1
|
Xu K, Zhong J, Li J, Cao Y, Wei L. Structure features of Streptococcus pneumoniae FabG and virtual screening of allosteric inhibitors. Front Mol Biosci 2024; 11:1472252. [PMID: 39398278 PMCID: PMC11467476 DOI: 10.3389/fmolb.2024.1472252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 09/16/2024] [Indexed: 10/15/2024] Open
Abstract
Streptococcus pneumoniae, a gram-positive bacterium, is responsible for diverse infections globally, and its antibiotic resistance presents significant challenges to medical advancements. It is imperative to employ various strategies to identify antibiotics. 3-oxoacyl-[acyl-carrier-protein] reductase (FabG) is a key component in the type II fatty acid synthase (FAS II) system, which is a developing target for new anti-streptococcal drugs. We first demonstrated the function of SpFabG in vivo and in vitro and the 2 Å SpFabG structure was elucidated using X-ray diffraction technique. It was observed that the NADPH binding promotes the transformation from tetramers to dimers in solution, suggesting dimers but not tetramer may be the active conformation. By comparing the structures of FabG homologues, we have identified the conserved tetramerization site and further confirmed the mechanism that the tetramerization site mutation leads to a loss of function and destabilization through mutagenesis experiments. Starting from 533,600 compounds, we proceeded with a sequential workflow involving pharmacophore-based virtual screening, molecular docking, and binding energy calculations. Combining all the structural analysis, we identified L1, L2 and L5 as a promising candidate for SpFabG inhibitor, based on the most stable binding mode in comparison to other evaluated inhibitors.
Collapse
Affiliation(s)
- Kaimin Xu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Jianliang Zhong
- Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Jing Li
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, China
| | - Yulu Cao
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, China
| | - Lai Wei
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- Department of Ophthalmology, The First Affiliated Hospital, University of South China, Hengyang, China
| |
Collapse
|
2
|
Ran X, Parikh P, Abendroth J, Arakaki TL, Clifton MC, Edwards TE, Lorimer DD, Mayclin S, Staker BL, Myler P, McLaughlin KJ. Structural and functional characterization of FabG4 from Mycolicibacterium smegmatis. Acta Crystallogr F Struct Biol Commun 2024; 80:82-91. [PMID: 38656226 PMCID: PMC11058512 DOI: 10.1107/s2053230x2400356x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 04/19/2024] [Indexed: 04/26/2024] Open
Abstract
The rise in antimicrobial resistance is a global health crisis and necessitates the development of novel strategies to treat infections. For example, in 2022 tuberculosis (TB) was the second leading infectious killer after COVID-19, with multi-drug-resistant strains of TB having an ∼40% fatality rate. Targeting essential biosynthetic pathways in pathogens has proven to be successful for the development of novel antimicrobial treatments. Fatty-acid synthesis (FAS) in bacteria proceeds via the type II pathway, which is substantially different from the type I pathway utilized in animals. This makes bacterial fatty-acid biosynthesis (Fab) enzymes appealing as drug targets. FabG is an essential FASII enzyme, and some bacteria, such as Mycobacterium tuberculosis, the causative agent of TB, harbor multiple homologs. FabG4 is a conserved, high-molecular-weight FabG (HMwFabG) that was first identified in M. tuberculosis and is distinct from the canonical low-molecular-weight FabG. Here, structural and functional analyses of Mycolicibacterium smegmatis FabG4, the third HMwFabG studied to date, are reported. Crystal structures of NAD+ and apo MsFabG4, along with kinetic analyses, show that MsFabG4 preferentially binds and uses NADH when reducing CoA substrates. As M. smegmatis is often used as a model organism for M. tuberculosis, these studies may aid the development of drugs to treat TB and add to the growing body of research that distinguish HMwFabGs from the archetypal low-molecular-weight FabG.
Collapse
Affiliation(s)
- Xinping Ran
- Department of Chemistry, Vassar College, 124 Raymond Avenue, Poughkeepsie, NY 12604, USA
| | - Prashit Parikh
- Department of Chemistry, Vassar College, 124 Raymond Avenue, Poughkeepsie, NY 12604, USA
| | - Jan Abendroth
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), 307 Westlake Avenue North, Seattle, WA 98109, USA
- Beryllium Discovery Corporation, 7869 Day Road West, Bainbridge Island, WA 98110, USA
| | | | - Matthew C. Clifton
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), 307 Westlake Avenue North, Seattle, WA 98109, USA
- Beryllium Discovery Corporation, 7869 Day Road West, Bainbridge Island, WA 98110, USA
| | - Thomas E. Edwards
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), 307 Westlake Avenue North, Seattle, WA 98109, USA
- Beryllium Discovery Corporation, 7869 Day Road West, Bainbridge Island, WA 98110, USA
| | - Donald D. Lorimer
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), 307 Westlake Avenue North, Seattle, WA 98109, USA
- UCB Pharma, Bedford, Massachusetts, USA
| | | | - Bart L. Staker
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), 307 Westlake Avenue North, Seattle, WA 98109, USA
- Seattle Children’s Research Institute, University of Washington, Seattle, Washington, USA
| | - Peter Myler
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), 307 Westlake Avenue North, Seattle, WA 98109, USA
- Seattle Children’s Research Institute, University of Washington, Seattle, Washington, USA
| | - Krystle J. McLaughlin
- Department of Chemistry, Vassar College, 124 Raymond Avenue, Poughkeepsie, NY 12604, USA
| |
Collapse
|
3
|
Shahri MA, Shirmast P, Ghafoori SM, Forwood JK. Deciphering the structure of a multi-drug resistant Acinetobacter baumannii short-chain dehydrogenase reductase. PLoS One 2024; 19:e0297751. [PMID: 38394109 PMCID: PMC10889901 DOI: 10.1371/journal.pone.0297751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 01/12/2024] [Indexed: 02/25/2024] Open
Abstract
The rapidly increasing threat of multi-drug-resistant Acinetobacter baumannii infections globally, encompassing a range of clinical manifestations from skin and soft tissue infections to life-threatening conditions like meningitis and pneumonia, underscores an urgent need for novel therapeutic strategies. These infections, prevalent in both hospital and community settings, present a formidable challenge to the healthcare system due to the bacterium's widespread nature and dwindling effective treatment options. Against this backdrop, the exploration of bacterial short-chain dehydrogenase reductases (SDRs) emerges as a promising avenue. These enzymes play pivotal roles in various critical bacterial processes, including fatty acid synthesis, homeostasis, metabolism, and contributing to drug resistance mechanisms. In this study, we present the first examination of the X-ray crystallographic structure of an uncharacterized SDR enzyme from A. baumannii. The tertiary structure of this SDR is distinguished by a central parallel β-sheet, consisting of seven strands, which is flanked by eight α-helices. This configuration exhibits structural parallels with other enzymes in the SDR family, underscoring a conserved architectural theme within this enzyme class. Despite the current ambiguity regarding the enzyme's natural substrate, the importance of many SDR enzymes as targets in anti-bacterial agent design is well-established. Therefore, the detailed structural insights provided in this study open new pathways for the in-silico design of therapeutic agents. By offering a structural blueprint, our findings may provide a platform for future research aimed at developing targeted treatments against this and other multi-drug-resistant infections.
Collapse
Affiliation(s)
- Mahdi Abedinzadeh Shahri
- School of Dentistry and Medical Sciences, Charles Sturt University, Wagga Wagga, NSW, Australia
- Menzies Health Institute Queensland and School of Medical Sciences, Griffith University, Gold Coast, QLD, Australia
| | - Paniz Shirmast
- Menzies Health Institute Queensland and School of Medical Sciences, Griffith University, Gold Coast, QLD, Australia
| | - Seyed Mohammad Ghafoori
- School of Dentistry and Medical Sciences, Charles Sturt University, Wagga Wagga, NSW, Australia
| | - Jade Kenneth Forwood
- School of Dentistry and Medical Sciences, Charles Sturt University, Wagga Wagga, NSW, Australia
| |
Collapse
|
4
|
Khan S, Punnoose K, Bishara NZA, Ali R, Khan S, Ahmad S, Marouf HAA, Mirza S, Ishrat R, Haque S. Identification of potential inhibitor molecule against MabA protein of Mycobacterium leprae by integrated in silico approach. J Biomol Struct Dyn 2023; 41:11231-11246. [PMID: 36661253 DOI: 10.1080/07391102.2022.2160818] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/15/2022] [Indexed: 01/21/2023]
Abstract
Leprosy is one of the chronic diseases with which humanity has struggled globally for millennia. The potent anti-leprosy medications rifampicin, clofazimine and dapsone, among others, are used to treat leprosy. Nevertheless, even in regions of the world where these drugs have been successfully implemented, resistance continues to be observed. Due to the problems with the current treatments, this disease should be fought at every level of society with new drugs. The purpose of this research was to identify natural candidates with the ability to inhibit MabA (gene-fabG1) with fewer negative effects. The work was accomplished through molecular docking, followed by a dynamic investigation of protein-ligand, which play a significant role in the design of pharmaceuticals. After modelling the protein structure with MODELLER 9.21v, AutoDock Vina was used to perform molecular docking with 13 3 D anti-leprosy medicines and a zinc library to determine the optimal protein-ligand interaction. In addition, the docking result was filtered based on binding energy, ADMET characteristics, PASS analysis and the most crucial binding residues. The ZINC08101051 chemical compound was prioritized for further study. Using an all-atom 100 ns MD simulation, the binding pattern and conformational changes in protein upon ligand binding were studied. Recommendation for subsequent validation based on deviation, fluctuation, gyration and hydrogen bond analysis, followed by main component and free energy landscape.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Saif Khan
- Department of Basic Dental and Medical Sciences, College of Dentistry, Ha'il University, Ha'il, Saudi Arabia
| | - Kurian Punnoose
- Department of Oral and Maxillofacial surgery, College of Dentistry, Ha'il University, Ha'il, Saudi Arabia
| | - Nashwa Zaki Ali Bishara
- Department of Preventive Dental Sciences, College of Dentistry, Ha'il University, Ha'il, Saudi Arabia
| | - Rafat Ali
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia (Central University), New Delhi, India
- Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Shahira Khan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia (Central University), New Delhi, India
| | - Saheem Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, Saudi Arabia
| | - Hussein Abdel-Aziz Marouf
- Department of Oral and Maxillofacial surgery, College of Dentistry, Ha'il University, Ha'il, Saudi Arabia
| | - Shadab Mirza
- Department of Health Services Administration, College of Dentistry, Ha'il University, Ha'il, Saudi Arabia
| | - Romana Ishrat
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia (Central University), New Delhi, India
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing & Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
| |
Collapse
|
5
|
Soni V, Rosenn EH, Venkataraman R. Insights into the central role of N-acetyl-glucosamine-1-phosphate uridyltransferase (GlmU) in peptidoglycan metabolism and its potential as a therapeutic target. Biochem J 2023; 480:1147-1164. [PMID: 37498748 DOI: 10.1042/bcj20230173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/07/2023] [Accepted: 07/14/2023] [Indexed: 07/29/2023]
Abstract
Several decades after the discovery of the first antibiotic (penicillin) microbes have evolved novel mechanisms of resistance; endangering not only our abilities to combat future bacterial pandemics but many other clinical challenges such as acquired infections during surgeries. Antimicrobial resistance (AMR) is attributed to the mismanagement and overuse of these medications and is complicated by a slower rate of the discovery of novel drugs and targets. Bacterial peptidoglycan (PG), a three-dimensional mesh of glycan units, is the foundation of the cell wall that protects bacteria against environmental insults. A significant percentage of drugs target PG, however, these have been rendered ineffective due to growing drug resistance. Identifying novel druggable targets is, therefore, imperative. Uridine diphosphate N-acetylglucosamine (UDP-GlcNAc) is one of the key building blocks in PG production, biosynthesized by the bifunctional enzyme N-acetyl-glucosamine-1-phosphate uridyltransferase (GlmU). UDP-GlcNAc metabolism has been studied in many organisms, but it holds some distinctive features in bacteria, especially regarding the bacterial GlmU enzyme. In this review, we provide an overview of different steps in PG biogenesis, discuss the biochemistry of GlmU, and summarize the characteristic structural elements of bacterial GlmU vital to its catalytic function. Finally, we will discuss various studies on the development of GlmU inhibitors and their significance in aiding future drug discoveries.
