1
|
Garbayo E, El Moukhtari SH, Rodríguez-Nogales C, Agirre X, Rodriguez-Madoz JR, Rodriguez-Marquez P, Prósper F, Couvreur P, Blanco-Prieto MJ. RNA-loaded nanoparticles for the treatment of hematological cancers. Adv Drug Deliv Rev 2024; 214:115448. [PMID: 39303823 DOI: 10.1016/j.addr.2024.115448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 06/07/2024] [Accepted: 09/08/2024] [Indexed: 09/22/2024]
Abstract
Hematological cancers encompass a diverse group of malignancies affecting the blood, bone marrow, lymph nodes, and spleen. These disorders present unique challenges due to their complex etiology and varied clinical manifestations. Despite significant advancements in understanding and treating hematological malignancies, innovative therapeutic approaches are continually sought to enhance patient outcomes. This review highlights the application of RNA nanoparticles (RNA-NPs) in the treatment of hematological cancers. We delve into detailed discussions on in vitro and preclinical studies involving RNA-NPs for adult patients, as well as the application of RNA-NPs in pediatric hematological cancer. The review also addresses ongoing clinical trials involving RNA-NPs and explores the emerging field of CAR-T therapy engineered by RNA-NPs. Finally, we discuss the challenges still faced in translating RNA-NP research to clinics.
Collapse
Affiliation(s)
- Elisa Garbayo
- Department of Pharmaceutical Sciences, School of Pharmacy and Nutrition, Universidad de Navarra, C/Irunlarrea 1, 31008 Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra, IdiSNA, C/Irunlarrea 3, 31008 Pamplona, Spain; Cancer Center Clinica Universidad de Navarra (CCUN). Avenida Pio XII 36, 31008 Pamplona, Spain
| | - Souhaila H El Moukhtari
- Department of Pharmaceutical Sciences, School of Pharmacy and Nutrition, Universidad de Navarra, C/Irunlarrea 1, 31008 Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra, IdiSNA, C/Irunlarrea 3, 31008 Pamplona, Spain
| | - Carlos Rodríguez-Nogales
- Department of Pharmaceutical Sciences, School of Pharmacy and Nutrition, Universidad de Navarra, C/Irunlarrea 1, 31008 Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra, IdiSNA, C/Irunlarrea 3, 31008 Pamplona, Spain; Cancer Center Clinica Universidad de Navarra (CCUN). Avenida Pio XII 36, 31008 Pamplona, Spain
| | - Xabier Agirre
- Instituto de Investigación Sanitaria de Navarra, IdiSNA, C/Irunlarrea 3, 31008 Pamplona, Spain; Cancer Center Clinica Universidad de Navarra (CCUN). Avenida Pio XII 36, 31008 Pamplona, Spain; Hemato-Oncology Program, Center for Applied Medical Research (CIMA), University of Navarra, Avenida Pío XII 55, 31008 Pamplona, Spain; Centro de Investigación Biomédica en Red Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Juan R Rodriguez-Madoz
- Instituto de Investigación Sanitaria de Navarra, IdiSNA, C/Irunlarrea 3, 31008 Pamplona, Spain; Cancer Center Clinica Universidad de Navarra (CCUN). Avenida Pio XII 36, 31008 Pamplona, Spain; Hemato-Oncology Program, Center for Applied Medical Research (CIMA), University of Navarra, Avenida Pío XII 55, 31008 Pamplona, Spain; Centro de Investigación Biomédica en Red Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Paula Rodriguez-Marquez
- Instituto de Investigación Sanitaria de Navarra, IdiSNA, C/Irunlarrea 3, 31008 Pamplona, Spain; Cancer Center Clinica Universidad de Navarra (CCUN). Avenida Pio XII 36, 31008 Pamplona, Spain; Hemato-Oncology Program, Center for Applied Medical Research (CIMA), University of Navarra, Avenida Pío XII 55, 31008 Pamplona, Spain; Centro de Investigación Biomédica en Red Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Felipe Prósper
- Instituto de Investigación Sanitaria de Navarra, IdiSNA, C/Irunlarrea 3, 31008 Pamplona, Spain; Cancer Center Clinica Universidad de Navarra (CCUN). Avenida Pio XII 36, 31008 Pamplona, Spain; Hemato-Oncology Program, Center for Applied Medical Research (CIMA), University of Navarra, Avenida Pío XII 55, 31008 Pamplona, Spain; Centro de Investigación Biomédica en Red Cáncer (CIBERONC), 28029 Madrid, Spain; Departmento de Hematología and CCUN, Clínica Universidad de Navarra, University of Navarra, Avenida Pío XII 36, 31008 Pamplona, Spain
| | - Patrick Couvreur
- Institut Galien Paris-Sud, UMR CNRS 8612, Université Paris-Saclay, Orsay Cedex, France.
| | - María J Blanco-Prieto
- Department of Pharmaceutical Sciences, School of Pharmacy and Nutrition, Universidad de Navarra, C/Irunlarrea 1, 31008 Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra, IdiSNA, C/Irunlarrea 3, 31008 Pamplona, Spain; Cancer Center Clinica Universidad de Navarra (CCUN). Avenida Pio XII 36, 31008 Pamplona, Spain.
| |
Collapse
|
2
|
Rossi M, Breman E. Engineering strategies to safely drive CAR T-cells into the future. Front Immunol 2024; 15:1411393. [PMID: 38962002 PMCID: PMC11219585 DOI: 10.3389/fimmu.2024.1411393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/27/2024] [Indexed: 07/05/2024] Open
Abstract
Chimeric antigen receptor (CAR) T-cell therapy has proven a breakthrough in cancer treatment in the last decade, giving unprecedented results against hematological malignancies. All approved CAR T-cell products, as well as many being assessed in clinical trials, are generated using viral vectors to deploy the exogenous genetic material into T-cells. Viral vectors have a long-standing clinical history in gene delivery, and thus underwent iterations of optimization to improve their efficiency and safety. Nonetheless, their capacity to integrate semi-randomly into the host genome makes them potentially oncogenic via insertional mutagenesis and dysregulation of key cellular genes. Secondary cancers following CAR T-cell administration appear to be a rare adverse event. However several cases documented in the last few years put the spotlight on this issue, which might have been underestimated so far, given the relatively recent deployment of CAR T-cell therapies. Furthermore, the initial successes obtained in hematological malignancies have not yet been replicated in solid tumors. It is now clear that further enhancements are needed to allow CAR T-cells to increase long-term persistence, overcome exhaustion and cope with the immunosuppressive tumor microenvironment. To this aim, a variety of genomic engineering strategies are under evaluation, most relying on CRISPR/Cas9 or other gene editing technologies. These approaches are liable to introduce unintended, irreversible genomic alterations in the product cells. In the first part of this review, we will discuss the viral and non-viral approaches used for the generation of CAR T-cells, whereas in the second part we will focus on gene editing and non-gene editing T-cell engineering, with particular regard to advantages, limitations, and safety. Finally, we will critically analyze the different gene deployment and genomic engineering combinations, delineating strategies with a superior safety profile for the production of next-generation CAR T-cell.
Collapse
|
3
|
Marie C, Scherman D. Antibiotic-Free Gene Vectors: A 25-Year Journey to Clinical Trials. Genes (Basel) 2024; 15:261. [PMID: 38540320 PMCID: PMC10970329 DOI: 10.3390/genes15030261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/07/2024] [Accepted: 02/15/2024] [Indexed: 06/15/2024] Open
Abstract
Until very recently, the major use, for gene therapy, specifically of linear or circular DNA, such as plasmids, was as ancillary products for viral vectors' production or as a genetic template for mRNA production. Thanks to targeted and more efficient physical or chemical delivery techniques and to the refinement of their structure, non-viral plasmid DNA are now under intensive consideration as pharmaceutical drugs. Plasmids traditionally carry an antibiotic resistance gene for providing the selection pressure necessary for maintenance in a bacterial host. Nearly a dozen different antibiotic-free gene vectors have now been developed and are currently assessed in preclinical assays and phase I/II clinical trials. Their reduced size leads to increased transfection efficiency and prolonged transgene expression. In addition, associating non-viral gene vectors and DNA transposons, which mediate transgene integration into the host genome, circumvents plasmid dilution in dividing eukaryotic cells which generate a loss of the therapeutic gene. Combining these novel molecular tools allowed a significantly higher yield of genetically engineered T and Natural Killer cells for adoptive immunotherapies due to a reduced cytotoxicity and increased transposition rate. This review describes the main progresses accomplished for safer, more efficient and cost-effective gene and cell therapies using non-viral approaches and antibiotic-free gene vectors.
Collapse
Affiliation(s)
- Corinne Marie
- Université Paris Cité, CNRS, Inserm, UTCBS, 75006 Paris, France;
- Chimie ParisTech, Université PSL, 75005 Paris, France
| | - Daniel Scherman
- Université Paris Cité, CNRS, Inserm, UTCBS, 75006 Paris, France;
- Fondation Maladies Rares, 75014 Paris, France
| |
Collapse
|
4
|
Ayala Ceja M, Khericha M, Harris CM, Puig-Saus C, Chen YY. CAR-T cell manufacturing: Major process parameters and next-generation strategies. J Exp Med 2024; 221:e20230903. [PMID: 38226974 PMCID: PMC10791545 DOI: 10.1084/jem.20230903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/02/2023] [Accepted: 12/14/2023] [Indexed: 01/17/2024] Open
Abstract
Chimeric antigen receptor (CAR)-T cell therapies have demonstrated strong curative potential and become a critical component in the array of B-cell malignancy treatments. Successful deployment of CAR-T cell therapies to treat hematologic and solid cancers, as well as other indications such as autoimmune diseases, is dependent on effective CAR-T cell manufacturing that impacts not only product safety and efficacy but also overall accessibility to patients in need. In this review, we discuss the major process parameters of autologous CAR-T cell manufacturing, as well as regulatory considerations and ongoing developments that will enable the next generation of CAR-T cell therapies.
Collapse
Affiliation(s)
- Melanie Ayala Ceja
- Department of Microbiology, Immunology, and Molecular Genetics, University of California−Los Angeles, Los Angeles, CA, USA
| | - Mobina Khericha
- Department of Microbiology, Immunology, and Molecular Genetics, University of California−Los Angeles, Los Angeles, CA, USA
| | - Caitlin M. Harris
- Department of Microbiology, Immunology, and Molecular Genetics, University of California−Los Angeles, Los Angeles, CA, USA
| | - Cristina Puig-Saus
- Department of Medicine, University of California−Los Angeles, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center, University of California−Los Angeles, Los Angeles, CA, USA
- Parker Institute for Cancer Immunotherapy Center at University of California−Los Angeles, Los Angeles, CA, USA
| | - Yvonne Y. Chen
- Department of Microbiology, Immunology, and Molecular Genetics, University of California−Los Angeles, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center, University of California−Los Angeles, Los Angeles, CA, USA
- Parker Institute for Cancer Immunotherapy Center at University of California−Los Angeles, Los Angeles, CA, USA
- Department of Chemical and Biomolecular Engineering, University of California−Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
5
|
Zhu EY, Schillo JL, Murray SD, Riordan JD, Dupuy AJ. Understanding cancer drug resistance with Sleeping Beauty functional genomic screens: Application to MAPK inhibition in cutaneous melanoma. iScience 2023; 26:107805. [PMID: 37860756 PMCID: PMC10582486 DOI: 10.1016/j.isci.2023.107805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 07/10/2023] [Accepted: 08/29/2023] [Indexed: 10/21/2023] Open
Abstract
Combined BRAF and MEK inhibition is an effective treatment for BRAF-mutant cutaneous melanoma. However, most patients progress on this treatment due to drug resistance. Here, we applied the Sleeping Beauty transposon system to understand how melanoma evades MAPK inhibition. We found that the specific drug resistance mechanisms differed across melanomas in our genetic screens of five cutaneous melanoma cell lines. While drivers that reactivated MAPK were highly conserved, many others were cell-line specific. One such driver, VAV1, activated a de-differentiated transcriptional program like that of hyperactive RAC1, RAC1P29S. To target this mechanism, we showed that an inhibitor of SRC, saracatinib, blunts the VAV1-induced transcriptional reprogramming. Overall, we highlighted the importance of accounting for melanoma heterogeneity in treating cutaneous melanoma with MAPK inhibitors. Moreover, we demonstrated the utility of the Sleeping Beauty transposon system in understanding cancer drug resistance.
Collapse
Affiliation(s)
- Eliot Y. Zhu
- Department of Anatomy and Cell Biology, Carver College of Medicine, The University of Iowa, Iowa City, IA 52242, USA
- Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA 52242, USA
| | - Jacob L. Schillo
- Department of Anatomy and Cell Biology, Carver College of Medicine, The University of Iowa, Iowa City, IA 52242, USA
- Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA 52242, USA
| | - Sarina D. Murray
- Department of Anatomy and Cell Biology, Carver College of Medicine, The University of Iowa, Iowa City, IA 52242, USA
- Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA 52242, USA
| | - Jesse D. Riordan
- Department of Anatomy and Cell Biology, Carver College of Medicine, The University of Iowa, Iowa City, IA 52242, USA
- Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA 52242, USA
| | - Adam J. Dupuy
- Department of Anatomy and Cell Biology, Carver College of Medicine, The University of Iowa, Iowa City, IA 52242, USA
- Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
6
|
Kovač A, Miskey C, Ivics Z. Sleeping Beauty Transposon Insertions into Nucleolar DNA by an Engineered Transposase Localized in the Nucleolus. Int J Mol Sci 2023; 24:14978. [PMID: 37834425 PMCID: PMC10573994 DOI: 10.3390/ijms241914978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/22/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
Transposons are nature's gene delivery vehicles that can be harnessed for experimental and therapeutic purposes. The Sleeping Beauty (SB) transposon shows efficient transposition and long-term transgene expression in human cells, and is currently under clinical development for gene therapy. SB transposition occurs into the human genome in a random manner, which carries a risk of potential genotoxic effects associated with transposon integration. Here, we evaluated an experimental strategy to manipulate SB's target site distribution by preferentially compartmentalizing the SB transposase to the nucleolus, which contains repetitive ribosomal RNA (rRNA) genes. We generated a fusion protein composed of the nucleolar protein nucleophosmin (B23) and the SB100X transposase, which was found to retain almost full transposition activity as compared to unfused transposase and to be predominantly localized to nucleoli in transfected human cells. Analysis of transposon integration sites generated by B23-SB100X revealed a significant enrichment into the p-arms of chromosomes containing nucleolus organizing regions (NORs), with preferential integration into the p13 and p11.2 cytobands directly neighboring the NORs. This bias in the integration pattern was accompanied by an enrichment of insertions into nucleolus-associated chromatin domains (NADs) at the periphery of nucleolar DNA and into lamina-associated domains (LADs). Finally, sub-nuclear targeting of the transposase resulted in preferential integration into chromosomal domains associated with the Upstream Binding Transcription Factor (UBTF) that plays a critical role in the transcription of 47S rDNA gene repeats of the NORs by RNA Pol I. Future modifications of this technology may allow the development of methods for specific gene insertion for precision genetic engineering.
