca(2+) release was also inhibited by irisin. In summary, these results suggested that the endothelium-dependent relaxation of irisin is mediated by the nitric oxide (NO)-guanosine 3', 5'-cyclic phosphate (cGMP)-dependent pathway but not the prostaglandin I2 (PGI2)-cyclic adenosine monophosphate (cAMP)-dependent mechanism. Endothelium-independent relaxation may be depend on inhibiting Ca(2+) influx through blocking VDCCs and intracellular Ca(2+) release through both IP3R and RyR channels.
Collapse
Affiliation(s)
- Miao Jiang
- Experimental Animal Center, The Second Hospital of Shandong University, Jinan 250012, PR China
| | - Fangzhu Wan
- Department of Clinical Medicine, School of Medicine, Shandong University, Jinan 250012, PR China
| | - Fang Wang
- Experimental Animal Center, The Second Hospital of Shandong University, Jinan 250012, PR China
| | - Qi Wu
- Department of Clinical Medicine, School of Medicine, Shandong University, Jinan 250012, PR China.
| |
Collapse
|
18
|
Kudryavtseva O, Aalkjær C, Bek T. Prostaglandin induced changes in the tone of porcine retinal arterioles in vitro involve other factors than calcium activity in perivascular cells. Exp Eye Res 2015; 138:96-103. [PMID: 26142955 DOI: 10.1016/j.exer.2015.06.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 06/12/2015] [Accepted: 06/30/2015] [Indexed: 01/18/2023]
Abstract
The cellular basis for the regulation of retinal blood flow is unknown, but recently a new type of perivascular cell (PVC) with pericyte characteristics was identified in the retinal arterial vascular wall located immediately external to the vascular smooth muscle cells. A possible involvement of this cell type in the regulation of retinal vascular tone might be elucidated by studying differences in the response after the addition of compounds stimulating respectively relaxation and contraction. The effects of PGE2 and PGF2α on vascular tone and calcium activity in PVCs in porcine retinal arterioles were studied in a confocal myograph after the addition of the ryanodine receptor blocker ryanodine, the L-type Ca(2+) channel blocker nifedipine, the non-specific cation channel blocker LOE908, the sarcoplasmic reticulum Ca(2+)-ATPase (SERCA) blocker CPA, and the inositol triphosphate receptor (IP3R) and transient receptor potential (TRP) ion channel blocker 2-APB. The Ca(2+) channel blockers nifedipine and LOE908 induced significant relaxation of retinal arterioles. After the addition of both PGE2 and PGF2α calcium activity in the PVCs was significantly reduced by both the SERCA inhibitor CPA and the IP3R antagonist 2-APB, but the changes in calcium activity were unrelated to the changes in tone induced by PGE2 and PGF2α. Changes in the tone of porcine retinal arterioles in vitro induced by PGE2 and PGF2α involve other factors than calcium activity in the perivascular cells.
Collapse
Affiliation(s)
- Olga Kudryavtseva
- Department of Ophthalmology, Aarhus University Hospital, DK-8000 Aarhus C, Denmark.
| | - Christian Aalkjær
- Department of Biomedicine (Physiology), Aarhus University, DK-8000 Aarhus C, Denmark
| | - Toke Bek
- Department of Ophthalmology, Aarhus University Hospital, DK-8000 Aarhus C, Denmark
| |
Collapse
|
19
|
Regulation of Gβγi-dependent PLC-β3 activity in smooth muscle: inhibitory phosphorylation of PLC-β3 by PKA and PKG and stimulatory phosphorylation of Gαi-GTPase-activating protein RGS2 by PKG. Cell Biochem Biophys 2015; 70:867-80. [PMID: 24777815 DOI: 10.1007/s12013-014-9992-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In gastrointestinal smooth muscle, agonists that bind to Gi-coupled receptors activate preferentially PLC-β3 via Gβγ to stimulate phosphoinositide (PI) hydrolysis and generate inositol 1,4,5-trisphosphate (IP3) leading to IP3-dependent Ca(2+) release and muscle contraction. In the present study, we identified the mechanism of inhibition of PLC-β3-dependent PI hydrolysis by cAMP-dependent protein kinase (PKA) and cGMP-dependent protein kinase (PKG). Cyclopentyl adenosine (CPA), an adenosine A1 receptor agonist, caused an increase in PI hydrolysis in a concentration-dependent fashion; stimulation was blocked by expression of the carboxyl-terminal sequence of GRK2(495-689), a Gβγ-scavenging peptide, or Gαi minigene but not Gαq minigene. Isoproterenol and S-nitrosoglutathione (GSNO) induced phosphorylation of PLC-β3 and inhibited CPA-induced PI hydrolysis, Ca(2+) release, and muscle contraction. The effect of isoproterenol on all three responses was inhibited by PKA inhibitor, myristoylated PKI, or AKAP inhibitor, Ht-31, whereas the effect of GSNO was selectively inhibited by PKG inhibitor, Rp-cGMPS. GSNO, but not isoproterenol, also phosphorylated Gαi-GTPase-activating protein, RGS2, and enhanced association of Gαi3-GTP and RGS2. The effect of GSNO on PI hydrolysis was partly reversed in cells (i) expressing constitutively active GTPase-resistant Gαi mutant (Q204L), (ii) phosphorylation-site-deficient RGS2 mutant (S46A/S64A), or (iii) siRNA for RGS2. We conclude that PKA and PKG inhibit Gβγi-dependent PLC-β3 activity by direct phosphorylation of PLC-β3. PKG, but not PKA, also inhibits PI hydrolysis indirectly by a mechanism involving phosphorylation of RGS2 and its association with Gαi-GTP. This allows RGS2 to accelerate Gαi-GTPase activity, enhance Gαβγi trimer formation, and inhibit Gβγi-dependent PLC-β3 activity.
Collapse
|
20
|
Sun Y, Ye L, Liu J, Hong H. Hypoxia-induced cytosolic calcium influx is mediated primarily by the reverse mode of Na+/Ca2+ exchanger in smooth muscle cells of fetal small pulmonary arteries. J Obstet Gynaecol Res 2015; 40:1578-83. [PMID: 24888919 DOI: 10.1111/jog.12391] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2013] [Accepted: 12/18/2013] [Indexed: 12/01/2022]
Abstract
AIM Constriction of small pulmonary arteries and high resistance of pulmonary circulation are important for maintaining fetal circulation before birth. In this study, we investigated how cytosolic free calcium concentration ([Ca(2+)]i) in fetal lamb small pulmonary artery smooth muscle cells (SPASMC) was affected by hypoxia and regulated by calcium pumps during this process. METHODS (Ca(2+))i in response to acute hypoxia was determined spectrofluorometrically with fluo-3AM in cultured fetal SPASMC. Chemicals or solutions, including ryanodine, 2-aminoethoxydiphenyl borate, Ca(2+)-free solution with 20 mmol ethyleneglycoltetraacetic (EGTA), nimodipine, Na(+)-free medium and KB-R7943, were administrated at the same time point when samples were exposed to acute hypoxia. RESULTS (Ca(2+))i in fetal lamb SPASMC increased under acute hypoxia. 2-Aminoethoxydiphenyl borate, an inhibitor of inositol triphosphate calcium store, partially attenuated the (Ca(2+))i increase after 6-min treatment. Ryanodine, an inhibitor of ryanodine-sensitive calcium stores, had no effect on the (Ca(2+))i increase. Ca(2+)-free solution with EGTA completely abolished this increase. Both nimodipine, that blocks the voltage-gated calcium channel, and KB-R7943, that inhibits the reverse mode of Na(+)/Ca(2+) exchanger, greatly diminished the hypoxia-induced (Ca(2+))i increase. The inhibitory effect of KB-R7943 was stronger than nimodipine, evidenced by the fact that (Ca(2+))i dropped near to the baseline level in the presence of KB-R7943 at a later time point. Low extracellular Na(+) concentration enhanced the hypoxia-induced increase of (Ca(2+))i. CONCLUSION These results suggest that hypoxia-induced Ca(2+) increase in fetal SPASMC results from cytosolic Ca(2+) influx mediated primarily by the reverse mode of Na(+)/Ca(2+) exchanger.
