1
|
Rojano-Nisimura AM, Miller LG, Anantharaman A, Middleton AT, Kibret E, Jung SH, Russell R, Contreras LM. A high-throughput search for intracellular factors that affect RNA folding identifies E. coli proteins PepA and YagL as RNA chaperones that promote RNA remodelling. RNA Biol 2024; 21:13-30. [PMID: 39576267 PMCID: PMC11587861 DOI: 10.1080/15476286.2024.2429956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 11/01/2024] [Accepted: 11/11/2024] [Indexed: 11/24/2024] Open
Abstract
General RNA chaperones are RNA-binding proteins (RBPs) that interact transiently and non-specifically with RNA substrates and assist in their folding into their native state. In bacteria, these chaperones impact both coding and non-coding RNAs and are particularly important for large, structured RNAs which are prone to becoming kinetically trapped in misfolded states. Currently, due to the limited number of well-characterized examples and the lack of a consensus structural or sequence motif, it is difficult to identify general RNA chaperones in bacteria. Here, we adapted a previously published in vivo RNA regional accessibility probing assay to screen genome wide for intracellular factors in E. coli affecting RNA folding, among which we aimed to uncover novel RNA chaperones. Through this method, we identified eight proteins whose deletion gives changes in regional accessibility within the exogenously expressed Tetrahymena group I intron ribozyme. Furthermore, we purified and measured in vitro properties of two of these proteins, YagL and PepA, which were especially attractive as general chaperone candidates. We showed that both proteins bind RNA and that YagL accelerates native refolding of the ribozyme from a long-lived misfolded state. Further dissection of YagL showed that a putative helix-turn-helix (HTH) domain is responsible for most of its RNA-binding activity, but only the full protein shows chaperone activity. Altogether, this work expands the current repertoire of known general RNA chaperones in bacteria.
Collapse
Affiliation(s)
| | - Lucas G. Miller
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Aparna Anantharaman
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Aaron T. Middleton
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Elroi Kibret
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Sung H. Jung
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Rick Russell
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Lydia M. Contreras
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
2
|
Luo B, Zhang C, Ling X, Mukherjee S, Jia G, Xie J, Jia X, Liu L, Baulin EF, Luo Y, Jiang L, Dong H, Wei X, Bujnicki JM, Su Z. Cryo-EM reveals dynamics of Tetrahymena group I intron self-splicing. Nat Catal 2023. [DOI: 10.1038/s41929-023-00934-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
3
|
Li Y, Arce A, Lucci T, Rasmussen RA, Lucks JB. Dynamic RNA synthetic biology: new principles, practices and potential. RNA Biol 2023; 20:817-829. [PMID: 38044595 PMCID: PMC10730207 DOI: 10.1080/15476286.2023.2269508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 08/23/2023] [Indexed: 12/05/2023] Open
Abstract
An increased appreciation of the role of RNA dynamics in governing RNA function is ushering in a new wave of dynamic RNA synthetic biology. Here, we review recent advances in engineering dynamic RNA systems across the molecular, circuit and cellular scales for important societal-scale applications in environmental and human health, and bioproduction. For each scale, we introduce the core concepts of dynamic RNA folding and function at that scale, and then discuss technologies incorporating these concepts, covering new approaches to engineering riboswitches, ribozymes, RNA origami, RNA strand displacement circuits, biomaterials, biomolecular condensates, extracellular vesicles and synthetic cells. Considering the dynamic nature of RNA within the engineering design process promises to spark the next wave of innovation that will expand the scope and impact of RNA biotechnologies.
Collapse
Affiliation(s)
- Yueyi Li
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL, USA
| | - Anibal Arce
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL, USA
| | - Tyler Lucci
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL, USA
| | - Rebecca A. Rasmussen
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA
- Interdisciplinary Biological Sciences Graduate Program, Northwestern University, Evanston, IL, USA
| | - Julius B. Lucks
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL, USA
- Interdisciplinary Biological Sciences Graduate Program, Northwestern University, Evanston, IL, USA
- Center for Water Research, Northwestern University, Evanston, IL, USA
- Center for Engineering Sustainability and Resilience, Northwestern University, Evanston, IL, USA
| |
Collapse
|
4
|
Abstract
Taking advantage of single-particle cryogenic electron microscopy (cryo-EM) to analyze highly heterogeneous or flexible samples, we obtained long-awaited three-dimensional (3D) structures of the misfolded Tetrahymena ribozyme. These structures provide clear evidence for a previously proposed topological isomer model, in which the stereochemically impossible crossing of two core RNA strands prevents rapid rearrangement of the misfolded state to the native state. Topological isomers may be widespread in misfolding of complex RNA, and these cryo-EM structures set a foundation for dissecting their detailed kinetic mechanisms and functional consequences in a paradigmatic model system. The Tetrahymena group I intron has been a key system in the understanding of RNA folding and misfolding. The molecule folds into a long-lived misfolded intermediate (M) in vitro, which has been known to form extensive native-like secondary and tertiary structures but is separated by an unknown kinetic barrier from the native state (N). Here, we used cryogenic electron microscopy (cryo-EM) to resolve misfolded structures of the Tetrahymena L-21 ScaI ribozyme. Maps of three M substates (M1, M2, M3) and one N state were achieved from a single specimen with overall resolutions of 3.5 Å, 3.8 Å, 4.0 Å, and 3.0 Å, respectively. Comparisons of the structures reveal that all the M substates are highly similar to N, except for rotation of a core helix P7 that harbors the ribozyme’s guanosine binding site and the crossing of the strands J7/3 and J8/7 that connect P7 to the other elements in the ribozyme core. This topological difference between the M substates and N state explains the failure of 5′-splice site substrate docking in M, supports a topological isomer model for the slow refolding of M to N due to a trapped strand crossing, and suggests pathways for M-to-N refolding.
Collapse
|
5
|
Huyke DA, Ramachandran A, Ramirez-Neri O, Guerrero-Cruz JA, Gee LB, Braun A, Sokaras D, Garcia-Estrada B, Solomon EI, Hedman B, Delgado-Jaime MU, DePonte DP, Kroll T, Santiago JG. Millisecond timescale reactions observed via X-ray spectroscopy in a 3D microfabricated fused silica mixer. JOURNAL OF SYNCHROTRON RADIATION 2021; 28:1100-1113. [PMID: 34212873 PMCID: PMC8284405 DOI: 10.1107/s1600577521003830] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 04/09/2021] [Indexed: 06/13/2023]
Abstract
Determination of electronic structures during chemical reactions remains challenging in studies which involve reactions in the millisecond timescale, toxic chemicals, and/or anaerobic conditions. In this study, a three-dimensionally (3D) microfabricated microfluidic mixer platform that is compatible with time-resolved X-ray absorption and emission spectroscopy (XAS and XES, respectively) is presented. This platform, to initiate reactions and study their progression, mixes a high flow rate (0.50-1.5 ml min-1) sheath stream with a low-flow-rate (5-90 µl min-1) sample stream within a monolithic fused silica chip. The chip geometry enables hydrodynamic focusing of the sample stream in 3D and sample widths as small as 5 µm. The chip is also connected to a polyimide capillary downstream to enable sample stream deceleration, expansion, and X-ray detection. In this capillary, sample widths of 50 µm are demonstrated. Further, convection-diffusion-reaction models of the mixer are presented. The models are experimentally validated using confocal epifluorescence microscopy and XAS/XES measurements of a ferricyanide and ascorbic acid reaction. The models additionally enable prediction of the residence time and residence time uncertainty of reactive species as well as mixing times. Residence times (from initiation of mixing to the point of X-ray detection) during sample stream expansion as small as 2.1 ± 0.3 ms are also demonstrated. Importantly, an exploration of the mixer operational space reveals a theoretical minimum mixing time of 0.91 ms. The proposed platform is applicable to the determination of the electronic structure of conventionally inaccessible reaction intermediates.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Dimosthenis Sokaras
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025, USA
| | | | - Edward I. Solomon
- Stanford University, Stanford, CA 94305, USA
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025, USA
| | - Britt Hedman
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025, USA
| | | | - Daniel P. DePonte
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025, USA
| | - Thomas Kroll
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025, USA
| | | |
Collapse
|
6
|
San Emeterio J, Pollack L. Visualizing a viral genome with contrast variation small angle X-ray scattering. J Biol Chem 2020; 295:15923-15932. [PMID: 32913117 PMCID: PMC7681021 DOI: 10.1074/jbc.ra120.013961] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 09/04/2020] [Indexed: 01/14/2023] Open
Abstract
Despite the threat to human health posed by some single-stranded RNA viruses, little is understood about their assembly. The goal of this work is to introduce a new tool for watching an RNA genome direct its own packaging and encapsidation by proteins. Contrast variation small-angle X-ray scattering (CV-SAXS) is a powerful tool with the potential to monitor the changing structure of a viral RNA through this assembly process. The proteins, though present, do not contribute to the measured signal. As a first step in assessing the feasibility of viral genome studies, the structure of encapsidated MS2 RNA was exclusively detected with CV-SAXS and compared with a structure derived from asymmetric cryo-EM reconstructions. Additional comparisons with free RNA highlight the significant structural rearrangements induced by capsid proteins and invite the application of time-resolved CV-SAXS to reveal interactions that result in efficient viral assembly.