Collapse
Affiliation(s)
| | | | - Zoltán Ivics
- Transposition and Genome Engineering, Research Centre of the Division of Hematology, Gene and Cell Therapy, Paul Ehrlich Institute, Paul Ehrlich Str. 51–59, D-63225 Langen, Germany; (A.K.); (C.M.)
| |
Collapse
|
7
|
Chakrabarty P, Sen R, Sengupta S. From parasites to partners: exploring the intricacies of host-transposon dynamics and coevolution. Funct Integr Genomics 2023; 23:278. [PMID: 37610667 DOI: 10.1007/s10142-023-01206-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/01/2023] [Accepted: 08/07/2023] [Indexed: 08/24/2023]
Abstract
Transposable elements, often referred to as "jumping genes," have long been recognized as genomic parasites due to their ability to integrate and disrupt normal gene function and induce extensive genomic alterations, thereby compromising the host's fitness. To counteract this, the host has evolved a plethora of mechanisms to suppress the activity of the transposons. Recent research has unveiled the host-transposon relationships to be nuanced and complex phenomena, resulting in the coevolution of both entities. Transposition increases the mutational rate in the host genome, often triggering physiological pathways such as immune and stress responses. Current gene transfer technologies utilizing transposable elements have potential drawbacks, including off-target integration, induction of mutations, and modifications of cellular machinery, which makes an in-depth understanding of the host-transposon relationship imperative. This review highlights the dynamic interplay between the host and transposable elements, encompassing various factors and components of the cellular machinery. We provide a comprehensive discussion of the strategies employed by transposable elements for their propagation, as well as the mechanisms utilized by the host to mitigate their parasitic effects. Additionally, we present an overview of recent research identifying host proteins that act as facilitators or inhibitors of transposition. We further discuss the evolutionary outcomes resulting from the genetic interactions between the host and the transposable elements. Finally, we pose open questions in this field and suggest potential avenues for future research.
Collapse
Affiliation(s)
- Prayas Chakrabarty
- Department of Life Sciences, Presidency University Kolkata, 86/1 College Street, Kolkata, 700073, India
| | - Raneet Sen
- Department of Life Sciences, Presidency University Kolkata, 86/1 College Street, Kolkata, 700073, India
- Institute of Bioorganic Chemistry, Department of RNA Metabolism, Polish Academy of Sciences, Poznan, Poland
| | - Sugopa Sengupta
- Department of Life Sciences, Presidency University Kolkata, 86/1 College Street, Kolkata, 700073, India.
| |
Collapse
|
8
|
Miklík D, Grim J, Elleder D, Hejnar J. Unraveling the palindromic and nonpalindromic motifs of retroviral integration site sequences by statistical mixture models. Genome Res 2023; 33:1395-1408. [PMID: 37463751 PMCID: PMC10547254 DOI: 10.1101/gr.277694.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 07/12/2023] [Indexed: 07/20/2023]
Abstract
A weak palindromic nucleotide motif is the hallmark of retroviral integration site alignments. Given that the majority of target sequences are not palindromic, the current model explains the symmetry by an overlap of the nonpalindromic motif present on one of the half-sites of the sequences. Here, we show that the implementation of multicomponent mixture models allows for different interpretations consistent with the existence of both palindromic and nonpalindromic submotifs in the sets of integration site sequences. We further show that the weak palindromic motifs result from freely combined site-specific submotifs restricted to only a few positions proximal to the site of integration. The submotifs are formed by either palindrome-forming nucleotide preference or nucleotide exclusion. Using the mixture models, we also identify HIV-1-favored palindromic sequences in Alu repeats serving as local hotspots for integration. The application of the novel statistical approach provides deeper insight into the selection of retroviral integration sites and may prove to be a valuable tool in the analysis of any type of DNA motifs.
Collapse
Affiliation(s)
- Dalibor Miklík
- Laboratory of Viral and Cellular Genetics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague 4, 142 20, Czech Republic
| | - Jiří Grim
- Pattern Recognition Department, Institute of Information Theory and Automation of the Czech Academy of Sciences, Prague 8, 182 08, Czech Republic
| | - Daniel Elleder
- Laboratory of Viral and Cellular Genetics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague 4, 142 20, Czech Republic
| | - Jiří Hejnar
- Laboratory of Viral and Cellular Genetics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague 4, 142 20, Czech Republic;
| |
Collapse
|
9
|
Wang Y, Zhang X, Wang Z. Cellular barcoding: From developmental tracing to anti-tumor drug discovery. Cancer Lett 2023:216281. [PMID: 37336285 DOI: 10.1016/j.canlet.2023.216281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/31/2023] [Accepted: 06/10/2023] [Indexed: 06/21/2023]
Abstract
Clonal evolution has gained immense attention in explaining cancer cell status, history, and fate during cancer progression. Current single-cell or spatial transcriptome technologies have broadened our understanding of various mechanisms underlying cancer initiation, relapse, and drug resistance. However, technical challenges still hinder a better understanding of the dynamics of distinctive phenotypic states and abnormal trajectories from normal physiological transition to malignant stages. Cellular barcoding enabled lineage tracing on parallelly massive cells at single-cell resolution through different mechanisms lately, enabling new insights into exploring developmental trajectories, cancer progression, and targeted therapies. This review summarizes the latest noteworthy and robust strategies for different types of cellular barcodes. To introduce the major characteristics, advantages and limitations of these different strategies, this review will further guide in choosing or improving cellular barcoding technologies and their applications in cancer research.
Collapse
Affiliation(s)
- Yuqing Wang
- Medical Center of Hematology, The Second Affiliated Hospital, Army Medical University, Chongqing, 40037, China; State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing, 40037, China
| | - Xi Zhang
- Medical Center of Hematology, The Second Affiliated Hospital, Army Medical University, Chongqing, 40037, China; State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing, 40037, China; Jinfeng Laboratory, Chongqing, 401329, China.
| | - Zheng Wang
- Medical Center of Hematology, The Second Affiliated Hospital, Army Medical University, Chongqing, 40037, China; State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing, 40037, China; Bio-Med Informatics Research Center & Clinical Research Center, The Second Affiliated Hospital, Army Medical University, Chongqing, 400037, China; Jinfeng Laboratory, Chongqing, 401329, China.
| |
Collapse
|
10
|
Mahmoudian RA, Fathi F, Farshchian M, Abbaszadegan MR. Construction and Quantitative Evaluation of a Tissue-Specific Sleeping Beauty by EDL2-Specific Transposase Expression in Esophageal Squamous Carcinoma Cell Line KYSE-30. Mol Biotechnol 2023; 65:350-360. [PMID: 35474410 DOI: 10.1007/s12033-022-00490-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 03/29/2022] [Indexed: 11/24/2022]
Abstract
Gene delivery to esophageal tissue could provide novel treatments for diseases, such as cancer. The Sleeping Beauty (SB) transposon system, as a natural and non-viral tool, is efficient at transferring transgene into the human genome for human cell genetic engineering. The plasmid-based SB transposon can insert into chromosomes through an accurate recombinase-mediated mechanism, providing long-term expression of transgene integrated into the target cells. In this study, we aimed to investigate the activity of ED-L2 tissue-specific promoter that was engineered from the Epstein-Barr Virus (EBV) and combined with the hyperactive SB100X transposase to achieve the stable expression of T2-Onc3 transposon in esophageal squamous epithelial cells. Here we constructed an SB transposon-based plasmid system to obtain the stable expression of transposon upon introduction of a hyperactive SB transposase under the control of tissue-specific ED-L2 promoter via the lipid-based delivery method in the cultured esophageal squamous cell carcinoma cells. Among established human and mouse cell lines, the (ED-L2)-SB100X transposase was active only in human esophageal stratified squamous epithelial and differentiated keratinocytes derived from skin (KYSE-30 and HaCaT cell lines), where it revealed high promoter activity. Data offered that the 782 bp sequence of ED-L2 promoter has a key role in its activity in vitro. The (ED-L2)-SB100X transposase mediated stable integration of T2-Onc3 in KYSE-30 cells, thereby providing further evidence of the tissue specificity of ED-L2 promoter. The KYSE-30 cells modified with the SB system integrate on average 187 copies of the T2-Onc3 transposon in its genome. In aggregate, the (ED-L2)-SB100X transposase can be efficiently applied for the tissue-specific stable expression of a transgene in human KYSE-30 cells using SB transposon.
Collapse
Affiliation(s)
| | - Fardin Fathi
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Moein Farshchian
- Stem Cell and Regenerative Medicine Research Group, Iranian Academic Center for Education, Culture and Research (ACECR) Razavi Khorasan, ACECR Central Building, Ferdowsi University Campus, Mashhad- Azadi Square, Mashhad Branch, Mashhad, Iran.
| | - Mohammad Reza Abbaszadegan
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran. .,Medical Genetics Research Center, Medical School, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
11
|
Bredthauer C, Fischer A, Ahari AJ, Cao X, Weber J, Rad L, Rad R, Wachutka L, Gagneur J. Transmicron: accurate prediction of insertion probabilities improves detection of cancer driver genes from transposon mutagenesis screens. Nucleic Acids Res 2023; 51:e21. [PMID: 36617985 PMCID: PMC9976929 DOI: 10.1093/nar/gkac1215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/06/2022] [Accepted: 12/17/2022] [Indexed: 01/10/2023] Open
Abstract
Transposon screens are powerful in vivo assays used to identify loci driving carcinogenesis. These loci are identified as Common Insertion Sites (CISs), i.e. regions with more transposon insertions than expected by chance. However, the identification of CISs is affected by biases in the insertion behaviour of transposon systems. Here, we introduce Transmicron, a novel method that differs from previous methods by (i) modelling neutral insertion rates based on chromatin accessibility, transcriptional activity and sequence context and (ii) estimating oncogenic selection for each genomic region using Poisson regression to model insertion counts while controlling for neutral insertion rates. To assess the benefits of our approach, we generated a dataset applying two different transposon systems under comparable conditions. Benchmarking for enrichment of known cancer genes showed improved performance of Transmicron against state-of-the-art methods. Modelling neutral insertion rates allowed for better control of false positives and stronger agreement of the results between transposon systems. Moreover, using Poisson regression to consider intra-sample and inter-sample information proved beneficial in small and moderately-sized datasets. Transmicron is open-source and freely available. Overall, this study contributes to the understanding of transposon biology and introduces a novel approach to use this knowledge for discovering cancer driver genes.
Collapse
Affiliation(s)
- Carl Bredthauer
- TUM School of Computation, Information and Technology, Technical University of Munich, 81675 Munich, Germany.,Institute of Molecular Oncology and Functional Genomics, TUM School of Medicine, Technical University of Munich, 81675 Munich, Germany.,Center for Translational Cancer Research (TranslaTUM), TUM School of Medicine, Technical University of Munich, 81675 Munich, Germany.,Computational Health Center, Helmholtz Zentrum Munich, Neuherberg, Germany
| | - Anja Fischer
- Institute of Molecular Oncology and Functional Genomics, TUM School of Medicine, Technical University of Munich, 81675 Munich, Germany.,Center for Translational Cancer Research (TranslaTUM), TUM School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Ata Jadid Ahari
- TUM School of Computation, Information and Technology, Technical University of Munich, 81675 Munich, Germany
| | - Xueqi Cao
- TUM School of Computation, Information and Technology, Technical University of Munich, 81675 Munich, Germany.,Graduate School of Quantitative Biosciences (QBM), Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Julia Weber
- Institute of Molecular Oncology and Functional Genomics, TUM School of Medicine, Technical University of Munich, 81675 Munich, Germany.,Center for Translational Cancer Research (TranslaTUM), TUM School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Lena Rad
- Center for Translational Cancer Research (TranslaTUM), TUM School of Medicine, Technical University of Munich, 81675 Munich, Germany.,Institute for Experimental Cancer Therapy, TUM School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Roland Rad
- Institute of Molecular Oncology and Functional Genomics, TUM School of Medicine, Technical University of Munich, 81675 Munich, Germany.,Center for Translational Cancer Research (TranslaTUM), TUM School of Medicine, Technical University of Munich, 81675 Munich, Germany.,German Cancer Consortium (DKTK), 69120 Heidelberg, Germany.,Department of Medicine II, Klinikum rechts der Isar, TUM School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Leonhard Wachutka
- TUM School of Computation, Information and Technology, Technical University of Munich, 81675 Munich, Germany
| | - Julien Gagneur
- TUM School of Computation, Information and Technology, Technical University of Munich, 81675 Munich, Germany.,Computational Health Center, Helmholtz Zentrum Munich, Neuherberg, Germany.,Institute of Human Genetics, TUM School of Medicine, Technical University of Munich, 81675 Munich, Germany
| |
Collapse
|
12
|
Dasgupta P, Balasubramanyian V, de Groot JF, Majd NK. Preclinical Models of Low-Grade Gliomas. Cancers (Basel) 2023; 15:cancers15030596. [PMID: 36765553 PMCID: PMC9913857 DOI: 10.3390/cancers15030596] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/03/2023] [Accepted: 01/13/2023] [Indexed: 01/20/2023] Open
Abstract
Diffuse infiltrating low-grade glioma (LGG) is classified as WHO grade 2 astrocytoma with isocitrate dehydrogenase (IDH) mutation and oligodendroglioma with IDH1 mutation and 1p/19q codeletion. Despite their better prognosis compared with glioblastoma, LGGs invariably recur, leading to disability and premature death. There is an unmet need to discover new therapeutics for LGG, which necessitates preclinical models that closely resemble the human disease. Basic scientific efforts in the field of neuro-oncology are mostly focused on high-grade glioma, due to the ease of maintaining rapidly growing cell cultures and highly reproducible murine tumors. Development of preclinical models of LGG, on the other hand, has been difficult due to the slow-growing nature of these tumors as well as challenges involved in recapitulating the widespread genomic and epigenomic effects of IDH mutation. The most recent WHO classification of CNS tumors emphasizes the importance of the role of IDH mutation in the classification of gliomas, yet there are relatively few IDH-mutant preclinical models available. Here, we review the in vitro and in vivo preclinical models of LGG and discuss the mechanistic challenges involved in generating such models and potential strategies to overcome these hurdles.