Collapse
Affiliation(s)
- Vijay Soni
- Division of Infectious Diseases, Weill Department of Medicine, Weill Cornell Medicine, New York, NY 10065, U.S.A
| | - Eric H Rosenn
- Tel Aviv University School of Medicine, Tel Aviv 6997801, Israel
| | - Ramya Venkataraman
- Laboratory of Innate Immunity, National Institute of Immunology, New Delhi 110067, India
| |
Collapse
|
6
|
Williams JT, Abramovitch RB. Molecular Mechanisms of MmpL3 Function and Inhibition. Microb Drug Resist 2023; 29:190-212. [PMID: 36809064 PMCID: PMC10171966 DOI: 10.1089/mdr.2021.0424] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023] Open
Abstract
Mycobacteria species include a large number of pathogenic organisms such as Mycobacterium tuberculosis, Mycobacterium leprae, and various non-tuberculous mycobacteria. Mycobacterial membrane protein large 3 (MmpL3) is an essential mycolic acid and lipid transporter required for growth and cell viability. In the last decade, numerous studies have characterized MmpL3 with respect to protein function, localization, regulation, and substrate/inhibitor interactions. This review summarizes new findings in the field and seeks to assess future areas of research in our rapidly expanding understanding of MmpL3 as a drug target. An atlas of known MmpL3 mutations that provide resistance to inhibitors is presented, which maps amino acid substitutions to specific structural domains of MmpL3. In addition, chemical features of distinct classes of Mmpl3 inhibitors are compared to provide insights into shared and unique features of varied MmpL3 inhibitors.
Collapse
Affiliation(s)
- John T Williams
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Robert B Abramovitch
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
7
|
Rabaan AA, Mutair AA, Hajissa K, Alfaraj AH, Al-Jishi JM, Alhajri M, Alwarthan S, Alsuliman SA, Al-Najjar AH, Al Zaydani IA, Al-Absi GH, Alshaikh SA, Alkathlan MS, Almuthree SA, Alawfi A, Alshengeti A, Almubarak FZ, Qashgari MS, Abdalla ANK, Alhumaid S. A Comprehensive Review on the Current Vaccines and Their Efficacies to Combat SARS-CoV-2 Variants. Vaccines (Basel) 2022; 10:1655. [PMID: 36298520 PMCID: PMC9611209 DOI: 10.3390/vaccines10101655] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 11/07/2022] Open
Abstract
Since the first case of Coronavirus disease (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in 2019, SARS-CoV-2 infection has affected many individuals worldwide. Eventually, some highly infectious mutants-caused by frequent genetic recombination-have been reported for SARS-CoV-2 that can potentially escape from the immune responses and induce long-term immunity, linked with a high mortality rate. In addition, several reports stated that vaccines designed for the SARS-CoV-2 wild-type variant have mixed responses against the variants of concern (VOCs) and variants of interest (VOIs) in the human population. These results advocate the designing and development of a panvaccine with the potential to neutralize all the possible emerging variants of SARS-CoV-2. In this context, recent discoveries suggest the design of SARS-CoV-2 panvaccines using nanotechnology, siRNA, antibodies or CRISPR-Cas platforms. Thereof, the present comprehensive review summarizes the current vaccine design approaches against SARS-CoV-2 infection, the role of genetic mutations in the emergence of new viral variants, the efficacy of existing vaccines in limiting the infection of emerging SARS-CoV-2 variants, and efforts or challenges in designing SARS panvaccines.
Collapse
Affiliation(s)
- Ali A. Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
- Department of Public Health and Nutrition, The University of Haripur, Haripur 22610, Pakistan
| | - Abbas Al Mutair
- Research Center, Almoosa Specialist Hospital, Al-Ahsa 36342, Saudi Arabia
- College of Nursing, Princess Norah Bint Abdulrahman University, Riyadh 11564, Saudi Arabia
- School of Nursing, Wollongong University, Wollongong, NSW 2522, Australia
- Nursing Department, Prince Sultan Military College of Health Sciences, Dhahran 33048, Saudi Arabia
| | - Khalid Hajissa
- Department of Medical Microbiology & Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Malaysia
| | - Amal H. Alfaraj
- Pediatric Department, Abqaiq General Hospital, First Eastern Health Cluster, Abqaiq 33261, Saudi Arabia
| | - Jumana M. Al-Jishi
- Internal Medicine Department, Qatif Central Hospital, Qatif 635342, Saudi Arabia
| | - Mashael Alhajri
- Department of Internal Medicine, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia
| | - Sara Alwarthan
- Department of Internal Medicine, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia
| | - Shahab A. Alsuliman
- Infectious Disease Division, Department of Internal Medicine, Dammam Medical Complex, Dammam 32245, Saudi Arabia
| | - Amal H. Al-Najjar
- Drug & Poison Information Center, Pharmacy Department, Security Forces Hospital Program, Riyadh 3643, Saudi Arabia
| | - Ibrahim A. Al Zaydani
- Department of Pediatric Infectious Diseases, Abha Maternity and Children Hospital, Abha 62526, Saudi Arabia
| | - Ghadeer Hassan Al-Absi
- Department of Pharmacy Practice, College of Pharmacy, Alfaisal University, Riyadh 325476, Saudi Arabia
| | - Sana A. Alshaikh
- Diagnostic Virology Laboratory, Maternity and Children Hospital, Eastern Health Cluster, Dammam 32253, Saudi Arabia
| | - Mohammed S. Alkathlan
- Infectious Diseases Department, King Fahad Specialist Hospital, Buraydah 52382, Saudi Arabia
| | - Souad A. Almuthree
- Department of Infectious Disease, King Abdullah Medical City, Makkah 43442, Saudi Arabia
| | - Abdulsalam Alawfi
- Department of Pediatrics, College of Medicine, Taibah University, Al-Madinah 41491, Saudi Arabia
| | - Amer Alshengeti
- Department of Pediatrics, College of Medicine, Taibah University, Al-Madinah 41491, Saudi Arabia
- Department of Infection Prevention and Control, Prince Mohammad Bin Abdulaziz Hospital, National Guard Health Affairs, Al-Madinah 41491, Saudi Arabia
| | - Fatimah Z. Almubarak
- Department of Family Medicine, Family Medicine Academy, Dammam 36365, Saudi Arabia
| | - Mohammed S. Qashgari
- Communicable Diseases Prevention Department, Saudi Public Health Authority, Riyadh 13354, Saudi Arabia
| | - Areeg N. K. Abdalla
- Department of Intensive Care Unit, Saudi German Hospital, Dammam 32313, Saudi Arabia
| | - Saad Alhumaid
- Administration of Pharmaceutical Care, Al-Ahsa Health Cluster, Ministry of Health, Al-Ahsa 31982, Saudi Arabia
| |
Collapse
|
8
|
Antitubercular, Cytotoxicity, and Computational Target Validation of Dihydroquinazolinone Derivatives. Antibiotics (Basel) 2022; 11:antibiotics11070831. [PMID: 35884084 PMCID: PMC9311641 DOI: 10.3390/antibiotics11070831] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 02/04/2023] Open
Abstract
A series of 2,3-dihydroquinazolin-4(1H)-one derivatives (3a–3m) was screened for in vitro whole-cell antitubercular activity against the tubercular strain H37Rv and multidrug-resistant (MDR) Mycobacterium tuberculosis (MTB) strains. Compounds 3l and 3m with di-substituted aryl moiety (halogens) attached to the 2-position of the scaffold showed a minimum inhibitory concentration (MIC) of 2 µg/mL against the MTB strain H37Rv. Compound 3k with an imidazole ring at the 2-position of the dihydroquinazolin-4(1H)-one also showed significant inhibitory action against both the susceptible strain H37Rv and MDR strains with MIC values of 4 and 16 µg/mL, respectively. The computational results revealed the mycobacterial pyridoxal-5′-phosphate (PLP)-dependent aminotransferase (BioA) enzyme as the potential target for the tested compounds. In vitro, ADMET calculations and cytotoxicity studies against the normal human dermal fibroblast cells indicated the safety and tolerability of the test compounds 3k–3m. Thus, compounds 3k–3m warrant further optimization to develop novel BioA inhibitors for the treatment of drug-sensitive H37Rv and drug-resistant MTB.
Collapse
|
9
|
Deb PK, Al-Shar’i NA, Venugopala KN, Pillay M, Borah P. In vitro anti-TB properties, in silico target validation, molecular docking and dynamics studies of substituted 1,2,4-oxadiazole analogues against Mycobacterium tuberculosis. J Enzyme Inhib Med Chem 2021; 36:869-884. [PMID: 34060396 PMCID: PMC8172222 DOI: 10.1080/14756366.2021.1900162] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/18/2021] [Accepted: 03/03/2021] [Indexed: 12/15/2022] Open
Abstract
The alarming increase in multi- and extensively drug-resistant (MDR and XDR) strains of Mycobacterium tuberculosis (MTB) has triggered the scientific community to search for novel, effective, and safer therapeutics. To this end, a series of 3,5-disubstituted-1,2,4-oxadiazole derivatives (3a-3i) were tested against H37Rv, MDR and XDR strains of MTB. Of which, compound 3a with para-trifluorophenyl substituted oxadiazole showed excellent activity against the susceptible H37Rv and MDR-MTB strain with a MIC values of 8 and 16 µg/ml, respectively.To understand the mechanism of action of these compounds (3a-3i) and identify their putative drug target, molecular docking and dynamics studies were employed against a panel of 20 mycobacterial enzymes reported to be essential for mycobacterial growth and survival. These computational studies revealed polyketide synthase (Pks13) enzyme as the putative target. Moreover, in silico ADMET predictions showed satisfactory properties for these compounds, collectively, making them, particularly compound 3a, promising leads worthy of further optimisation.