Collapse
Affiliation(s)
- Josue San Emeterio
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York, USA
| | - Lois Pollack
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York, USA.
| |
Collapse
|
7
|
Zhao C, Zhang D, Jiang Y, Chen SJ. Modeling Loop Composition and Ion Concentration Effects in RNA Hairpin Folding Stability. Biophys J 2020; 119:1439-1455. [PMID: 32949490 PMCID: PMC7568001 DOI: 10.1016/j.bpj.2020.07.042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 06/12/2020] [Accepted: 07/08/2020] [Indexed: 12/21/2022] Open
Abstract
The ability to accurately predict RNA hairpin structure and stability for different loop sequences and salt conditions is important for understanding, modeling, and designing larger RNA folds. However, traditional RNA secondary structure models cannot treat loop-sequence and ionic effects on RNA hairpin folding. Here, we describe a general, three-dimensional (3D) conformation-based computational method for modeling salt concentration-dependent conformational distributions and the detailed 3D structures for a set of three RNA hairpins that contain a variable, 15-nucleotide loop sequence. For a given RNA sequence, the new, to our knowledge, method integrates a Vfold2D two-dimensional structure folding model with IsRNA coarse-grained molecular dynamics 3D folding simulations and Monte Carlo tightly bound ion estimations of ion-mediated electrostatic interactions. The model predicts free-energy landscapes for the different RNA hairpin-forming sequences with variable salt conditions. The theoretically predicted results agree with the experimental fluorescence measurements, validating the strategy. Furthermore, the theoretical model goes beyond the experimental results by enabling in-depth 3D structural analysis, revealing energetic mechanisms for the sequence- and salt-dependent folding stability. Although the computational framework presented here is developed for RNA hairpin systems, the general method may be applied to investigate other RNA systems, such as multiway junctions or pseudoknots in mixed metal ion solutions.
Collapse
Affiliation(s)
- Chenhan Zhao
- Department of Physics, Department of Biochemistry, and Institute for Data Science and Informatics, University of Missouri, Columbia, Missouri
| | - Dong Zhang
- Department of Physics, Department of Biochemistry, and Institute for Data Science and Informatics, University of Missouri, Columbia, Missouri
| | - Yangwei Jiang
- Department of Physics, Department of Biochemistry, and Institute for Data Science and Informatics, University of Missouri, Columbia, Missouri
| | - Shi-Jie Chen
- Department of Physics, Department of Biochemistry, and Institute for Data Science and Informatics, University of Missouri, Columbia, Missouri.
| |
Collapse
|
8
|
Lukasiewicz AJ, Contreras LM. Antisense probing of dynamic RNA structures. Methods 2020; 183:76-83. [PMID: 31991194 DOI: 10.1016/j.ymeth.2020.01.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 01/17/2020] [Accepted: 01/23/2020] [Indexed: 01/20/2023] Open
Abstract
RNA regulation is influenced by the dynamic changes in conformational accessibility on the transcript. Here we discuss the initial validation of a cell-free antisense probing method for structured RNAs, using the Tetrahymena group I intron as a control target. We observe changes in signal that qualitatively match prior traditional DMS footprinting experiments. Importantly, we have shown that application of this technique can elucidate new RNA information given its sensitivity for detecting rare intermediates that are not as readily observed by single-hit kinetics chemical probing techniques. Observing changes in RNA accessibility has broad applications in determining the effect that regulatory elements have on regional structures. We speculate that this method could be useful in quickly observing those interactions, along with other phenomena that influence RNA accessibility including RNA-RNA interactions and small molecules.
Collapse
Affiliation(s)
- Alexandra J Lukasiewicz
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, United States
| | - Lydia M Contreras
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, United States; McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712, United States.
| |
Collapse
|
9
|
Welty R, Pabit SA, Katz AM, Calvey GD, Pollack L, Hall KB. Divalent ions tune the kinetics of a bacterial GTPase center rRNA folding transition from secondary to tertiary structure. RNA (NEW YORK, N.Y.) 2018; 24:1828-1838. [PMID: 30254137 PMCID: PMC6239185 DOI: 10.1261/rna.068361.118] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 09/20/2018] [Indexed: 05/22/2023]
Abstract
Folding of an RNA from secondary to tertiary structure often depends on divalent ions for efficient electrostatic charge screening (nonspecific association) or binding (specific association). To measure how different divalent cations modify folding kinetics of the 60 nucleotide Ecoli rRNA GTPase center, we combined stopped-flow fluorescence in the presence of Mg2+, Ca2+, or Sr2+ together with time-resolved small angle X-ray scattering (SAXS) in the presence of Mg2+ to observe the folding process. Immediately upon addition of each divalent ion, the RNA undergoes a transition from an extended state with secondary structure to a more compact structure. Subsequently, specific divalent ions modulate populations of intermediates in conformational ensembles along the folding pathway with transition times longer than 10 msec. Rate constants for the five folding transitions act on timescales from submillisecond to tens of seconds. The sensitivity of RNA tertiary structure to divalent cation identity affects all but the fastest events in RNA folding, and allowed us to identify those states that prefer Mg2+ The GTPase center RNA appears to have optimized its folding trajectory to specifically utilize this most abundant intracellular divalent ion.
Collapse
Affiliation(s)
- Robb Welty
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Suzette A Pabit
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, USA
| | - Andrea M Katz
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, USA
| | - George D Calvey
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, USA
| | - Lois Pollack
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, USA
| | - Kathleen B Hall
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| |
Collapse
|
10
|
Chen YL, Sutton JL, Pollack L. How the Conformations of an Internal Junction Contribute to Fold an RNA Domain. J Phys Chem B 2018; 122:11363-11372. [PMID: 30285445 DOI: 10.1021/acs.jpcb.8b07262] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Like proteins, some RNAs fold to compact structures. We can model functional RNAs as a series of short, rigid, base-paired elements, connected by non-base-paired nucleotides that serve as junctions. These connecting regions bend and twist, facilitating the formation of tertiary contacts that stabilize compact states. Here, we explore the roles of salt and junction sequence in determining the structures of a ubiquitous connector: an asymmetric internal loop. We focus on the J5/5a junction from the widely studied P4-P6 domain of the Tetrahymena ribozyme. Following the addition of magnesium ions to fold P4-P6, this junction bends dramatically, bringing the two halves of the RNA domain together for tertiary contact engagement. Using single-molecule fluorescence resonance energy transfer (smFRET), we examine the role of sequence and salt on model RNA constructs that contain these junction regions. We explore the wild-type J5/5a junction as well as two sequence variants. These junctions display distinct, salt-dependent conformations. Small-angle X-ray scattering (SAXS) measurements verify that these effects persist in the full-length P4-P6 domain. These measurements underscore the importance of junction sequence and interactions with ions in facilitating RNA folding.
Collapse
Affiliation(s)
- Yen-Lin Chen
- School of Applied and Engineering Physics , Cornell University , Ithaca , New York 14853 , United States
| | - Julie L Sutton
- School of Applied and Engineering Physics , Cornell University , Ithaca , New York 14853 , United States
| | - Lois Pollack
- School of Applied and Engineering Physics , Cornell University , Ithaca , New York 14853 , United States
| |
Collapse
|
11
|
Abstract
The past decades have witnessed tremendous developments in our understanding of RNA biology. At the core of these advances have been studies aimed at discerning RNA structure and at understanding the forces that influence the RNA folding process. It is easy to take the present state of understanding for granted, but there is much to be learned by considering the path to our current understanding, which has been tortuous, with the birth and death of models, the adaptation of experimental tools originally developed for characterization of protein structure and catalysis, and the development of novel tools for probing RNA. In this review we tour the stages of RNA folding studies, considering them as "epochs" that can be generalized across scientific disciplines. These epochs span from the discovery of catalytic RNA, through biophysical insights into the putative primordial RNA World, to characterization of structured RNAs, the building and testing of models, and, finally, to the development of models with the potential to yield generalizable predictive and quantitative models for RNA conformational, thermodynamic, and kinetic behavior. We hope that this accounting will aid others as they navigate the many fascinating questions about RNA and its roles in biology, in the past, present, and future.
Collapse
Affiliation(s)
- Daniel Herschlag
- Department of Biochemistry, Stanford University, Stanford, California 94305
- Department of Chemical Engineering, Stanford University, Stanford, California 94305
- Department of Chemistry, Stanford University, Stanford, California 94305
- Stanford ChEM-H (Chemistry, Engineering, and Medicine for Human Health), Stanford, California 94305
| | - Steve Bonilla
- Department of Biochemistry, Stanford University, Stanford, California 94305
- Department of Chemical Engineering, Stanford University, Stanford, California 94305
| | - Namita Bisaria
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142
| |
Collapse
|
12
|
Plumridge A, Katz AM, Calvey GD, Elber R, Kirmizialtin S, Pollack L. Revealing the distinct folding phases of an RNA three-helix junction. Nucleic Acids Res 2018; 46:7354-7365. [PMID: 29762712 PMCID: PMC6101490 DOI: 10.1093/nar/gky363] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 04/17/2018] [Accepted: 04/24/2018] [Indexed: 01/08/2023] Open
Abstract
Remarkable new insight has emerged into the biological role of RNA in cells. RNA folding and dynamics enable many of these newly discovered functions, calling for an understanding of RNA self-assembly and conformational dynamics. Because RNAs pass through multiple structures as they fold, an ensemble perspective is required to visualize the flow through fleetingly populated sets of states. Here, we combine microfluidic mixing technology and small angle X-ray scattering (SAXS) to measure the Mg-induced folding of a small RNA domain, the tP5abc three helix junction. Our measurements are interpreted using ensemble optimization to select atomically detailed structures that recapitulate each experimental curve. Structural ensembles, derived at key stages in both time-resolved studies and equilibrium titrations, reproduce the features of known intermediates, and more importantly, offer a powerful new structural perspective on the time-progression of folding. Distinct collapse phases along the pathway appear to be orchestrated by specific interactions with Mg ions. These key interactions subsequently direct motions of the backbone that position the partners of tertiary contacts for later bonding, and demonstrate a remarkable synergy between Mg and RNA across numerous time-scales.