Collapse
Affiliation(s)
- Pushan Dasgupta
- Department of Neurology, Dell Medical School, University of Texas at Austin, Austin, TX 78712, USA
| | | | - John F. de Groot
- Department of Neurosurgery, University of California San Francisco, San Francisco, CA 94143, USA
- Correspondence: (J.F.d.G.); (N.K.M.)
| | - Nazanin K. Majd
- Department of Neuro-Oncology, UT MD Anderson Cancer Center, Houston, TX 77030, USA
- Correspondence: (J.F.d.G.); (N.K.M.)
| |
Collapse
|
13
|
Horizontal Transfer and Evolutionary Profiles of Two Tc1/DD34E Transposons ( ZB and SB) in Vertebrates. Genes (Basel) 2022; 13:genes13122239. [PMID: 36553507 PMCID: PMC9777934 DOI: 10.3390/genes13122239] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/19/2022] [Accepted: 11/25/2022] [Indexed: 12/05/2022] Open
Abstract
Both ZeBrafish (ZB), a recently identified DNA transposon in the zebrafish genome, and SB, a reconstructed transposon originally discovered in several fish species, are known to exhibit high transposition activity in vertebrate cells. Although a similar structural organization was observed for ZB and SB transposons, the evolutionary profiles of their homologs in various species remain unknown. In the present study, we compared their taxonomic ranges, structural arrangements, sequence identities, evolution dynamics, and horizontal transfer occurrences in vertebrates. In total, 629 ZB and 366 SB homologs were obtained and classified into four distinct clades, named ZB, ZB-like, SB, and SB-like. They displayed narrow taxonomic distributions in eukaryotes, and were mostly found in vertebrates, Actinopterygii in particular tended to be the major reservoir hosts of these transposons. Similar structural features and high sequence identities were observed for transposons and transposase, notably homologous to the SB and ZB elements. The genomic sequences that flank the ZB and SB transposons in the genomes revealed highly conserved integration profiles with strong preferential integration into AT repeats. Both SB and ZB transposons experienced horizontal transfer (HT) events, which were most common in Actinopterygii. Our current study helps to increase our understanding of the evolutionary properties and histories of SB and ZB transposon families in animals.
Collapse
|
14
|
Cheng YH, Ko YC, Ku HJ, Huang CC, Yao YC, Liao YT, Chen YT, Huang SF, Huang LR. Novel Paired Cell Lines for the Study of Lipid Metabolism and Cancer Stemness of Hepatocellular Carcinoma. Front Cell Dev Biol 2022; 10:821224. [PMID: 35721518 PMCID: PMC9204282 DOI: 10.3389/fcell.2022.821224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 05/06/2022] [Indexed: 12/16/2022] Open
Abstract
There are few well-characterized syngeneic murine models for hepatocellular carcinoma (HCC), which limits immunological studies and the development of immunotherapies for HCC. We previously established an oncogene-induced spontaneous HCC mouse model based on transposon-mediated oncogene (AKT and NRASV12) insertion into the genome of hepatocytes to induce tumorigenesis. Two tumor clones with different levels of lipid droplets (LDs) showed similar in vitro growth but distinctive in vivo phenotypes, including divergent proliferative capability and varying induction of myeloid-derived suppressor cells (MDSCs). The two clones showed distinct gene expression related to lipid metabolism, glycolysis, and cancer stemness. Endogenous fatty acid (FA) synthesis and exogenous monounsaturated fatty acid (MUFA) consumption promoted both tumor proliferation and cancer stemness, and upregulated c-Myc in the HCC cell lines. Moreover, the LDhi HCC cell line expressed a higher level of type II IL-4 receptor, which promoted tumor proliferation through binding IL-4 or IL-13. The chromosomal DNA of two tumor clones, NHRI-8-B4 (LDhi) and NHRI-1-E4 (LDlo) showed five identical AKT insertion sites in chromosomes 9, 10, 13, 16 and 18 and two NRAS integration sites in chromosomes 2 and 3. Herein, we describe two novel HCC cell lines with distinct features of lipid metabolism related to cancer stemness and differential interplay with the immune system, and present this syngeneic HCC mouse model as a practical tool for the study of cancer stemness and discovery of new therapies targeting liver cancers.
Collapse
Affiliation(s)
- Yun-Hsin Cheng
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Ying-Chieh Ko
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Hsiang-Ju Ku
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Ching-Chun Huang
- Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung, Taiwan
| | - Yu-Ching Yao
- Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung, Taiwan
| | - Yi-Tzu Liao
- Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung, Taiwan
| | - Ying-Tsong Chen
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli, Taiwan.,Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung, Taiwan.,Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | - Shiu-Feng Huang
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Li-Rung Huang
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli, Taiwan.,Graduate Institute of Clinical Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
15
|
Moretti A, Ponzo M, Nicolette CA, Tcherepanova IY, Biondi A, Magnani CF. The Past, Present, and Future of Non-Viral CAR T Cells. Front Immunol 2022; 13:867013. [PMID: 35757746 PMCID: PMC9218214 DOI: 10.3389/fimmu.2022.867013] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/28/2022] [Indexed: 12/14/2022] Open
Abstract
Adoptive transfer of chimeric antigen receptor (CAR) T lymphocytes is a powerful technology that has revolutionized the way we conceive immunotherapy. The impressive clinical results of complete and prolonged response in refractory and relapsed diseases have shifted the landscape of treatment for hematological malignancies, particularly those of lymphoid origin, and opens up new possibilities for the treatment of solid neoplasms. However, the widening use of cell therapy is hampered by the accessibility to viral vectors that are commonly used for T cell transfection. In the era of messenger RNA (mRNA) vaccines and CRISPR/Cas (clustered regularly interspaced short palindromic repeat-CRISPR-associated) precise genome editing, novel and virus-free methods for T cell engineering are emerging as a more versatile, flexible, and sustainable alternative for next-generation CAR T cell manufacturing. Here, we discuss how the use of non-viral vectors can address some of the limitations of the viral methods of gene transfer and allow us to deliver genetic information in a stable, effective and straightforward manner. In particular, we address the main transposon systems such as Sleeping Beauty (SB) and piggyBac (PB), the utilization of mRNA, and innovative approaches of nanotechnology like Lipid-based and Polymer-based DNA nanocarriers and nanovectors. We also describe the most relevant preclinical data that have recently led to the use of non-viral gene therapy in emerging clinical trials, and the related safety and efficacy aspects. We will also provide practical considerations for future trials to enable successful and safe cell therapy with non-viral methods for CAR T cell generation.
Collapse
Affiliation(s)
- Alex Moretti
- Tettamanti Research Center, Department of Pediatrics, University of Milano-Bicocca/Fondazione Monza e Brianza per il Bambino e la sua Mamma (MBBM), Monza, Italy
| | - Marianna Ponzo
- Tettamanti Research Center, Department of Pediatrics, University of Milano-Bicocca/Fondazione Monza e Brianza per il Bambino e la sua Mamma (MBBM), Monza, Italy
| | | | | | - Andrea Biondi
- Tettamanti Research Center, Department of Pediatrics, University of Milano-Bicocca/Fondazione Monza e Brianza per il Bambino e la sua Mamma (MBBM), Monza, Italy
- Department of Pediatrics, University of Milano - Bicocca, Milan, Italy
- Clinica Pediatrica, University of Milano - Bicocca/Fondazione MBBM, Monza, Italy
| | - Chiara F. Magnani
- Tettamanti Research Center, Department of Pediatrics, University of Milano-Bicocca/Fondazione Monza e Brianza per il Bambino e la sua Mamma (MBBM), Monza, Italy
- Department of Medical Oncology and Hematology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| |
Collapse
|
16
|
Miskey C, Kesselring L, Querques I, Abrusán G, Barabas O, Ivics Z. OUP accepted manuscript. Nucleic Acids Res 2022; 50:2807-2825. [PMID: 35188569 PMCID: PMC8934666 DOI: 10.1093/nar/gkac092] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/24/2022] [Accepted: 02/08/2022] [Indexed: 11/14/2022] Open
Abstract
The Sleeping Beauty (SB) transposon system is a popular tool for genome engineering, but random integration into the genome carries a certain genotoxic risk in therapeutic applications. Here we investigate the role of amino acids H187, P247 and K248 in target site selection of the SB transposase. Structural modeling implicates these three amino acids located in positions analogous to amino acids with established functions in target site selection in retroviral integrases and transposases. Saturation mutagenesis of these residues in the SB transposase yielded variants with altered target site selection properties. Transposon integration profiling of several mutants reveals increased specificity of integrations into palindromic AT repeat target sequences in genomic regions characterized by high DNA bendability. The H187V and K248R mutants redirect integrations away from exons, transcriptional regulatory elements and nucleosomal DNA in the human genome, suggesting enhanced safety and thus utility of these SB variants in gene therapy applications.
Collapse
Affiliation(s)
| | | | - Irma Querques
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
- Department of Biochemistry, University of Zurich, Zurich 8057, Switzerland
| | - György Abrusán
- Institute of Biochemistry, Biological Research Center of the Hungarian Academy of Sciences, Szeged 6726, Hungary
| | - Orsolya Barabas
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
- Department of Molecular Biology, University of Geneva, Geneva 1211, Switzerland
| | - Zoltán Ivics
- To whom correspondence should be addressed. Tel: +49 6103 77 6000; Fax: +49 6103 77 1280;
| |
Collapse
|
17
|
Wang Y, Shen D, Ullah N, Diaby M, Gao B, Song C. Characterization and expression pattern of ZB and PS transposons in zebrafish. Gene Expr Patterns 2021; 42:119203. [PMID: 34481069 DOI: 10.1016/j.gep.2021.119203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/25/2021] [Accepted: 08/28/2021] [Indexed: 11/28/2022]
Abstract
Despite comprising much of the genome, transposons were once thought of as junk. However, transposons play many roles in the eukaryotic genome, such as providing new proteins as domesticated genes, expressing during germline-soma differentiation, function in DNA rearrangement in the offspring, and so on. We sought to describe the distribution and structural organization of the two autonomous transposons (ZB and PS) in the zebrafish genome and examine their expression patterns in embryos and adult tissues. The intact copy of ZB and PS was queried by BLAST on NCBI and ENSEMBL using default parameters. Of the copies with coverage and identity, more than 90 % were downloaded to do structural analysis. Spatial and temporal expression patterns were detected by qRT-PCR and Whole-mount in situ hybridization (WISH). There are 19 intact copies of ZB, encoding 341 amino acid residues with DD34E catalytic domain and flanked by 201bp TIRs, and seven intact PS copies, containing 425 amino acid residues with DD35D catalytic domain flanked by 28bp TIRs, were detected in the genome of zebrafish respectively. Analysis of genomic insertions indicated that both ZB and PS transposons are prone to be retained in the intron and intergenic regions of the zebrafish genome. The sense and antisense transcripts of ZB and PS were detected during embryonic development stages and exhibited similar expression patterns. The difference is that the sense strand transcript of ZB was explicitly expressed in midbrain-hindbrain boundary (MHB) and otic vesicle (OV), and pharyngeal arches and pharyngeal pouches (PA&PP) at 48 hpf. In adult zebrafish, the expressions of ZB and PS in muscle and brain are much higher than in other tissues. Our study results indicate that ZB and PS transposons may be involved in the embryonic development and regulation of somatic cells of certain adult tissues, such as the brain and muscle.
Collapse
Affiliation(s)
- Yali Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Dan Shen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Numan Ullah
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Mohamed Diaby
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Bo Gao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Chengyi Song
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, 225009, China.
| |
Collapse
|
18
|
Sandoval-Villegas N, Nurieva W, Amberger M, Ivics Z. Contemporary Transposon Tools: A Review and Guide through Mechanisms and Applications of Sleeping Beauty, piggyBac and Tol2 for Genome Engineering. Int J Mol Sci 2021; 22:ijms22105084. [PMID: 34064900 PMCID: PMC8151067 DOI: 10.3390/ijms22105084] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 04/30/2021] [Accepted: 05/05/2021] [Indexed: 01/19/2023] Open
Abstract
Transposons are mobile genetic elements evolved to execute highly efficient integration of their genes into the genomes of their host cells. These natural DNA transfer vehicles have been harnessed as experimental tools for stably introducing a wide variety of foreign DNA sequences, including selectable marker genes, reporters, shRNA expression cassettes, mutagenic gene trap cassettes, and therapeutic gene constructs into the genomes of target cells in a regulated and highly efficient manner. Given that transposon components are typically supplied as naked nucleic acids (DNA and RNA) or recombinant protein, their use is simple, safe, and economically competitive. Thus, transposons enable several avenues for genome manipulations in vertebrates, including transgenesis for the generation of transgenic cells in tissue culture comprising the generation of pluripotent stem cells, the production of germline-transgenic animals for basic and applied research, forward genetic screens for functional gene annotation in model species and therapy of genetic disorders in humans. This review describes the molecular mechanisms involved in transposition reactions of the three most widely used transposon systems currently available (Sleeping Beauty, piggyBac, and Tol2), and discusses the various parameters and considerations pertinent to their experimental use, highlighting the state-of-the-art in transposon technology in diverse genetic applications.
Collapse
Affiliation(s)
| | | | | | - Zoltán Ivics
- Correspondence: ; Tel.: +49-6103-77-6000; Fax: +49-6103-77-1280
| |
Collapse
|
19
|
Shen D, Song C, Miskey C, Chan S, Guan Z, Sang Y, Wang Y, Chen C, Wang X, Müller F, Ivics Z, Gao B. A native, highly active Tc1/mariner transposon from zebrafish (ZB) offers an efficient genetic manipulation tool for vertebrates. Nucleic Acids Res 2021; 49:2126-2140. [PMID: 33638993 PMCID: PMC7913693 DOI: 10.1093/nar/gkab045] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 01/13/2021] [Accepted: 01/15/2021] [Indexed: 12/18/2022] Open
Abstract
New genetic tools and strategies are currently under development to facilitate functional genomics analyses. Here, we describe an active member of the Tc1/mariner transposon superfamily, named ZB, which invaded the zebrafish genome very recently. ZB exhibits high activity in vertebrate cells, in the range of those of the widely used transposons piggyBac (PB), Sleeping Beauty (SB) and Tol2. ZB has a similar structural organization and target site sequence preference to SB, but a different integration profile with respect to genome-wide preference among mammalian functional annotation features. Namely, ZB displays a preference for integration into transcriptional regulatory regions of genes. Accordingly, we demonstrate the utility of ZB for enhancer trapping in zebrafish embryos and in the mouse germline. These results indicate that ZB may be a powerful tool for genetic manipulation in vertebrate model species.