Collapse
Affiliation(s)
- Yanjuan Sun
- Department of Cardiac and Thoracic Surgery, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine and Shanghai Pediatric Congenital Heart Disease Institute, Shanghai, China
| | | | | | | |
Collapse
|
21
|
Abstract
Intrarenal autoregulatory mechanisms maintain renal blood flow (RBF) and glomerular filtration rate (GFR) independent of renal perfusion pressure (RPP) over a defined range (80-180 mmHg). Such autoregulation is mediated largely by the myogenic and the macula densa-tubuloglomerular feedback (MD-TGF) responses that regulate preglomerular vasomotor tone primarily of the afferent arteriole. Differences in response times allow separation of these mechanisms in the time and frequency domains. Mechanotransduction initiating the myogenic response requires a sensing mechanism activated by stretch of vascular smooth muscle cells (VSMCs) and coupled to intracellular signaling pathways eliciting plasma membrane depolarization and a rise in cytosolic free calcium concentration ([Ca(2+)]i). Proposed mechanosensors include epithelial sodium channels (ENaC), integrins, and/or transient receptor potential (TRP) channels. Increased [Ca(2+)]i occurs predominantly by Ca(2+) influx through L-type voltage-operated Ca(2+) channels (VOCC). Increased [Ca(2+)]i activates inositol trisphosphate receptors (IP3R) and ryanodine receptors (RyR) to mobilize Ca(2+) from sarcoplasmic reticular stores. Myogenic vasoconstriction is sustained by increased Ca(2+) sensitivity, mediated by protein kinase C and Rho/Rho-kinase that favors a positive balance between myosin light-chain kinase and phosphatase. Increased RPP activates MD-TGF by transducing a signal of epithelial MD salt reabsorption to adjust afferent arteriolar vasoconstriction. A combination of vascular and tubular mechanisms, novel to the kidney, provides for high autoregulatory efficiency that maintains RBF and GFR, stabilizes sodium excretion, and buffers transmission of RPP to sensitive glomerular capillaries, thereby protecting against hypertensive barotrauma. A unique aspect of the myogenic response in the renal vasculature is modulation of its strength and speed by the MD-TGF and by a connecting tubule glomerular feedback (CT-GF) mechanism. Reactive oxygen species and nitric oxide are modulators of myogenic and MD-TGF mechanisms. Attenuated renal autoregulation contributes to renal damage in many, but not all, models of renal, diabetic, and hypertensive diseases. This review provides a summary of our current knowledge regarding underlying mechanisms enabling renal autoregulation in health and disease and methods used for its study.
Collapse
Affiliation(s)
- Mattias Carlström
- Department of Medicine, Division of Nephrology and Hypertension and Hypertension, Kidney and Vascular Research Center, Georgetown University, Washington, District of Columbia; Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; and Department of Cell Biology and Physiology, UNC Kidney Center, and McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Christopher S Wilcox
- Department of Medicine, Division of Nephrology and Hypertension and Hypertension, Kidney and Vascular Research Center, Georgetown University, Washington, District of Columbia; Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; and Department of Cell Biology and Physiology, UNC Kidney Center, and McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - William J Arendshorst
- Department of Medicine, Division of Nephrology and Hypertension and Hypertension, Kidney and Vascular Research Center, Georgetown University, Washington, District of Columbia; Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; and Department of Cell Biology and Physiology, UNC Kidney Center, and McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
22
|
Veit F, Pak O, Brandes RP, Weissmann N. Hypoxia-dependent reactive oxygen species signaling in the pulmonary circulation: focus on ion channels. Antioxid Redox Signal 2015; 22:537-52. [PMID: 25545236 PMCID: PMC4322788 DOI: 10.1089/ars.2014.6234] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
SIGNIFICANCE An acute lack of oxygen in the lung causes hypoxic pulmonary vasoconstriction, which optimizes gas exchange. In contrast, chronic hypoxia triggers a pathological vascular remodeling causing pulmonary hypertension, and ischemia can cause vascular damage culminating in lung edema. RECENT ADVANCES Regulation of ion channel expression and gating by cellular redox state is a widely accepted mechanism; however, it remains a matter of debate whether an increase or a decrease in reactive oxygen species (ROS) occurs under hypoxic conditions. Ion channel redox regulation has been described in detail for some ion channels, such as Kv channels or TRPC6. However, in general, information on ion channel redox regulation remains scant. CRITICAL ISSUES AND FUTURE DIRECTIONS In addition to the debate of increased versus decreased ROS production during hypoxia, we aim here at describing and deciphering why different oxidants, under different conditions, can cause both activation and inhibition of channel activity. While the upstream pathways affecting channel gating are often well described, we need a better understanding of redox protein modifications to be able to determine the complexity of ion channel redox regulation. Against this background, we summarize the current knowledge on hypoxia-induced ROS-mediated ion channel signaling in the pulmonary circulation.
Collapse
Affiliation(s)
- Florian Veit
- 1 Excellence Cluster Cardiopulmonary System (ECCPS), Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL) , Giessen, Germany
| | | | | | | |
Collapse
|
23
|
Chen H, Li S, Wang P, Yan S, Hu L, Pan X, Yang C, Leung GP. Endothelium-dependent and -independent relaxation of rat aorta induced by extract of Schizophyllum commune. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2014; 21:1230-1236. [PMID: 25172784 DOI: 10.1016/j.phymed.2014.06.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Revised: 05/03/2014] [Accepted: 06/19/2014] [Indexed: 06/03/2023]
Abstract
Schizophyllum commune (SC) is widely consumed by Chinese, especially in southern part of China. The aim of the present study was to assess the extract of SC on vascular tone and the mechanisms involved. Experiments were performed on aorta of 18-week-old male Sprague-Dawley rats. Dried SC was extracted with 50% ethanol, 90% ethanol and deionized water, respectively. The effects of SC on the isometric tension of rat aortic rings were measured. Protein expression for the endothelial nitric oxide synthase (eNOS) was also determined in the primarily cultured rat aortic arterial endothelial cells (RAECs). The results showed that the water extract of SC induced a marked relaxation in aortic rings with or without endothelium. After the pretreatments of N(ω)-nitro-l-arginine methyl ester, indomethacin, RP-cAMP, and methylene blue, the SC-induced relaxation was significantly decreased. In addition, the contraction due to Ca(2+) influx and intracellular Ca(2+) release was also inhibited by SC. Furthermore, expression of the eNOS protein was significantly elevated in RAECs after treatment of SC. In conclusion, the water extract of SC induces an endothelium-dependent and -independent relaxation in rat aorta. The relaxing effect of SC involves the modulation of NO-cGMP-dependent pathways, PGI2-cAMP-depedent pathways, Ca(2+) influx though calcium channels and intracellular Ca(2+) release.
Collapse
Affiliation(s)
- Haiyun Chen
- Ethnic Drug Screening & Pharmacology Center, Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, Yunnan Minzu University, Kunming 650500, PR China
| | - Sujuan Li
- Ethnic Drug Screening & Pharmacology Center, Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, Yunnan Minzu University, Kunming 650500, PR China
| | - Peng Wang
- School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, PR China
| | - Saimei Yan
- Ethnic Drug Screening & Pharmacology Center, Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, Yunnan Minzu University, Kunming 650500, PR China
| | - Lin Hu
- Ethnic Drug Screening & Pharmacology Center, Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, Yunnan Minzu University, Kunming 650500, PR China
| | - Xiaoxia Pan
- Ethnic Drug Screening & Pharmacology Center, Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, Yunnan Minzu University, Kunming 650500, PR China
| | - Cui Yang
- Ethnic Drug Screening & Pharmacology Center, Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, Yunnan Minzu University, Kunming 650500, PR China; Department of Pharmacology & Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, PR China.
| | - George Pakheng Leung
- Department of Pharmacology & Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, PR China.
| |
Collapse
|
24
|
Wang HP, Lu JF, Zhang GL, Li XY, Peng HY, Lu Y, Zhao L, Ye ZG, Bruce IC, Xia Q, Qian LB. Endothelium-dependent and -independent vasorelaxant actions and mechanisms induced by total flavonoids of Elsholtzia splendens in rat aortas. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2014; 38:453-459. [PMID: 25136778 DOI: 10.1016/j.etap.2014.07.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 07/18/2014] [Accepted: 07/25/2014] [Indexed: 06/03/2023]
Abstract
Elsholtzia splendens (ES) is, rich in flavonoids, used to repair copper contaminated soil in China, which has been reported to benefit cardiovascular systems as folk medicine. However, few direct evidences have been found to clarify the vasorelaxation effect of total flavonoids of ES (TFES). The vasoactive effect of TFES and its underlying mechanisms in rat thoracic aortas were investigated using the organ bath system. TFES (5-200mg/L) caused a concentration-dependent vasorelaxation in endothelium-intact rings, which was not abolished but significantly reduced by the removal of endothelium. The nitric oxide synthase (NOS) inhibitor N(ω)-nitro-l-arginine methyl ester (100μM) and the guanylate cyclase inhibitor 1H-[1,2,4]oxadiazolo[4,2-α]quinoxalin-1-one (30μM) significantly blocked the endothelium-dependent vasorelaxation of TFES. Meanwhile, NOS activity in endothelium-intact aortas was concentration-dependently elevated by TFES. However, indomethacin (10μM) did not affect TFES-induced vasorelaxation. Endothelium-independent vasorelaxation of TFES was significantly attenuated by KATP channel blocker glibenclamide. The accumulative Ca(2+)-induced contraction in endothelium-denuded aortic rings primed with KCl or phenylephrine was markedly weakened by TFES. These results revealed that the NOS/NO/cGMP pathway is likely involved in the endothelium-dependent vasorelaxation induced by TFES, while activating KATP channel, inhibiting intracellular Ca(2+) release, blocking Ca(2+) channels and decreasing Ca(2+) influx into vascular smooth muscle cells might contribute to the endothelium-independent vasorelaxation conferred by TFES.