Collapse
Affiliation(s)
- Alex Plumridge
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, USA
| | - Andrea M Katz
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, USA
| | - George D Calvey
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, USA
| | - Ron Elber
- Department of Chemistry and Institute for Computational Engineering and Sciences (ICES) University of Texas at Austin, Austin, TX, USA
| | - Serdal Kirmizialtin
- Chemistry Program, Science Division, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Lois Pollack
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, USA
| |
Collapse
|
13
|
Lackey L, Coria A, Woods C, McArthur E, Laederach A. Allele-specific SHAPE-MaP assessment of the effects of somatic variation and protein binding on mRNA structure. RNA (NEW YORK, N.Y.) 2018; 24:513-528. [PMID: 29317542 PMCID: PMC5855952 DOI: 10.1261/rna.064469.117] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 01/04/2018] [Indexed: 05/22/2023]
Abstract
The impact of inherited and somatic mutations on messenger RNA (mRNA) structure remains poorly understood. Recent technological advances that leverage next-generation sequencing to obtain experimental structure data, such as SHAPE-MaP, can reveal structural effects of mutations, especially when these data are incorporated into structure modeling. Here, we analyze the ability of SHAPE-MaP to detect the relatively subtle structural changes caused by single-nucleotide mutations. We find that allele-specific sorting greatly improved our detection ability. Thus, we used SHAPE-MaP with a novel combination of clone-free robotic mutagenesis and allele-specific sorting to perform a rapid, comprehensive survey of noncoding somatic and inherited riboSNitches in two cancer-associated mRNAs, TPT1 and LCP1 Using rigorous thermodynamic modeling of the Boltzmann suboptimal ensemble, we identified a subset of mutations that change TPT1 and LCP1 RNA structure, with approximately 14% of all variants identified as riboSNitches. To confirm that these in vitro structures were biologically relevant, we tested how dependent TPT1 and LCP1 mRNA structures were on their environments. We performed SHAPE-MaP on TPT1 and LCP1 mRNAs in the presence or absence of cellular proteins and found that both mRNAs have similar overall folds in all conditions. RiboSNitches identified within these mRNAs in vitro likely exist under biological conditions. Overall, these data reveal a robust mRNA structural landscape where differences in environmental conditions and most sequence variants do not significantly alter RNA structural ensembles. Finally, predicting riboSNitches in mRNAs from sequence alone remains particularly challenging; these data will provide the community with benchmarks for further algorithmic development.
Collapse
Affiliation(s)
- Lela Lackey
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Aaztli Coria
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Chanin Woods
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Evonne McArthur
- School of Medicine, Vanderbilt University, Nashville, Tennessee 37232, USA
| | - Alain Laederach
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| |
Collapse
|
14
|
Denz M, Brehm G, Hémonnot CYJ, Spears H, Wittmeier A, Cassini C, Saldanha O, Perego E, Diaz A, Burghammer M, Köster S. Cyclic olefin copolymer as an X-ray compatible material for microfluidic devices. LAB ON A CHIP 2017; 18:171-178. [PMID: 29210424 DOI: 10.1039/c7lc00824d] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The combination of microfluidics and X-ray methods attracts a lot of attention from researchers as it brings together the high controllability of microfluidic sample environments and the small length scales probed by X-rays. In particular, the fields of biophysics and biology have benefited enormously from such approaches. We introduce a straightforward fabrication method for X-ray compatible microfluidic devices made solely from cyclic olefin copolymers. We benchmark the performance of the devices against other devices including more commonly used Kapton windows and obtain data of equal quality using small angle X-ray scattering. An advantage of the devices presented here is that no gluing between interfaces is necessary, rendering the production very reliable. As a biophysical application, we investigate the early time points of the assembly of vimentin intermediate filament proteins into higher-order structures. This weakly scattering protein system leads to high quality data in the new devices, thus opening up the way for numerous future applications.
Collapse
Affiliation(s)
- Manuela Denz
- Institute for X-Ray Physics, University of Goettingen, 37077 Göttingen, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Woods CT, Lackey L, Williams B, Dokholyan NV, Gotz D, Laederach A. Comparative Visualization of the RNA Suboptimal Conformational Ensemble In Vivo. Biophys J 2017. [PMID: 28625696 PMCID: PMC5529173 DOI: 10.1016/j.bpj.2017.05.031] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
When a ribonucleic acid (RNA) molecule folds, it often does not adopt a single, well-defined conformation. The folding energy landscape of an RNA is highly dependent on its nucleotide sequence and molecular environment. Cellular molecules sometimes alter the energy landscape, thereby changing the ensemble of likely low-energy conformations. The effects of these energy landscape changes on the conformational ensemble are particularly challenging to visualize for large RNAs. We have created a robust approach for visualizing the conformational ensemble of RNAs that is well suited for in vitro versus in vivo comparisons. Our method creates a stable map of conformational space for a given RNA sequence. We first identify single point mutations in the RNA that maximally sample suboptimal conformational space based on the ensemble’s partition function. Then, we cluster these diverse ensembles to identify the most diverse partition functions for Boltzmann stochastic sampling. By using, to our knowledge, a novel nestedness distance metric, we iteratively add mutant suboptimal ensembles to converge on a stable 2D map of conformational space. We then compute the selective 2′ hydroxyl acylation by primer extension (SHAPE)-directed ensemble for the RNA folding under different conditions, and we project these ensembles on the map to visualize. To validate our approach, we established a conformational map of the Vibrio vulnificus add adenine riboswitch that reveals five classes of structures. In the presence of adenine, projection of the SHAPE-directed sampling correctly identified the on-conformation; without the ligand, only off-conformations were visualized. We also collected the whole-transcript in vitro and in vivo SHAPE-MaP for human β-actin messenger RNA that revealed similar global folds in both conditions. Nonetheless, a comparison of in vitro and in vivo data revealed that specific regions exhibited significantly different SHAPE-MaP profiles indicative of structural rearrangements, including rearrangement consistent with binding of the zipcode protein in a region distal to the stop codon.
Collapse
Affiliation(s)
- Chanin T Woods
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Lela Lackey
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Benfeard Williams
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Nikolay V Dokholyan
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - David Gotz
- Carolina Health Informatics Program, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; School of Information and Library Science, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Alain Laederach
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.
| |
Collapse
|
16
|
Saldanha O, Graceffa R, Hémonnot CYJ, Ranke C, Brehm G, Liebi M, Marmiroli B, Weinhausen B, Burghammer M, Köster S. Rapid Acquisition of X-Ray Scattering Data from Droplet-Encapsulated Protein Systems. Chemphyschem 2017; 18:1220-1223. [DOI: 10.1002/cphc.201700221] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Indexed: 11/07/2022]
Affiliation(s)
- Oliva Saldanha
- Institute for X-ray Physics; Georg-August-University Göttingen; 37077 Göttingen Germany
| | - Rita Graceffa
- Institute for X-ray Physics; Georg-August-University Göttingen; 37077 Göttingen Germany
- Current address: European XFEL GmbH; 22869 Schenefeld Germany
| | | | - Christiane Ranke
- Institute for X-ray Physics; Georg-August-University Göttingen; 37077 Göttingen Germany
| | - Gerrit Brehm
- Institute for X-ray Physics; Georg-August-University Göttingen; 37077 Göttingen Germany
| | - Marianne Liebi
- Paul Scherrer Institute; 5232 Villigen Switzerland
- Current address: MAX IV Laboratory; Lund University; 221-00 Lund Sweden
| | - Benedetta Marmiroli
- Institute of Inorganic Chemistry; Graz University of Technology; 8010 Graz Austria
| | - Britta Weinhausen
- European Synchrotron Radiation Facility; 38000 Grenoble France
- Current address: European XFEL GmbH; 22869 Schenefeld Germany
| | - Manfred Burghammer
- European Synchrotron Radiation Facility; 38000 Grenoble France
- Department of Analytical Chemistry; Ghent University; 9000 Ghent Belgium
| | - Sarah Köster
- Institute for X-ray Physics; Georg-August-University Göttingen; 37077 Göttingen Germany
| |
Collapse
|
17
|
Abstract
The discoveries of myriad non-coding RNA molecules, each transiting through multiple flexible states in cells or virions, present major challenges for structure determination. Advances in high-throughput chemical mapping give new routes for characterizing entire transcriptomes in vivo, but the resulting one-dimensional data generally remain too information-poor to allow accurate de novo structure determination. Multidimensional chemical mapping (MCM) methods seek to address this challenge. Mutate-and-map (M2), RNA interaction groups by mutational profiling (RING-MaP and MaP-2D analysis) and multiplexed •OH cleavage analysis (MOHCA) measure how the chemical reactivities of every nucleotide in an RNA molecule change in response to modifications at every other nucleotide. A growing body of in vitro blind tests and compensatory mutation/rescue experiments indicate that MCM methods give consistently accurate secondary structures and global tertiary structures for ribozymes, ribosomal domains and ligand-bound riboswitch aptamers up to 200 nucleotides in length. Importantly, MCM analyses provide detailed information on structurally heterogeneous RNA states, such as ligand-free riboswitches that are functionally important but difficult to resolve with other approaches. The sequencing requirements of currently available MCM protocols scale at least quadratically with RNA length, precluding general application to transcriptomes or viral genomes at present. We propose a modify-cross-link-map (MXM) expansion to overcome this and other current limitations to resolving the in vivo 'RNA structurome'.