Collapse
Affiliation(s)
- Dan Shen
- College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
- Division of Medical Biotechnology, Paul Ehrlich Institute, Langen 63225, Germany
| | - Chengyi Song
- College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Csaba Miskey
- Division of Medical Biotechnology, Paul Ehrlich Institute, Langen 63225, Germany
| | - Shuheng Chan
- College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Zhongxia Guan
- College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Yatong Sang
- College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Yali Wang
- College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Cai Chen
- College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Xiaoyan Wang
- College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Ferenc Müller
- Institute of Cancer and Genomic Sciences, Birmingham Centre for Genome Biology, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Zoltán Ivics
- Division of Medical Biotechnology, Paul Ehrlich Institute, Langen 63225, Germany
| | - Bo Gao
- College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| |
Collapse
|
20
|
Precise determination of input-output mapping for multimodal gene circuits using data from transient transfection. PLoS Comput Biol 2020; 16:e1008389. [PMID: 33253149 PMCID: PMC7728399 DOI: 10.1371/journal.pcbi.1008389] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 12/10/2020] [Accepted: 09/23/2020] [Indexed: 11/19/2022] Open
Abstract
The mapping of molecular inputs to their molecular outputs (input/output, I/O mapping) is an important characteristic of gene circuits, both natural and synthetic. Experimental determination of such mappings for synthetic circuits is best performed using stably integrated genetic constructs. In mammalian cells, stable integration of complex circuits is a time-consuming process that hampers rapid characterization of multiple circuit variants. On the other hand, transient transfection is quick. However, it is an extremely noisy process and it is unclear whether the obtained data have any relevance to the input/output mapping of a circuit obtained in the case of a stable integration. Here we describe a data processing workflow, Peakfinder algorithm for flow cytometry data (PFAFF), that allows extracting precise input/output mapping from single-cell protein expression data gathered by flow cytometry after a transient transfection. The workflow builds on the numerically-proven observation that the multivariate modes of input and output expression of multi-channel flow cytometry datasets, pre-binned by the expression level of an independent transfection reporter gene, harbor cells with circuit gene copy numbers distributions that depend deterministically on the properties of a bin. We validate our method by simulating flow cytometry data for seven multi-node circuit architectures, including a complex bi-modal circuit, under stable integration and transient transfection scenarios. The workflow applied to the simulated transient transfection data results in similar conclusions to those reached with simulated stable integration data. This indicates that the input/output mapping derived from transient transfection data using our method is an excellent approximation of the ground truth. Thus, the method allows to determine input/output mapping of complex gene network using noisy transient transfection data. One of the key features of a gene circuit is its input/output behavior. A few earlier publications attempted to develop methods to extract this behavior using transient transfection of circuit components in mammalian cells. However, the hitherto developed methods are only suitable for circuit with monomodal output distribution. Moreover, the relationship between the extracted I/O mapping and the "ground truth" that would have obtained with stably-integrated circuits, has not been addressed. Here we explore cell populations easily identifiable in flow cytometry data, namely, the peaks of fluorescent readout distribution in cells binned by the common expression value of the transfection reporter, or marker, gene. Using numerical simulations, we find that the distribution of circuit copy number in these cells deterministically depends on marker fluorescence in the noise-dependent manner. Moreover, we find that this is true also in the case of bi-modal output distribution. Using the peaks of input and output distributions, we are able to reconstruct the I/O mapping of the circuit and relate it to the I/O mapping of the stably-integrated circuit. The reconstruction is enabled by a new computational method we call PFAFF. The method is extensively validated with forward-simulated flow cytometry data from stable and transient transfections, with up to seven different circuits. The results show excellent correlation between the I/O behavior extracted by PFAFF from simulated transient transfection data, and the data simulated for stably integrated circuit.
Collapse
|
21
|
Amberger M, Ivics Z. Latest Advances for the Sleeping Beauty Transposon System: 23 Years of Insomnia but Prettier than Ever: Refinement and Recent Innovations of the Sleeping Beauty Transposon System Enabling Novel, Nonviral Genetic Engineering Applications. Bioessays 2020; 42:e2000136. [PMID: 32939778 DOI: 10.1002/bies.202000136] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/29/2020] [Indexed: 12/13/2022]
Abstract
The Sleeping Beauty transposon system is a nonviral DNA transfer tool capable of efficiently mediating transposition-based, stable integration of DNA sequences of choice into eukaryotic genomes. Continuous refinements of the system, including the emergence of hyperactive transposase mutants and novel approaches in vectorology, greatly improve upon transposition efficiency rivaling viral-vector-based methods for stable gene insertion. Current developments, such as reversible transgenesis and proof-of-concept RNA-guided transposition, further expand on possible applications in the future. In addition, innate advantages such as lack of preferential integration into genes reduce insertional mutagenesis-related safety concerns while comparably low manufacturing costs enable widespread implementation. Accordingly, the system is recognized as a powerful and versatile tool for genetic engineering and is playing a central role in an ever-expanding number of gene and cell therapy clinical trials with the potential to become a key technology to meet the growing demand for advanced therapy medicinal products.
Collapse
Affiliation(s)
- Maximilian Amberger
- Division of Medical Biotechnology, Paul Ehrlich Institute, Langen, D-63225, Germany
| | - Zoltán Ivics
- Division of Medical Biotechnology, Paul Ehrlich Institute, Langen, D-63225, Germany
| |
Collapse
|
22
|
Moscoso CG, Steer CJ. The Evolution of Gene Therapy in the Treatment of Metabolic Liver Diseases. Genes (Basel) 2020; 11:genes11080915. [PMID: 32785089 PMCID: PMC7463482 DOI: 10.3390/genes11080915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 08/02/2020] [Accepted: 08/06/2020] [Indexed: 12/12/2022] Open
Abstract
Monogenic metabolic disorders of hepatic origin number in the hundreds, and for many, liver transplantation remains the only cure. Liver-targeted gene therapy is an attractive treatment modality for many of these conditions, and there have been significant advances at both the preclinical and clinical stages. Viral vectors, including retroviruses, lentiviruses, adenovirus-based vectors, adeno-associated viruses and simian virus 40, have differing safety, efficacy and immunogenic profiles, and several of these have been used in clinical trials with variable success. In this review, we profile viral vectors and non-viral vectors, together with various payloads, including emerging therapies based on RNA, that are entering clinical trials. Genome editing technologies are explored, from earlier to more recent novel approaches that are more efficient, specific and safe in reaching their target sites. The various curative approaches for the multitude of monogenic hepatic metabolic disorders currently at the clinical development stage portend a favorable outlook for this class of genetic disorders.
Collapse
Affiliation(s)
- Carlos G. Moscoso
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Minnesota Medical School, Minneapolis, MN 55455, USA
- Correspondence: (C.G.M.); (C.J.S.); Tel.: +1-612-625-8999 (C.G.M. & C.J.S.); Fax: +1-612-625-5620 (C.G.M. & C.J.S.)
| | - Clifford J. Steer
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Minnesota Medical School, Minneapolis, MN 55455, USA
- Department of Genetics, Cell Biology and Development, University of Minnesota Medical School, Minneapolis, MN 55455, USA
- Correspondence: (C.G.M.); (C.J.S.); Tel.: +1-612-625-8999 (C.G.M. & C.J.S.); Fax: +1-612-625-5620 (C.G.M. & C.J.S.)
| |
Collapse
|
23
|
Kumar D, Anand T, Talluri TR, Kues WA. Potential of transposon-mediated cellular reprogramming towards cell-based therapies. World J Stem Cells 2020; 12:527-544. [PMID: 32843912 PMCID: PMC7415244 DOI: 10.4252/wjsc.v12.i7.527] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/09/2020] [Accepted: 05/28/2020] [Indexed: 02/07/2023] Open
Abstract
Induced pluripotent stem (iPS) cells present a seminal discovery in cell biology and promise to support innovative treatments of so far incurable diseases. To translate iPS technology into clinical trials, the safety and stability of these reprogrammed cells needs to be shown. In recent years, different non-viral transposon systems have been developed for the induction of cellular pluripotency, and for the directed differentiation into desired cell types. In this review, we summarize the current state of the art of different transposon systems in iPS-based cell therapies.
Collapse
Affiliation(s)
- Dharmendra Kumar
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar 125001, India
| | - Taruna Anand
- NCVTC, ICAR-National Research Centre on Equines, Hisar 125001, India
| | - Thirumala R Talluri
- Equine Production Campus, ICAR-National Research Centre on Equines, Bikaner 334001, India
| | - Wilfried A Kues
- Friedrich-Loeffler-Institut, Institute of Farm Animal Genetics, Department of Biotechnology, Mariensee 31535, Germany
| |
Collapse
|
24
|
Kovač A, Miskey C, Menzel M, Grueso E, Gogol-Döring A, Ivics Z. RNA-guided retargeting of S leeping Beauty transposition in human cells. eLife 2020; 9:e53868. [PMID: 32142408 PMCID: PMC7077980 DOI: 10.7554/elife.53868] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 03/05/2020] [Indexed: 12/12/2022] Open
Abstract
An ideal tool for gene therapy would enable efficient gene integration at predetermined sites in the human genome. Here we demonstrate biased genome-wide integration of the Sleeping Beauty (SB) transposon by combining it with components of the CRISPR/Cas9 system. We provide proof-of-concept that it is possible to influence the target site selection of SB by fusing it to a catalytically inactive Cas9 (dCas9) and by providing a single guide RNA (sgRNA) against the human Alu retrotransposon. Enrichment of transposon integrations was dependent on the sgRNA, and occurred in an asymmetric pattern with a bias towards sites in a relatively narrow, 300 bp window downstream of the sgRNA targets. Our data indicate that the targeting mechanism specified by CRISPR/Cas9 forces integration into genomic regions that are otherwise poor targets for SB transposition. Future modifications of this technology may allow the development of methods for specific gene insertion for precision genetic engineering.
Collapse
Affiliation(s)
- Adrian Kovač
- Transposition and Genome Engineering, Division of Medical Biotechnology, Paul Ehrlich InstituteLangenGermany
| | - Csaba Miskey
- Transposition and Genome Engineering, Division of Medical Biotechnology, Paul Ehrlich InstituteLangenGermany
| | | | - Esther Grueso
- Transposition and Genome Engineering, Division of Medical Biotechnology, Paul Ehrlich InstituteLangenGermany
| | | | - Zoltán Ivics
- Transposition and Genome Engineering, Division of Medical Biotechnology, Paul Ehrlich InstituteLangenGermany
| |
Collapse
|
25
|
Straetemans T, Janssen A, Jansen K, Doorn R, Aarts T, van Muyden ADD, Simonis M, Bergboer J, de Witte M, Sebestyen Z, Kuball J. TEG001 Insert Integrity from Vector Producer Cells until Medicinal Product. Mol Ther 2019; 28:561-571. [PMID: 31882320 DOI: 10.1016/j.ymthe.2019.11.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 11/19/2019] [Accepted: 11/26/2019] [Indexed: 12/20/2022] Open
Abstract
Despite extensive usage of gene therapy medicinal products (GTMPs) in clinical studies and recent approval of chimeric antigen receptor (CAR) T cell therapy, little information has been made available on the precise molecular characterization and possible variations in terms of insert integrity and vector copy numbers of different GTMPs during the complete production chain. Within this context, we characterize αβT cells engineered to express a defined γδT cell engineered to express a defined γδT receptor (TEG) currently used in a first-in-human clinical study (NTR6541). Utilizing targeted locus amplification in combination with next generation sequencing for the vector producer clone and TEG001 products, we report on five single-nucleotide variants and nine intact vector copies integrated in the producer clone. The vector copy number in TEG001 cells was on average a factor 0.72 (SD 0.11) below that of the producer cell clone. All nucleotide variants were transferred to TEG001 without having an effect on cellular proliferation during extensive in vitro culture. Based on an environmental risk assessment of the five nucleotide variants present in the non-coding viral region of the TEG001 insert, there was no altered environmental impact of TEG001 cells. We conclude that TEG001 cells do not have an increased risk for malignant transformation in vivo.
Collapse
Affiliation(s)
- Trudy Straetemans
- Department of Hematology, Center of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands.
| | - Anke Janssen
- Department of Hematology, Center of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Koen Jansen
- Department of Hematology, Center of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Ruud Doorn
- Department of Hematology, Center of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Tineke Aarts
- Department of Hematology, Center of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Anna D D van Muyden
- Department of Hematology, Center of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | | | | | - Moniek de Witte
- Department of Hematology, Center of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Zsolt Sebestyen
- Department of Hematology, Center of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Jurgen Kuball
- Department of Hematology, Center of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
26
|
Hernandez M, Recalde S, Garcia-Garcia L, Bezunartea J, Miskey C, Johnen S, Diarra S, Sebe A, Rodriguez-Madoz JR, Pouillot S, Marie C, Izsvák Z, Scherman D, Kropp M, Prosper F, Thumann G, Ivics Z, Garcia-Layana A, Fernandez-Robredo P. Preclinical Evaluation of a Cell-Based Gene Therapy Using the Sleeping Beauty Transposon System in Choroidal Neovascularization. Mol Ther Methods Clin Dev 2019; 15:403-417. [PMID: 31890733 PMCID: PMC6909167 DOI: 10.1016/j.omtm.2019.10.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 10/30/2019] [Indexed: 01/05/2023]
Abstract
Age-related macular degeneration (AMD) is a progressive retinal disorder characterized by imbalanced pro- and antiangiogenic signals. The aim of this study was to evaluate the effect of ex vivo cell-based gene therapy with stable expression of human pigment epithelium-derived factor (PEDF) release using the non-viral Sleeping Beauty (SB100X) transposon system delivered by miniplasmids free of antibiotic resistance markers (pFAR4). Retinal pigment epithelial (RPE) cells and iris pigment epithelial (IPE) cells were co-transfected with pFAR4-inverted terminal repeats (ITRs) CMV-PEDF-BGH and pFAR4-CMV-SB100X-SV40 plasmids. Laser-induced choroidal neovascularization (CNV) was performed in rats, and transfected primary cells (transfected RPE [tRPE] and transfected IPE [tIPE] cells) were injected into the subretinal space. The leakage and CNV areas, vascular endothelial growth factor (VEGF), PEDF protein expression, metalloproteinases 2 and 9 (MMP-2/9), and microglial/macrophage markers were measured. Injection with tRPE/IPE cells significantly reduced the leakage area at 7 and 14 days and the CNV area at 7 days. There was a significant increase in PEDF and the PEDF/VEGF ratio with tRPE cells and a reduction in the MMP-2 activity. Our data demonstrated that ex vivo non-viral gene therapy reduces CNV and could be an effective and safe therapeutic option for angiogenic retinal diseases.