Collapse
Affiliation(s)
- Hui-Ping Wang
- Department of Physiology, Zhejiang University School of Medicine, Hangzhou 310058, PR China
| | - Jian-Feng Lu
- Department of Physiology, Zhejiang University School of Medicine, Hangzhou 310058, PR China
| | - Guo-Lin Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Xu-Yun Li
- Department of Physiology, Zhejiang University School of Medicine, Hangzhou 310058, PR China
| | - Hong-Yun Peng
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Yuan Lu
- Department of Physiology, Zhejiang University School of Medicine, Hangzhou 310058, PR China
| | - Liang Zhao
- Department of Physiology, Zhejiang University School of Medicine, Hangzhou 310058, PR China
| | - Zhi-Guo Ye
- Department of Physiology, Zhejiang University School of Medicine, Hangzhou 310058, PR China
| | - Iain C Bruce
- Department of Physiology, Zhejiang University School of Medicine, Hangzhou 310058, PR China
| | - Qiang Xia
- Department of Physiology, Zhejiang University School of Medicine, Hangzhou 310058, PR China
| | - Ling-Bo Qian
- Department of Physiology, Zhejiang Medical College, Hangzhou 310053, PR China.
| |
Collapse
|
25
|
Duckles H, Boycott HE, Al-Owais MM, Elies J, Johnson E, Dallas ML, Porter KE, Giuntini F, Boyle JP, Scragg JL, Peers C. Heme oxygenase-1 regulates cell proliferation via carbon monoxide-mediated inhibition of T-type Ca2+ channels. Pflugers Arch 2014; 467:415-27. [PMID: 24744106 PMCID: PMC4293494 DOI: 10.1007/s00424-014-1503-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 03/14/2014] [Accepted: 03/14/2014] [Indexed: 11/24/2022]
Abstract
Induction of the antioxidant enzyme heme oxygenase-1 (HO-1) affords cellular protection and suppresses proliferation of vascular smooth muscle cells (VSMCs) associated with a variety of pathological cardiovascular conditions including myocardial infarction and vascular injury. However, the underlying mechanisms are not fully understood. Over-expression of Cav3.2 T-type Ca2+ channels in HEK293 cells raised basal [Ca2+]i and increased proliferation as compared with non-transfected cells. Proliferation and [Ca2+]i levels were reduced to levels seen in non-transfected cells either by induction of HO-1 or exposure of cells to the HO-1 product, carbon monoxide (CO) (applied as the CO releasing molecule, CORM-3). In the aortic VSMC line A7r5, proliferation was also inhibited by induction of HO-1 or by exposure of cells to CO, and patch-clamp recordings indicated that CO inhibited T-type (as well as L-type) Ca2+ currents in these cells. Finally, in human saphenous vein smooth muscle cells, proliferation was reduced by T-type channel inhibition or by HO-1 induction or CO exposure. The effects of T-type channel blockade and HO-1 induction were non-additive. Collectively, these data indicate that HO-1 regulates proliferation via CO-mediated inhibition of T-type Ca2+ channels. This signalling pathway provides a novel means by which proliferation of VSMCs (and other cells) may be regulated therapeutically.
Collapse
Affiliation(s)
- Hayley Duckles
- Division of Cardiovascular and Diabetes Research, LIGHT, Faculty of Medicine and Health, University of Leeds, Clarendon Way, Leeds, LS2 9JT, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Lindsey SH, Liu L, Chappell MC. Vasodilation by GPER in mesenteric arteries involves both endothelial nitric oxide and smooth muscle cAMP signaling. Steroids 2014; 81:99-102. [PMID: 24246735 PMCID: PMC3947732 DOI: 10.1016/j.steroids.2013.10.017] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Our previous work showed that chronic activation of the membrane-bound estrogen receptor GPR30/GPER significantly lowers blood pressure in ovariectomized hypertensive mRen2.Lewis female rats which may, in part, reflect direct vasodilatory actions. The current study assessed the hypothesis that cyclic adenosine monophosphate (cAMP) signaling contributes to GPER-mediated vasorelaxation. In mesenteric resistance arteries from intact Lewis females, relaxation to 17-β-estradiol (E2; 47±3% of phenylephrine contraction vs. vehicle 89±2%, P<0.001) or G-1 (44±8%, P<0.001) was blunted to a similar extent by denuding (P<0.001) or the nitric oxide synthase inhibitor l-NAME (P<0.001). In contrast, the cyclooxygenase inhibitor indomethacin did not alter vasodilation (P>0.05). The cAMP analog Rp-cAMPS partially attenuated vasodilation (65±7%, P<0.001), while the combination of l-NAME and Rp-cAMPS exhibited additive effects to effectively abolish vasorelaxation (P>0.05 vs. vehicle). Pretreatment of endothelium-intact vessels with the adenylyl cyclase inhibitor SQ (63±6%) or the guanylyl cyclase inhibitor ODQ (62±9%) both partially inhibited the response to G-1 (P<0.01), while pretreatment with the both inhibitors completely abolished vasorelaxation (P>0.05 vs. vehicle). In denuded vessels only SQ reduced the response (88±3%, P<0.001). Moreover, G-1 significantly increased intracellular cAMP levels in cultured mesenteric smooth muscle cells (P<0.05). We conclude that GPER-dependent vasorelaxation apparently involves both endothelial release of nitric oxide which activates guanylyl cyclase and smooth muscle cell activation of adenylyl cyclase. Downstream production of cyclic nucleotides and stimulation of protein kinases may phosphorylate proteins to promote vascular smooth muscle cell relaxation. The ability of GPER to initiate these signaling pathways may contribute to the beneficial vascular effects of estrogen.
Collapse
MESH Headings
- Animals
- Cyclic AMP/metabolism
- Cyclopentanes/pharmacology
- Dose-Response Relationship, Drug
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/metabolism
- Estradiol/pharmacology
- Female
- In Vitro Techniques
- Mesenteric Arteries/drug effects
- Mesenteric Arteries/metabolism
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- NG-Nitroarginine Methyl Ester/pharmacology
- Nitric Oxide/metabolism
- Quinolines/pharmacology
- Rats
- Rats, Inbred Lew
- Receptors, G-Protein-Coupled/agonists
- Receptors, G-Protein-Coupled/metabolism
- Signal Transduction/drug effects
- Vasodilation
Collapse
Affiliation(s)
- Sarah H Lindsey
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, United States.
| | - Liu Liu
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, United States
| | - Mark C Chappell
- Hypertension and Vascular Research Center, Wake Forest School of Medicine, Winston-Salem, NC, United States
| |
Collapse
|
27
|
Pintérová M, Behuliak M, Kuneš J, Zicha J. Involvement of BKCa and KV potassium channels in cAMP-induced vasodilatation: their insufficient function in genetic hypertension. Physiol Res 2014; 63:275-85. [PMID: 24397812 DOI: 10.33549/physiolres.932718] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Spontaneously hypertensive rats (SHR) are characterized by enhanced sympathetic vasoconstriction, whereas their vasodilator mechanisms are relatively attenuated compared to their high BP. The objective of our in vivo study was to evaluate whether the impaired function of BKCa and/or KV channels is responsible for abnormal cAMP-induced vasodilatation in genetic hypertension. Using conscious SHR and normotensive WKY rats we have shown that under the basal conditions cAMP overproduction elicited by the infusion of beta-adrenoceptor agonist (isoprenaline) caused a more pronounced decrease of baseline blood pressure (BP) in SHR compared to WKY rats. Isoprenaline infusion prevented BP rises induced by acute NO synthase blockade in both strains and it also completely abolished the fully developed BP response to NO synthase blockade. These cAMP-induced vasodilator effects were diminished by the inhibition of either BKCa or KV channels in SHR but simultaneous blockade of both K(+) channel types was necessary in WKY rats. Under basal conditions, the vasodilator action of both K(+) channels was enhanced in SHR compared to WKY rats. However, the overall contribution of K(+) channels to cAMP-induced vasodilator mechanisms is insufficient in genetic hypertension since a concurrent activation of both K(+) channels by cAMP overproduction is necessary for the prevention of BP rise elicited by acute NO/cGMP deficiency in SHR. This might be caused by less effective activation of these K(+) channels by cAMP in SHR. In conclusion, K(+) channels seem to have higher activity in SHR, but their vasodilator action cannot match sufficiently the augmented vasoconstriction in this hypertensive strain.