Collapse
|
18
|
Ghazal A, Lafleur JP, Mortensen K, Kutter JP, Arleth L, Jensen GV. Recent advances in X-ray compatible microfluidics for applications in soft materials and life sciences. LAB ON A CHIP 2016; 16:4263-4295. [PMID: 27731448 DOI: 10.1039/c6lc00888g] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The increasingly narrow and brilliant beams at X-ray facilities reduce the requirements for both sample volume and data acquisition time. This creates new possibilities for the types and number of sample conditions that can be examined but simultaneously increases the demands in terms of sample preparation. Microfluidic-based sample preparation techniques have emerged as elegant alternatives that can be integrated directly into the experimental X-ray setup remedying several shortcomings of more traditional methods. We review the use of microfluidic devices in conjunction with X-ray measurements at synchrotron facilities in the context of 1) mapping large parameter spaces, 2) performing time resolved studies of mixing-induced kinetics, and 3) manipulating/processing samples in ways which are more demanding or not accessible on the macroscale. The review covers the past 15 years and focuses on applications where synchrotron data collection is performed in situ, i.e. directly on the microfluidic platform or on a sample jet from the microfluidic device. Considerations such as the choice of materials and microfluidic designs are addressed. The combination of microfluidic devices and measurements at large scale X-ray facilities is still emerging and far from mature, but it definitely offers an exciting array of new possibilities.
Collapse
Affiliation(s)
- Aghiad Ghazal
- Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark.
| | - Josiane P Lafleur
- Dept. of Pharmacy, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Kell Mortensen
- Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark.
| | - Jörg P Kutter
- Dept. of Pharmacy, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Lise Arleth
- Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark.
| | - Grethe V Jensen
- Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark.
| |
Collapse
|
19
|
Sengupta A, Sung HL, Nesbitt DJ. Amino Acid Specific Effects on RNA Tertiary Interactions: Single-Molecule Kinetic and Thermodynamic Studies. J Phys Chem B 2016; 120:10615-10627. [PMID: 27718572 DOI: 10.1021/acs.jpcb.6b05840] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In light of the current models for an early RNA-based universe, the potential influence of simple amino acids on tertiary folding of ribozymal RNA into biochemically competent structures is speculated to be of significant evolutionary importance. In the present work, the folding-unfolding kinetics of a ubiquitous tertiary interaction motif, the GAAA tetraloop-tetraloop receptor (TL-TLR), is investigated by single-molecule fluorescence resonance energy transfer spectroscopy in the presence of natural amino acids both with (e.g., lysine, arginine) and without (e.g., glycine) protonated side chain residues. By way of control, we also investigate the effects of a special amino acid (e.g., proline) and amino acid mimetic (e.g., betaine) that contain secondary or quaternary amine groups rather than a primary amine group. This combination permits systematic study of amino acid induced (or amino acid like) RNA folding dynamics as a function of side chain complexity, pKa, charge state, and amine group content. Most importantly, each of the naturally occurring amino acids is found to destabilize the TL-TLR tertiary folding equilibrium, the kinetic origin of which is dominated by a decrease in the folding rate constant (kdock), also affected by a strongly amino acid selective increase in the unfolding rate constant (kundock). To further elucidate the underlying thermodynamics, single-molecule equilibrium constants (Keq) for TL-TLR folding have been probed as a function of temperature, which reveal an amino acid dependent decrease in both overall exothermicity (ΔΔH° > 0) and entropic cost (-TΔΔS° < 0) for the overall folding process. Temperature-dependent studies on the folding/unfolding kinetic rate constants reveal analogous amino acid specific changes in both enthalpy (ΔΔH⧧) and entropy (ΔΔS⧧) for accessing the transition state barrier. The maximum destabilization of the TL-TLR tertiary interaction is observed for arginine, which is consistent with early studies of arginine and guanidine ion-inhibited self-splicing kinetics for the full Tetrahymena ribozyme [ Yarus , M. ; Christian , E. L. Nature 1989 , 342 , 349 - 350 ; Yarus , M. Science 1988 , 240 , 1751 - 1758 ].
Collapse
Affiliation(s)
- Abhigyan Sengupta
- JILA, National Institute of Standards and Technology and Department of Chemistry and Biochemistry, University of Colorado , Boulder, Colorado 80309, United States
| | - Hsuan-Lei Sung
- JILA, National Institute of Standards and Technology and Department of Chemistry and Biochemistry, University of Colorado , Boulder, Colorado 80309, United States
| | - David J Nesbitt
- JILA, National Institute of Standards and Technology and Department of Chemistry and Biochemistry, University of Colorado , Boulder, Colorado 80309, United States
| |
Collapse
|
20
|
Welty R, Hall KB. Nucleobases Undergo Dynamic Rearrangements during RNA Tertiary Folding. J Mol Biol 2016; 428:4490-4502. [PMID: 27693721 DOI: 10.1016/j.jmb.2016.09.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 08/31/2016] [Accepted: 09/15/2016] [Indexed: 02/07/2023]
Abstract
The tertiary structure of the GTPase center (GAC) of 23S ribosomal RNA (rRNA) as seen in cocrystals is extremely compact. It is stabilized by long-range hydrogen bonds and nucleobase stacking and by a triloop that forms within its three-way junction. Its folding pathway from secondary structure to tertiary structure has not been previously observed, but it was shown to require Mg2+ ions in equilibrium experiments. The fluorescent nucleotide 2-aminopurine was substituted at selected sites within the 60-nt GAC. Fluorescence intensity changes upon addition of MgCl2 were monitored over a time-course from 1ms to 100s as the RNA folds. The folding pathway is revealed here to be hierarchical through several intermediates. Observation of the nucleobases during folding provides a new perspective on the process and the pathway, revealing the dynamics of nucleobase conformational exchange during the folding transitions.
Collapse
Affiliation(s)
- Robb Welty
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | - Kathleen B Hall
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
21
|
Kilburn D, Behrouzi R, Lee HT, Sarkar K, Briber RM, Woodson SA. Entropic stabilization of folded RNA in crowded solutions measured by SAXS. Nucleic Acids Res 2016; 44:9452-9461. [PMID: 27378777 PMCID: PMC5100557 DOI: 10.1093/nar/gkw597] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 06/21/2016] [Indexed: 01/29/2023] Open
Abstract
Non-coding RNAs must fold into specific structures that are stabilized by metal ions and other co-solutes in the cell's interior. Large crowder molecules such as PEG stabilize a bacterial group I ribozyme so that the RNA folds in low Mg2+ concentrations typical of the cell's interior. To understand the thermodynamic origins of stabilization by crowder molecules, small angle X-ray scattering was used to measure the folding and helix assembly of a bacterial group I ribozyme at different temperatures and in different MgCl2 and polyethylene glycol (PEG) concentrations. The resulting phase diagrams show that perturbations to folding by each variable do not overlap. A favorable enthalpy change drives the formation of compact, native-like structures, but requires Mg2+ ions at all temperatures studied (5–55°C). PEG reduces the entropic cost of helix assembly and increases correlations between RNA segments at all temperatures. The phase diagrams also revealed a semi-compact intermediate between the unfolded and folded ensemble that is locally more flexible than the unfolded state, as judged by SHAPE modification. These results suggest that environmental variables such as temperature and solute density will favor different types of RNA structures.
Collapse
Affiliation(s)
- Duncan Kilburn
- T. C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Reza Behrouzi
- T. C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Hui-Ting Lee
- T. C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Krishnarjun Sarkar
- T. C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Robert M Briber
- Department of Materials Science and Engineering, University of Maryland, College Park, MD 20742, USA
| | - Sarah A Woodson
- T. C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
22
|
Xue Y, Gracia B, Herschlag D, Russell R, Al-Hashimi HM. Visualizing the formation of an RNA folding intermediate through a fast highly modular secondary structure switch. Nat Commun 2016; 7:ncomms11768. [PMID: 27292179 PMCID: PMC4909931 DOI: 10.1038/ncomms11768] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 04/26/2016] [Indexed: 12/28/2022] Open
Abstract
Intermediates play important roles in RNA folding but can be difficult to characterize when short-lived or not significantly populated. By combining (15)N relaxation dispersion NMR with chemical probing, we visualized a fast (kex=k1+k-1≈423 s(-1)) secondary structural switch directed towards a low-populated (∼3%) partially folded intermediate in tertiary folding of the P5abc subdomain of the 'Tetrahymena' group I intron ribozyme. The secondary structure switch changes the base-pairing register across the P5c hairpin, creating a native-like structure, and occurs at rates of more than two orders of magnitude faster than tertiary folding. The switch occurs robustly in the absence of tertiary interactions, Mg(2+) or even when the hairpin is excised from the three-way junction. Fast, highly modular secondary structural switches may be quite common during RNA tertiary folding where they may help smoothen the folding landscape by allowing folding to proceed efficiently via additional pathways.
Collapse
Affiliation(s)
- Yi Xue
- Department of Biochemistry, Duke Center for RNA Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Brant Gracia
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas 78712, USA
| | - Daniel Herschlag
- Department of Biochemistry, Beckman Center, Stanford University, Stanford, California 94305, USA.,Department of Chemistry, Stanford University, Stanford, California 94305, USA.,Department of Chemical Engineering, Stanford University, Stanford, California 94305, USA.,Chemistry, Engineering, and Medicine for Human Health (ChEM-H) Institute, Stanford University, Stanford, California 94305, USA
| | - Rick Russell
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas 78712, USA
| | - Hashim M Al-Hashimi
- Department of Biochemistry, Duke Center for RNA Biology, Duke University Medical Center, Durham, North Carolina 27710, USA.,Department of Chemistry, Duke University, Durham, Stanford, North Carolina 27710, USA
| |
Collapse
|
23
|
Mamasakhlisov YS, Bellucci S, Hayryan S, Caturyan H, Grigoryan Z, Hu CK. Collapse and hybridization of RNA: view from replica technique approach. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2015; 38:100. [PMID: 26385736 DOI: 10.1140/epje/i2015-15100-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 07/19/2015] [Accepted: 07/31/2015] [Indexed: 06/05/2023]
Abstract
The replica technique method is applied to investigate the kinetic behavior of the coarse-grained model for the RNA molecule. A non-equilibrium phase transition of second order between the glassy phase and the ensemble of freely fluctuating structures has been observed. The non-equilibrium steady state is investigated as well and the thermodynamic characteristics of the system have been evaluated. The non-equilibrium behavior of the specific heat is discussed. Based on our analysis, we point out the state in the kinetic pathway in which the RNA molecule is most prone to hybridization.