Collapse
Affiliation(s)
- Pran Kishore Deb
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Philadelphia University, Amman, Jordan
| | - Nizar A. Al-Shar’i
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Katharigatta N. Venugopala
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Kingdom of Saudi Arabia
- Department of Biotechnology and Food Technology, Durban University of Technology, Durban, South Africa
| | - Melendhran Pillay
- Department of Microbiology, National Health Laboratory Services, KZN Academic Complex, Inkosi Albert Luthuli Central Hospital, Durban, South Africa
| | - Pobitra Borah
- Pratiksha Institute of Pharmaceutical Sciences, Guwahati, India
| |
Collapse
|
10
|
González-Thuillier I, Venegas-Calerón M, Moreno-Pérez AJ, Salas JJ, Garcés R, von Wettstein-Knowles P, Martínez-Force E. Sunflower (Helianthus annuus) fatty acid synthase complex: β-Ketoacyl-[acyl carrier protein] reductase genes. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 166:689-699. [PMID: 34214779 DOI: 10.1016/j.plaphy.2021.06.048] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/10/2021] [Accepted: 06/24/2021] [Indexed: 06/13/2023]
Abstract
Fatty acids play many roles in plants, but the function of some key genes involved in fatty acid biosynthesis in plant development are not yet properly understood. Here, we clone two β-ketoacyl-[ACP] reductase (KAR) genes from sunflower, HaKAR1 and HaKAR2, and characterize their functional roles. The enzymes cloned were the only two copies present in the sunflower genome. Both displayed a high degree of similarity, but their promoters infer different regulation. The two sunflower KAR genes were constitutively expressed in all tissues examined, being maximum in developing cotyledons at the start of oil synthesis. Over-expression of HaKAR1 in E. coli changed the fatty acid composition by promoting the elongation of C16:0 to C18:0 fatty acids. The enzymatic characterization of HaKAR1 revealed similar kinetic parameters to homologues from other oil accumulating species. The results point to a partially functional redundancy between HaKAR1 and HaKAR2. This study clearly revealed that these genes play a prominent role in de novo fatty acids synthesis in sunflower seeds.
Collapse
Affiliation(s)
- Irene González-Thuillier
- Instituto de la Grasa (CSIC), Edificio 46, Campus Universitario Pablo de Olavide, Carretera de Utrera Km 1, 41013, Sevilla, Spain; Biosciences, Jealotts Hill Research Station, Warfield, Bracknell, RG42 6EY, UK
| | - Mónica Venegas-Calerón
- Instituto de la Grasa (CSIC), Edificio 46, Campus Universitario Pablo de Olavide, Carretera de Utrera Km 1, 41013, Sevilla, Spain.
| | - Antonio J Moreno-Pérez
- Instituto de la Grasa (CSIC), Edificio 46, Campus Universitario Pablo de Olavide, Carretera de Utrera Km 1, 41013, Sevilla, Spain
| | - Joaquín J Salas
- Instituto de la Grasa (CSIC), Edificio 46, Campus Universitario Pablo de Olavide, Carretera de Utrera Km 1, 41013, Sevilla, Spain
| | - Rafael Garcés
- Instituto de la Grasa (CSIC), Edificio 46, Campus Universitario Pablo de Olavide, Carretera de Utrera Km 1, 41013, Sevilla, Spain
| | | | - Enrique Martínez-Force
- Instituto de la Grasa (CSIC), Edificio 46, Campus Universitario Pablo de Olavide, Carretera de Utrera Km 1, 41013, Sevilla, Spain
| |
Collapse
|
11
|
Transcriptional Analysis of Microcystis aeruginosa Co-Cultured with Algicidal Bacteria Brevibacillus laterosporus. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18168615. [PMID: 34444364 PMCID: PMC8394347 DOI: 10.3390/ijerph18168615] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/09/2021] [Accepted: 08/12/2021] [Indexed: 11/17/2022]
Abstract
Harmful algal blooms caused huge ecological damage and economic losses around the world. Controlling algal blooms by algicidal bacteria is expected to be an effective biological control method. The current study investigated the molecular mechanism of harmful cyanobacteria disrupted by algicidal bacteria. Microcystis aeruginosa was co-cultured with Brevibacillus laterosporus Bl-zj, and RNA-seq based transcriptomic analysis was performed compared to M. aeruginosa, which was cultivated separately. A total of 1706 differentially expressed genes were identified, which were mainly involved in carbohydrate metabolism, energy metabolism and amino acid metabolism. In the co-cultured group, the expression of genes mainly enriched in photosynthesis and oxidative phosphorylation were significantly inhibited. However, the expression of the genes related to fatty acid synthesis increased. In addition, the expression of the antioxidant enzymes, such as 2-Cys peroxiredoxin, was increased. These results suggested that B. laterosporus could block the electron transport by attacking the PSI system and complex I of M. aeruginosa, affecting the energy acquisition and causing oxidative damage. This further led to the lipid peroxidation of the microalgal cell membrane, resulting in algal death. The transcriptional analysis of algicidal bacteria in the interaction process can be combined to explain the algicidal mechanism in the future.
Collapse
|
12
|
Prasad MS, Bhole RP, Khedekar PB, Chikhale RV. Mycobacterium enoyl acyl carrier protein reductase (InhA): A key target for antitubercular drug discovery. Bioorg Chem 2021; 115:105242. [PMID: 34392175 DOI: 10.1016/j.bioorg.2021.105242] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 07/16/2021] [Accepted: 08/02/2021] [Indexed: 10/20/2022]
Abstract
Enoyl acyl carrier protein reductase (InhA) is a key enzyme involved in fatty acid synthesis mainly mycolic acid biosynthesis that is a part of NADH dependent acyl carrier protein reductase family. The aim of the present literature is to underline the different scaffolds or enzyme inhibitors that inhibit mycolic acid biosynthesis mainly cell wall synthesis by inhibiting enzyme InhA. Various scaffolds were identified based on the screening technologies like high throughput screening, encoded library technology, fragment-based screening. The compounds studied include indirect inhibitors (Isoniazid, Ethionamide, Prothionamide) and direct inhibitors (Triclosan/Diphenyl ethers, Pyrrolidine Carboxamides, Pyrroles, Acetamides, Thiadiazoles, Triazoles) with better efficacy against drug resistance. Out of the several scaffolds studied, pyrrolidine carboxamides were found to be the best molecules targeting InhA having good bioavailability properties and better MIC. This review provides with a detailed information, analysis, structure activity relationship and useful insight on various scaffolds as InhA inhibitors.
Collapse
Affiliation(s)
- Mayuri S Prasad
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440033, MS, India
| | - Ritesh P Bhole
- Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune 411018, Maharashtra, India
| | - Pramod B Khedekar
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440033, MS, India.
| | - Rupesh V Chikhale
- UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, United Kingdom.
| |
Collapse
|
13
|
Paiva P, Medina FE, Viegas M, Ferreira P, Neves RPP, Sousa JPM, Ramos MJ, Fernandes PA. Animal Fatty Acid Synthase: A Chemical Nanofactory. Chem Rev 2021; 121:9502-9553. [PMID: 34156235 DOI: 10.1021/acs.chemrev.1c00147] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Fatty acids are crucial molecules for most living beings, very well spread and conserved across species. These molecules play a role in energy storage, cell membrane architecture, and cell signaling, the latter through their derivative metabolites. De novo synthesis of fatty acids is a complex chemical process that can be achieved either by a metabolic pathway built by a sequence of individual enzymes, such as in most bacteria, or by a single, large multi-enzyme, which incorporates all the chemical capabilities of the metabolic pathway, such as in animals and fungi, and in some bacteria. Here we focus on the multi-enzymes, specifically in the animal fatty acid synthase (FAS). We start by providing a historical overview of this vast field of research. We follow by describing the extraordinary architecture of animal FAS, a homodimeric multi-enzyme with seven different active sites per dimer, including a carrier protein that carries the intermediates from one active site to the next. We then delve into this multi-enzyme's detailed chemistry and critically discuss the current knowledge on the chemical mechanism of each of the steps necessary to synthesize a single fatty acid molecule with atomic detail. In line with this, we discuss the potential and achieved FAS applications in biotechnology, as biosynthetic machines, and compare them with their homologous polyketide synthases, which are also finding wide applications in the same field. Finally, we discuss some open questions on the architecture of FAS, such as their peculiar substrate-shuttling arm, and describe possible reasons for the emergence of large megasynthases during evolution, questions that have fascinated biochemists from long ago but are still far from answered and understood.
Collapse
Affiliation(s)
- Pedro Paiva
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Fabiola E Medina
- Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Autopista Concepción-Talcahuano, 7100 Talcahuano, Chile
| | - Matilde Viegas
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Pedro Ferreira
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Rui P P Neves
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - João P M Sousa
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Maria J Ramos
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Pedro A Fernandes
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| |
Collapse
|
14
|
Insights into Acinetobacter baumannii fatty acid synthesis 3-oxoacyl-ACP reductases. Sci Rep 2021; 11:7050. [PMID: 33782435 PMCID: PMC8007833 DOI: 10.1038/s41598-021-86400-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 03/08/2021] [Indexed: 11/08/2022] Open
Abstract
Treatments for 'superbug' infections are the focus for innovative research, as drug resistance threatens human health and medical practices globally. In particular, Acinetobacter baumannii (Ab) infections are repeatedly reported as difficult to treat due to increasing antibiotic resistance. Therefore, there is increasing need to identify novel targets in the development of different antimicrobials. Of particular interest is fatty acid synthesis, vital for the formation of phospholipids, lipopolysaccharides/lipooligosaccharides, and lipoproteins of Gram-negative envelopes. The bacterial type II fatty acid synthesis (FASII) pathway is an attractive target for the development of inhibitors and is particularly favourable due to the differences from mammalian type I fatty acid synthesis. Discrete enzymes in this pathway include two reductase enzymes: 3-oxoacyl-acyl carrier protein (ACP) reductase (FabG) and enoyl-ACP reductase (FabI). Here, we investigate annotated FabG homologs, finding a low-molecular weight 3-oxoacyl-ACP reductase, as the most likely FASII FabG candidate, and high-molecular weight 3-oxoacyl-ACP reductase (HMwFabG), showing differences in structure and coenzyme preference. To date, this is the second bacterial high-molecular weight FabG structurally characterized, following FabG4 from Mycobacterium. We show that ΔAbHMwfabG is impaired for growth in nutrient rich media and pellicle formation. We also modelled a third 3-oxoacyl-ACP reductase, which we annotated as AbSDR. Despite containing residues for catalysis and the ACP coordinating motif, biochemical analyses showed limited activity against an acetoacetyl-CoA substrate in vitro. Inhibitors designed to target FabG proteins and thus prevent fatty acid synthesis may provide a platform for use against multidrug-resistant pathogens including A. baumannii.
Collapse
|
15
|
Khusro A, Aarti C, Elghandour MM, Salem AZ. Potential targets in quest for new antitubercular drugs: Implications of computational approaches for end-TB strategy. A MECHANISTIC APPROACH TO MEDICINES FOR TUBERCULOSIS NANOTHERAPY 2021:229-260. [DOI: 10.1016/b978-0-12-819985-5.00005-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
16
|
Sohn SI, Pandian S, Oh YJ, Kang HJ, Cho WS, Cho YS. Metabolic Engineering of Isoflavones: An Updated Overview. FRONTIERS IN PLANT SCIENCE 2021; 12:670103. [PMID: 34163508 PMCID: PMC8216759 DOI: 10.3389/fpls.2021.670103] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 04/21/2021] [Indexed: 05/04/2023]
Abstract
Isoflavones are ecophysiologically active secondary metabolites derived from the phenylpropanoid pathway. They were mostly found in leguminous plants, especially in the pea family. Isoflavones play a key role in plant-environment interactions and act as phytoalexins also having an array of health benefits to the humans. According to epidemiological studies, a high intake of isoflavones-rich diets linked to a lower risk of hormone-related cancers, osteoporosis, menopausal symptoms, and cardiovascular diseases. These characteristics lead to the significant advancement in the studies on genetic and metabolic engineering of isoflavones in plants. As a result, a number of structural and regulatory genes involved in isoflavone biosynthesis in plants have been identified and characterized. Subsequently, they were engineered in various crop plants for the increased production of isoflavones. Furthermore, with the advent of high-throughput technologies, the regulation of isoflavone biosynthesis gains attention to increase or decrease the level of isoflavones in the crop plants. In the review, we begin with the role of isoflavones in plants, environment, and its benefits in human health. Besides, the main theme is to discuss the updated research progress in metabolic engineering of isoflavones in other plants species and regulation of production of isoflavones in soybeans.