Collapse
Affiliation(s)
- M Pintérová
- Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic.
| | | | | | | |
Collapse
|
28
|
Weiss S, Oz S, Benmocha A, Dascal N. Regulation of cardiac L-type Ca²⁺ channel CaV1.2 via the β-adrenergic-cAMP-protein kinase A pathway: old dogmas, advances, and new uncertainties. Circ Res 2013; 113:617-31. [PMID: 23948586 DOI: 10.1161/circresaha.113.301781] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In the heart, adrenergic stimulation activates the β-adrenergic receptors coupled to the heterotrimeric stimulatory Gs protein, followed by subsequent activation of adenylyl cyclase, elevation of cyclic AMP levels, and protein kinase A (PKA) activation. One of the main targets for PKA modulation is the cardiac L-type Ca²⁺ channel (CaV1.2) located in the plasma membrane and along the T-tubules, which mediates Ca²⁺ entry into cardiomyocytes. β-Adrenergic receptor activation increases the Ca²⁺ current via CaV1.2 channels and is responsible for the positive ionotropic effect of adrenergic stimulation. Despite decades of research, the molecular mechanism underlying this modulation has not been fully resolved. On the contrary, initial reports of identification of key components in this modulation were later refuted using advanced model systems, especially transgenic animals. Some of the cardinal debated issues include details of specific subunits and residues in CaV1.2 phosphorylated by PKA, the nature, extent, and role of post-translational processing of CaV1.2, and the role of auxiliary proteins (such as A kinase anchoring proteins) involved in PKA regulation. In addition, the previously proposed crucial role of PKA in modulation of unstimulated Ca²⁺ current in the absence of β-adrenergic receptor stimulation and in voltage-dependent facilitation of CaV1.2 remains uncertain. Full reconstitution of the β-adrenergic receptor signaling pathway in heterologous expression systems remains an unmet challenge. This review summarizes the past and new findings, the mechanisms proposed and later proven, rejected or disputed, and emphasizes the essential issues that remain unresolved.
Collapse
Affiliation(s)
- Sharon Weiss
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel-Aviv, Israel.
| | | | | | | |
Collapse
|
29
|
Westcott EB, Segal SS. Perivascular innervation: a multiplicity of roles in vasomotor control and myoendothelial signaling. Microcirculation 2013; 20:217-38. [PMID: 23289720 DOI: 10.1111/micc.12035] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Accepted: 12/25/2012] [Indexed: 12/30/2022]
Abstract
The control of vascular resistance and tissue perfusion reflect coordinated changes in the diameter of feed arteries and the arteriolar networks they supply. Against a background of myogenic tone and metabolic demand, vasoactive signals originating from perivascular sympathetic and sensory nerves are integrated with endothelium-derived signals to produce vasodilation or vasoconstriction. PVNs release adrenergic, cholinergic, peptidergic, purinergic, and nitrergic neurotransmitters that lead to SMC contraction or relaxation via their actions on SMCs, ECs, or other PVNs. ECs release autacoids that can have opposing actions on SMCs. Respective cell layers are connected directly to each other through GJs at discrete sites via MEJs projecting through holes in the IEL. Whereas studies of intercellular communication in the vascular wall have centered on endothelium-derived signals that govern SMC relaxation, attention has increasingly focused on signaling from SMCs to ECs. Thus, via MEJs, neurotransmission from PVNs can evoke distinct responses from ECs subsequent to acting on SMCs. To integrate this emerging area of investigation in light of vasomotor control, the present review synthesizes current understanding of signaling events that originate within SMCs in response to perivascular neurotransmission in light of EC feedback. Although often ignored in studies of the resistance vasculature, PVNs are integral to blood flow control and can provide a physiological stimulus for myoendothelial communication. Greater understanding of these underlying signaling events and how they may be affected by aging and disease will provide new approaches for selective therapeutic interventions.
Collapse
Affiliation(s)
- Erika B Westcott
- Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri 65212, USA
| | | |
Collapse
|
30
|
Roberts R, Allen S, Chang A, Henderson H, Hobson G, Karania B, Morgan K, Pek A, Raghvani K, Shee C, Shikotra J, Street E, Abbas Z, Ellis K, Heer J, Alexander S. Distinct mechanisms of relaxation to bioactive components from chamomile species in porcine isolated blood vessels. Toxicol Appl Pharmacol 2013; 272:797-805. [DOI: 10.1016/j.taap.2013.06.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 06/03/2013] [Accepted: 06/21/2013] [Indexed: 10/26/2022]
|
31
|
Wang GR, Surks HK, Tang KM, Zhu Y, Mendelsohn ME, Blanton RM. Steroid-sensitive gene 1 is a novel cyclic GMP-dependent protein kinase I substrate in vascular smooth muscle cells. J Biol Chem 2013; 288:24972-83. [PMID: 23831687 DOI: 10.1074/jbc.m113.456244] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
NO, via its second messenger cGMP, activates protein kinase GI (PKGI) to induce vascular smooth muscle cell relaxation. The mechanisms by which PKGI kinase activity regulates cardiovascular function remain incompletely understood. Therefore, to identify novel protein kinase G substrates in vascular cells, a λ phage coronary artery smooth muscle cell library was constructed and screened for phosphorylation by PKGI. The screen identified steroid-sensitive gene 1 (SSG1), which harbors several predicted PKGI phosphorylation sites. We observed direct and cGMP-regulated interaction between PKGI and SSG1. In cultured vascular smooth muscle cells, both the NO donor S-nitrosocysteine and atrial natriuretic peptide induced SSG1 phosphorylation, and mutation of SSG1 at each of the two predicted PKGI phosphorylation sites completely abolished its basal phosphorylation by PKGI. We detected high SSG1 expression in cardiovascular tissues. Finally, we found that activation of PKGI with cGMP regulated SSG1 intracellular distribution.
Collapse
Affiliation(s)
- Guang-rong Wang
- Molecular Cardiology Research Institute and Division of Cardiology, Tufts Medical Center, Boston, Massachusetts 02111, USA
| | | | | | | | | | | |
Collapse
|
32
|
Sitprija V, Sitprija S. Renal effects and injury induced by animal toxins. Toxicon 2012; 60:943-53. [DOI: 10.1016/j.toxicon.2012.06.012] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Revised: 06/12/2012] [Accepted: 06/18/2012] [Indexed: 10/28/2022]
|
33
|
Weiss S, Keren-Raifman T, Oz S, Ben Mocha A, Haase H, Dascal N. Modulation of distinct isoforms of L-type calcium channels by G(q)-coupled receptors in Xenopus oocytes: antagonistic effects of Gβγ and protein kinase C. Channels (Austin) 2012; 6:426-37. [PMID: 22990911 DOI: 10.4161/chan.22016] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
L-type voltage dependent Ca(2+) channels (L-VDCCs; Ca(v)1.2) are crucial in cardiovascular physiology. In heart and smooth muscle, hormones and transmitters operating via G(q) enhance L-VDCC currents via essential protein kinase C (PKC) involvement. Heterologous reconstitution studies in Xenopus oocytes suggested that PKC and G(q)-coupled receptors increased L-VDCC currents only in cardiac long N-terminus (NT) isoforms of α(1C), whereas known smooth muscle short-NT isoforms were inhibited by PKC and G(q) activators. We report a novel regulation of the long-NT α(1C) isoform by Gβγ. Gβγ inhibited whereas a Gβγ scavenger protein augmented the G(q)--but not phorbol ester-mediated enhancement of channel activity, suggesting that Gβγ acts upstream from PKC. In vitro binding experiments reveal binding of both Gβγ and PKC to α(1C)-NT. However, PKC modulation was not altered by mutations of multiple potential phosphorylation sites in the NT, and was attenuated by a mutation of C-terminally located serine S1928. The insertion of exon 9a in intracellular loop 1 rendered the short-NT α(1C) sensitive to PKC stimulation and to Gβγ scavenging. Our results suggest a complex antagonistic interplay between G(q)-activated PKC and Gβγ in regulation of L-VDCC, in which multiple cytosolic segments of α(1C) are involved.
Collapse
Affiliation(s)
- Sharon Weiss
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | | | | | | | | | | |
Collapse
|
34
|
Morgado M, Cairrão E, Santos-Silva AJ, Verde I. Cyclic nucleotide-dependent relaxation pathways in vascular smooth muscle. Cell Mol Life Sci 2012; 69:247-66. [PMID: 21947498 PMCID: PMC11115151 DOI: 10.1007/s00018-011-0815-2] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Revised: 08/21/2011] [Accepted: 08/23/2011] [Indexed: 02/07/2023]
Abstract
Vascular smooth muscle tone is controlled by a balance between the cellular signaling pathways that mediate the generation of force (vasoconstriction) and release of force (vasodilation). The initiation of force is associated with increases in intracellular calcium concentrations, activation of myosin light-chain kinase, increases in the phosphorylation of the regulatory myosin light chains, and actin-myosin crossbridge cycling. There are, however, several signaling pathways modulating Ca(2+) mobilization and Ca(2+) sensitivity of the contractile machinery that secondarily regulate the contractile response of vascular smooth muscle to receptor agonists. Among these regulatory mechanisms involved in the physiological regulation of vascular tone are the cyclic nucleotides (cAMP and cGMP), which are considered the main messengers that mediate vasodilation under physiological conditions. At least four distinct mechanisms are currently thought to be involved in the vasodilator effect of cyclic nucleotides and their dependent protein kinases: (1) the decrease in cytosolic calcium concentration ([Ca(2+)]c), (2) the hyperpolarization of the smooth muscle cell membrane potential, (3) the reduction in the sensitivity of the contractile machinery by decreasing the [Ca(2+)]c sensitivity of myosin light-chain phosphorylation, and (4) the reduction in the sensitivity of the contractile machinery by uncoupling contraction from myosin light-chain phosphorylation. This review focuses on each of these mechanisms involved in cyclic nucleotide-dependent relaxation of vascular smooth muscle under physiological conditions.