Collapse
Affiliation(s)
| | - S Bellucci
- INFN-Laboratori Nazionali di Frascati, Via Enrico Fermi, 40, 00044, Frascati RM, Italy
| | - Shura Hayryan
- Institute of Physics, Academia Sinica, 128 Sec. 2, Academia Rd., 11529, Nankang, Taipei, Taiwan
| | - H Caturyan
- Yerevan State University, 1 A. Manoogian Str., 0025, Yerevan, Armenia
| | - Z Grigoryan
- Goris State University, 4 Avangard Str., 3204, Goris, Armenia
| | - Chin-Kun Hu
- Institute of Physics, Academia Sinica, 128 Sec. 2, Academia Rd., 11529, Nankang, Taipei, Taiwan.
- National Center for Theoretical Sciences, National Tsing Hua University, 30013, Hsinchu, Taiwan.
- Business School, University of Shanghai for Science and Technology, 200093, Shanghai, China.
| |
Collapse
|
24
|
Grigoryan ZA, Karapetian AT. The Globular State of the Single-Stranded RNA: Effect of the Secondary Structure Rearrangements. J Nucleic Acids 2015; 2015:295264. [PMID: 26345143 PMCID: PMC4546806 DOI: 10.1155/2015/295264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 07/06/2015] [Accepted: 07/06/2015] [Indexed: 11/26/2022] Open
Abstract
The mutual influence of the slow rearrangements of secondary structure and fast collapse of the long single-stranded RNA (ssRNA) in approximation of coarse-grained model is studied with analytic calculations. It is assumed that the characteristic time of the secondary structure rearrangement is much longer than that for the formation of the tertiary structure. A nonequilibrium phase transition of the 2nd order has been observed.
Collapse
Affiliation(s)
| | - Armen T. Karapetian
- Yerevan State University of Architecture and Construction, Teryan 105, 0009 Yerevan, Armenia
| |
Collapse
|
25
|
Abstract
The 60-nt GTPase center (GAC) of 23S rRNA has a phylogenetically conserved secondary structure with two hairpin loops and a 3-way junction. It folds into an intricate tertiary structure upon addition of Mg(2+) ions, which is stabilized by the L11 protein in cocrystal structures. Here, we monitor the kinetics of its tertiary folding and Mg(2+)-dependent intermediate states by observing selected nucleobases that contribute specific interactions to the GAC tertiary structure in the cocrystals. The fluorescent nucleobase 2-aminopurine replaced three individual adenines, two of which make long-range stacking interactions and one that also forms hydrogen bonds. Each site reveals a unique response to Mg(2+) addition and temperature, reflecting its environmental change from secondary to tertiary structure. Stopped-flow fluorescence experiments revealed that kinetics of tertiary structure formation upon addition of MgCl2 are also site specific, with local conformational changes occurring from 5 ms to 4s and with global folding from 1 to 5s. Site-specific substitution with (15)N-nucleobases allowed observation of stable hydrogen bond formation by NMR experiments. Equilibrium titration experiments indicate that a stable folding intermediate is present at stoichiometric concentrations of Mg(2+) and suggest that there are two initial sites of Mg(2+) ion association.
Collapse
|
26
|
Chaudhuri BN. Emerging applications of small angle solution scattering in structural biology. Protein Sci 2015; 24:267-76. [PMID: 25516491 PMCID: PMC4353354 DOI: 10.1002/pro.2624] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 12/05/2014] [Indexed: 12/12/2022]
Abstract
Small angle solution X-ray and neutron scattering recently resurfaced as powerful tools to address an array of biological problems including folding, intrinsic disorder, conformational transitions, macromolecular crowding, and self or hetero-assembling of biomacromolecules. In addition, small angle solution scattering complements crystallography, nuclear magnetic resonance spectroscopy, and other structural methods to aid in the structure determinations of multidomain or multicomponent proteins or nucleoprotein assemblies. Neutron scattering with hydrogen/deuterium contrast variation, or X-ray scattering with sucrose contrast variation to a certain extent, is a convenient tool for characterizing the organizations of two-component systems such as a nucleoprotein or a lipid-protein assembly. Time-resolved small and wide-angle solution scattering to study biological processes in real time, and the use of localized heavy-atom labeling and anomalous solution scattering for applications as FRET-like molecular rulers, are amongst promising newer developments. Despite the challenges in data analysis and interpretation, these X-ray/neutron solution scattering based approaches hold great promise for understanding a wide variety of complex processes prevalent in the biological milieu.
Collapse
Affiliation(s)
- Barnali N Chaudhuri
- Faculty of Life Sciences and Biotechnology, South Asian UniversityAkbar Bhawan, Chanakyapuri, New Delhi, India
| |
Collapse
|
27
|
Pan F, Roland C, Sagui C. Ion distributions around left- and right-handed DNA and RNA duplexes: a comparative study. Nucleic Acids Res 2014; 42:13981-96. [PMID: 25428372 PMCID: PMC4267617 DOI: 10.1093/nar/gku1107] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 10/22/2014] [Accepted: 10/23/2014] [Indexed: 12/30/2022] Open
Abstract
The ion atmosphere around nucleic acids is an integral part of their solvated structure. However, detailed aspects of the ionic distribution are difficult to probe experimentally, and comparative studies for different structures of the same sequence are almost non-existent. Here, we have used large-scale molecular dynamics simulations to perform a comparative study of the ion distribution around (5'-CGCGCGCGCGCG-3')2 dodecamers in solution in B-DNA, A-RNA, Z-DNA and Z-RNA forms. The CG sequence is very sensitive to ionic strength and it allows the comparison with the rare but important left-handed forms. The ions investigated include Na(+), K(+) and Mg(2 +), with various concentrations of their chloride salts. Our results quantitatively describe the characteristics of the ionic distributions for different structures at varying ionic strengths, tracing these differences to nucleic acid structure and ion type. Several binding pockets with rather long ion residence times are described, both for the monovalent ions and for the hexahydrated Mg[(H2O)6](2+) ion. The conformations of these binding pockets include direct binding through desolvated ion bridges in the GpC steps in B-DNA and A-RNA; direct binding to backbone oxygens; binding of Mg[(H2O)6](2+) to distant phosphates, resulting in acute bending of A-RNA; tight 'ion traps' in Z-RNA between C-O2 and the C-O2' atoms in GpC steps; and others.
Collapse
Affiliation(s)
- Feng Pan
- Center for High Performance Simulations (CHiPS) and Department of Physics, North Carolina State University, Raleigh, NC 27695-8202, USA
| | - Christopher Roland
- Center for High Performance Simulations (CHiPS) and Department of Physics, North Carolina State University, Raleigh, NC 27695-8202, USA
| | - Celeste Sagui
- Center for High Performance Simulations (CHiPS) and Department of Physics, North Carolina State University, Raleigh, NC 27695-8202, USA
| |
Collapse
|
28
|
Wu P, Yu Y, McGhee CE, Tan LH, Lu Y. Applications of synchrotron-based spectroscopic techniques in studying nucleic acids and nucleic acid-functionalized nanomaterials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2014; 26:7849-72. [PMID: 25205057 PMCID: PMC4275547 DOI: 10.1002/adma.201304891] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 06/02/2014] [Indexed: 05/22/2023]
Abstract
In this review, we summarize recent progress in the application of synchrotron-based spectroscopic techniques for nucleic acid research that takes advantage of high-flux and high-brilliance electromagnetic radiation from synchrotron sources. The first section of the review focuses on the characterization of the structure and folding processes of nucleic acids using different types of synchrotron-based spectroscopies, such as X-ray absorption spectroscopy, X-ray emission spectroscopy, X-ray photoelectron spectroscopy, synchrotron radiation circular dichroism, X-ray footprinting and small-angle X-ray scattering. In the second section, the characterization of nucleic acid-based nanostructures, nucleic acid-functionalized nanomaterials and nucleic acid-lipid interactions using these spectroscopic techniques is summarized. Insights gained from these studies are described and future directions of this field are also discussed.
Collapse
Affiliation(s)
- Peiwen Wu
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Yang Yu
- Center of Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Claire E. McGhee
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Li Huey Tan
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Yi Lu
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA. Center of Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA. Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
29
|
Sowa SW, Vazquez-Anderson J, Clark CA, De La Peña R, Dunn K, Fung EK, Khoury MJ, Contreras LM. Exploiting post-transcriptional regulation to probe RNA structures in vivo via fluorescence. Nucleic Acids Res 2014; 43:e13. [PMID: 25416800 PMCID: PMC4333371 DOI: 10.1093/nar/gku1191] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
While RNA structures have been extensively characterized in vitro, very few techniques exist to probe RNA structures inside cells. Here, we have exploited mechanisms of post-transcriptional regulation to synthesize fluorescence-based probes that assay RNA structures in vivo. Our probing system involves the co-expression of two constructs: (i) a target RNA and (ii) a reporter containing a probe complementary to a region in the target RNA attached to an RBS-sequestering hairpin and fused to a sequence encoding the green fluorescent protein (GFP). When a region of the target RNA is accessible, the area can interact with its complementary probe, resulting in fluorescence. By using this system, we observed varied patterns of structural accessibility along the length of the Tetrahymena group I intron. We performed in vivo DMS footprinting which, along with previous footprinting studies, helped to explain our probing results. Additionally, this novel approach represents a valuable tool to differentiate between RNA variants and to detect structural changes caused by subtle mutations. Our results capture some differences from traditional footprinting assays that could suggest that probing in vivo via oligonucleotide hybridization facilitates the detection of folding intermediates. Importantly, our data indicate that intracellular oligonucleotide probing can be a powerful complement to existing RNA structural probing methods.