Collapse
Affiliation(s)
- Soo In Sohn
- Biosafety Division, Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Jeonju, South Korea
- *Correspondence: Soo-In Sohn,
| | - Subramani Pandian
- Biosafety Division, Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Jeonju, South Korea
| | - Young Ju Oh
- Institute for Future Environmental Ecology Co., Ltd., Jeonju, South Korea
| | - Hyeon Jung Kang
- Biosafety Division, Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Jeonju, South Korea
| | - Woo Suk Cho
- Biosafety Division, Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Jeonju, South Korea
| | - Youn Sung Cho
- Biosafety Division, Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Jeonju, South Korea
| |
Collapse
|
17
|
Faïon L, Djaout K, Frita R, Pintiala C, Cantrelle FX, Moune M, Vandeputte A, Bourbiaux K, Piveteau C, Herledan A, Biela A, Leroux F, Kremer L, Blaise M, Tanina A, Wintjens R, Hanoulle X, Déprez B, Willand N, Baulard AR, Flipo M. Discovery of the first Mycobacterium tuberculosis MabA (FabG1) inhibitors through a fragment-based screening. Eur J Med Chem 2020; 200:112440. [PMID: 32505086 DOI: 10.1016/j.ejmech.2020.112440] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/05/2020] [Accepted: 05/06/2020] [Indexed: 12/15/2022]
Abstract
Mycobacterium tuberculosis (M.tb), the etiologic agent of tuberculosis, remains the leading cause of death from a single infectious agent worldwide. The emergence of drug-resistant M.tb strains stresses the need for drugs acting on new targets. Mycolic acids are very long chain fatty acids playing an essential role in the architecture and permeability of the mycobacterial cell wall. Their biosynthesis involves two fatty acid synthase (FAS) systems. Among the four enzymes (MabA, HadAB/BC, InhA and KasA/B) of the FAS-II cycle, MabA (FabG1) remains the only one for which specific inhibitors have not been reported yet. The development of a new LC-MS/MS based enzymatic assay allowed the screening of a 1280 fragment-library and led to the discovery of the first small molecules that inhibit MabA activity. A fragment from the anthranilic acid series was optimized into more potent inhibitors and their binding to MabA was confirmed by 19F ligand-observed NMR experiments.
Collapse
Affiliation(s)
- Léo Faïon
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules for Living Systems, F-59000, Lille, France
| | - Kamel Djaout
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, F-59000, Lille, France
| | - Rosangela Frita
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, F-59000, Lille, France
| | - Catalin Pintiala
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules for Living Systems, F-59000, Lille, France
| | - Francois-Xavier Cantrelle
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, F-59000, Lille, France; CNRS, ERL9002 - Integrative Structural Biology, F-59000, Lille, France
| | - Martin Moune
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, F-59000, Lille, France
| | - Alexandre Vandeputte
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, F-59000, Lille, France
| | - Kevin Bourbiaux
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules for Living Systems, F-59000, Lille, France
| | - Catherine Piveteau
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules for Living Systems, F-59000, Lille, France
| | - Adrien Herledan
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules for Living Systems, F-59000, Lille, France
| | - Alexandre Biela
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules for Living Systems, F-59000, Lille, France
| | - Florence Leroux
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules for Living Systems, F-59000, Lille, France
| | - Laurent Kremer
- Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, CNRS UMR 9004, 34293, Montpellier, France; INSERM, Institut de Recherche en Infectiologie de Montpellier, Montpellier, France
| | - Mickael Blaise
- Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, CNRS UMR 9004, 34293, Montpellier, France
| | - Abdalkarim Tanina
- Unité Microbiologie, Chimie Bioorganique et Macromoléculaire (CP206/04), Département RD3, Faculté de Pharmacie, Université Libre de Bruxelles, B-1050, Brussels, Belgium
| | - René Wintjens
- Unité Microbiologie, Chimie Bioorganique et Macromoléculaire (CP206/04), Département RD3, Faculté de Pharmacie, Université Libre de Bruxelles, B-1050, Brussels, Belgium
| | - Xavier Hanoulle
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, F-59000, Lille, France; CNRS, ERL9002 - Integrative Structural Biology, F-59000, Lille, France
| | - Benoit Déprez
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules for Living Systems, F-59000, Lille, France
| | - Nicolas Willand
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules for Living Systems, F-59000, Lille, France
| | - Alain R Baulard
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, F-59000, Lille, France
| | - Marion Flipo
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules for Living Systems, F-59000, Lille, France.
| |
Collapse
|
18
|
Singh A, Gupta AK, Singh S. Molecular Mechanisms of Drug Resistance in Mycobacterium tuberculosis: Role of Nanoparticles Against Multi-drug-Resistant Tuberculosis (MDR-TB). Nanobiomedicine (Rij) 2020. [DOI: 10.1007/978-981-32-9898-9_12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
19
|
Abad CL, Razonable RR. Prevention and treatment of tuberculosis in solid organ transplant recipients. Expert Rev Anti Infect Ther 2019; 18:63-73. [PMID: 31826668 DOI: 10.1080/14787210.2020.1704255] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Introduction: Tuberculosis (TB) in solid organ transplant (SOT) recipients is associated with significant morbidity and mortality. Its management in transplant recipients is difficult and highly complex, given the underlying immunosuppression and the risks of drug-drug interactions imposed by immunosuppressive drugs that are needed to maintain the transplant allograft.Areas covered: We provide a brief review of TB in SOT and discuss the clinical indications, mechanisms of action and drug resistance, drug-drug interactions, and adverse effects of anti-TB drugs. We provide a summary of recent clinical trials, which serve as the foundation for current recommendations. We further include relevant updates on new agents being evaluated for clinical use in TB management.Expert commentary: TB causes significant morbidity in SOT recipients. The drugs used in the treatment for latent TB and active disease in SOT are similar to the regimens used in the general population. However, TB disease in transplant recipients is more difficult to manage because of the potential for hepatotoxicity and the complex drug-drug interactions with immunosuppressive drugs. We believe that alternative regimens suited for the vulnerable transplant population, and more therapeutic drug options are needed given the adverse toxicities associated with currently approved anti-TB drugs.
Collapse
Affiliation(s)
- Cybele L Abad
- Section of Infectious Diseases, University of the Philippines-Manila, Philippine General Hospital, Manila, Philippines
| | - Raymund R Razonable
- Division of Infectious Diseases, Department of Medicine, The William J. Von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
20
|
Küssau T, Flipo M, Van Wyk N, Viljoen A, Olieric V, Kremer L, Blaise M. Structural rearrangements occurring upon cofactor binding in the Mycobacterium smegmatis β-ketoacyl-acyl carrier protein reductase MabA. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2018; 74:383-393. [PMID: 29717709 DOI: 10.1107/s2059798318002917] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 02/19/2018] [Indexed: 12/14/2022]
Abstract
In mycobacteria, the ketoacyl-acyl carrier protein (ACP) reductase MabA (designated FabG in other bacteria) catalyzes the NADPH-dependent reduction of β-ketoacyl-ACP substrates to β-hydroxyacyl-ACP products. This first reductive step in the fatty-acid biosynthesis elongation cycle is essential for bacteria, which makes MabA/FabG an interesting drug target. To date, however, very few molecules targeting FabG have been discovered and MabA remains the only enzyme of the mycobacterial type II fatty-acid synthase that lacks specific inhibitors. Despite the existence of several MabA/FabG crystal structures, the structural rearrangement that occurs upon cofactor binding is still not fully understood. Therefore, unlocking this knowledge gap could help in the design of new inhibitors. Here, high-resolution crystal structures of MabA from Mycobacterium smegmatis in its apo, NADP+-bound and NADPH-bound forms are reported. Comparison of these crystal structures reveals the structural reorganization of the lid region covering the active site of the enzyme. The crystal structure of the apo form revealed numerous residues that trigger steric hindrance to the binding of NADPH and substrate. Upon NADPH binding, these residues are pushed away from the active site, allowing the enzyme to adopt an open conformation. The transition from an NADPH-bound to an NADP+-bound form is likely to facilitate release of the product. These results may be useful for subsequent rational drug design and/or for in silico drug-screening approaches targeting MabA/FabG.
Collapse
Affiliation(s)
- Tanja Küssau
- Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, CNRS UMR 9004, 34293 Montpellier, France
| | - Marion Flipo
- Université de Lille, INSERM, Institut Pasteur de Lille, U1177 - Drugs and Molecules for Living Systems, 59000 Lille, France
| | - Niel Van Wyk
- Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, CNRS UMR 9004, 34293 Montpellier, France
| | - Albertus Viljoen
- Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, CNRS UMR 9004, 34293 Montpellier, France
| | - Vincent Olieric
- Swiss Light Source, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Laurent Kremer
- Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, CNRS UMR 9004, 34293 Montpellier, France
| | - Mickaël Blaise
- Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, CNRS UMR 9004, 34293 Montpellier, France
| |
Collapse
|
21
|
Domain swapping between FabGs deciphers the structural determinant for in-solution oligomerization and substrate binding. Biophys Chem 2018; 237:9-21. [PMID: 29625337 DOI: 10.1016/j.bpc.2018.03.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 03/15/2018] [Accepted: 03/19/2018] [Indexed: 01/02/2023]
|
22
|
Binding of NADP + triggers an open-to-closed transition in a mycobacterial FabG β-ketoacyl-ACP reductase. Biochem J 2017; 474:907-921. [PMID: 28126742 DOI: 10.1042/bcj20161052] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 01/11/2017] [Accepted: 01/25/2017] [Indexed: 02/07/2023]
Abstract
The ketoacyl-acyl carrier protein (ACP) reductase FabG catalyzes the NADPH/NADH dependent reduction of β-ketoacyl-ACP substrates to β-hydroxyacyl-ACP products, the first reductive step in the fatty acid biosynthesis elongation cycle. FabG proteins are ubiquitous in bacteria and are part of the type II fatty acid synthase system. Mining the Mycobacterium smegmatis genome uncovered several putative FabG-like proteins. Among them, we identified M. smegmatis MSMEG_6753 whose gene was found adjacent to MSMEG_6754, encoding a recently characterized enoyl-CoA dehydratase, and to MSMEG_6755, encoding another potential reductase. Recombinantly expressed and purified MSMEG_6753 exhibits ketoacyl reductase activity in the presence of acetoacetyl-CoA and NADPH. This activity was subsequently confirmed by functional complementation studies in a fabG thermosensitive Escherichia coli mutant. Furthermore, comparison of the apo and the NADP+-bound MSMEG_6753 crystal structures showed that cofactor binding induces a closed conformation of the protein. A ΔMSMEG_6753 deletion mutant could be generated in M. smegmatis, indicating that this gene is dispensable for mycobacterial growth. Overall, these results showcase the diversity of FabG-like proteins in mycobacteria and new structural features regarding the catalytic mechanism of this important family of enzymes that may be of importance for the rational design of specific FabG inhibitors.