Collapse
Affiliation(s)
- Maria Hernandez
- Experimental Ophthalmology Laboratory, Ophthalmology, Clínica Universidad de Navarra, IdiSNA, Pamplona, Spain
- Red Temática de Investigación Cooperativa Sanitaria en Enfermedades Oculares, Oftared, ISCIII, Madrid, Spain
| | - Sergio Recalde
- Experimental Ophthalmology Laboratory, Ophthalmology, Clínica Universidad de Navarra, IdiSNA, Pamplona, Spain
- Red Temática de Investigación Cooperativa Sanitaria en Enfermedades Oculares, Oftared, ISCIII, Madrid, Spain
| | - Laura Garcia-Garcia
- Experimental Ophthalmology Laboratory, Ophthalmology, Clínica Universidad de Navarra, IdiSNA, Pamplona, Spain
- Red Temática de Investigación Cooperativa Sanitaria en Enfermedades Oculares, Oftared, ISCIII, Madrid, Spain
| | - Jaione Bezunartea
- Experimental Ophthalmology Laboratory, Ophthalmology, Clínica Universidad de Navarra, IdiSNA, Pamplona, Spain
| | - Csaba Miskey
- Division of Medical Biotechnology, Paul Ehrlich-Institut, 63225 Langen, Germany
| | - Sandra Johnen
- Department of Ophthalmology, University Hospital RWTH Aachen, 52074 Aachen, Germany
| | - Sabine Diarra
- Department of Ophthalmology, University Hospital RWTH Aachen, 52074 Aachen, Germany
| | - Attila Sebe
- Division of Medical Biotechnology, Paul Ehrlich-Institut, 63225 Langen, Germany
| | - Juan Roberto Rodriguez-Madoz
- Regenerative Medicine Program, Center for Applied Medical Research (CIMA), University of Navarra, IdiSNA, Pamplona 31008, Spain
| | | | - Corinne Marie
- Université de Paris, UTCBS, CNRS, INSERM, F-75006 Paris, France
- Chimie ParisTech, PSL Research University, F-75005 Paris, France
| | - Zsuzsanna Izsvák
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| | - Daniel Scherman
- Université de Paris, UTCBS, CNRS, INSERM, F-75006 Paris, France
| | - Martina Kropp
- Experimental Ophthalmology, University of Geneva, 1205 Geneva, Switzerland
- Department of Ophthalmology, University Hospitals of Geneva, 1205 Geneva, Switzerland
| | - Felipe Prosper
- Regenerative Medicine Program, Center for Applied Medical Research (CIMA), University of Navarra, IdiSNA, Pamplona 31008, Spain
- Area of Cell Therapy, Clínica Universidad de Navarra, University of Navarra, IdiSNA, Pamplona 31008, Spain
| | - Gabriele Thumann
- Experimental Ophthalmology, University of Geneva, 1205 Geneva, Switzerland
- Department of Ophthalmology, University Hospitals of Geneva, 1205 Geneva, Switzerland
| | - Zoltán Ivics
- Division of Medical Biotechnology, Paul Ehrlich-Institut, 63225 Langen, Germany
| | - Alfredo Garcia-Layana
- Experimental Ophthalmology Laboratory, Ophthalmology, Clínica Universidad de Navarra, IdiSNA, Pamplona, Spain
- Red Temática de Investigación Cooperativa Sanitaria en Enfermedades Oculares, Oftared, ISCIII, Madrid, Spain
| | - Patricia Fernandez-Robredo
- Experimental Ophthalmology Laboratory, Ophthalmology, Clínica Universidad de Navarra, IdiSNA, Pamplona, Spain
- Red Temática de Investigación Cooperativa Sanitaria en Enfermedades Oculares, Oftared, ISCIII, Madrid, Spain
| |
Collapse
|
27
|
Chen SP, Wang HH. An Engineered Cas-Transposon System for Programmable and Site-Directed DNA Transpositions. CRISPR J 2019; 2:376-394. [PMID: 31742433 DOI: 10.1089/crispr.2019.0030] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Efficient site-directed insertion of heterologous DNA into a genome remains an outstanding challenge. Recombinases that can integrate kilobase-sized DNA constructs are difficult to reprogram to user-defined loci, while genomic insertion using CRISPR-Cas methods relies on inefficient host DNA repair machinery. Here, we describe a Cas-Transposon (CasTn) system for genomic insertions that uses a Himar1 transposase fused to a catalytically dead dCas9 nuclease to mediate programmable, site-directed transposition. Using cell-free in vitro assays, we demonstrated that the Himar-dCas9 fusion protein increased the frequency of transposon insertion at a single targeted TA dinucleotide by >300-fold compared to a random transposase, and that site-directed transposition is dependent on target choice while robust to log-fold variations in protein and DNA concentrations. We also showed that Himar-dCas9 mediates directed transposition into plasmids in Escherichia coli. This work highlights CasTn as a new modality for host-independent, programmable, site-directed DNA insertions.
Collapse
Affiliation(s)
- Sway P Chen
- Department of Systems Biology, Columbia University Medical Center, New York, New York.,Integrated Program in Cellular, Molecular and Biomedical Studies, Columbia University Medical Center, New York, New York
| | - Harris H Wang
- Department of Systems Biology, Columbia University Medical Center, New York, New York.,Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York
| |
Collapse
|
28
|
Hickman AB, Voth AR, Ewis H, Li X, Craig NL, Dyda F. Structural insights into the mechanism of double strand break formation by Hermes, a hAT family eukaryotic DNA transposase. Nucleic Acids Res 2019; 46:10286-10301. [PMID: 30239795 PMCID: PMC6212770 DOI: 10.1093/nar/gky838] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 09/07/2018] [Indexed: 12/12/2022] Open
Abstract
Some DNA transposons relocate from one genomic location to another using a mechanism that involves generating double-strand breaks at their transposon ends by forming hairpins on flanking DNA. The same double-strand break mode is employed by the V(D)J recombinase at signal-end/coding-end junctions during the generation of antibody diversity. How flanking hairpins are formed during DNA transposition has remained elusive. Here, we describe several co-crystal structures of the Hermes transposase bound to DNA that mimics the reaction step immediately prior to hairpin formation. Our results reveal a large DNA conformational change between the initial cleavage step and subsequent hairpin formation that changes which strand is acted upon by a single active site. We observed that two factors affect the conformational change: the complement of divalent metal ions bound by the catalytically essential DDE residues, and the identity of the –2 flanking base pair. Our data also provides a mechanistic link between the efficiency of hairpin formation (an A:T basepair is favored at the –2 position) and Hermes' strong target site preference. Furthermore, we have established that the histidine residue within a conserved C/DxxH motif present in many transposase families interacts directly with the scissile phosphate, suggesting a crucial role in catalysis.
Collapse
Affiliation(s)
- Alison B Hickman
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Andrea Regier Voth
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hosam Ewis
- Howard Hughes Medical Institute, Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Xianghong Li
- Howard Hughes Medical Institute, Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Nancy L Craig
- Howard Hughes Medical Institute, Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Fred Dyda
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
29
|
Feddersen CR, Wadsworth LS, Zhu EY, Vaughn HR, Voigt AP, Riordan JD, Dupuy AJ. A simplified transposon mutagenesis method to perform phenotypic forward genetic screens in cultured cells. BMC Genomics 2019; 20:497. [PMID: 31208320 PMCID: PMC6580595 DOI: 10.1186/s12864-019-5888-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 06/06/2019] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND The introduction of genome-wide shRNA and CRISPR libraries has facilitated cell-based screens to identify loss-of-function mutations associated with a phenotype of interest. Approaches to perform analogous gain-of-function screens are less common, although some reports have utilized arrayed viral expression libraries or the CRISPR activation system. However, a variety of technical and logistical challenges make these approaches difficult for many labs to execute. In addition, genome-wide shRNA or CRISPR libraries typically contain of hundreds of thousands of individual engineered elements, and the associated complexity creates issues with replication and reproducibility for these methods. RESULTS Here we describe a simple, reproducible approach using the SB transposon system to perform phenotypic cell-based genetic screens. This approach employs only three plasmids to perform unbiased, whole-genome transposon mutagenesis. We also describe a ligation-mediated PCR method that can be used in conjunction with the included software tools to map raw sequence data, identify candidate genes associated with phenotypes of interest, and predict the impact of recurrent transposon insertions on candidate gene function. Finally, we demonstrate the high reproducibility of our approach by having three individuals perform independent replicates of a mutagenesis screen to identify drivers of vemurafenib resistance in cultured melanoma cells. CONCLUSIONS Collectively, our work establishes a facile, adaptable method that can be performed by labs of any size to perform robust, genome-wide screens to identify genes that influence phenotypes of interest.
Collapse
Affiliation(s)
- Charlotte R. Feddersen
- Department of Anatomy & Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52246 USA
| | - Lexy S. Wadsworth
- Department of Anatomy & Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52246 USA
| | - Eliot Y. Zhu
- Department of Anatomy & Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52246 USA
| | - Hayley R. Vaughn
- Department of Anatomy & Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52246 USA
| | - Andrew P. Voigt
- Department of Anatomy & Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52246 USA
| | - Jesse D. Riordan
- Department of Anatomy & Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52246 USA
| | - Adam J. Dupuy
- Department of Anatomy & Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52246 USA
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52246 USA
- Department of Anatomy & Cell Biology, Cancer Biology Graduate Program, University of Iowa, MERF, 375 Newton Road, Iowa City, IA 3202 USA
| |
Collapse
|
30
|
Guimaraes-Young A, Feddersen CR, Dupuy AJ. Sleeping Beauty Mouse Models of Cancer: Microenvironmental Influences on Cancer Genetics. Front Oncol 2019; 9:611. [PMID: 31338332 PMCID: PMC6629774 DOI: 10.3389/fonc.2019.00611] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 06/21/2019] [Indexed: 12/13/2022] Open
Abstract
The Sleeping Beauty (SB) transposon insertional mutagenesis system offers a streamlined approach to identify genetic drivers of cancer. With a relatively random insertion profile, SB is uniquely positioned for conducting unbiased forward genetic screens. Indeed, SB mouse models of cancer have revealed insights into the genetics of tumorigenesis. In this review, we highlight experiments that have exploited the SB system to interrogate the genetics of cancer in distinct biological contexts. We also propose experimental designs that could further our understanding of the relationship between tumor microenvironment and tumor progression.
Collapse
Affiliation(s)
- Amy Guimaraes-Young
- Department of Anatomy and Cell Biology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Charlotte R Feddersen
- Department of Anatomy and Cell Biology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Adam J Dupuy
- Department of Anatomy and Cell Biology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
31
|
Hu K, Li Y, Wu W, Chen H, Chen Z, Zhang Y, Guo Y, Dong Y. High-performance gene expression and knockout tools using sleeping beauty transposon system. Mob DNA 2018; 9:33. [PMID: 30534207 PMCID: PMC6260868 DOI: 10.1186/s13100-018-0139-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 11/19/2018] [Indexed: 12/14/2022] Open
Abstract
Background Similar to retro-/lenti- virus system, DNA transposons are useful tools for stable expression of exogenous genes in mammalian cells. Sleeping Beauty (SB) transposon has adopted for integrating genes into host genomes in recent studies. However, SB-derived vector system for proteins purifying/tracking and gene knockout are still not available. Results In this study, we generated a series of vectors (termed as pSB vectors) containing Sleeping Beauty IRDR-L/R that can be transposed by SB transposase. Gateway cassette was combined to the pSB vectors to facilitate the cloning. Vectors with various tags, Flag, Myc, HA, V5 and SFB, were generated for multiple options. Moreover, we incorporated the CRISPR-Cas9 cassette into the pSB plasmids for gene knockout. Indeed, using one of these vectors (pSB-SFB-GFP), we performed Tandem Affinity Purification and identified that NFATc1 is a novel binding partner of FBW7. We also knocked out RCC2 and BRD7 using pSB-CRISPR vector respectively, and revealed the novel roles of these two proteins in mitosis. Conclusion Our study demonstrated that the pSB series vectors are convenient and powerful tools for gene overexpression and knockout in mammalian cells, providing a new alternative approach for molecular cell biology research.
Collapse
Affiliation(s)
- Kaishun Hu
- 1Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120 China
| | - Yu Li
- 1Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120 China
| | - Wenjing Wu
- 1Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120 China.,2Department of Breast Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120 China
| | - Hengxing Chen
- 1Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120 China
| | - Zhen Chen
- 1Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120 China
| | - Yin Zhang
- 1Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120 China
| | - Yabin Guo
- 1Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120 China
| | - Yin Dong
- 1Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120 China
| |
Collapse
|
32
|
Quiviger M, Giannakopoulos A, Verhenne S, Marie C, Stavrou EF, Vanhoorelbeke K, Izsvák Z, De Meyer SF, Athanassiadou A, Scherman D. Improved molecular platform for the gene therapy of rare diseases by liver protein secretion. Eur J Med Genet 2018; 61:723-728. [PMID: 29704684 DOI: 10.1016/j.ejmg.2018.04.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 03/26/2018] [Accepted: 04/22/2018] [Indexed: 11/26/2022]
Abstract
Many rare monogenic diseases are treated by protein replacement therapy, in which the missing protein is repetitively administered to the patient. However, in several cases, the missing protein is required at a high and sustained level, which renders protein therapy far from being adequate. As an alternative, a gene therapy treatment ensuring a sustained effectiveness would be particularly valuable. Liver is an optimal organ for the secretion and systemic distribution of a therapeutic transgene product. Cutting edge non-viral gene therapy tools were tested in order to produce a high and sustained level of therapeutic protein secretion by the liver using the hydrodynamic delivery technique. The use of S/MAR matrix attachment region provided a slight, however not statistically significant, increase in the expression of a reporter gene in the liver. We have selected the von Willebrand Factor (vWF) gene as a particularly challenging large gene (8.4 kb) for liver delivery and expression, and also because a high vWF blood concentration is required for disease correction. By using the optimized miniplasmid pFAR free of antibiotic resistance gene together with the Sleeping Beauty transposon and the hyperactive SB100X transposase, we have obtained a sustainable level of vWFblood secretion by the liver, at 65% of physiological level. Our results point to the general use of this plasmid platform using the liver as a protein factory to treat numerous rare disorders by gene therapy.