Collapse
Affiliation(s)
- Manuel Morgado
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Elisa Cairrão
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - António José Santos-Silva
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Ignacio Verde
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| |
Collapse
|
35
|
Chen Y, Zheng J, Zheng F, Wang J, Zhang Y, Gao F, Huang Z, Shi G. Design, synthesis, and pharmacological evaluation of haloperidol derivatives as novel potent calcium channel blockers with vasodilator activity. PLoS One 2011; 6:e27673. [PMID: 22110716 PMCID: PMC3218019 DOI: 10.1371/journal.pone.0027673] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2011] [Accepted: 10/21/2011] [Indexed: 02/05/2023] Open
Abstract
Several haloperidol derivatives with a piperidine scaffold that was decorated at the nitrogen atom with different alkyl, benzyl, or substituted benzyl moieties were synthesized at our laboratory to establish a library of compounds with vasodilator activity. Compounds were screened for vasodilatory activity on isolated thoracic aorta rings from rats, and their quantitative structure-activity relationships (QSAR) were examined. Based on the result of QSAR, N-4-tert-butyl benzyl haloperidol chloride (16c) was synthesized and showed the most potent vasodilatory activity of all designed compounds. 16c dose-dependently inhibited the contraction caused by the influx of extracellular Ca(2+) in isolated thoracic aorta rings from rats. It concentration-dependently attenuated the calcium channel current and extracellular Ca(2+) influx, without affecting the intracellular Ca(2+) mobilization, in vascular smooth muscle cells from rats. 16c, possessing the N-4-tert-butyl benzyl piperidine structure, as a novel calcium antagonist, may be effective as a calcium channel blocker in cardiovascular disease.
Collapse
Affiliation(s)
- Yicun Chen
- Department of Pharmacology, Shantou University Medical College, Shantou, Guangdong, China
| | - Jinhong Zheng
- Department of Chemistry, Shantou University Medical College, Shantou, Guangdong, China
| | - Fuchun Zheng
- Department of Pharmacy, First Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China
| | - Jinzhi Wang
- Department of Chemistry, Shantou University Medical College, Shantou, Guangdong, China
| | - Yanmei Zhang
- Department of Pharmacology, Shantou University Medical College, Shantou, Guangdong, China
| | - Fenfei Gao
- Department of Pharmacology, Shantou University Medical College, Shantou, Guangdong, China
| | - Zhanqin Huang
- Department of Pharmacology, Shantou University Medical College, Shantou, Guangdong, China
| | - Ganggang Shi
- Department of Pharmacology, Shantou University Medical College, Shantou, Guangdong, China
- Department of Cardiovascular Diseases, First Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China
| |
Collapse
|
36
|
Wang J, Thio SS, Yang SS, Yu D, Yu CY, Wong YP, Liao P, Li S, Soong TW. Splice Variant Specific Modulation of Ca
V
1.2 Calcium Channel by Galectin-1 Regulates Arterial Constriction. Circ Res 2011; 109:1250-8. [DOI: 10.1161/circresaha.111.248849] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Rationale:
Ca
V
1.2 channels are essential for excitation–contraction coupling in the cardiovascular system, and alternative splicing optimizes its role. Galectin-1 (Gal-1) has been reported to regulate vascular smooth muscle cell (VSMC) function and play a role in pulmonary hypertension. We have identified Gal-1 multiple times in yeast 2-hybrid assays using the Ca
V
1.2 I–II loop as bait.
Objective:
Our hypothesis is that Gal-1 interacts directly with Ca
V
1.2 channel at the I–II loop to affect arterial constriction.
Methods and Results:
Unexpectedly, Gal-1 was found to selectively bind to the I–II loop only in the absence of alternatively spliced exon 9*. We found that the current densities of Ca
V
1.2
Δ9*
channels were significantly inhibited as a result of decreased functional surface expression due to the binding of Gal-1 at the export signal located on the C-terminus of exon 9. Moreover, the suppression of Gal-1 expression by siRNA in rat A7r5 and isolated VSMCs produced the opposite effect of increased
I
Ca,L
. The physiological significance of Gal-1 mediated splice variant-specific inhibition of Ca
V
1.2 channels was demonstrated in organ bath culture where rat MAs were reversibly permeabilized with Gal-1 siRNA and the arterial wall exhibited increased K
+
-induced constriction.
Conclusion:
The above data indicated that Gal-1 regulates
I
Ca,L
via decreasing the functional surface expression of Ca
V
1.2 channels in a splice variant selective manner and such a mechanism may play a role in modulating vascular constriction.
Collapse
Affiliation(s)
- Juejin Wang
- From the Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore (J.W., D.Y., Y.P.W., T.W.S.); National Neuroscience Institute, Singapore (J.W., S.S.C.T., S.H.Y., C.Y.Y., P.L., T.W.S.); and Department of Pharmacology, Nanjing Medical University, Nanjing, China (J.W., S.L.)
| | - Sharon S.C. Thio
- From the Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore (J.W., D.Y., Y.P.W., T.W.S.); National Neuroscience Institute, Singapore (J.W., S.S.C.T., S.H.Y., C.Y.Y., P.L., T.W.S.); and Department of Pharmacology, Nanjing Medical University, Nanjing, China (J.W., S.L.)
| | - Sophia S.H. Yang
- From the Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore (J.W., D.Y., Y.P.W., T.W.S.); National Neuroscience Institute, Singapore (J.W., S.S.C.T., S.H.Y., C.Y.Y., P.L., T.W.S.); and Department of Pharmacology, Nanjing Medical University, Nanjing, China (J.W., S.L.)
| | - Dejie Yu
- From the Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore (J.W., D.Y., Y.P.W., T.W.S.); National Neuroscience Institute, Singapore (J.W., S.S.C.T., S.H.Y., C.Y.Y., P.L., T.W.S.); and Department of Pharmacology, Nanjing Medical University, Nanjing, China (J.W., S.L.)
| | - Chye Yun Yu
- From the Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore (J.W., D.Y., Y.P.W., T.W.S.); National Neuroscience Institute, Singapore (J.W., S.S.C.T., S.H.Y., C.Y.Y., P.L., T.W.S.); and Department of Pharmacology, Nanjing Medical University, Nanjing, China (J.W., S.L.)
| | - Yuk Peng Wong
- From the Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore (J.W., D.Y., Y.P.W., T.W.S.); National Neuroscience Institute, Singapore (J.W., S.S.C.T., S.H.Y., C.Y.Y., P.L., T.W.S.); and Department of Pharmacology, Nanjing Medical University, Nanjing, China (J.W., S.L.)
| | - Ping Liao
- From the Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore (J.W., D.Y., Y.P.W., T.W.S.); National Neuroscience Institute, Singapore (J.W., S.S.C.T., S.H.Y., C.Y.Y., P.L., T.W.S.); and Department of Pharmacology, Nanjing Medical University, Nanjing, China (J.W., S.L.)
| | - Shengnan Li
- From the Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore (J.W., D.Y., Y.P.W., T.W.S.); National Neuroscience Institute, Singapore (J.W., S.S.C.T., S.H.Y., C.Y.Y., P.L., T.W.S.); and Department of Pharmacology, Nanjing Medical University, Nanjing, China (J.W., S.L.)
| | - Tuck Wah Soong
- From the Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore (J.W., D.Y., Y.P.W., T.W.S.); National Neuroscience Institute, Singapore (J.W., S.S.C.T., S.H.Y., C.Y.Y., P.L., T.W.S.); and Department of Pharmacology, Nanjing Medical University, Nanjing, China (J.W., S.L.)