Collapse
Affiliation(s)
- Steven W Sowa
- Microbiology Graduate Program, University of Texas at Austin, 100 E. 24th Street, A6500, Austin, TX 78712, USA
| | - Jorge Vazquez-Anderson
- McKetta Department of Chemical Engineering, University of Texas at Austin, 200 E. Dean Keeton St., Stop C0400, Austin, TX 78712, USA
| | - Chelsea A Clark
- McKetta Department of Chemical Engineering, University of Texas at Austin, 200 E. Dean Keeton St., Stop C0400, Austin, TX 78712, USA
| | - Ricardo De La Peña
- McKetta Department of Chemical Engineering, University of Texas at Austin, 200 E. Dean Keeton St., Stop C0400, Austin, TX 78712, USA
| | - Kaitlin Dunn
- McKetta Department of Chemical Engineering, University of Texas at Austin, 200 E. Dean Keeton St., Stop C0400, Austin, TX 78712, USA
| | - Emily K Fung
- McKetta Department of Chemical Engineering, University of Texas at Austin, 200 E. Dean Keeton St., Stop C0400, Austin, TX 78712, USA
| | - Mark J Khoury
- McKetta Department of Chemical Engineering, University of Texas at Austin, 200 E. Dean Keeton St., Stop C0400, Austin, TX 78712, USA
| | - Lydia M Contreras
- McKetta Department of Chemical Engineering, University of Texas at Austin, 200 E. Dean Keeton St., Stop C0400, Austin, TX 78712, USA
| |
Collapse
|
30
|
Structural studies of a double-stranded RNA from trypanosome RNA editing by small-angle X-ray scattering. Methods Mol Biol 2014; 1240:165-89. [PMID: 25352145 DOI: 10.1007/978-1-4939-1896-6_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
We used small-angle X-ray scattering (SAXS) to evaluate the solution structure of a double-stranded RNA with 32 base pairs. We wanted to compare the solution structure to the crystal structure to assess the impact of the crystal lattice on the overall conformation of the RNA. The RNA was designed to self-anneal and form a head-to-head fusion of two identical mRNA/oligo(U) tail domains (the U-helix) from a trypanosome RNA editing substrate formed by the annealing of a guide RNA to a pre-edited mRNA. This substrate is from the U insertion/deletion RNA editing system of trypanosomes. Each strand in the fusion RNA had 16 purines from the pre-mRNA followed by 16 uracils (Us) from the U-tail at the 3' end of the guide RNA. The strands were designed to form a double helix with blunt ends, but each strand had the potential to form hairpins and single-stranded RNA helices. Hairpins could form by the 3' oligouridylate tract folding back to hybridize with the 5' oligopurine tract and forming an intervening loop. Single-stranded helices could form by the stacking of bases in the polypurine tract. Some of the 16 Us 3' to the polypurine tract may have been unstacked and in random coils. Our SAXS studies showed that the RNA formed a mix of single-stranded structures in the absence of MgCl2. In the presence of MgCl2 at concentrations similar to those in the crystal, the solution structure was consistent with the double-stranded, blunt-ended structure, in agreement with the crystal structure. Here we describe the preparation of RNA samples, data collection with an in-house SAXS instrument designed for biological samples, and the processing and modeling of the scattering data.
Collapse
|
31
|
With S, Trebbin M, Bartz CBA, Neuber C, Dulle M, Yu S, Roth SV, Schmidt HW, Förster S. Fast diffusion-limited lyotropic phase transitions studied in situ using continuous flow microfluidics/microfocus-SAXS. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:12494-502. [PMID: 25216394 DOI: 10.1021/la502971m] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Fast concentration-induced diffusion-limited lyotropic phase transitions can be studied in situ with millisecond time resolution using continuous flow microfluidics in combination with microfocus small-angle X-ray scattering. The method was applied to follow a classical self-assembly sequence where amphiphiles assemble into micelles, which subsequently assemble into an ordered lattice via a disorder/order transition. As a model system we selected the self-assembly of an amphiphilic block copolymer induced by the addition of a nonsolvent. Using microchannel hydrodynamic flow-focusing, large concentration gradients can be generated, leading to a deep quench from the miscible to the microphase-separated state. Within milliseconds the block copolymers assembly via a spinodal microphase separation into micelles, followed by a disorder/order transition into an FCC liquid-crystalline phase with late-stage domain growth and shear-induced domain orientation into a mesocrystal. A comparison with a slow macroscopic near-equilibrium kinetic experiment shows that the fast structural transitions follow a direct pathway to the equilibrium structure without the trapping of metastable states.
Collapse
Affiliation(s)
- Sebastian With
- Physical Chemistry I and ‡Macromolecular Chemistry I, University of Bayreuth , Universitätsstr. 30, 95447 Bayreuth, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Hyeon C, Denesyuk NA, Thirumalai D. Development and Applications of Coarse-Grained Models for RNA. Isr J Chem 2014. [DOI: 10.1002/ijch.201400029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
33
|
DEAD-box protein CYT-19 is activated by exposed helices in a group I intron RNA. Proc Natl Acad Sci U S A 2014; 111:E2928-36. [PMID: 25002474 DOI: 10.1073/pnas.1404307111] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
DEAD-box proteins are nonprocessive RNA helicases and can function as RNA chaperones, but the mechanisms of their chaperone activity remain incompletely understood. The Neurospora crassa DEAD-box protein CYT-19 is a mitochondrial RNA chaperone that promotes group I intron splicing and has been shown to resolve misfolded group I intron structures, allowing them to refold. Building on previous results, here we use a series of tertiary contact mutants of the Tetrahymena group I intron ribozyme to demonstrate that the efficiency of CYT-19-mediated unfolding of the ribozyme is tightly linked to global RNA tertiary stability. Efficient unfolding of destabilized ribozyme variants is accompanied by increased ATPase activity of CYT-19, suggesting that destabilized ribozymes provide more productive interaction opportunities. The strongest ATPase stimulation occurs with a ribozyme that lacks all five tertiary contacts and does not form a compact structure, and small-angle X-ray scattering indicates that ATPase activity tracks with ribozyme compactness. Further, deletion of three helices that are prominently exposed in the folded structure decreases the ATPase stimulation by the folded ribozyme. Together, these results lead to a model in which CYT-19, and likely related DEAD-box proteins, rearranges complex RNA structures by preferentially interacting with and unwinding exposed RNA secondary structure. Importantly, this mechanism could bias DEAD-box proteins to act on misfolded RNAs and ribonucleoproteins, which are likely to be less compact and more dynamic than their native counterparts.
Collapse
|
34
|
Mitra S. Detecting RNA tertiary folding by sedimentation velocity analytical ultracentrifugation. Methods Mol Biol 2014; 1086:265-88. [PMID: 24136610 DOI: 10.1007/978-1-62703-667-2_16] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
Analytical Ultracentrifugation (AUC) is a highly sensitive technique for detecting global conformational features of biological molecules and molecular interactions in solution. When operated in a sedimentation velocity (SV) recording mode, it reports precisely on the hydrodynamic properties of a molecule, including its sedimentation and diffusion coefficients, which can be used to calculate its hydrated radius, as well as, to estimate its global shape. This chapter describes the application of SV-AUC to the detection of global conformational changes accompanying equilibrium counterion induced tertiary folding of structured RNA molecules. A brief theoretical background is provided at the beginning, aimed at familiarizing the readers with the operational principle of the technique; then, a detailed set of instructions is provided on how to design, conduct, and analyze the data from an equilibrium RNA folding experiment, using SV-AUC.
Collapse
Affiliation(s)
- Somdeb Mitra
- Department of Chemistry, Columbia University, New York, NY, USA
| |
Collapse
|
35
|
Mitchell D, Russell R. Folding pathways of the Tetrahymena ribozyme. J Mol Biol 2014; 426:2300-12. [PMID: 24747051 DOI: 10.1016/j.jmb.2014.04.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 04/09/2014] [Accepted: 04/11/2014] [Indexed: 01/01/2023]
Abstract
Like many structured RNAs, the Tetrahymena group I intron ribozyme folds through multiple pathways and intermediates. Under standard conditions in vitro, a small fraction reaches the native state (N) with kobs ≈ 0.6 min(-1), while the remainder forms a long-lived misfolded conformation (M) thought to differ in topology. These alternative outcomes reflect a pathway that branches late in folding, after disruption of a trapped intermediate (Itrap). Here we use catalytic activity to probe the folding transitions from Itrap to the native and misfolded states. We show that mutations predicted to weaken the core helix P3 do not increase the rate of folding from Itrap but they increase the fraction that reaches the native state rather than forming the misfolded state. Thus, P3 is disrupted during folding to the native state but not to the misfolded state, and P3 disruption occurs after the rate-limiting step. Interestingly, P3-strengthening mutants also increase native folding. Additional experiments show that these mutants are rapidly committed to folding to the native state, although they reach the native state with approximately the same rate constant as the wild-type ribozyme (~1 min(-1)). Thus, the P3-strengthening mutants populate a distinct pathway that includes at least one intermediate but avoids the M state, most likely because P3 and the correct topology are formed early. Our results highlight multiple pathways in RNA folding and illustrate how kinetic competitions between rapid events can have long-lasting effects because the "choice" is enforced by energy barriers that grow larger as folding progresses.