Collapse
|
23
|
Recent advancements in the development of anti-tuberculosis drugs. Bioorg Med Chem Lett 2016; 27:370-386. [PMID: 28017531 DOI: 10.1016/j.bmcl.2016.11.084] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 11/16/2016] [Accepted: 11/27/2016] [Indexed: 01/09/2023]
Abstract
Modern chemotherapy has significantly improved patient outcomes against drug-sensitive tuberculosis. However, the rapid emergence of drug-resistant tuberculosis, together with the bacterium's ability to persist and remain latent present a major public health challenge. To overcome this problem, research into novel anti-tuberculosis targets and drug candidates is thus of paramount importance. This review article provides an overview of tuberculosis highlighting the recent advances and tools that are employed in the field of anti-tuberculosis drug discovery. The predominant focus is on anti-tuberculosis agents that are currently in the pipeline, i.e. clinical trials.
Collapse
|
24
|
Dissecting the Structural Elements for the Activation of β-Ketoacyl-(Acyl Carrier Protein) Reductase from Vibrio cholerae. J Bacteriol 2015; 198:463-76. [PMID: 26553852 DOI: 10.1128/jb.00360-15] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 11/03/2015] [Indexed: 01/22/2023] Open
Abstract
UNLABELLED β-Ketoacyl-(acyl carrier protein) reductase (FabG) catalyzes the key reductive reaction in the elongation cycle of fatty acid synthesis (FAS), which is a vital metabolic pathway in bacteria and a promising target for new antibiotic development. The activation of the enzyme is usually linked to the formation of a catalytic triad and cofactor binding, and crystal structures of FabG from different organisms have been captured in either the active or inactive conformation. However, the structural elements which enable activation of FabG require further exploration. Here we report the findings of structural, enzymatic, and binding studies of the FabG protein found in the causative agent of cholera, Vibrio cholerae (vcFabG). vcFabG exists predominantly as a dimer in solution and is able to self-associate to form tetramers, which is the state seen in the crystal structure. The formation of the tetramer may be promoted by the presence of the cofactor NADP(H). The transition between the dimeric and tetrameric states of vcFabG is related to changes in the conformations of the α4/α5 helices on the dimer-dimer interface. Two glycine residues adjacent to the dimer interface (G92 and G141) are identified to be the hinge for the conformational changes, while the catalytic tyrosine (Y155) and a glutamine residue that forms hydrogen bonds to both loop β4-α4 and loop β5-α5 (Q152) stabilize the active conformation. The functions of the aforementioned residues were confirmed by binding and enzymatic assays for the corresponding mutants. IMPORTANCE This paper describes the results of structural, enzymatic, and binding studies of FabG from Vibrio cholerae (vcFabG). In this work, we dissected the structural elements responsible for the activation of vcFabG. The structural information provided here is essential for the development of antibiotics specifically targeting bacterial FabG, especially for the multidrug-resistant strains of V. cholerae.
Collapse
|
25
|
Venkatesan R, Sah-Teli SK, Awoniyi LO, Jiang G, Prus P, Kastaniotis AJ, Hiltunen JK, Wierenga RK, Chen Z. Insights into mitochondrial fatty acid synthesis from the structure of heterotetrameric 3-ketoacyl-ACP reductase/3R-hydroxyacyl-CoA dehydrogenase. Nat Commun 2014; 5:4805. [DOI: 10.1038/ncomms5805] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 07/24/2014] [Indexed: 12/19/2022] Open
|
26
|
Abstract
ABSTRACT
Mycolic acids are major and specific long-chain fatty acids that represent essential components of the
Mycobacterium tuberculosis
cell envelope. They play a crucial role in the cell wall architecture and impermeability, hence the natural resistance of mycobacteria to most antibiotics, and represent key factors in mycobacterial virulence. Biosynthesis of mycolic acid precursors requires two types of fatty acid synthases (FASs), the eukaryotic-like multifunctional enzyme FAS I and the acyl carrier protein (ACP)–dependent FAS II systems, which consists of a series of discrete mono-functional proteins, each catalyzing one reaction in the pathway. Unlike FAS II synthases of other bacteria, the mycobacterial FAS II is incapable of
de novo
fatty acid synthesis from acetyl-coenzyme A, but instead elongates medium-chain-length fatty acids previously synthesized by FAS I, leading to meromycolic acids. In addition, mycolic acid subspecies with defined biological properties can be distinguished according to the chemical modifications decorating the meromycolate. Nearly all the genetic components involved in both elongation and functionalization of the meromycolic acid have been identified and are generally clustered in distinct transcriptional units. A large body of information has been generated on the enzymology of the mycolic acid biosynthetic pathway and on their genetic and biochemical/structural characterization as targets of several antitubercular drugs. This chapter is a comprehensive overview of mycolic acid structure, function, and biosynthesis. Special emphasis is given to recent work addressing the regulation of mycolic acid biosynthesis, adding new insights to our understanding of how pathogenic mycobacteria adapt their cell wall composition in response to environmental changes.
Collapse
|
27
|
Tomioka H, Tatano Y, Yasumoto K, Shimizu T. Recent advances in antituberculous drug development and novel drug targets. Expert Rev Respir Med 2014; 2:455-71. [DOI: 10.1586/17476348.2.4.455] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
28
|
Banerjee DR, Dutta D, Saha B, Bhattacharyya S, Senapati K, Das AK, Basak A. Design, synthesis and characterization of novel inhibitors against mycobacterial β-ketoacyl CoA reductase FabG4. Org Biomol Chem 2014; 12:73-85. [DOI: 10.1039/c3ob41676c] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
29
|
Cukier CD, Hope AG, Elamin AA, Moynie L, Schnell R, Schach S, Kneuper H, Singh M, Naismith JH, Lindqvist Y, Gray DW, Schneider G. Discovery of an allosteric inhibitor binding site in 3-Oxo-acyl-ACP reductase from Pseudomonas aeruginosa. ACS Chem Biol 2013; 8:2518-27. [PMID: 24015914 PMCID: PMC3833349 DOI: 10.1021/cb4005063] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
3-Oxo-acyl-acyl carrier protein (ACP) reductase (FabG) plays a key role in the bacterial fatty acid synthesis II system in pathogenic microorganisms, which has been recognized as a potential drug target. FabG catalyzes reduction of a 3-oxo-acyl-ACP intermediate during the elongation cycle of fatty acid biosynthesis. Here, we report gene deletion experiments that support the essentiality of this gene in P. aeruginosa and the identification of a number of small molecule FabG inhibitors with IC50 values in the nanomolar to low micromolar range and good physicochemical properties. Structural characterization of 16 FabG-inhibitor complexes by X-ray crystallography revealed that the compounds bind at a novel allosteric site located at the FabG subunit-subunit interface. Inhibitor binding relies primarily on hydrophobic interactions, but specific hydrogen bonds are also observed. Importantly, the binding cavity is formed upon complex formation and therefore would not be recognized by virtual screening approaches. The structure analysis further reveals that the inhibitors act by inducing conformational changes that propagate to the active site, resulting in a displacement of the catalytic triad and the inability to bind NADPH.
Collapse
Affiliation(s)
- Cyprian D. Cukier
- Department
of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden
| | | | - Ayssar A. Elamin
- LIONEX Diagnostics and Therapeutics GmbH, D-38126 Braunschweig, Germany
| | - Lucile Moynie
- Biomedical
Sciences Research Complex, University of St. Andrews, St. Andrews KY16 9ST, U.K
| | - Robert Schnell
- Department
of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Susanne Schach
- LIONEX Diagnostics and Therapeutics GmbH, D-38126 Braunschweig, Germany
| | | | - Mahavir Singh
- LIONEX Diagnostics and Therapeutics GmbH, D-38126 Braunschweig, Germany
| | - James H. Naismith
- Biomedical
Sciences Research Complex, University of St. Andrews, St. Andrews KY16 9ST, U.K
| | - Ylva Lindqvist
- Department
of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden
| | | | - Gunter Schneider
- Department
of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden
| |
Collapse
|
30
|
Wang Y, Ma S. Recent Advances in Inhibitors of Bacterial Fatty Acid Synthesis Type II (FASII) System Enzymes as Potential Antibacterial Agents. ChemMedChem 2013; 8:1589-608. [DOI: 10.1002/cmdc.201300209] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2013] [Revised: 06/30/2013] [Indexed: 12/25/2022]
|
31
|
Parsons JB, Rock CO. Bacterial lipids: metabolism and membrane homeostasis. Prog Lipid Res 2013; 52:249-76. [PMID: 23500459 PMCID: PMC3665635 DOI: 10.1016/j.plipres.2013.02.002] [Citation(s) in RCA: 321] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 02/27/2013] [Accepted: 02/28/2013] [Indexed: 11/29/2022]
Abstract
Membrane lipid homeostasis is a vital facet of bacterial cell physiology. For decades, research in bacterial lipid synthesis was largely confined to the Escherichia coli model system. This basic research provided a blueprint for the biochemistry of lipid metabolism that has largely defined the individual steps in bacterial fatty acid and phospholipids synthesis. The advent of genomic sequencing has revealed a surprising amount of diversity in the genes, enzymes and genetic organization of the components responsible for bacterial lipid synthesis. Although the chemical steps in fatty acid synthesis are largely conserved in bacteria, there are surprising differences in the structure and cofactor requirements for the enzymes that perform these reactions in Gram-positive and Gram-negative bacteria. This review summarizes how the explosion of new information on the diversity of biochemical and genetic regulatory mechanisms has impacted our understanding of bacterial lipid homeostasis. The potential and problems of developing therapeutics that block pathogen phospholipid synthesis are explored and evaluated. The study of bacterial lipid metabolism continues to be a rich source for new biochemistry that underlies the variety and adaptability of bacterial life styles.
Collapse
Affiliation(s)
- Joshua B Parsons
- Department of Infectious Diseases, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | | |
Collapse
|
32
|
3-oxoacyl-ACP reductase from Schistosoma japonicum: integrated in silico-in vitro strategy for discovering antischistosomal lead compounds. PLoS One 2013; 8:e64984. [PMID: 23762275 PMCID: PMC3676400 DOI: 10.1371/journal.pone.0064984] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 04/18/2013] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Schistosomiasis is a disease caused by parasitic worms and more than 200 million people are infected worldwide. The emergence of resistance to the most commonly used drug, praziquantel (PZQ), makes the development of novel drugs an urgent task. 3-oxoacyl-ACP reductase (OAR), a key enzyme involved in the fatty acid synthesis pathway, has been identified as a potential drug target against many pathogenic organisms. However, no research on Schistosoma japonicum OAR (SjOAR) has been reported. The characterization of the SjOAR protein will provide new strategies for screening antischistosomal drugs that target SjOAR. METHODOLOGY/PRINCIPAL FINDINGS After cloning the SjOAR gene, recombinant SjOAR protein was purified and assayed for enzymatic activity. The tertiary structure of SjOAR was obtained by homology modeling and 27 inhibitor candidates were identified from 14,400 compounds through molecular docking based on the structure. All of these compounds were confirmed to be able to bind to the SjOAR protein by BIAcore analysis. Two compounds exhibited strong antischistosomal activity and inhibitory effects on the enzymatic activity of SjOAR. In contrast, these two compounds showed relatively low toxicity towards host cells. CONCLUSIONS/SIGNIFICANCE The work presented here shows the feasibility of isolation of new antischistosomal compounds using a combination of virtual screening and experimental validation. Based on this strategy, we successfully identified 2 compounds that target SjOAR with strong antischistosomal activity but relatively low cytotoxicity to host cells.