| |
Collapse
|
37
|
Hoe SZ, Lee CN, Mok SL, Kamaruddin MY, Lam SK. Gynura procumbens Merr. decreases blood pressure in rats by vasodilatation via inhibition of calcium channels. Clinics (Sao Paulo) 2011; 66:143-50. [PMID: 21437451 PMCID: PMC3044591 DOI: 10.1590/s1807-59322011000100025] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Accepted: 10/21/2010] [Indexed: 01/19/2023] Open
Abstract
INTRODUCTION Gynura procumbens has been shown to decrease blood pressure via inhibition of the angiotensinconverting enzyme. However, other mechanisms that may contribute to the hypotensive effect have not been studied. OBJECTIVES To investigate the cardiovascular effects of a butanolic fraction of Gynura procumbens in rats. METHODS Anaesthetized rats were given intravenous bolus injections of butanolic fraction at doses of 2.5-20 mg/kg in vivo. The effect of butanolic fraction on vascular reactivity was recorded in isolated rat aortic rings in vitro. RESULTS Intravenous administrations of butanolic fraction elicited significant (p < 0.001) and dose-dependent decreases in the mean arterial pressure. However, a significant (p < 0.05) decrease in the heart rate was observed only at the higher doses (10 and 20 mg/kg). In isolated preparations of rat aortic rings, phenylephrine (1 × 10⁻⁶ M)- or potassium chloride (8 × 10⁻² M)-precontracted endothelium-intact and -denuded tissue; butanolic fraction (1 × 10⁻⁶ - 1 × 10⁻¹ g/ml) induced similar concentration-dependent relaxation of the vessels. In the presence of 2.5 × 10⁻³ and 5.0 × 10⁻³ g/ml butanolic fraction, the contractions induced by phenylephrine (1 × 10⁻⁹-3 × 10⁻⁵ M) and potassium chloride (1 × 10⁻² - 8 × 10⁻² M) were significantly antagonized. The calcium-induced vasocontractions (1 × 10⁻⁴-1 × 10⁻²M) were antagonized by butanolic fraction concentration-dependently in calcium-free and high potassium (6×10⁻² M) medium, as well as in calcium- and potassium-free medium containing 1×10⁻⁶ M phenylephrine. However, the contractions induced by noradrenaline (1 × 10⁻⁶ M) and caffeine (4.5 × 10⁻² M) were not affected by butanolic fraction. CONCLUSION Butanolic fraction contains putative hypotensive compounds that appear to inhibit calcium influx via receptor-operated and/or voltage-dependent calcium channels to cause vasodilation and a consequent fall in blood pressure.
Collapse
Affiliation(s)
- See-Ziau Hoe
- Department of Physiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.
| | | | | | | | | |
Collapse
|
38
|
Shirozu K, Akata T, Yoshino J, Setoguchi H, Morikawa K, Hoka S. The mechanisms of the direct action of etomidate on vascular reactivity in rat mesenteric resistance arteries. Anesth Analg 2009; 108:496-507. [PMID: 19151278 DOI: 10.1213/ane.0b013e3181902826] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Etomidate minimally influences hemodynamics at a standard induction dose in young healthy patients, but can cause significant systemic hypotension at higher doses for induction or electroencephalographic burst suppression (i.e., cerebral protection) in patients with advanced age or heart disease, and during cardiopulmonary bypass. However, less is known about its action on systemic resistance arteries. METHODS Using an isometric force recording method and fura-2-fluorometry, we investigated the action of etomidate on vascular reactivity in small mesenteric arteries from young (7-8 wk old, n = 179) and aged (96-98 wk old, n = 10) rats. RESULTS In the endothelium-intact strips from young rats, etomidate enhanced the contractile response to norepinephrine or KCl (40 mM) at 3 microM but inhibited it at higher concentrations (>or=10 microM). The enhancement was still observed after treatment with N(G)-nitro l-arginine, tetraethylammonium, diclofenac, nordihydroguaiaretic acid, losartan, ketanserin, BQ-123, or BQ-788, but was not observed in aged rats. In the endothelium-denuded strips from young rats, etomidate (>or=10 microM) consistently inhibited the contractile response to norepinephrine or KCl without enhancement at 3 microM. In the fura-2-loaded, endothelium-denuded strips from young rats, etomidate inhibited norepinephrine- or KCl-induced increases in both intracellular Ca(2+) concentration ([Ca(2+)]i) and force. Etomidate still inhibited the norepinephrine-induced increase in [Ca(2+)]i after depletion of the intracellular Ca(2+) stores by ryanodine, which was sensitive to nifedipine. Etomidate had little effect on norepinephrine- or caffeine-induced Ca(2+) release from the intracellular stores or Ca(2+) uptake into the intracellular stores. During stimulation with norepinephrine or KCl, etomidate had little effect on the [Ca(2+)]i-force relation at low concentrations (<or=30 microM) but caused its downward shift at 100 microM. CONCLUSIONS In small mesenteric arteries, etomidate influences the contractile response to norepinephrine or membrane depolarization through endothelium-dependent enhancing and endothelium-independent inhibitory actions. The enhancement is at least in part independent of nitric oxide, endothelium-derived hyperpolarizing factor, cyclooxygenase products, lipoxygenase products, angiotensin II, serotonin, or endothelin-1, but may involve some signaling pathway that is impaired by aging. The endothelium-independent inhibition is due to decreases in both the [Ca(2+)]i and myofilament Ca(2+) sensitivity in vascular smooth muscle cells. The decrease in [Ca(2+)]i would be due mainly to inhibition of voltage-gated Ca(2+) influx. The observed inability of lower concentrations (1-3 microM) of etomidate to cause significant vasodilation is consistent with minimal changes in hemodynamics during induction of anesthesia with etomidate in young subjects, whereas the observed vasodilator action of higher concentrations of etomidate might underlie systemic hypotension caused by higher doses of etomidate in the clinical setting.
Collapse
Affiliation(s)
- Kazuhiro Shirozu
- Department of Anesthesiology and Critical Care Medicine, Faculty of Medicine, Kyushu University, Fukuoka 812-8582, Japan
| | | | | | | | | | | |
Collapse
|
39
|
Mechanisms of flavonoid protection against myocardial ischemia-reperfusion injury. J Mol Cell Cardiol 2008; 46:309-17. [PMID: 19133271 DOI: 10.1016/j.yjmcc.2008.12.003] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2008] [Revised: 12/04/2008] [Accepted: 12/05/2008] [Indexed: 01/10/2023]
Abstract
Flavonoids have long been acknowledged for their unique antioxidant properties, and possess other activities that may be relevant to heart ischemia-reperfusion. They may prevent production of oxidants (e.g. by inhibition of xanthine oxidase and chelation of transition metals), inhibit oxidants from attacking cellular targets (e.g. by electron donation and scavenging activities), block propagation of oxidative reactions (by chain-breaking antioxidant activity), and reinforce cellular antioxidant capacity (through sparing effects on other antioxidants and inducing expression of endogenous antioxidants). Flavonoids also possess anti-inflammatory and anti-platelet aggregation effects through inhibiting relevant enzymes and signaling pathways, resulting ultimately in lower oxidant production and better re-establishment of blood in the ischemic zone. Finally, flavonoids are vasodilatory through a variety of mechanisms, one of which is likely interaction with ion channels. These multifaceted activities of flavonoids raise their utility as possible therapeutic interventions to ameliorate ischemia-reperfusion injury.
Collapse
|
40
|
Gupte SA, Wolin MS. Oxidant and redox signaling in vascular oxygen sensing: implications for systemic and pulmonary hypertension. Antioxid Redox Signal 2008; 10:1137-52. [PMID: 18315496 PMCID: PMC2443404 DOI: 10.1089/ars.2007.1995] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
It has been well known for >100 years that systemic blood vessels dilate in response to decreases in oxygen tension (hypoxia; low PO2), and this response appears to be critical to supply blood to the stressed organ. Conversely, pulmonary vessels constrict to a decrease in alveolar PO2 to maintain a balance in the ventilation-to-perfusion ratio. Currently, although little question exists that the PO2 affects vascular reactivity and vascular smooth muscle cells (VSMCs) act as oxygen sensors, the molecular mechanisms involved in modulating the vascular reactivity are still not clearly understood. Many laboratories, including ours, have suggested that the intracellular calcium concentration ([Ca2+]i), which regulates vasomotor function, is controlled by free radicals and redox signaling, including NAD(P)H and glutathione (GSH) redox. In this review article, therefore, we discuss the implications of redox and oxidant alterations seen in pulmonary and systemic hypertension, and how key targets that control [Ca2+]i, such as ion channels, Ca2+ release from internal stores and uptake by the sarcoplasmic reticulum, and the Ca2+ sensitivity to the myofilaments, are regulated by changes in intracellular redox and oxidants associated with vascular PO2sensing in physiologic or pathophysiologic conditions.
Collapse
Affiliation(s)
- Sachin A Gupte
- Department of Physiology, New York Medical College, Valhalla, New York 10595, USA.
| | | |
Collapse
|
41
|
An ion-responsive motif in the second transmembrane segment of rhodopsin-like receptors. Amino Acids 2008; 35:1-15. [PMID: 18266053 DOI: 10.1007/s00726-008-0637-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2007] [Accepted: 11/06/2007] [Indexed: 12/13/2022]
Abstract
A L(M)xxxD(N, E) motif (x=a non-ionic amino acid residue, most frequently A, S, L or F; small capitals indicating a minor representation) is found in the second transmembrane (tm2) segment of most G-protein coupling metazoan receptors of the rhodopsin family (Rh-GPCRs). Changes in signal transduction, agonist binding and receptor cycling are known for numerous receptors bearing evolved or experimentally introduced mutations in this tm2 motif, especially of its aspartate residue. The [Na(+)] sensitivity of the receptor-agonist interaction relates to this aspartate in a number of Rh-GPCRs. Native non-conservative mutations in the tm2 motif only rarely coincide with significant changes in two other ubiquitous features of the rhodopsin family, the seventh transmembrane N(D)PxxY(F) motif and the D(E)RY(W,F) or analogous sequence at the border of the third transmembrane helix and the second intracellular loop. Native tm2 mutations with Rh-GPCRs frequently result in constitutive signaling, and with visual opsins also in shifts to short-wavelength sensitivity. Substitution of a strongly basic residue for the tm2 aspartate in Taste-2 receptors could be connected to a lack of sodium sensing by these receptors. These properties could be consistent with ionic interactions, and even of ion transfer, that involve the tm2 motif. A decrease in cation sensing by this motif is usually connected to an enhanced constitutive interaction of the mutated receptors with cognate G- proteins, and also relates to both the constitutive and the overall activity of the short-wavelength opsins.