Collapse
Affiliation(s)
- David Mitchell
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Rick Russell
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
36
|
|
37
|
Choudhary PK, Gallo S, Sigel RKO. Monitoring global structural changes and specific metal-ion-binding sites in RNA by in-line probing and Tb(III) cleavage. Methods Mol Biol 2014; 1086:143-158. [PMID: 24136602 DOI: 10.1007/978-1-62703-667-2_8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
In this chapter we describe the use of two methods, in-line probing as well as terbium(III) cleavage. Both methods can be applied to RNAs of any size, structure, and function. Aside from revealing directly metal ion-binding sites these techniques also provide structural information for longer RNA sequences that are out of range to be analyzed with other techniques such as NMR. The cleavage pattern derived from in-line probing experiments reflects local and overall conformational changes in RNA upon the addition of metal ions, metal complexes, or other ligands. On the other side, terbium(III) cleavage experiments are applied to locate specific metal ion-binding sites in RNA molecules.
Collapse
|
38
|
Mitchell D, Jarmoskaite I, Seval N, Seifert S, Russell R. The long-range P3 helix of the Tetrahymena ribozyme is disrupted during folding between the native and misfolded conformations. J Mol Biol 2013; 425:2670-86. [PMID: 23702292 DOI: 10.1016/j.jmb.2013.05.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 05/07/2013] [Accepted: 05/09/2013] [Indexed: 02/07/2023]
Abstract
RNAs are prone to misfolding, but how misfolded structures are formed and resolved remains incompletely understood. The Tetrahymena group I intron ribozyme folds in vitro to a long-lived misfolded conformation (M) that includes extensive native structure but is proposed to differ in topology from the native state (N). A leading model predicts that exchange of the topologies requires unwinding of the long-range, core helix P3, despite the presence of P3 in both conformations. To test this model, we constructed 16 mutations to strengthen or weaken P3. Catalytic activity and in-line probing showed that nearly all of the mutants form the M state before folding to N. The P3-weakening mutations accelerated refolding from M (3- to 30-fold) and the P3-strengthening mutations slowed refolding (6- to 1400-fold), suggesting that P3 indeed unwinds transiently. Upon depletion of Mg(2+), the mutations had analogous effects on unfolding from N to intermediates that subsequently fold to M. The magnitudes for the P3-weakening mutations were larger than in refolding from M, and small-angle X-ray scattering showed that the ribozyme expands rapidly to intermediates from which P3 is disrupted subsequently. These results are consistent with previous results indicating unfolding of native peripheral structure during refolding from M, which probably permits rearrangement of the core. Together, our results demonstrate that exchange of the native and misfolded conformations requires loss of a core helix in addition to peripheral structure. Further, the results strongly suggest that misfolding arises from a topological error within the ribozyme core, and a specific topology is proposed.
Collapse
Affiliation(s)
- David Mitchell
- Department of Chemistry and Biochemistry, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| | | | | | | | | |
Collapse
|
39
|
Burke JE, Butcher SE. Nucleic acid structure characterization by small angle X-ray scattering (SAXS). ACTA ACUST UNITED AC 2013; Chapter 7:Unit7.18. [PMID: 23255205 DOI: 10.1002/0471142700.nc0718s51] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Small angle X-ray scattering (SAXS) is a powerful method for investigating macromolecular structure in solution. SAXS data provide information about the size and shape of a molecule with a resolution of ∼2 to 3 nm. SAXS is particularly useful for the investigation of nucleic acids, which scatter X-rays strongly due to the electron-rich phosphate backbone. Therefore, SAXS has become an increasingly popular method for modeling nucleic acid structures, an endeavor made tractable by the highly regular helical nature of nucleic acid secondary structures. Recently, SAXS was used in combination with NMR to filter and refine all-atom models of a U2/U6 small nuclear RNA complex. In this unit, general protocols for sample preparation, data acquisition, and data analysis and processing are given. Additionally, examples of correctly and incorrectly processed SAXS data and expected results are provided.
Collapse
Affiliation(s)
- Jordan E Burke
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin, USA
| | | |
Collapse
|
40
|
Chen C, Mitra S, Jonikas M, Martin J, Brenowitz M, Laederach A. Understanding the role of three-dimensional topology in determining the folding intermediates of group I introns. Biophys J 2013; 104:1326-37. [PMID: 23528092 DOI: 10.1016/j.bpj.2013.02.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2012] [Revised: 01/28/2013] [Accepted: 02/07/2013] [Indexed: 11/30/2022] Open
Abstract
Many RNA molecules exert their biological function only after folding to unique three-dimensional structures. For long, noncoding RNA molecules, the complexity of finding the native topology can be a major impediment to correct folding to the biologically active structure. An RNA molecule may fold to a near-native structure but not be able to continue to the correct structure due to a topological barrier such as crossed strands or incorrectly stacked helices. Achieving the native conformation thus requires unfolding and refolding, resulting in a long-lived intermediate. We investigate the role of topology in the folding of two phylogenetically related catalytic group I introns, the Twort and Azoarcus group I ribozymes. The kinetic models describing the Mg(2+)-mediated folding of these ribozymes were previously determined by time-resolved hydroxyl (∙OH) radical footprinting. Two intermediates formed by parallel intermediates were resolved for each RNA. These data and analytical ultracentrifugation compaction analyses are used herein to constrain coarse-grained models of these folding intermediates as we investigate the role of nonnative topology in dictating the lifetime of the intermediates. Starting from an ensemble of unfolded conformations, we folded the RNA molecules by progressively adding native constraints to subdomains of the RNA defined by the ∙OH time-progress curves to simulate folding through the different kinetic pathways. We find that nonnative topologies (arrangement of helices) occur frequently in the folding simulations despite using only native constraints to drive the reaction, and that the initial conformation, rather than the folding pathway, is the major determinant of whether the RNA adopts nonnative topology during folding. From these analyses we conclude that biases in the initial conformation likely determine the relative flux through parallel RNA folding pathways.
Collapse
Affiliation(s)
- Chunxia Chen
- Department of Biology, University of North Carolina, Chapel Hill, NC, USA
| | | | | | | | | | | |
Collapse
|
41
|
Ritz J, Martin JS, Laederach A. Evaluating our ability to predict the structural disruption of RNA by SNPs. BMC Genomics 2012; 13 Suppl 4:S6. [PMID: 22759654 PMCID: PMC3303743 DOI: 10.1186/1471-2164-13-s4-s6] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The structure of RiboNucleic Acid (RNA) has the potential to be altered by a Single Nucleotide Polymorphism (SNP). Disease-associated SNPs mapping to non-coding regions of the genome that are transcribed into RiboNucleic Acid (RNA) can potentially affect cellular regulation (and cause disease) by altering the structure of the transcript. We performed a large-scale meta-analysis of Selective 2'-Hydroxyl Acylation analyzed by Primer Extension (SHAPE) data, which probes the structure of RNA. We found that several single point mutations exist that significantly disrupt RNA secondary structure in the five transcripts we analyzed. Thus, every RNA that is transcribed has the potential to be a “RiboSNitch;” where a SNP causes a large conformational change that alters regulatory function. Predicting the SNPs that will have the largest effect on RNA structure remains a contemporary computational challenge. We therefore benchmarked the most popular RNA structure prediction algorithms for their ability to identify mutations that maximally affect structure. We also evaluated metrics for rank ordering the extent of the structural change. Although no single algorithm/metric combination dramatically outperformed the others, small differences in AUC (Area Under the Curve) values reveal that certain approaches do provide better agreement with experiment. The experimental data we analyzed nonetheless show that multiple single point mutations exist in all RNA transcripts that significantly disrupt structure in agreement with the predictions.
Collapse
Affiliation(s)
- Justin Ritz
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | |
Collapse
|
42
|
Behrouzi R, Roh JH, Kilburn D, Briber RM, Woodson SA. Cooperative tertiary interaction network guides RNA folding. Cell 2012; 149:348-57. [PMID: 22500801 DOI: 10.1016/j.cell.2012.01.057] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Revised: 11/02/2011] [Accepted: 01/26/2012] [Indexed: 01/06/2023]
Abstract
Noncoding RNAs form unique 3D structures, which perform many regulatory functions. To understand how RNAs fold uniquely despite a small number of tertiary interaction motifs, we mutated the major tertiary interactions in a group I ribozyme by single-base substitutions. The resulting perturbations to the folding energy landscape were measured using SAXS, ribozyme activity, hydroxyl radical footprinting, and native PAGE. Double- and triple-mutant cycles show that most tertiary interactions have a small effect on the stability of the native state. Instead, the formation of core and peripheral structural motifs is cooperatively linked in near-native folding intermediates, and this cooperativity depends on the native helix orientation. The emergence of a cooperative interaction network at an early stage of folding suppresses nonnative structures and guides the search for the native state. We suggest that cooperativity in noncoding RNAs arose from natural selection of architectures conducive to forming a unique, stable fold.