Collapse
Affiliation(s)
- Mickael Quiviger
- Laboratory of Chemical and Biological Technologies for Health, Université Paris Descartes, Sorbonne-Paris-Cité, F-75006 Paris, France; CNRS, UTCBS UMR 8258, F-75006 Paris, France; Chimie ParisTech, PSL Research University, UTCBS, F-75005 Paris, France; INSERM, UTCBS U 1022, F-75006 Paris, France
| | | | - Sebastien Verhenne
- Laboratory for Thrombosis Research, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| | - Corinne Marie
- Laboratory of Chemical and Biological Technologies for Health, Université Paris Descartes, Sorbonne-Paris-Cité, F-75006 Paris, France; CNRS, UTCBS UMR 8258, F-75006 Paris, France; Chimie ParisTech, PSL Research University, UTCBS, F-75005 Paris, France; INSERM, UTCBS U 1022, F-75006 Paris, France
| | - Eleana F Stavrou
- Department of General Biology, Medical School, University of Patras, Rion, Greece
| | - Karen Vanhoorelbeke
- Laboratory for Thrombosis Research, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| | - Zsuzsanna Izsvák
- Mobile DNA, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Simon F De Meyer
- Laboratory for Thrombosis Research, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| | - Aglaia Athanassiadou
- Department of General Biology, Medical School, University of Patras, Rion, Greece
| | - Daniel Scherman
- Laboratory of Chemical and Biological Technologies for Health, Université Paris Descartes, Sorbonne-Paris-Cité, F-75006 Paris, France; CNRS, UTCBS UMR 8258, F-75006 Paris, France; Chimie ParisTech, PSL Research University, UTCBS, F-75005 Paris, France; INSERM, UTCBS U 1022, F-75006 Paris, France.
| |
Collapse
|
33
|
Ishikawa K, Kobayashi Y, Wakabayashi Y, Watanabe S, Semba K. A highly sensitive trap vector system for isolating reporter cells and identification of responsive genes. Biol Methods Protoc 2018; 3:bpy003. [PMID: 32161797 PMCID: PMC6994077 DOI: 10.1093/biomethods/bpy003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 03/22/2018] [Accepted: 04/18/2018] [Indexed: 01/03/2023] Open
Abstract
We devised a versatile vector system for efficient isolation of reporter cells responding to a certain condition of interest. This system combines nontoxic GAL4-UAS and piggyBac transposon systems, allowing application to mammalian cells and improved expression of a fluorescent reporter protein for cell sorting. Case studies under conditions of c-MYC gene induction or endoplasmic reticulum (ER) stress with thapsigargin on mouse or human cell lines confirmed easy and efficient isolation of responsive reporter cells. Sequence analyses of the integrated loci of the thapsigargin-responsive clones identified responsive genes including BiP and OSBPL9. OSBPL9 is a novel ER stress-responsive gene and we confirmed that endogenous mRNA expression of OSBPL9 is upregulated by thapsigargin, and is repressed by IRE1α inhibitors, 4μ8C and toyocamycin, but not significantly by a PERK inhibitor, GSK2656157. These results demonstrate that this approach can be used to discover novel genes regulated by any stimuli without the need for microarray analysis, and that it can concomitantly produce reporter cells without identification of stimuli-responsive promoter/enhancer elements. Therefore, this system has a variety of benefits for basic and clinical research.
Collapse
Affiliation(s)
- Kosuke Ishikawa
- Japan Biological Informatics Consortium (JBiC), 2-45 Aomi, Koto-ku, Tokyo 135-8073, Japan
| | - Yuta Kobayashi
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Yutaro Wakabayashi
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Shinya Watanabe
- Translational Research Center, Fukushima Medical University, 1 Hikarigaoka, Fukushima 960-1295, Japan
| | - Kentaro Semba
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan.,Translational Research Center, Fukushima Medical University, 1 Hikarigaoka, Fukushima 960-1295, Japan
| |
Collapse
|
34
|
Magnani CF, Mezzanotte C, Cappuzzello C, Bardini M, Tettamanti S, Fazio G, Cooper LJN, Dastoli G, Cazzaniga G, Biondi A, Biagi E. Preclinical Efficacy and Safety of CD19CAR Cytokine-Induced Killer Cells Transfected with Sleeping Beauty Transposon for the Treatment of Acute Lymphoblastic Leukemia. Hum Gene Ther 2018; 29:602-613. [PMID: 29641322 DOI: 10.1089/hum.2017.207] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Infusion of patient-derived CD19-specific chimeric antigen receptor (CAR) T cells engineered by viral vectors achieved complete remission and durable response in relapsed and refractory (r/r) B-lineage neoplasms. Here, we expand on those findings by providing a preclinical evaluation of allogeneic non-viral cytokine-induced killer (CIK) cells transfected with the Sleeping Beauty (SB) transposon CD19CAR (CARCIK-CD19). Specifically, thanks to a large-scale 18-day manufacturing process, it was possible to achieve stable CD19CAR expression (62.425 ± 6.399%) and efficient T-cell expansion (23.36 ± 3.00-fold). Frozen/thawed CARCIK-CD19 remained fully functional both in vitro and in an established patient-derived xenograft (PDX) of MLL-ENL rearranged acute lymphoblastic leukemia (ALL). CARCIK-CD19 showed a dose-dependent antitumor response and prolonged persistence in a PDX, bearing the feature of a Philadelphia-like ALL with PAX5/AUTS2 translocation, and in a survival model of lymphoma, achieving complete eradication of disseminated tumors. Finally, the infusion of CARCIK-CD19 proved to be safe and well tolerated in a biodistribution and toxicity model. The infused cells persisted in the hematopoietic and post-injection perfused organs until the end of the study and consisted of CD8+, CD56+, and CAR+ T cells. Overall, these findings provide important implications for non-viral technology and the proof-of-concept that donor-derived CARCIK-CD19 are indeed effective against relapsed ALL, a possibility that will be tested in Phase I/II clinical trials after allogeneic hematopoietic stem-cell transplantation.
Collapse
Affiliation(s)
- Chiara F Magnani
- 1 Tettamanti Research Center, Department of Pediatrics, University of Milano-Bicocca , San Gerardo Hospital/Fondazione MBBM, Monza, Italy
| | - Claudia Mezzanotte
- 1 Tettamanti Research Center, Department of Pediatrics, University of Milano-Bicocca , San Gerardo Hospital/Fondazione MBBM, Monza, Italy
| | - Claudia Cappuzzello
- 1 Tettamanti Research Center, Department of Pediatrics, University of Milano-Bicocca , San Gerardo Hospital/Fondazione MBBM, Monza, Italy
| | - Michela Bardini
- 1 Tettamanti Research Center, Department of Pediatrics, University of Milano-Bicocca , San Gerardo Hospital/Fondazione MBBM, Monza, Italy
| | - Sarah Tettamanti
- 1 Tettamanti Research Center, Department of Pediatrics, University of Milano-Bicocca , San Gerardo Hospital/Fondazione MBBM, Monza, Italy
| | - Grazia Fazio
- 1 Tettamanti Research Center, Department of Pediatrics, University of Milano-Bicocca , San Gerardo Hospital/Fondazione MBBM, Monza, Italy
| | | | - Giuseppe Dastoli
- 1 Tettamanti Research Center, Department of Pediatrics, University of Milano-Bicocca , San Gerardo Hospital/Fondazione MBBM, Monza, Italy
| | - Giovanni Cazzaniga
- 1 Tettamanti Research Center, Department of Pediatrics, University of Milano-Bicocca , San Gerardo Hospital/Fondazione MBBM, Monza, Italy
| | - Andrea Biondi
- 1 Tettamanti Research Center, Department of Pediatrics, University of Milano-Bicocca , San Gerardo Hospital/Fondazione MBBM, Monza, Italy
| | - Ettore Biagi
- 1 Tettamanti Research Center, Department of Pediatrics, University of Milano-Bicocca , San Gerardo Hospital/Fondazione MBBM, Monza, Italy
| |
Collapse
|
35
|
Transposon-mediated generation of BCR-ABL1-expressing transgenic cell lines for unbiased sensitivity testing of tyrosine kinase inhibitors. Oncotarget 2018; 7:78083-78094. [PMID: 27801667 PMCID: PMC5363645 DOI: 10.18632/oncotarget.12943] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 10/17/2016] [Indexed: 11/25/2022] Open
Abstract
Point mutations in the ABL1 kinase domain are an important mechanism of resistance to tyrosine kinase inhibitors (TKI) in BCR-ABL1-positive and, as recently shown, BCR-ABL1-like leukemias. The cell line Ba/F3 lentivirally transduced with mutant BCR-ABL1 constructs is widely used for in vitro sensitivity testing and response prediction to tyrosine kinase inhibitors. The transposon-based Sleeping Beauty system presented offers several advantages over lentiviral transduction including the absence of biosafety issues, faster generation of transgenic cell lines, and greater efficacy in introducing large gene constructs. Nevertheless, both methods can mediate multiple insertions in the genome. Here we show that multiple BCR-ABL1 insertions result in elevated IC50 levels for individual TKIs, thus overestimating the actual resistance of mutant subclones. We have therefore established flow-sorting-based fractionation of BCR-ABL1-transformed Ba/F3 cells facilitating efficient enrichment of cells carrying single-site insertions, as demonstrated by FISH-analysis. Fractions of unselected Ba/F3 cells not only showed a greater number of BCR-ABL1 hybridization signals, but also revealed higher IC50 values for the TKIs tested. The data presented highlight the need to carefully select transfected cells by flow-sorting, and to control the insertion numbers by FISH and real-time PCR to permit unbiased in vitro testing of drug resistance.
Collapse
|
36
|
Magnani CF, Turazzi N, Benedicenti F, Calabria A, Tenderini E, Tettamanti S, Giordano Attianese GMP, Cooper LJN, Aiuti A, Montini E, Biondi A, Biagi E. Immunotherapy of acute leukemia by chimeric antigen receptor-modified lymphocytes using an improved Sleeping Beauty transposon platform. Oncotarget 2018; 7:51581-51597. [PMID: 27323395 PMCID: PMC5239498 DOI: 10.18632/oncotarget.9955] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 05/20/2016] [Indexed: 12/20/2022] Open
Abstract
Chimeric antigen receptor (CAR)-modified T-cell adoptive immunotherapy is a remarkable therapeutic option proven effective in the treatment of hematological malignancies. In order to optimize cell manufacturing, we sought to develop a novel clinical-grade protocol to obtain CAR-modified cytokine-induced killer cells (CIKs) using the Sleeping Beauty (SB) transposon system. Administration of irradiated PBMCs overcame cell death of stimulating cells induced by non-viral transfection, enabling robust gene transfer together with efficient T-cell expansion. Upon single stimulation, we reached an average of 60% expression of CD123- and CD19- specific 3rd generation CARs (CD28/OX40/TCRzeta). Furthermore, modified cells displayed persistence of cell subsets with memory phenotype, specific and effective lytic activity against leukemic cell lines and primary blasts, cytokine secretion, and proliferation. Adoptive transfer of CD123.CAR or CD19.CAR lymphocytes led to a significant anti-tumor response against acute myelogenous leukemia (AML) and acute lymphoblastic leukemia (ALL) disseminated diseases in NSG mice. Notably, we found no evidence of integration enrichment near cancer genes and transposase expression at the end of the differentiation. Taken all together, our findings describe a novel donor-derived non-viral CAR approach that may widen the repertoire of available methods for T cell-based immunotherapy.
Collapse
Affiliation(s)
- Chiara F Magnani
- Tettamanti Research Center, Department of Pediatrics, University of Milano-Bicocca, San Gerardo Hospital/Fondazione MBBM, Monza, Italy
| | - Nice Turazzi
- Tettamanti Research Center, Department of Pediatrics, University of Milano-Bicocca, San Gerardo Hospital/Fondazione MBBM, Monza, Italy
| | | | - Andrea Calabria
- San Raffaele Telethon Institute for Gene Therapy (HSR-TIGET), Milan, Italy
| | - Erika Tenderini
- San Raffaele Telethon Institute for Gene Therapy (HSR-TIGET), Milan, Italy
| | - Sarah Tettamanti
- Tettamanti Research Center, Department of Pediatrics, University of Milano-Bicocca, San Gerardo Hospital/Fondazione MBBM, Monza, Italy
| | - Greta M P Giordano Attianese
- Tettamanti Research Center, Department of Pediatrics, University of Milano-Bicocca, San Gerardo Hospital/Fondazione MBBM, Monza, Italy.,University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | - Alessandro Aiuti
- San Raffaele Telethon Institute for Gene Therapy (HSR-TIGET), Milan, Italy
| | - Eugenio Montini
- San Raffaele Telethon Institute for Gene Therapy (HSR-TIGET), Milan, Italy
| | - Andrea Biondi
- Tettamanti Research Center, Department of Pediatrics, University of Milano-Bicocca, San Gerardo Hospital/Fondazione MBBM, Monza, Italy
| | - Ettore Biagi
- Tettamanti Research Center, Department of Pediatrics, University of Milano-Bicocca, San Gerardo Hospital/Fondazione MBBM, Monza, Italy
| |
Collapse
|
37
|
Holstein M, Mesa-Nuñez C, Miskey C, Almarza E, Poletti V, Schmeer M, Grueso E, Ordóñez Flores JC, Kobelt D, Walther W, Aneja MK, Geiger J, Bonig HB, Izsvák Z, Schleef M, Rudolph C, Mavilio F, Bueren JA, Guenechea G, Ivics Z. Efficient Non-viral Gene Delivery into Human Hematopoietic Stem Cells by Minicircle Sleeping Beauty Transposon Vectors. Mol Ther 2018; 26:1137-1153. [PMID: 29503198 PMCID: PMC6079369 DOI: 10.1016/j.ymthe.2018.01.012] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 01/08/2018] [Accepted: 01/12/2018] [Indexed: 12/26/2022] Open
Abstract
The Sleeping Beauty (SB) transposon system is a non-viral gene delivery platform that combines simplicity, inexpensive manufacture, and favorable safety features in the context of human applications. However, efficient correction of hematopoietic stem and progenitor cells (HSPCs) with non-viral vector systems, including SB, demands further refinement of gene delivery techniques. We set out to improve SB gene transfer into hard-to-transfect human CD34+ cells by vectorizing the SB system components in the form of minicircles that are devoid of plasmid backbone sequences and are, therefore, significantly reduced in size. As compared to conventional plasmids, delivery of the SB transposon system as minicircle DNA is ∼20 times more efficient, and it is associated with up to a 50% reduction in cellular toxicity in human CD34+ cells. Moreover, providing the SB transposase in the form of synthetic mRNA enabled us to further increase the efficacy and biosafety of stable gene delivery into hematopoietic progenitors ex vivo. Genome-wide insertion site profiling revealed a close-to-random distribution of SB transposon integrants, which is characteristically different from gammaretroviral and lentiviral integrations in HSPCs. Transplantation of gene-marked CD34+ cells in immunodeficient mice resulted in long-term engraftment and hematopoietic reconstitution, which was most efficient when the SB transposase was supplied as mRNA and nucleofected cells were maintained for 4–8 days in culture before transplantation. Collectively, implementation of minicircle and mRNA technologies allowed us to further refine the SB transposon system in the context of HSPC gene delivery to ultimately meet clinical demands of an efficient and safe non-viral gene therapy protocol.