Collapse
|
42
|
Mechanisms of the effect of nitroglycerine on contraction of smooth muscles of the rat femoral artery. NEUROPHYSIOLOGY+ 2007. [DOI: 10.1007/s11062-007-0024-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
43
|
Rabbani G, Vijay V, Sarabu MR, Gupte SA. Regulation of human internal mammary and radial artery contraction by extracellular and intracellular calcium channels and cyclic adenosine 3', 5' monophosphate. Ann Thorac Surg 2007; 83:510-5. [PMID: 17257979 DOI: 10.1016/j.athoracsur.2006.09.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2006] [Revised: 08/29/2006] [Accepted: 09/01/2006] [Indexed: 10/23/2022]
Abstract
BACKGROUND The internal mammary (IMA) and radial arteries (RA), which are routinely used in coronary artery bypass grafting, show a significant incidence of postoperative vasospasm. The present study evaluated the respective roles of calcium (Ca2+)-dependent and cyclic adenosine 3', 5' monophosphate-dependent (cAMP) signaling in mediating contraction and relaxation of the IMA and RA. METHODS We examined the contractile responses of the IMA and RA to potassium chloride, a depolarizing agent; phenylephrine, an alpha-adrenergic agonist; and U46619, a thromboxane analogue, in the absence and presence (0.045 to 1.500 mM) of extracellular Ca2+. RESULTS Potassium chloride elicited little or no contraction in the absence of extracellular Ca2+. Contractions elicited by U46619 were similar in the IMA and RA, both in the absence and presence of extracellular Ca2+. By contrast, phenylephrine elicited significantly greater extracellular Ca2+-dependent contraction of the IMA than the RA. Estimation of cyclic guanosine 3', 5' monophosphate (cGMP) and cAMP revealed levels of cAMP to be about fourfold higher than cGMP in both the RA and IMA. Whereas forskolin and milrinone elicited similar relaxation of IMA and RA precontracted with either U46619 or phenylephrine and increased adenylate cyclase-catalyzed cAMP production, isoproterenol-induced relaxation of the arteries precontracted with U46619 was significantly impaired compared with arteries precontracted with phenylephrine. CONCLUSIONS Our findings suggest that thromboxane A2 receptor-dependent pathways activate contraction of IMA and RA through both extracellular Ca2+-dependent and Ca2+-independent pathways. In addition, adenylate cyclase appears to play a key role in attenuating thromboxane A2 and alpha-adrenergic receptor-mediated contraction through both pathways.
Collapse
Affiliation(s)
- Golam Rabbani
- Department of Physiology, New York Medical College, Valhalla, New York 10595, USA
| | | | | | | |
Collapse
|
44
|
Liu W, Yang XH, Zhou M, Li CD. Pharmacodynamical mechanisms of total flavonoids from Chaenomeles Lagenaria Koidz in the relaxation of gastrointestinal smooth muscles. Shijie Huaren Xiaohua Zazhi 2007; 15:165-167. [DOI: 10.11569/wcjd.v15.i2.165] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To elucidate the mechanisms of total flavonoids from Chaenomeles Lagenaria Koidz (FLC) in relaxing gastrointestinal smooth muscle.
METHODS: The relaxant effect of 2, 4 and 8 g/L FLC on the contraction induced by acetylcholine (ACh), high potassium chloride (KCl) and calcium chloride (CaCl2) in the isolated taenia coli, jejunum and ileum from rabbits.
RESULTS: FLC and Verapamil inhibited the contraction of the isolated rabbit taenia coli and ileum induced by high K+ depolarization in a dose-dependent manner, and they also decreased the maximal responses. FLC at the concentration of 8 g/L inhibited the auto-rhythmic contraction of the isolated rabbit jejunum (frequency: 5.83 ± 2.64 vs 12.52 ± 0.41, P<0.01; tension: 0.76 ± 0.26 g vs 2.13 ± 21 g, P<0.01) and Ach-induced contraction (frequency: 7.00 ± 2.44 vs 13.10 ± 0.90, P<0.01; tension: 0.87 ± 0.34 g vs 3.47 ± 0.57 g, P<0.01). FLC also inhibited the contraction of the isolated ileum in a concentration-dependent way, and the contraction extents were significantly decreased as compared with those in the controls (2.53 ± 0.45, 1.35 ± 0.57 mm vs 5.41 ± 0.64 mm, P<0.01).
CONCLUSION: FLC can relax the contraction of gastrointestinal smooth muscle via voltage dependant calcium channel (VDC).
Collapse
|
45
|
Arshad M, Vijay V, Floyd BC, Marks B, Sarabu MR, Wolin MS, Gupte SA. Thromboxane Receptor Stimulation Suppresses Guanylate Cyclase-Mediated Relaxation of Radial Arteries. Ann Thorac Surg 2006; 81:2147-54. [PMID: 16731144 DOI: 10.1016/j.athoracsur.2006.01.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2005] [Revised: 12/29/2005] [Accepted: 01/04/2006] [Indexed: 11/24/2022]
Abstract
BACKGROUND The internal mammary artery (IMA) and the radial artery (RA) are routinely used in coronary artery bypass grafting. However, RA grafts have a higher incidence of postoperative vasospasm and comparatively poor patency rates. The present study was undertaken to investigate the signaling pathways mediating contraction and relaxation in the IMA and RA with the aim of better understanding the mechanism underlying the propensity of RA grafts to spasm. METHODS We examined the contractile responses of the IMA and RA to KCl (a depolarizing agent), phenylephrine (an alpha-adrenergic agonist), and U46619 (a thromboxane analogue). RESULTS Contractions induced by KCl or U46619 did not significantly differ in IMA and RA. By contrast, phenylephrine evoked significantly greater contraction of the IMA than the RA. Contractions induced by both phenylephrine and U46619 were dose-dependently inhibited by nifedipine (an L-type calcium channel blocker). Estimation of thromboxane A2 (TxA2) and prostacyclin (PGI2) synthesis revealed that the TxA2 to PGI2 ratio in the RA was twice that in the IMA. Moreover, acetylcholine-induced and nitroglycerin-induced relaxation of RA precontracted with U46619 was significantly impaired, as compared with RA precontracted with phenylephrine. These data suggest that inhibition of nitroglycerin-induced soluble guanylate cyclase activity by U46619 was at least partially responsible for the diminished vasodilatory response of RA to nitric oxide. CONCLUSIONS Our findings suggest that by reducing nitric oxide-stimulated soluble guanylate cyclase activity, the higher TxA2 to PGI2 ratios in RA, and the elevated serum TxA2 levels seen during coronary artery bypass grafting operations, may underlie the vasospasm and poor patency rates seen with the RA.
Collapse
Affiliation(s)
- Muhammad Arshad
- Department of Physiology, New York Medical College, Westchester Medical Center, Valhalla, New York, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Archer SL, Gragasin FS, Webster L, Bochinski D, Michelakis ED. Aetiology and management of male erectile dysfunction and female sexual dysfunction in patients with cardiovascular disease. Drugs Aging 2006; 22:823-44. [PMID: 16245957 DOI: 10.2165/00002512-200522100-00003] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The historical basis for understanding erectile function as a neurovascular phenomenon and the advance from fanciful to effective treatment of erectile dysfunction (ED) are reviewed, with emphasis on patients with cardiovascular disease (CVD). ED occurs in 60% of CVD patients by 40 years of age. Male ED and female sexual dysfunction (FSD) diminish quality of life and often warn of occult CVD. ED is often unrecognised but is readily diagnosed during a 5-minute interview using a truncated International Index of Erectile Function questionnaire. Erection of the penis and clitoral engorgement result from local, arousal-induced release of neuronal and endothelial-derived nitric oxide (NO). Arterial vasodilatation and relaxation of cavernosal smooth muscle cells cause arterial blood to flood trabecular spaces, compressing venous drainage, resulting in tumescence. Cyclic guanosine monophosphate (cGMP)-induced activation of protein kinase G mediates the effects of NO by enhancing calcium sequestration and activating large-conductance, calcium-sensitive K+ channels. Future treatment strategies will likely enhance these pathways. Phosphodiesterase-5 inhibitors (sildenafil, tadalafil and vardenafil) increase cGMP levels in erectile tissue. These agents are effective in 80% of CVD patients with ED and can be used safely, even in the presence of stable coronary disease or congestive heart failure, provided nitrates are avoided and patients do not have hypotension, severe aortic stenosis or evocable myocardial ischaemia. Second-line therapies (vacuum constrictor device and transurethral or intracavernosal prostaglandin E1) can also be used in CVD patients. Treatment of FSD and its relationship to CVD are less well established, but similarities to ED exist. ED can be prevented by reduction of CVD risk factors, exercise, weight loss and abstinence from smoking.