Collapse
|
33
|
Crystal structure of hexanoyl-CoA bound to β-ketoacyl reductase FabG4 of Mycobacterium tuberculosis. Biochem J 2013; 450:127-39. [PMID: 23163771 DOI: 10.1042/bj20121107] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
FabGs, or β-oxoacyl reductases, are involved in fatty acid synthesis. The reaction entails NADPH/NADH-mediated conversion of β-oxoacyl-ACP (acyl-carrier protein) into β-hydroxyacyl-ACP. HMwFabGs (high-molecular-weight FabG) form a phylogenetically separate group of FabG enzymes. FabG4, an HMwFabG from Mycobacterium tuberculosis, contains two distinct domains, an N-terminal 'flavodoxintype' domain and a C-terminal oxoreductase domain. The catalytically active C-terminal domain utilizes NADH to reduce β-oxoacyl-CoA to β-hydroxyacyl-CoA. In the present study the crystal structures of the FabG4-NADH binary complex and the FabG4-NAD+-hexanoyl-CoA ternary complex have been determined to understand the substrate specificity and catalytic mechanism of FabG4. This is the first report to demonstrate how FabG4 interacts with its coenzyme NADH and hexanoyl-CoA that mimics an elongating fattyacyl chain covalently linked with CoA. Structural analysis shows that the binding of hexanoyl-CoA within the active site cavity of FabG significantly differs from that of the C16 fattyacyl substrate bound to mycobacterial FabI [InhA (enoyl-ACP reductase)]. The ternary complex reveals that both loop I and loop II interact with the phosphopantetheine moiety of CoA or ACP to align the covalently linked fattyacyl substrate near the active site. Structural data ACP inhibition studies indicate that FabG4 can accept both CoA- and ACP-based fattyacyl substrates. We have also shown that in the FabG4 dimer Arg146 and Arg445 of one monomer interact with the C-terminus of the second monomer to play pivotal role in substrate association and catalysis.
Collapse
|
34
|
Buysschaert G, Verstraete K, Savvides SN, Vergauwen B. Structural and biochemical characterization of an atypical short-chain dehydrogenase/reductase reveals an unusual cofactor preference. FEBS J 2013; 280:1358-70. [PMID: 23311896 DOI: 10.1111/febs.12128] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Revised: 01/04/2013] [Accepted: 01/07/2013] [Indexed: 11/28/2022]
Abstract
Short-chain dehydrogenases/reductases (SDRs) encompass a large and functionally diverse family of enzymes with representative members in all kingdoms of life. Despite the wealth of reactions catalyzed by SDRs, they operate through a well-conserved and efficient reaction mechanism centered in a conserved catalytic tetrad (Asn-Ser-Tyr-Lys) and the employment of an appropriate cofactor. In recent years, SDRs that lack the signature catalytic tetrad have been identified, thus adding a perplexing twist to SDR functionality. In the present study, we report the crystal structure of SDRvv, an atypical SDR from Vibrio vulnificus devoid of the catalytic tetrad, thereby defining the structural signature of this apparent SDR family outlier. Further structural analysis of SDRvv in complex with its putative cofactor NADPH, site-directed mutagenesis and binding studies via isothermal titration calorimetry, and further biochemical characterization have allowed us to dissect the cofactor preferences of SDRvv. The retained capacity to bind the NADPH cofactor, the conceivable existence of a proton relay and the conservation of the coordination distances between the key residues in the cofactor binding pocket define a first set of rules towards catalytic activity for SDRvv. The findings of the present study set the stage for deriving the identity of the natural substrate of SDRvv and add a new twist to the structure-function landscape for Rossmann-fold-dependent cofactor discrimination.
Collapse
Affiliation(s)
- Géraldine Buysschaert
- Unit for Structural Biology, Laboratory for Protein Biochemistry and Biomolecular Engineering (L-ProBE), Ghent University, Ghent, Belgium
| | | | | | | |
Collapse
|
35
|
Zhang Y, Ning F, Li X, Teng M. Structural insights into cofactor recognition of yeast mitochondria 3-oxoacyl-ACP reductase OAR1. IUBMB Life 2013; 65:154-62. [PMID: 23300157 DOI: 10.1002/iub.1125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 12/04/2012] [Indexed: 11/09/2022]
Abstract
3-Oxoacyl-(acyl-carrier-protein) reductase (OAR1 or FabG, EC.1.1.1.100) is responsible for the first reductive step in fatty acid biosynthesis using Nicotinamide Adenine Dinucleotide Phosphate (NADPH) as a cofactor. Recent studies suggest there is a fatty acid synthetase II pathway that consists of a series of separate enzymes in yeast mitochondrion. Here, we present the crystal structure of the yeast mitochondria OAR1 (ymtOAR1) alone in apo-form at 2.60 Å and complexed with NADPH at 2.10 Å resolution. Unlike the reported tetrameric OARs, ymtOAR1 forms a homodimer due to the different fold. The enzyme generates conformational changes upon NADPH binding to the active site. Moreover, two different cofactor-binding patterns are observed from two forms of complex crystals, and structural analysis implies the adenine end of cofactor may recognize enzyme prior to nicotinaminde end. Additionally, biochemical studies suggest Arg14 is important for cofactor recognition of ymtOAR1.
Collapse
Affiliation(s)
- YuJie Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | | | | | | |
Collapse
|
36
|
Rosado LA, Caceres RA, de Azevedo WF, Basso LA, Santos DS. Role of Serine140 in the mode of action of Mycobacterium tuberculosis β-ketoacyl-ACP Reductase (MabA). BMC Res Notes 2012; 5:526. [PMID: 23006410 PMCID: PMC3519566 DOI: 10.1186/1756-0500-5-526] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Accepted: 09/14/2012] [Indexed: 11/10/2022] Open
Abstract
Background Tuberculosis (TB) still remains one of the most deadly infectious diseases in the world. Mycobacterium tuberculosis β-ketoacyl-ACP Reductase (MabA) is a member of the fatty acid elongation system type II, providing precursors of mycolic acids that are essential to the bacterial cell growth and survival. MabA has been shown to be essential for M. tuberculosis survival and to play a role in intracellular signal transduction of bacilli. Findings Here we describe site-directed mutagenesis, recombinant protein expression and purification, steady-state kinetics, fluorescence spectroscopy, and molecular modeling for S140T and S140A mutant MabA enzymes. No enzyme activity could be detected for S140T and S140A. Although the S140T protein showed impaired NADPH binding, the S140A mutant could bind to NADPH. Computational predictions for NADPH binding affinity to WT, S140T and S140A MabA proteins were consistent with fluorescence spectroscopy data. Conclusions The results suggest that the main role of the S140 side chain of MabA is in catalysis. The S140 side chain appears to also play an indirect role in NADPH binding. Interestingly, NADPH titrations curves shifted from sigmoidal for WT to hyperbolic for S140A, suggesting that the S140 residue may play a role in displacing the pre-existing equilibrium between two forms of MabA in solution. The results here reported provide a better understanding of the mode of action of MabA that should be useful to guide the rational (function-based) design of inhibitors of MabA enzyme activity which, hopefully, could be used as lead compounds with anti-TB action.
Collapse
Affiliation(s)
- Leonardo A Rosado
- Centro de Pesquisas em Biologia Molecular e Funcional, Instituto Nacional de Ciência e Tecnologia em Tuberculose, Pontifícia Universidade Católica do Rio Grande do Sul, Av. Ipiranga 6681, Porto Alegre, RS 90619-900, Brazil
| | | | | | | | | |
Collapse
|
37
|
Dutta D, Bhattacharyya S, Das AK. Crystallization and preliminary X-ray diffraction analysis of the high molecular weight ketoacyl reductase FabG4 complexed with NADH. Acta Crystallogr Sect F Struct Biol Cryst Commun 2012; 68:786-9. [PMID: 22750865 PMCID: PMC3388922 DOI: 10.1107/s1744309112020301] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Accepted: 05/05/2012] [Indexed: 11/11/2022]
Abstract
FabG4 from Mycobacterium tuberculosis belongs to the high molecular weight ketoacyl reductases (HMwFabGs). The enzyme requires NADH for β-ketoacyl reductase activity. The protein was overexpressed, purified to homogeneity and crystallized as a FabG4-NADH complex. A mountable FabG4:NADH complex crystal diffracted to 2.59 Å resolution and belonged to space group P1, with unit-cell parameters a = 63.07, b = 71.03, c = 92.92 Å, α = 105.02, β = 97.06, γ = 93.66°. The Matthews coefficient suggested the presence of four monomers in the unit cell. In addition, a self-rotation function revealed the presence of two twofold NCS axes and one fourfold NCS axis. At χ = 180° the highest peak corresponds to the twofold NCS between two monomers, whereas the second peak corresponds to the twofold NCS between two dimers.
Collapse
Affiliation(s)
- Debajyoti Dutta
- Department of Biotechnology, Indian Institute of Technology, Kharagpur, Kharagpur 721 302, India
| | - Sudipta Bhattacharyya
- Department of Biotechnology, Indian Institute of Technology, Kharagpur, Kharagpur 721 302, India
| | - Amit Kumar Das
- Department of Biotechnology, Indian Institute of Technology, Kharagpur, Kharagpur 721 302, India
| |
Collapse
|
38
|
Hou J, Wojciechowska K, Zheng H, Chruszcz M, Cooper DR, Cymborowski M, Skarina T, Gordon E, Luo H, Savchenko A, Minor W. Structure of a short-chain dehydrogenase/reductase from Bacillus anthracis. Acta Crystallogr Sect F Struct Biol Cryst Commun 2012; 68:632-7. [PMID: 22684058 PMCID: PMC3370898 DOI: 10.1107/s1744309112017939] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Accepted: 04/22/2012] [Indexed: 11/10/2022]
Abstract
The crystal structure of a short-chain dehydrogenase/reductase from Bacillus anthracis strain `Ames Ancestor' complexed with NADP has been determined and refined to 1.87 Å resolution. The structure of the enzyme consists of a Rossmann fold composed of seven parallel β-strands sandwiched by three α-helices on each side. An NADP molecule from an endogenous source is bound in the conserved binding pocket in the syn conformation. The loop region responsible for binding another substrate forms two perpendicular short helices connected by a sharp turn.