Collapse
Affiliation(s)
- Marta Holstein
- Transposition and Genome Engineering, Division of Medical Biotechnology, Paul Ehrlich Institute, Langen, Germany
| | - Cristina Mesa-Nuñez
- Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIEMAT/CIBERER), Madrid, Spain; Advanced Therapies Unit, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM) Madrid, Spain
| | - Csaba Miskey
- Transposition and Genome Engineering, Division of Medical Biotechnology, Paul Ehrlich Institute, Langen, Germany
| | - Elena Almarza
- Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIEMAT/CIBERER), Madrid, Spain; Advanced Therapies Unit, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM) Madrid, Spain
| | | | | | - Esther Grueso
- Transposition and Genome Engineering, Division of Medical Biotechnology, Paul Ehrlich Institute, Langen, Germany
| | - Juan Carlos Ordóñez Flores
- Transposition and Genome Engineering, Division of Medical Biotechnology, Paul Ehrlich Institute, Langen, Germany
| | - Dennis Kobelt
- Translational Oncology, Experimental and Clinical Research Center, Charité University Medicine, Berlin, Germany
| | - Wolfgang Walther
- Translational Oncology, Experimental and Clinical Research Center, Charité University Medicine, Berlin, Germany
| | | | | | - Halvard B Bonig
- Department of Transfusion Medicine and Immunohematology, Johann-Wolfgang-Goethe Universität, Frankfurt, Germany
| | - Zsuzsanna Izsvák
- Mobile DNA, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | | | - Carsten Rudolph
- ethris GmbH, Planegg, Germany; Department of Pediatrics, Ludwig Maximilian University, Munich, Germany
| | - Fulvio Mavilio
- Genethon, Evry, France; Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Juan A Bueren
- Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIEMAT/CIBERER), Madrid, Spain; Advanced Therapies Unit, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM) Madrid, Spain
| | - Guillermo Guenechea
- Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIEMAT/CIBERER), Madrid, Spain; Advanced Therapies Unit, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM) Madrid, Spain
| | - Zoltán Ivics
- Transposition and Genome Engineering, Division of Medical Biotechnology, Paul Ehrlich Institute, Langen, Germany.
| |
Collapse
|
38
|
Preclinical and clinical advances in transposon-based gene therapy. Biosci Rep 2017; 37:BSR20160614. [PMID: 29089466 PMCID: PMC5715130 DOI: 10.1042/bsr20160614] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 10/26/2017] [Accepted: 10/30/2017] [Indexed: 02/08/2023] Open
Abstract
Transposons derived from Sleeping Beauty (SB), piggyBac (PB), or Tol2 typically require cotransfection of transposon DNA with a transposase either as an expression plasmid or mRNA. Consequently, this results in genomic integration of the potentially therapeutic gene into chromosomes of the desired target cells, and thus conferring stable expression. Non-viral transfection methods are typically preferred to deliver the transposon components into the target cells. However, these methods do not match the efficacy typically attained with viral vectors and are sometimes associated with cellular toxicity evoked by the DNA itself. In recent years, the overall transposition efficacy has gradually increased by codon optimization of the transposase, generation of hyperactive transposases, and/or introduction of specific mutations in the transposon terminal repeats. Their versatility enabled the stable genetic engineering in many different primary cell types, including stem/progenitor cells and differentiated cell types. This prompted numerous preclinical proof-of-concept studies in disease models that demonstrated the potential of DNA transposons for ex vivo and in vivo gene therapy. One of the merits of transposon systems relates to their ability to deliver relatively large therapeutic transgenes that cannot readily be accommodated in viral vectors such as full-length dystrophin cDNA. These emerging insights paved the way toward the first transposon-based phase I/II clinical trials to treat hematologic cancer and other diseases. Though encouraging results were obtained, controlled pivotal clinical trials are needed to corroborate the efficacy and safety of transposon-based therapies.
Collapse
|
39
|
Tipanee J, VandenDriessche T, Chuah MK. Transposons: Moving Forward from Preclinical Studies to Clinical Trials. Hum Gene Ther 2017; 28:1087-1104. [DOI: 10.1089/hum.2017.128] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Jaitip Tipanee
- Department of Gene Therapy and Regenerative Medicine, Free University of Brussels (VUB), Brussels, Belgium
| | - Thierry VandenDriessche
- Department of Gene Therapy and Regenerative Medicine, Free University of Brussels (VUB), Brussels, Belgium
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium
| | - Marinee K. Chuah
- Department of Gene Therapy and Regenerative Medicine, Free University of Brussels (VUB), Brussels, Belgium
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium
| |
Collapse
|
40
|
Kawakami K, Largaespada DA, Ivics Z. Transposons As Tools for Functional Genomics in Vertebrate Models. Trends Genet 2017; 33:784-801. [PMID: 28888423 DOI: 10.1016/j.tig.2017.07.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/14/2017] [Accepted: 07/18/2017] [Indexed: 02/06/2023]
Abstract
Genetic tools and mutagenesis strategies based on transposable elements are currently under development with a vision to link primary DNA sequence information to gene functions in vertebrate models. By virtue of their inherent capacity to insert into DNA, transposons can be developed into powerful tools for chromosomal manipulations. Transposon-based forward mutagenesis screens have numerous advantages including high throughput, easy identification of mutated alleles, and providing insight into genetic networks and pathways based on phenotypes. For example, the Sleeping Beauty transposon has become highly instrumental to induce tumors in experimental animals in a tissue-specific manner with the aim of uncovering the genetic basis of diverse cancers. Here, we describe a battery of mutagenic cassettes that can be applied in conjunction with transposon vectors to mutagenize genes, and highlight versatile experimental strategies for the generation of engineered chromosomes for loss-of-function as well as gain-of-function mutagenesis for functional gene annotation in vertebrate models, including zebrafish, mice, and rats.
Collapse
Affiliation(s)
- Koichi Kawakami
- Division of Molecular and Developmental Biology, National Institute of Genetics, Mishima, Japan; These authors contributed equally to this work
| | - David A Largaespada
- Department of Genetics, Cell Biology and Development, University of Minnesota, MN, USA; These authors contributed equally to this work
| | - Zoltán Ivics
- Division of Medical Biotechnology, Paul Ehrlich Institute, Langen, Germany; These authors contributed equally to this work..
| |
Collapse
|
41
|
Hudecek M, Izsvák Z, Johnen S, Renner M, Thumann G, Ivics Z. Going non-viral: the Sleeping Beauty transposon system breaks on through to the clinical side. Crit Rev Biochem Mol Biol 2017; 52:355-380. [PMID: 28402189 DOI: 10.1080/10409238.2017.1304354] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Molecular medicine has entered a high-tech age that provides curative treatments of complex genetic diseases through genetically engineered cellular medicinal products. Their clinical implementation requires the ability to stably integrate genetic information through gene transfer vectors in a safe, effective and economically viable manner. The latest generation of Sleeping Beauty (SB) transposon vectors fulfills these requirements, and may overcome limitations associated with viral gene transfer vectors and transient non-viral gene delivery approaches that are prevalent in ongoing pre-clinical and translational research. The SB system enables high-level stable gene transfer and sustained transgene expression in multiple primary human somatic cell types, thereby representing a highly attractive gene transfer strategy for clinical use. Here we review several recent refinements of the system, including the development of optimized transposons and hyperactive SB variants, the vectorization of transposase and transposon as mRNA and DNA minicircles (MCs) to enhance performance and facilitate vector production, as well as a detailed understanding of SB's genomic integration and biosafety features. This review also provides a perspective on the regulatory framework for clinical trials of gene delivery with SB, and illustrates the path to successful clinical implementation by using, as examples, gene therapy for age-related macular degeneration (AMD) and the engineering of chimeric antigen receptor (CAR)-modified T cells in cancer immunotherapy.
Collapse
Affiliation(s)
- Michael Hudecek
- a Medizinische Klinik und Poliklinik II , Universitätsklinikum Würzburg , Würzburg , Germany
| | - Zsuzsanna Izsvák
- b Mobile DNA , Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC) , Berlin , Germany
| | - Sandra Johnen
- c Department of Ophthalmology , University Hospital RWTH Aachen , Aachen , Germany
| | - Matthias Renner
- d Division of Medical Biotechnology , Paul Ehrlich Institute , Langen, Germany
| | - Gabriele Thumann
- e Département des Neurosciences Cliniques Service d'Ophthalmologie , Hôpitaux Universitaires de Genève , Genève , Switzerland
| | - Zoltán Ivics
- d Division of Medical Biotechnology , Paul Ehrlich Institute , Langen, Germany
| |
Collapse
|
42
|
Integration site selection by retroviruses and transposable elements in eukaryotes. Nat Rev Genet 2017; 18:292-308. [PMID: 28286338 DOI: 10.1038/nrg.2017.7] [Citation(s) in RCA: 145] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Transposable elements and retroviruses are found in most genomes, can be pathogenic and are widely used as gene-delivery and functional genomics tools. Exploring whether these genetic elements target specific genomic sites for integration and how this preference is achieved is crucial to our understanding of genome evolution, somatic genome plasticity in cancer and ageing, host-parasite interactions and genome engineering applications. High-throughput profiling of integration sites by next-generation sequencing, combined with large-scale genomic data mining and cellular or biochemical approaches, has revealed that the insertions are usually non-random. The DNA sequence, chromatin and nuclear context, and cellular proteins cooperate in guiding integration in eukaryotic genomes, leading to a remarkable diversity of insertion site distribution and evolutionary strategies.
Collapse
|
43
|
Thumann G, Harmening N, Prat-Souteyrand C, Marie C, Pastor M, Sebe A, Miskey C, Hurst LD, Diarra S, Kropp M, Walter P, Scherman D, Ivics Z, Izsvák Z, Johnen S. Engineering of PEDF-Expressing Primary Pigment Epithelial Cells by the SB Transposon System Delivered by pFAR4 Plasmids. MOLECULAR THERAPY-NUCLEIC ACIDS 2017; 6:302-314. [PMID: 28325297 PMCID: PMC5363513 DOI: 10.1016/j.omtn.2017.02.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 02/02/2017] [Accepted: 02/02/2017] [Indexed: 01/14/2023]
Abstract
Neovascular age-related macular degeneration (nvAMD) is characterized by choroidal blood vessels growing into the subretinal space, leading to retinal pigment epithelial (RPE) cell degeneration and vision loss. Vessel growth results from an imbalance of pro-angiogenic (e.g., vascular endothelial growth factor [VEGF]) and anti-angiogenic factors (e.g., pigment epithelium-derived factor [PEDF]). Current treatment using intravitreal injections of anti-VEGF antibodies improves vision in about 30% of patients but may be accompanied by side effects and non-compliance. To avoid the difficulties posed by frequent intravitreal injections, we have proposed the transplantation of pigment epithelial cells modified to overexpress human PEDF. Stable transgene integration and expression is ensured by the hyperactive Sleeping Beauty transposon system delivered by pFAR4 miniplasmids, which have a backbone free of antibiotic resistance markers. We demonstrated efficient expression of the PEDF gene and an optimized PEDF cDNA sequence in as few as 5 × 103 primary cells. At 3 weeks post-transfection, PEDF secretion was significantly elevated and long-term follow-up indicated a more stable secretion by cells transfected with the optimized PEDF transgene. Analysis of transgene insertion sites in human RPE cells showed an almost random genomic distribution. The results represent an important contribution toward a clinical trial aiming at a non-viral gene therapy of nvAMD.
Collapse
Affiliation(s)
- Gabriele Thumann
- Department of Ophthalmology, University Hospitals of Geneva, 1205 Geneva, Switzerland; Laboratory of Ophthalmology, University of Geneva, 1205 Geneva, Switzerland.