Collapse
Affiliation(s)
- Stephen L Archer
- Department of Medicine Cardiology, University of Alberta, Edmonton, Alberta, Canada.
| | | | | | | | | |
Collapse
|
47
|
Jiang HD, Cai J, Xu JH, Zhou XM, Xia Q. Endothelium-dependent and direct relaxation induced by ethyl acetate extract from Flos Chrysanthemi in rat thoracic aorta. JOURNAL OF ETHNOPHARMACOLOGY 2005; 101:221-6. [PMID: 15950416 DOI: 10.1016/j.jep.2005.04.018] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2004] [Revised: 03/16/2005] [Accepted: 04/27/2005] [Indexed: 05/02/2023]
Abstract
The aims of the present study were to investigate the vasoactive effects of ethyl acetate extract from Flos Chrysanthemi (FCE) and its mechanisms on the rat thoracic aorta. FCE (9.4-150 mg/L) caused a concentration-dependent relaxation on endothelium-intact rings precontracted with phenylephrine (PE, 10(-6)M) or a high level of K+ (6x10(-2)M). By removal of endothelium, the effect was not abolished but reduced significantly. N(G)-nitro-l-arginine methyl ester (l-NAME) (10(-4) M), methylene blue (10(-5) M) significantly inhibited the effect of FCE. Meanwhile, NO synthase of aorta in FCE group was markedly elevated versus the control. However, indomethacin did not influence FCE effect. SKF-525A combined with l-NAME had the same effect as l-NAME. Tetraethylammonium, BaCl2, 4-aminopyridine, 5-HD and propranolol also did not influence the vascular effect of FCE, but glibenclamide significantly attenuated its vasodilation. FCE did not reduce PE-induced transient contraction in Ca(2+)-free medium, but inhibited PE-induced contraction in K(+)-free solution or Ca2+ caused contraction after PE induced a stable contraction in Ca(2+)-free solution. It is concluded that FCE induced both endothelium-dependent and -independent relaxation. NO and cGMP-mediated pathway are likely involved in the endothelium-dependent relaxation, whereas inhibition of voltage-dependent Ca2+ channel, receptor-operate Ca2+ channel and activation of K(ATP) contribute in part to the endothelium-independent relaxation.
Collapse
Affiliation(s)
- Hui-Di Jiang
- College of Pharmaceutical Sciences, Zhejiang University, 353 Yan'an Road, Hangzhou 310031, China.
| | | | | | | | | |
Collapse
|
48
|
Lusche DF, Malchow D. Developmental control of cAMP-induced Ca2+-influx by cGMP: influx is delayed and reduced in a cGMP-phosphodiesterase D deficient mutant of Dictyostelium discoideum. Cell Calcium 2005; 37:57-67. [PMID: 15541464 DOI: 10.1016/j.ceca.2004.06.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2004] [Revised: 04/09/2004] [Accepted: 06/22/2004] [Indexed: 11/24/2022]
Abstract
It was previously shown that cGMP enhances cAMP-induced Ca2+-influx in Dictyostelium discoideum. This finding is based on experiments done with strains defective in cGMP-hydrolysis, the streamer F cells. In this work, we show that these chemically mutagenized cells display different properties in their cAMP-induced light-scattering response and cAMP-induced Ca2+-influx compared with a cGMP-phosphodiesterase knock-out strain, pdeD KO, generated by homologous recombination. PdeD KO cells possess a reduced Ca2+-influx that is developmentally regulated. This finding contradicts the result of streamer F cells, where cAMP-induced Ca2+-influx is prolonged and elevated. Both mutants, however, showed a three to four-fold delayed response to cAMP at 3-4h of starvation. Thus, the consequence of an elevated cGMP concentration is a delay and an inhibition of Ca2+-influx and not an enhancement. Results obtained with streamer F cells should therefore be interpreted with caution because the mutation(s) responsible for the divergent phenotype to pdeD KO cells has not been identified. We show by the use of membrane-permeant cGMP-analogues in wild type (wt) cells, permeabilized cells and measurements on isolated vesicles that the cause for the reduced Ca2+-influx seems to be due to developmentally regulated Ca2+-channel inhibition by cGMP.
Collapse
Affiliation(s)
- Daniel F Lusche
- Department of Biology, University of Konstanz, Universitaetsstr.10, D-78457 Konstanz, Germany.
| | | |
Collapse
|
49
|
Longo LD, Pearce WJ. Fetal cerebrovascular acclimatization responses to high-altitude, long-term hypoxia: a model for prenatal programming of adult disease? Am J Physiol Regul Integr Comp Physiol 2005; 288:R16-24. [PMID: 15590993 DOI: 10.1152/ajpregu.00462.2004] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
During the past several decades, many risk factors for cerebrovascular and cardiovascular disease have been identified. More recently, it has been appreciated that inadequate nutrition and/or other intrauterine factors during fetal development may play an important role in the genesis of these conditions. An additional stress factor that may "program" the fetus for disease later in life is chronic hypoxia. In studies originally designed to examine the function of developing cerebral arterial function in response to long-term hypoxia (LTH), it has become clear that many cellular and subcellular changes may have important implications for later life. Here we review some of the significant alterations in fetal cerebral artery structure and function induced by high-altitude (3,820 m, 12,470 ft) LTH ( approximately 110 days). LTH is associated with augmentation or upregulation of presynaptic functions, including responses to perivascular (i.e., sympathetic) nerve stimulation, and structural maturational changes. In contrast, many postsynaptic functions related to the Ca(2+)-dependent contractile pathway tend to be downregulated, whereas elements of the Ca(2+)-independent contraction pathway are upregulated. The results emphasize the role of high-altitude LTH in modulating many aspects of electromechanical and pharmacomechanical coupling in the developing cerebral vasculature. A complicating factor is that the regulation of cerebrovascular tone by Ca(2+)-dependent and Ca(2+)-independent pathways changes significantly as a function of maturational age. In addition to highlighting independent regulation of various elements of the signal transduction cascade, the studies demonstrate the potential for LTH to program the fetus for cerebrovascular and other disease as an adult.
Collapse
Affiliation(s)
- Lawrence D Longo
- Center for Perinatal Biology, Department of Physiology, Loma Linda University, School of Medicine, Loma Linda, CA 92350, USA.
| | | |
Collapse
|
50
|
Petkov GV, Nelson MT. Differential regulation of Ca2+-activated K+ channels by beta-adrenoceptors in guinea pig urinary bladder smooth muscle. Am J Physiol Cell Physiol 2005; 288:C1255-63. [PMID: 15677377 DOI: 10.1152/ajpcell.00381.2004] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Stimulation of beta-adrenoceptors contributes to the relaxation of urinary bladder smooth muscle (UBSM) through activation of large-conductance Ca(2+)-activated K(+) (BK) channels. We examined the mechanisms by which beta-adrenoceptor stimulation leads to an elevation of the activity of BK channels in UBSM. Depolarization from -70 to +10 mV evokes an inward L-type dihydropyridine-sensitive voltage-dependent Ca(2+) channel (VDCC) current, followed by outward steady-state and transient BK current. In the presence of ryanodine, which blocks the transient BK currents, isoproterenol, a nonselective beta-adrenoceptor agonist, increased the VDCC current by approximately 25% and the steady-state BK current by approximately 30%. In the presence of the BK channel inhibitor iberiotoxin, isoproterenol did not cause activation of the remaining steady-state K(+) current component. Decreasing Ca(2+) influx through VDCC by nifedipine or depolarization to +80 mV suppressed the isoproterenol-induced activation of the steady-state BK current. Unlike forskolin, isoproterenol did not change significantly the open probability of single BK channels in the absence of Ca(2+) sparks and with VDCC inhibited by nifedipine. Isoproterenol elevated Ca(2+) spark (local intracellular Ca(2+) release through ryanodine receptors of the sarcoplasmic reticulum) frequency and associated transient BK currents by approximately 1.4-fold. The data support the concept that in UBSM beta-adrenoceptor stimulation activates BK channels by elevating Ca(2+) influx through VDCC and by increasing Ca(2+) sparks, but not through a Ca(2+)-independent mechanism. This study reveals key regulatory molecular and cellular mechanisms of beta-adrenergic regulation of BK channels in UBSM that could provide new targets for drugs in the treatment of bladder dysfunction.
Collapse
Affiliation(s)
- Georgi V Petkov
- Department of Pharmacology, University of Vermont, College of Medicine, Given Bldg., Rm. B-331, 89 Beaumont Ave., Burlington, VT 05405-0068, USA.
| | | |
Collapse
|