Collapse
Affiliation(s)
- Jing Hou
- Molecular Physiology and Biological Physics, University of Virginia, 1340 Jefferson Park Avenue, Jordan Hall, Room 4223, Charlottesville, VA 22908, USA
- Center for Structural Genomics of Infectious Diseases (CSGID), USA
| | - Kamila Wojciechowska
- Molecular Physiology and Biological Physics, University of Virginia, 1340 Jefferson Park Avenue, Jordan Hall, Room 4223, Charlottesville, VA 22908, USA
| | - Heping Zheng
- Molecular Physiology and Biological Physics, University of Virginia, 1340 Jefferson Park Avenue, Jordan Hall, Room 4223, Charlottesville, VA 22908, USA
- Center for Structural Genomics of Infectious Diseases (CSGID), USA
| | - Maksymilian Chruszcz
- Molecular Physiology and Biological Physics, University of Virginia, 1340 Jefferson Park Avenue, Jordan Hall, Room 4223, Charlottesville, VA 22908, USA
- Center for Structural Genomics of Infectious Diseases (CSGID), USA
| | - David R. Cooper
- Molecular Physiology and Biological Physics, University of Virginia, 1340 Jefferson Park Avenue, Jordan Hall, Room 4223, Charlottesville, VA 22908, USA
- Center for Structural Genomics of Infectious Diseases (CSGID), USA
| | - Marcin Cymborowski
- Molecular Physiology and Biological Physics, University of Virginia, 1340 Jefferson Park Avenue, Jordan Hall, Room 4223, Charlottesville, VA 22908, USA
- Center for Structural Genomics of Infectious Diseases (CSGID), USA
| | - Tatiana Skarina
- Center for Structural Genomics of Infectious Diseases (CSGID), USA
- Banting and Best Department of Medical Research, University of Toronto, 112 College Street, Toronto, Ontario, Canada
| | - Elena Gordon
- Center for Structural Genomics of Infectious Diseases (CSGID), USA
- Banting and Best Department of Medical Research, University of Toronto, 112 College Street, Toronto, Ontario, Canada
| | - Haibin Luo
- Molecular Physiology and Biological Physics, University of Virginia, 1340 Jefferson Park Avenue, Jordan Hall, Room 4223, Charlottesville, VA 22908, USA
- Center for Structural Genomics of Infectious Diseases (CSGID), USA
| | - Alexei Savchenko
- Center for Structural Genomics of Infectious Diseases (CSGID), USA
- Banting and Best Department of Medical Research, University of Toronto, 112 College Street, Toronto, Ontario, Canada
| | - Wladek Minor
- Molecular Physiology and Biological Physics, University of Virginia, 1340 Jefferson Park Avenue, Jordan Hall, Room 4223, Charlottesville, VA 22908, USA
- Center for Structural Genomics of Infectious Diseases (CSGID), USA
| |
Collapse
|
39
|
Cantaloube S, Veyron-Churlet R, Haddache N, Daffé M, Zerbib D. The Mycobacterium tuberculosis FAS-II dehydratases and methyltransferases define the specificity of the mycolic acid elongation complexes. PLoS One 2011; 6:e29564. [PMID: 22216317 PMCID: PMC3245277 DOI: 10.1371/journal.pone.0029564] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Accepted: 11/30/2011] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND The human pathogen Mycobacterium tuberculosis (Mtb) has the originality of possessing a multifunctional mega-enzyme FAS-I (Fatty Acid Synthase-I), together with a multi-protein FAS-II system, to carry out the biosynthesis of common and of specific long chain fatty acids: the mycolic acids (MA). MA are the main constituents of the external mycomembrane that represents a tight permeability barrier involved in the pathogenicity of Mtb. The MA biosynthesis pathway is essential and contains targets for efficient antibiotics. We have demonstrated previously that proteins of FAS-II interact specifically to form specialized and interconnected complexes. This finding suggested that the organization of FAS-II resemble to the architecture of multifunctional mega-enzyme like the mammalian mFAS-I, which is devoted to the fatty acid biosynthesis. PRINCIPAL FINDINGS Based on conventional and reliable studies using yeast-two hybrid, yeast-three-hybrid and in vitro Co-immunoprecipitation, we completed here the analysis of the composition and architecture of the interactome between the known components of the Mtb FAS-II complexes. We showed that the recently identified dehydratases HadAB and HadBC are part of the FAS-II elongation complexes and may represent a specific link between the core of FAS-II and the condensing enzymes of the system. By testing four additional methyltransferases involved in the biosynthesis of mycolic acids, we demonstrated that they display specific interactions with each type of complexes suggesting their coordinated action during MA elongation. SIGNIFICANCE These results provide a global update of the architecture and organization of a FAS-II system. The FAS-II system of Mtb is organized in specialized interconnected complexes and the specificity of each elongation complex is given by preferential interactions between condensing enzymes and dehydratase heterodimers. This study will probably allow defining essential and specific interactions that correspond to promising targets for Mtb FAS-II inhibitors.
Collapse
Affiliation(s)
- Sylvain Cantaloube
- Centre National de la Recherche Scientifique (CNRS), Institut de Pharmacologie et de Biologie Structurale (IPBS), Toulouse, France
- Université de Toulouse; Université Paul Sabatier (UPS), Toulouse, France
| | - Romain Veyron-Churlet
- Centre National de la Recherche Scientifique (CNRS), Institut de Pharmacologie et de Biologie Structurale (IPBS), Toulouse, France
- Université de Toulouse; Université Paul Sabatier (UPS), Toulouse, France
| | - Nabila Haddache
- Centre National de la Recherche Scientifique (CNRS), Institut de Pharmacologie et de Biologie Structurale (IPBS), Toulouse, France
- Université de Toulouse; Université Paul Sabatier (UPS), Toulouse, France
| | - Mamadou Daffé
- Centre National de la Recherche Scientifique (CNRS), Institut de Pharmacologie et de Biologie Structurale (IPBS), Toulouse, France
- Université de Toulouse; Université Paul Sabatier (UPS), Toulouse, France
| | - Didier Zerbib
- Centre National de la Recherche Scientifique (CNRS), Institut de Pharmacologie et de Biologie Structurale (IPBS), Toulouse, France
- Université de Toulouse; Université Paul Sabatier (UPS), Toulouse, France
| |
Collapse
|
40
|
Subramanian S, Abendroth J, Phan IQH, Olsen C, Staker BL, Napuli A, Van Voorhis WC, Stacy R, Myler PJ. Structure of 3-ketoacyl-(acyl-carrier-protein) reductase from Rickettsia prowazekii at 2.25 Å resolution. Acta Crystallogr Sect F Struct Biol Cryst Commun 2011; 67:1118-22. [PMID: 21904060 PMCID: PMC3169412 DOI: 10.1107/s1744309111030673] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Accepted: 07/29/2011] [Indexed: 11/29/2022]
Abstract
Rickettsia prowazekii, a parasitic Gram-negative bacterium, is in the second-highest biodefense category of pathogens of the National Institute of Allergy and Infectious Diseases, but only a handful of structures have been deposited in the PDB for this bacterium; to date, all of these have been solved by the SSGCID. Owing to its small genome (about 800 protein-coding genes), it relies on the host for many basic biosynthetic processes, hindering the identification of potential antipathogenic drug targets. However, like many bacteria and plants, its metabolism does depend upon the type II fatty-acid synthesis (FAS) pathway for lipogenesis, whereas the predominant form of fatty-acid biosynthesis in humans is via the type I pathway. Here, the structure of the third enzyme in the FAS pathway, 3-ketoacyl-(acyl-carrier-protein) reductase, is reported at a resolution of 2.25 Å. Its fold is highly similar to those of the existing structures from some well characterized pathogens, such as Mycobacterium tuberculosis and Burkholderia pseudomallei, but differs significantly from the analogous mammalian structure. Hence, drugs known to target the enzymes of pathogenic bacteria may serve as potential leads against Rickettsia, which is responsible for spotted fever and typhus and is found throughout the world.
Collapse
|
41
|
Crystal structure of FabG4 from Mycobacterium tuberculosis reveals the importance of C-terminal residues in ketoreductase activity. J Struct Biol 2011; 174:147-55. [DOI: 10.1016/j.jsb.2010.11.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Revised: 11/05/2010] [Accepted: 11/08/2010] [Indexed: 11/24/2022]
|
42
|
Gago G, Diacovich L, Arabolaza A, Tsai SC, Gramajo H. Fatty acid biosynthesis in actinomycetes. FEMS Microbiol Rev 2011; 35:475-97. [PMID: 21204864 DOI: 10.1111/j.1574-6976.2010.00259.x] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
All organisms that produce fatty acids do so via a repeated cycle of reactions. In mammals and other animals, these reactions are catalyzed by a type I fatty acid synthase (FAS), a large multifunctional protein to which the growing chain is covalently attached. In contrast, most bacteria (and plants) contain a type II system in which each reaction is catalyzed by a discrete protein. The pathway of fatty acid biosynthesis in Escherichia coli is well established and has provided a foundation for elucidating the type II FAS pathways in other bacteria (White et al., 2005). However, fatty acid biosynthesis is more diverse in the phylum Actinobacteria: Mycobacterium, possess both FAS systems while Streptomyces species have only the multienzyme FAS II system and Corynebacterium species exclusively FAS I. In this review, we present an overview of the genome organization, biochemical properties and physiological relevance of the two FAS systems in the three genera of actinomycetes mentioned above. We also address in detail the biochemical and structural properties of the acyl-CoA carboxylases (ACCases) that catalyzes the first committed step of fatty acid synthesis in actinomycetes, and discuss the molecular bases of their substrate specificity and the structure-based identification of new ACCase inhibitors with antimycobacterial properties.
Collapse
Affiliation(s)
- Gabriela Gago
- Microbiology Division, IBR (Instituto de Biología Molecular y Celular de Rosario), Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | | | | | | | | |
Collapse
|
43
|
Huether R, Mao Q, Duax WL, Umland TC. The short-chain oxidoreductase Q9HYA2 from Pseudomonas aeruginosa PAO1 contains an atypical catalytic center. Protein Sci 2010; 19:1097-103. [PMID: 20340135 DOI: 10.1002/pro.384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The characteristic oxidation or reduction reaction mechanisms of short-chain oxidoreductase (SCOR) enzymes involve a highly conserved Asp-Ser-Tyr-Lys catalytic tetrad. The SCOR enzyme Q9HYA2 from the pathogenic bacterium Pseudomonas aeruginosa was recognized to possess an atypical catalytic tetrad composed of Lys118-Ser146-Thr159-Arg163. Orthologs of Q9HYA2 containing the unusual catalytic tetrad along with conserved substrate and cofactor recognition residues were identified in 27 additional species, the majority of which are bacterial pathogens. However, this atypical catalytic tetrad was not represented within the Protein Data Bank. The crystal structures of unligated and NADPH-complexed Q9HYA2 were determined at 2.3 A resolution. Structural alignment to a polyketide ketoreductase (KR), a typical SCOR, demonstrated that Q9HYA2's Lys118, Ser146, and Arg163 superimposed upon the KR's catalytic Asp114, Ser144, and Lys161, respectively. However, only the backbone of Q9HYA2's Thr159 overlapped KR's catalytic Tyr157. The Thr159 hydroxyl in apo Q9HYA2 is poorly positioned for participating in catalysis. In the Q9HYA2-NADPH complex, the Thr159 side chain was modeled in two alternate rotamers, one of which is positioned to interact with other members of the tetrad and the bound cofactor. A chloride ion is bound at the position normally occupied by the catalytic tyrosine hydroxyl. The putative active site of Q9HYA2 contains a chemical moiety at each catalytically important position of a typical SCOR enzyme. This is the first observation of a SCOR protein with this alternate catalytic center that includes threonine replacing the catalytic tyrosine and an ion replacing the hydroxyl moiety of the catalytic tyrosine.