| | - Nina Harmening
- Laboratory of Ophthalmology, University of Geneva, 1205 Geneva, Switzerland
| | | | - Corinne Marie
- CNRS, Unité de Technologies Chimiques et Biologiques pour la Santé UMR 8258, 75006 Paris, France; Université Paris Descartes, Sorbonne-Paris-Cité, UTCBS, 75006 Paris, France; INSERM, UTCBS U 1022, 75006 Paris, France; Chimie ParisTech, PSL Research University, UTCBS, 75005 Paris, France
| | - Marie Pastor
- CNRS, Unité de Technologies Chimiques et Biologiques pour la Santé UMR 8258, 75006 Paris, France; Université Paris Descartes, Sorbonne-Paris-Cité, UTCBS, 75006 Paris, France; INSERM, UTCBS U 1022, 75006 Paris, France; Chimie ParisTech, PSL Research University, UTCBS, 75005 Paris, France
| | - Attila Sebe
- Division of Medical Biotechnology, Paul-Ehrlich-Institute, 63225 Langen, Germany
| | - Csaba Miskey
- Division of Medical Biotechnology, Paul-Ehrlich-Institute, 63225 Langen, Germany
| | - Laurence D Hurst
- Department of Biology and Biochemistry, University of Bath, BA2 7AY Bath, UK
| | - Sabine Diarra
- Department of Ophthalmology, University Hospital RWTH Aachen, 52074 Aachen, Germany
| | - Martina Kropp
- Laboratory of Ophthalmology, University of Geneva, 1205 Geneva, Switzerland
| | - Peter Walter
- Department of Ophthalmology, University Hospital RWTH Aachen, 52074 Aachen, Germany
| | - Daniel Scherman
- CNRS, Unité de Technologies Chimiques et Biologiques pour la Santé UMR 8258, 75006 Paris, France; Université Paris Descartes, Sorbonne-Paris-Cité, UTCBS, 75006 Paris, France; INSERM, UTCBS U 1022, 75006 Paris, France; Chimie ParisTech, PSL Research University, UTCBS, 75005 Paris, France
| | - Zoltán Ivics
- Division of Medical Biotechnology, Paul-Ehrlich-Institute, 63225 Langen, Germany
| | - Zsuzsanna Izsvák
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13092 Berlin, Germany
| | - Sandra Johnen
- Department of Ophthalmology, University Hospital RWTH Aachen, 52074 Aachen, Germany
| |
Collapse
|
44
|
Comprehensive Essentiality Analysis of the Mycobacterium tuberculosis Genome via Saturating Transposon Mutagenesis. mBio 2017; 8:mBio.02133-16. [PMID: 28096490 PMCID: PMC5241402 DOI: 10.1128/mbio.02133-16] [Citation(s) in RCA: 414] [Impact Index Per Article: 51.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
For decades, identifying the regions of a bacterial chromosome that are necessary for viability has relied on mapping integration sites in libraries of random transposon mutants to find loci that are unable to sustain insertion. To date, these studies have analyzed subsaturated libraries, necessitating the application of statistical methods to estimate the likelihood that a gap in transposon coverage is the result of biological selection and not the stochasticity of insertion. As a result, the essentiality of many genomic features, particularly small ones, could not be reliably assessed. We sought to overcome this limitation by creating a completely saturated transposon library in Mycobacterium tuberculosis In assessing the composition of this highly saturated library by deep sequencing, we discovered that a previously unknown sequence bias of the Himar1 element rendered approximately 9% of potential TA dinucleotide insertion sites less permissible for insertion. We used a hidden Markov model of essentiality that accounted for this unanticipated bias, allowing us to confidently evaluate the essentiality of features that contained as few as 2 TA sites, including open reading frames (ORF), experimentally identified noncoding RNAs, methylation sites, and promoters. In addition, several essential regions that did not correspond to known features were identified, suggesting uncharacterized functions that are necessary for growth. This work provides an authoritative catalog of essential regions of the M. tuberculosis genome and a statistical framework for applying saturating mutagenesis to other bacteria. IMPORTANCE Sequencing of transposon-insertion mutant libraries has become a widely used tool for probing the functions of genes under various conditions. The Himar1 transposon is generally believed to insert with equal probabilities at all TA dinucleotides, and therefore its absence in a mutant library is taken to indicate biological selection against the corresponding mutant. Through sequencing of a saturated Himar1 library, we found evidence that TA dinucleotides are not equally permissive for insertion. The insertion bias was observed in multiple prokaryotes and influences the statistical interpretation of transposon insertion (TnSeq) data and characterization of essential genomic regions. Using these insights, we analyzed a fully saturated TnSeq library for M. tuberculosis, enabling us to generate a comprehensive catalog of in vitro essentiality, including ORFs smaller than those found in any previous study, small (noncoding) RNAs (sRNAs), promoters, and other genomic features.
Collapse
|
45
|
Bii VM, Trobridge GD. Identifying Cancer Driver Genes Using Replication-Incompetent Retroviral Vectors. Cancers (Basel) 2016; 8:cancers8110099. [PMID: 27792127 PMCID: PMC5126759 DOI: 10.3390/cancers8110099] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Revised: 10/12/2016] [Accepted: 10/17/2016] [Indexed: 12/16/2022] Open
Abstract
Identifying novel genes that drive tumor metastasis and drug resistance has significant potential to improve patient outcomes. High-throughput sequencing approaches have identified cancer genes, but distinguishing driver genes from passengers remains challenging. Insertional mutagenesis screens using replication-incompetent retroviral vectors have emerged as a powerful tool to identify cancer genes. Unlike replicating retroviruses and transposons, replication-incompetent retroviral vectors lack additional mutagenesis events that can complicate the identification of driver mutations from passenger mutations. They can also be used for almost any human cancer due to the broad tropism of the vectors. Replication-incompetent retroviral vectors have the ability to dysregulate nearby cancer genes via several mechanisms including enhancer-mediated activation of gene promoters. The integrated provirus acts as a unique molecular tag for nearby candidate driver genes which can be rapidly identified using well established methods that utilize next generation sequencing and bioinformatics programs. Recently, retroviral vector screens have been used to efficiently identify candidate driver genes in prostate, breast, liver and pancreatic cancers. Validated driver genes can be potential therapeutic targets and biomarkers. In this review, we describe the emergence of retroviral insertional mutagenesis screens using replication-incompetent retroviral vectors as a novel tool to identify cancer driver genes in different cancer types.
Collapse
Affiliation(s)
- Victor M Bii
- College of Pharmacy, Washington State University, WSU Spokane PBS 323, P.O. Box 1495, Spokane, WA 99210, USA.
| | - Grant D Trobridge
- College of Pharmacy, Washington State University, WSU Spokane PBS 323, P.O. Box 1495, Spokane, WA 99210, USA.
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164, USA.
| |
Collapse
|
46
|
Narayanavari SA, Chilkunda SS, Ivics Z, Izsvák Z. Sleeping Beauty transposition: from biology to applications. Crit Rev Biochem Mol Biol 2016; 52:18-44. [PMID: 27696897 DOI: 10.1080/10409238.2016.1237935] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Sleeping Beauty (SB) is the first synthetic DNA transposon that was shown to be active in a wide variety of species. Here, we review studies from the last two decades addressing both basic biology and applications of this transposon. We discuss how host-transposon interaction modulates transposition at different steps of the transposition reaction. We also discuss how the transposon was translated for gene delivery and gene discovery purposes. We critically review the system in clinical, pre-clinical and non-clinical settings as a non-viral gene delivery tool in comparison with viral technologies. We also discuss emerging SB-based hybrid vectors aimed at combining the attractive safety features of the transposon with effective viral delivery. The success of the SB-based technology can be fundamentally attributed to being able to insert fairly randomly into genomic regions that allow stable long-term expression of the delivered transgene cassette. SB has emerged as an efficient and economical toolkit for safe and efficient gene delivery for medical applications.
Collapse
Affiliation(s)
- Suneel A Narayanavari
- a Mobile DNA , Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC) , Berlin , Germany
| | - Shreevathsa S Chilkunda
- a Mobile DNA , Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC) , Berlin , Germany
| | - Zoltán Ivics
- b Division of Medical Biotechnology , Paul Ehrlich Institute , Langen , Germany
| | - Zsuzsanna Izsvák
- a Mobile DNA , Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC) , Berlin , Germany
| |
Collapse
|
47
|
Teufel A, Dufour JF. Two-Step Forward Genetic Screen in Mice Identifies the Ral Pathway as a Central Drug Target in Hepatocellular Carcinoma. Gastroenterology 2016; 151:231-3. [PMID: 27371877 DOI: 10.1053/j.gastro.2016.06.034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Affiliation(s)
- Andreas Teufel
- Department of Medicine I, University Medical Center, Regensburg, Germany.
| | | |
Collapse
|
48
|
Enhanced CAR T-cell engineering using non-viral Sleeping Beauty transposition from minicircle vectors. Leukemia 2016; 31:186-194. [PMID: 27491640 DOI: 10.1038/leu.2016.180] [Citation(s) in RCA: 175] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 06/08/2016] [Accepted: 06/10/2016] [Indexed: 12/28/2022]
Abstract
Immunotherapy with T cell modified with gamma-retroviral or lentiviral (LV) vectors to express a chimeric antigen receptor (CAR) has shown remarkable efficacy in clinical trials. However, the potential for insertional mutagenesis and genotoxicity of viral vectors is a safety concern, and their cost and regulatory demands a roadblock for rapid and broad clinical translation. Here, we demonstrate that CAR T cells can be engineered through non-viral Sleeping Beauty (SB) transposition of CAR genes from minimalistic DNA vectors called minicircles (MCs). We analyzed genomic distribution of SB and LV integrations and show that a significantly higher proportion of MC-derived CAR transposons compared with LV integrants had occurred outside of highly expressed and cancer-related genes into genomic safe harbor loci that are not expected to cause mutagenesis or genotoxicity. CD19-CAR T cells engineered with our enhanced SB approach conferred potent reactivity in vitro and eradicated lymphoma in a xenograft model in vivo. Intriguingly, electroporation of SB MCs is substantially more effective and less toxic compared with conventional plasmids, and enables cost-effective rapid preparation of therapeutic CAR T-cell doses. This approach sets a new standard in advanced cellular and gene therapy and will accelerate and increase the availability of CAR T-cell therapy to treat hematologic malignancies.
Collapse
|
49
|
Campos-Sánchez R, Cremona MA, Pini A, Chiaromonte F, Makova KD. Integration and Fixation Preferences of Human and Mouse Endogenous Retroviruses Uncovered with Functional Data Analysis. PLoS Comput Biol 2016; 12:e1004956. [PMID: 27309962 PMCID: PMC4911145 DOI: 10.1371/journal.pcbi.1004956] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 04/29/2016] [Indexed: 01/24/2023] Open
Abstract
Endogenous retroviruses (ERVs), the remnants of retroviral infections in the germ line, occupy ~8% and ~10% of the human and mouse genomes, respectively, and affect their structure, evolution, and function. Yet we still have a limited understanding of how the genomic landscape influences integration and fixation of ERVs. Here we conducted a genome-wide study of the most recently active ERVs in the human and mouse genome. We investigated 826 fixed and 1,065 in vitro HERV-Ks in human, and 1,624 fixed and 242 polymorphic ETns, as well as 3,964 fixed and 1,986 polymorphic IAPs, in mouse. We quantitated >40 human and mouse genomic features (e.g., non-B DNA structure, recombination rates, and histone modifications) in ±32 kb of these ERVs' integration sites and in control regions, and analyzed them using Functional Data Analysis (FDA) methodology. In one of the first applications of FDA in genomics, we identified genomic scales and locations at which these features display their influence, and how they work in concert, to provide signals essential for integration and fixation of ERVs. The investigation of ERVs of different evolutionary ages (young in vitro and polymorphic ERVs, older fixed ERVs) allowed us to disentangle integration vs. fixation preferences. As a result of these analyses, we built a comprehensive model explaining the uneven distribution of ERVs along the genome. We found that ERVs integrate in late-replicating AT-rich regions with abundant microsatellites, mirror repeats, and repressive histone marks. Regions favoring fixation are depleted of genes and evolutionarily conserved elements, and have low recombination rates, reflecting the effects of purifying selection and ectopic recombination removing ERVs from the genome. In addition to providing these biological insights, our study demonstrates the power of exploiting multiple scales and localization with FDA. These powerful techniques are expected to be applicable to many other genomic investigations.
Collapse
Affiliation(s)
- Rebeca Campos-Sánchez
- Genetics Graduate Program, The Huck Institutes of the Life Sciences, Penn State University, University Park, Pennsylvania, United States of America
| | - Marzia A. Cremona
- MOX—Modeling and Scientific Computing, Department of Mathematics, Politecnico di Milano, Milano, Italy
- Department of Statistics, Penn State University, University Park, Pennsylvania, United States of America
| | - Alessia Pini
- MOX—Modeling and Scientific Computing, Department of Mathematics, Politecnico di Milano, Milano, Italy
| | - Francesca Chiaromonte
- Department of Statistics, Penn State University, University Park, Pennsylvania, United States of America
- Center for Medical Genomics, The Huck Institutes of the Life Sciences, Penn State University, University Park, Pennsylvania, United States of America
| | - Kateryna D. Makova
- Center for Medical Genomics, The Huck Institutes of the Life Sciences, Penn State University, University Park, Pennsylvania, United States of America
- Department of Biology, Penn State University, University Park, Pennsylvania, United States of America
| |
Collapse
|
50
|
Morris ER, Grey H, McKenzie G, Jones AC, Richardson JM. A bend, flip and trap mechanism for transposon integration. eLife 2016; 5. [PMID: 27223327 PMCID: PMC5481204 DOI: 10.7554/elife.15537] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 05/24/2016] [Indexed: 12/31/2022] Open
Abstract
Cut-and-paste DNA transposons of the mariner/Tc1 family are useful tools for genome engineering and are inserted specifically at TA target sites. A crystal structure of the mariner transposase Mos1 (derived from Drosophila mauritiana), in complex with transposon ends covalently joined to target DNA, portrays the transposition machinery after DNA integration. It reveals severe distortion of target DNA and flipping of the target adenines into extra-helical positions. Fluorescence experiments confirm dynamic base flipping in solution. Transposase residues W159, R186, F187 and K190 stabilise the target DNA distortions and are required for efficient transposon integration and transposition in vitro. Transposase recognises the flipped target adenines via base-specific interactions with backbone atoms, offering a molecular basis for TA target sequence selection. Our results will provide a template for re-designing mariner/Tc1 transposases with modified target specificities. DOI:http://dx.doi.org/10.7554/eLife.15537.001 The complete set of DNA in a cell is referred to as its genome. Most genomes contain short fragments of DNA called transposons that can jump from one place to another. Transposons carry sections of DNA with them when they move, which creates diversity and can influence the evolution of a species. Transposons are also being exploited to develop tools for biotechnology and medical applications. One family of transposons – the Mariner/Tc1 family – has proved particularly useful in these endeavours because it is widespread in nature and can jump around the genomes of a broad range of species, including mammals. DNA transposons are cut out of their position and then pasted at a new site by an enzyme called transposase, which is encoded by some of the DNA within the transposon. DNA is made up of strings of molecules called bases and Mariner/Tc1-family transposons can only insert into a new position in the genome at sites that have a specific sequence of two bases. However, it was not known how this target sequence is chosen and how the transposon inserts into it. Morris et al. have now used a technique called X-ray crystallography to build a three-dimensional model of a Mariner/Tc1-family transposon as it inserts into a new position. The model shows that, as the transposon is pasted into its new site, the surrounding DNA bends. This causes two DNA bases in the surrounding DNA to flip out from their normal position in the DNA molecule, which enables them to be recognised by the transposase. Further experiments showed that this base-flipping is dynamic, that is, the two bases continuously flip in and out of position. Furthermore, Morris et al. identified which parts of the transposase enzyme are required for the transposon to be efficiently pasted into the genome. Together these findings may help researchers to alter the transposase so that it can insert the transposon into different locations in a genome. This will hopefully lead to new tools for biotechnology and medical applications. DOI:http://dx.doi.org/10.7554/eLife.15537.002
Collapse
Affiliation(s)
- Elizabeth R Morris
- Institute of Quantitative Biology, Biochemistry and Biotechnology, University of Edinburgh, Edinburgh, United Kingdom
| | - Heather Grey
- Institute of Quantitative Biology, Biochemistry and Biotechnology, University of Edinburgh, Edinburgh, United Kingdom
| | | | - Anita C Jones
- EaStCHEM School of Chemistry, Edinburgh, United Kingdom
| | - Julia M Richardson
- Institute of Quantitative Biology, Biochemistry and Biotechnology, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|