Collapse
Affiliation(s)
- Robert Huether
- Department of Structural Biology, University at Buffalo, Buffalo, New York 14203, USA
| | | | | | | |
Collapse
|
44
|
Lou Z, Zhang X. Protein targets for structure-based anti-Mycobacterium tuberculosis drug discovery. Protein Cell 2010; 1:435-42. [PMID: 21203958 DOI: 10.1007/s13238-010-0057-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Accepted: 05/01/2010] [Indexed: 11/30/2022] Open
Abstract
Mycobacterium tuberculosis, which belongs to the genus Mycobacterium, is the pathogenic agent for most tuberculosis (TB). As TB remains one of the most rampant infectious diseases, causing morbidity and death with emergence of multi-drug-resistant and extensively-drug-resistant forms, it is urgent to identify new drugs with novel targets to ensure future therapeutic success. In this regards, the structural genomics of M. tuberculosis provides important information to identify potential targets, perform biochemical assays, determine crystal structures in complex with potential inhibitor(s), reveal the key sites/residues for biological activity, and thus validate drug targets and discover novel drugs. In this review, we will discuss the recent progress on novel targets for structure-based anti-M. tuberculosis drug discovery.
Collapse
Affiliation(s)
- Zhiyong Lou
- Laboratory of Structural Biology, Tsinghua University, Beijing 100084, China.
| | | |
Collapse
|
45
|
Rui Z, Petrícková K, Skanta F, Pospísil S, Yang Y, Chen CY, Tsai SF, Floss HG, Petrícek M, Yu TW. Biochemical and genetic insights into asukamycin biosynthesis. J Biol Chem 2010; 285:24915-24. [PMID: 20522559 DOI: 10.1074/jbc.m110.128850] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Asukamycin, a member of the manumycin family metabolites, is an antimicrobial and potential antitumor agent isolated from Streptomyces nodosus subsp. asukaensis. The entire asukamycin biosynthetic gene cluster was cloned, assembled, and expressed heterologously in Streptomyces lividans. Bioinformatic analysis and mutagenesis studies elucidated the biosynthetic pathway at the genetic and biochemical level. Four gene sets, asuA-D, govern the formation and assembly of the asukamycin building blocks: a 3-amino-4-hydroxybenzoic acid core component, a cyclohexane ring, two triene polyketide chains, and a 2-amino-3-hydroxycyclopent-2-enone moiety to form the intermediate protoasukamycin. AsuE1 and AsuE2 catalyze the conversion of protoasukamycin to 4-hydroxyprotoasukamycin, which is epoxidized at C5-C6 by AsuE3 to the final product, asukamycin. Branched acyl CoA starter units, derived from Val, Leu, and Ile, can be incorporated by the actions of the polyketide synthase III (KSIII) AsuC3/C4 as well as the cellular fatty acid synthase FabH to produce the asukamycin congeners A2-A7. In addition, the type II thioesterase AsuC15 limits the cellular level of omega-cyclohexyl fatty acids and likely maintains homeostasis of the cellular membrane.
Collapse
Affiliation(s)
- Zhe Rui
- Department of Biological Science, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Wu D, Wu XD, You XF, Ma XF, Tian WX. Inhibitory effects on bacterial growth and beta-ketoacyl-ACP reductase by different species of maple leaf extracts and tannic acid. Phytother Res 2010; 24 Suppl 1:S35-41. [PMID: 19444866 DOI: 10.1002/ptr.2873] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
It is important to develop new antibiotics aimed at novel targets. The investigation found that the leaf extracts from five maples (Acer platanoides, Acer campestre, Acer rubrum, Acer saccharum and Acer truncatum Bunge collected in Denmark, Canada and China) and their component tannic acid displayed antibacterial ability against 24 standard bacteria strains with the minimum inhibitory concentration of 0.3-8.0 mg/mL. Unlike the standard antibiotic levofloxacin (LFX), these samples inhibited Gram-positive bacteria more effectively than they inhibited Gram-negative bacteria. These samples effectively inhibited two antidrug bacterial strains. The results show that these samples inhibit bacteria by a different mechanism from LFX. These samples potently inhibited b-ketoacyl-ACP reductase (FabG), which is an important enzyme in bacterial fatty acid synthesis. Tannic acid showed the strongest inhibition on FabG with a half inhibition concentration of 0.78 microM (0.81 microg/mL). Furthermore, tannic acid and two maple leaf extracts showed time-dependent irreversible inhibition of FabG. These three samples also exhibited better inhibition on bacteria. It is suggested that FabG is the antibacteria target of maple leaf extracts and tannic acid, and both reversible and irreversible inhibitions of FabG are important for the antibacterial effect.
Collapse
Affiliation(s)
- Dan Wu
- College of Life Sciences, Graduate University of Chinese Academy of Sciences, Beijing, P. R. China
| | | | | | | | | |
Collapse
|
47
|
Veyron-Churlet R, Zanella-Cléon I, Cohen-Gonsaud M, Molle V, Kremer L. Phosphorylation of the Mycobacterium tuberculosis beta-ketoacyl-acyl carrier protein reductase MabA regulates mycolic acid biosynthesis. J Biol Chem 2010; 285:12714-25. [PMID: 20178986 DOI: 10.1074/jbc.m110.105189] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mycolic acids are key cell wall components for the survival, pathogenicity, and antibiotic resistance of the human tubercle bacillus. Although it was thought that Mycobacterium tuberculosis tightly regulates their production to adapt to prevailing environmental conditions, the molecular mechanisms governing mycolic acid biosynthesis remained extremely obscure. Meromycolic acids, the direct precursors of mycolic acids, are synthesized by a type II fatty acid synthase from acyl carrier protein-bound substrates that are extended iteratively, with a reductive cycle in each round of extension, the second step of which is catalyzed by the essential beta-ketoacyl-acyl carrier protein reductase, MabA. In this study, we investigated whether post-translational modifications of MabA might represent a strategy employed by M. tuberculosis to regulate mycolic acid biosynthesis. Indeed, we show here that MabA was efficiently phosphorylated in vitro by several M. tuberculosis Ser/Thr protein kinases, including PknB, as well as in vivo in mycobacteria. Mass spectrometric analyses using LC-ESI/MS/MS and site-directed mutagenesis identified three phosphothreonines, with Thr(191) being the primary phosphor-acceptor. A MabA_T191D mutant, designed to mimic constitutive phosphorylation, exhibited markedly decreased ketoacyl reductase activity compared with the wild-type protein, as well as impaired binding of the NADPH cofactor, as demonstrated by fluorescence spectroscopy. The hypothesis that phosphorylation of Thr(191) alters the enzymatic activity of MabA, and subsequently mycolic acid biosynthesis, was further supported by the fact that constitutive overexpression of the mabA_T191D allele in Mycobacterium bovis BCG strongly impaired mycobacterial growth. Importantly, conditional expression of the phosphomimetic MabA_T191D led to a significant inhibition of de novo biosynthesis of mycolic acids. This study provides the first information on the molecular mechanism(s) involved in mycolic acid regulation through Ser/Thr protein kinase-dependent phosphorylation of a type II fatty acid synthase enzyme.
Collapse
Affiliation(s)
- Romain Veyron-Churlet
- Laboratoire de Dynamique des Interactions Membranaires Normales et Pathologiques, Université de Montpellier I, CNRS, UMR 5235, case 107, Place Eugène Bataillon, 34095 Montpellier Cedex 05, France
| | | | | | | | | |
Collapse
|
48
|
Machutta CA, Bommineni GR, Luckner SR, Kapilashrami K, Ruzsicska B, Simmerling C, Kisker C, Tonge PJ. Slow onset inhibition of bacterial beta-ketoacyl-acyl carrier protein synthases by thiolactomycin. J Biol Chem 2009; 285:6161-9. [PMID: 20018879 DOI: 10.1074/jbc.m109.077909] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Thiolactomycin (TLM), a natural product thiolactone antibiotic produced by species of Nocardia and Streptomyces, is an inhibitor of the beta-ketoacyl-acyl carrier protein synthase (KAS) enzymes in the bacterial fatty acid synthase pathway. Using enzyme kinetics and direct binding studies, TLM has been shown to bind preferentially to the acyl-enzyme intermediates of the KASI and KASII enzymes from Mycobacterium tuberculosis and Escherichia coli. These studies, which utilized acyl-enzyme mimics in which the active site cysteine was replaced by a glutamine, also revealed that TLM is a slow onset inhibitor of the KASI enzymes KasA and ecFabB but not of the KASII enzymes KasB and ecFabF. The differential affinity of TLM for the acyl-KAS enzymes is proposed to result from structural change involving the movement of helices alpha5 and alpha6 that prepare the enzyme to bind malonyl-AcpM or TLM and that is initiated by formation of hydrogen bonds between the acyl-enzyme thioester and the oxyanion hole. The finding that TLM is a slow onset inhibitor of ecFabB supports the proposal that the long residence time of TLM on the ecFabB homologues in Serratia marcescens and Klebsiella pneumonia is an important factor for the in vivo antibacterial activity of TLM against these two organisms despite the fact that the in vitro MIC values are only 100-200 microg/ml. The mechanistic data on the interaction of TLM with KasA will provide an important foundation for the rational development of high affinity KasA inhibitors based on the thiolactone skeleton.
Collapse
Affiliation(s)
- Carl A Machutta
- Institute for Chemical Biology and Drug Discovery, Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, USA
| | | | | | | | | | | | | | | |
Collapse
|
49
|
|
50
|
Raman K, Yeturu K, Chandra N. targetTB: a target identification pipeline for Mycobacterium tuberculosis through an interactome, reactome and genome-scale structural analysis. BMC SYSTEMS BIOLOGY 2008; 2:109. [PMID: 19099550 PMCID: PMC2651862 DOI: 10.1186/1752-0509-2-109] [Citation(s) in RCA: 197] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2008] [Accepted: 12/19/2008] [Indexed: 01/19/2023]
Abstract
Background Tuberculosis still remains one of the largest killer infectious diseases, warranting the identification of newer targets and drugs. Identification and validation of appropriate targets for designing drugs are critical steps in drug discovery, which are at present major bottle-necks. A majority of drugs in current clinical use for many diseases have been designed without the knowledge of the targets, perhaps because standard methodologies to identify such targets in a high-throughput fashion do not really exist. With different kinds of 'omics' data that are now available, computational approaches can be powerful means of obtaining short-lists of possible targets for further experimental validation. Results We report a comprehensive in silico target identification pipeline, targetTB, for Mycobacterium tuberculosis. The pipeline incorporates a network analysis of the protein-protein interactome, a flux balance analysis of the reactome, experimentally derived phenotype essentiality data, sequence analyses and a structural assessment of targetability, using novel algorithms recently developed by us. Using flux balance analysis and network analysis, proteins critical for survival of M. tuberculosis are first identified, followed by comparative genomics with the host, finally incorporating a novel structural analysis of the binding sites to assess the feasibility of a protein as a target. Further analyses include correlation with expression data and non-similarity to gut flora proteins as well as 'anti-targets' in the host, leading to the identification of 451 high-confidence targets. Through phylogenetic profiling against 228 pathogen genomes, shortlisted targets have been further explored to identify broad-spectrum antibiotic targets, while also identifying those specific to tuberculosis. Targets that address mycobacterial persistence and drug resistance mechanisms are also analysed. Conclusion The pipeline developed provides rational schema for drug target identification that are likely to have high rates of success, which is expected to save enormous amounts of money, resources and time in the drug discovery process. A thorough comparison with previously suggested targets in the literature demonstrates the usefulness of the integrated approach used in our study, highlighting the importance of systems-level analyses in particular. The method has the potential to be used as a general strategy for target identification and validation and hence significantly impact most drug discovery programmes.
Collapse
Affiliation(s)
- Karthik Raman
- Supercomputer Education and Research Centre and Bioinformatics Centre, Indian Institute of Science, Bangalore 560 012, India.
| | | | | |
Collapse
|