Collapse
Affiliation(s)
- Reza Behrouzi
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
| | | | | | | | | |
Collapse
|
43
|
Anthony PC, Sim AY, Chu VB, Doniach S, Block SM, Herschlag D. Electrostatics of nucleic acid folding under conformational constraint. J Am Chem Soc 2012; 134:4607-14. [PMID: 22369617 PMCID: PMC3303965 DOI: 10.1021/ja208466h] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
RNA folding is enabled by interactions between the nucleic acid and its ion atmosphere, the mobile sheath of aqueous ions that surrounds and stabilizes it. Understanding the ion atmosphere requires the interplay of experiment and theory. However, even an apparently simple experiment to probe the ion atmosphere, measuring the dependence of DNA duplex stability upon ion concentration and identity, suffers from substantial complexity, because the unfolded ensemble contains many conformational states that are difficult to treat accurately with theory. To minimize this limitation, we measured the unfolding equilibrium of a DNA hairpin using a single-molecule optical trapping assay, in which the unfolded state is constrained to a limited set of elongated conformations. The unfolding free energy increased linearly with the logarithm of monovalent cation concentration for several cations, such that smaller cations tended to favor the folded state. Mg(2+) stabilized the hairpin much more effectively at low concentrations than did any of the monovalent cations. Poisson-Boltzmann theory captured trends in hairpin stability measured for the monovalent cation titrations with reasonable accuracy, but failed to do so for the Mg(2+) titrations. This finding is consistent with previous work, suggesting that Poisson-Boltzmann and other mean-field theories fail for higher valency cations where ion-ion correlation effects may become significant. The high-resolution data herein, because of the straightforward nature of both the folded and the unfolded states, should serve as benchmarks for the development of more accurate electrostatic theories that will be needed for a more quantitative and predictive understanding of nucleic acid folding.
Collapse
Affiliation(s)
| | - Adelene Y.L. Sim
- Department of Applied Physics, Stanford University, Stanford, CA 94305
| | - Vincent B. Chu
- Department of Applied Physics, Stanford University, Stanford, CA 94305
| | - Sebastian Doniach
- Department of Applied Physics, Stanford University, Stanford, CA 94305
- Department of Physics, Stanford University, Stanford, CA 94305
| | - Steven M. Block
- Department of Applied Physics, Stanford University, Stanford, CA 94305
- Department of Biology, Stanford University, Stanford, CA 94305
| | - Daniel Herschlag
- Department of Biochemistry, Stanford University, Stanford, CA 94305
| |
Collapse
|
44
|
Bhaskaran H, Rodriguez-Hernandez A, Perona JJ. Kinetics of tRNA folding monitored by aminoacylation. RNA (NEW YORK, N.Y.) 2012; 18:569-80. [PMID: 22286971 PMCID: PMC3285943 DOI: 10.1261/rna.030080.111] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Accepted: 11/23/2011] [Indexed: 05/20/2023]
Abstract
We describe a strategy for tracking Mg²⁺-initiated folding of ³²P-labeled tRNA molecules to their native structures based on the capacity for aminoacylation by the cognate aminoacyl-tRNA synthetase enzyme. The approach directly links folding to function, paralleling a common strategy used to study the folding of catalytic RNAs. Incubation of unfolded tRNA with magnesium ions, followed by the addition of aminoacyl-tRNA synthetase and further incubation, yields a rapid burst of aminoacyl-tRNA formation corresponding to the prefolded tRNA fraction. A subsequent slower increase in product formation monitors continued folding in the presence of the enzyme. Further analysis reveals the presence of a parallel fraction of tRNA that folds more rapidly than the majority of the population. The application of the approach to study the influence of post-transcriptional modifications in folding of Escherichia coli tRNA₁(Gln) reveals that the modified bases increase the folding rate but do not affect either the equilibrium between properly folded and misfolded states or the folding pathway. This assay allows the use of ³²P-labeled tRNA in integrated studies combining folding, post-transcriptional processing, and aminoacylation reactions.
Collapse
Affiliation(s)
| | | | - John J. Perona
- Department of Chemistry and Biochemistry
- Interdepartmental Program in Biomolecular Science and Engineering, University of California, Santa Barbara, California 93106-9510, USA
- Corresponding author.E-mail .
| |
Collapse
|
45
|
Abstract
Many RNAs do not directly code proteins but are nonetheless indispensable to cellular function. These strands fold into intricate three-dimensional shapes that are essential structures in protein synthesis, splicing, and many other processes of gene regulation and expression. A variety of biophysical and biochemical methods are now showing, in real time, how ribosomal subunits and other ribonucleoprotein complexes assemble from their molecular components. Footprinting methods are particularly useful for studying the folding of long RNAs: they provide quantitative information about the conformational state of each residue and require little material. Data from footprinting complement the global information available from small-angle X-ray scattering or cryo-electron microscopy, as well as the dynamic information derived from single-molecule Förster resonance energy transfer (FRET) and NMR methods. In this Account, I discuss how we have used hydroxyl radical footprinting and other experimental methods to study pathways of RNA folding and 30S ribosome assembly. Hydroxyl radical footprinting probes the solvent accessibility of the RNA backbone at each residue in as little as 10 ms, providing detailed views of RNA folding pathways in real time. In conjunction with other methods such as solution scattering and single-molecule FRET, time-resolved footprinting of ribozymes showed that stable domains of RNA tertiary structure fold in less than 1 s. However, the free energy landscapes for RNA folding are rugged, and individual molecules kinetically partition into folding pathways that lead through metastable intermediates, stalling the folding or assembly process. Time-resolved footprinting was used to follow the formation of tertiary structure and protein interactions in the 16S ribosomal RNA (rRNA) during the assembly of 30S ribosomes. As previously observed in much simpler ribozymes, assembly occurs in stages, with individual molecules taking different routes to the final complex. Interactions occur concurrently in all domains of the 16S rRNA, and multistage protection of binding sites of individual proteins suggests that initial encounter complexes between the rRNA and ribosomal proteins are remodeled during assembly. Equilibrium footprinting experiments showed that one primary binding protein was sufficient to stabilize the tertiary structure of the entire 16S 5'-domain. The rich detail available from the footprinting data showed that the secondary assembly protein S16 suppresses non-native structures in the 16S 5'-domain. In doing so, S16 enables a conformational switch distant from its own binding site, which may play a role in establishing interactions with other domains of the 30S subunit. Together, the footprinting results show how protein-induced changes in RNA structure are communicated over long distances, ensuring cooperative assembly of even very large RNA-protein complexes such as the ribosome.
Collapse
Affiliation(s)
- Sarah A. Woodson
- T. C. Jenkins Department of Biophysics, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| |
Collapse
|
46
|
Abstract
Positively charged ions, atoms, or molecules compensate the high negative charge of the nucleic acid backbone. Their presence is critical to the biological function of DNA and RNA. This review focuses on experimental studies probing (a) interactions between small ions and nucleic acids and (b) ion-mediated interactions between nucleic acid duplexes. Experimental results on these simple model systems can be compared with specific theoretical models to validate their predictions. Small angle X-ray scattering (SAXS) provides unique insight into these interactions. Anomalous SAXS reports the spatial correlations of condensed (e.g., locally concentrated) counterions to individual DNA or RNA duplexes. SAXS very effectively reports interactions between nucleic acid helices, which range from strongly repulsive to strongly attractive depending on the ionic species present. The sign and strength of interparticle interactions are easily deduced from dramatic changes in the scattering profiles of interacting duplexes.
Collapse
Affiliation(s)
- Lois Pollack
- School of Applied & Engineering Physics, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
47
|
Buck J, Wacker A, Warkentin E, Wöhnert J, Wirmer-Bartoschek J, Schwalbe H. Influence of ground-state structure and Mg2+ binding on folding kinetics of the guanine-sensing riboswitch aptamer domain. Nucleic Acids Res 2011; 39:9768-78. [PMID: 21890900 PMCID: PMC3239184 DOI: 10.1093/nar/gkr664] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Riboswitch RNAs fold into complex tertiary structures upon binding to their cognate ligand. Ligand recognition is accomplished by key residues in the binding pocket. In addition, it often crucially depends on the stability of peripheral structural elements. The ligand-bound complex of the guanine-sensing riboswitch from Bacillus subtilis, for example, is stabilized by extensive interactions between apical loop regions of the aptamer domain. Previously, we have shown that destabilization of this tertiary loop–loop interaction abrogates ligand binding of the G37A/C61U-mutant aptamer domain (Gswloop) in the absence of Mg2+. However, if Mg2+ is available, ligand-binding capability is restored by a population shift of the ground-state RNA ensemble toward RNA conformations with pre-formed loop–loop interactions. Here, we characterize the striking influence of long-range tertiary structure on RNA folding kinetics and on ligand-bound complex structure, both by X-ray crystallography and time-resolved NMR. The X-ray structure of the ligand-bound complex reveals that the global architecture is almost identical to the wild-type aptamer domain. The population of ligand-binding competent conformations in the ground-state ensemble of Gswloop is tunable through variation of the Mg2+ concentration. We quantitatively describe the influence of distinct Mg2+ concentrations on ligand-induced folding trajectories both by equilibrium and time-resolved NMR spectroscopy at single-residue resolution.
Collapse
Affiliation(s)
- Janina Buck
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance, Johann Wolfgang Goethe-University, Max-von-Laue-Strasse 7 & 9, 60438 Frankfurt am Main, Germany
| | | | | | | | | | | |
Collapse
|
48
|
Solomatin SV, Greenfeld M, Herschlag D. Implications of molecular heterogeneity for the cooperativity of biological macromolecules. Nat Struct Mol Biol 2011; 18:732-4. [PMID: 21572445 PMCID: PMC3109240 DOI: 10.1038/nsmb.2052] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Accepted: 02/28/2011] [Indexed: 11/09/2022]
Abstract
Cooperativity, a universal property of biological macromolecules, is typically characterized by a Hill slope, which can provide fundamental information about binding sites and interactions. We demonstrate, via simulations and single molecule FRET experiments, that molecular heterogeneity lowers bulk cooperativity from the intrinsic value for the individual molecules. As heterogeneity is common in smFRET experiments, appreciation of its influence on fundamental measures of cooperativity is critical for deriving accurate molecular models.
Collapse
Affiliation(s)
- Sergey V Solomatin
- Department of Biochemistry, Stanford University, Stanford, California, USA
| | | | | |
Collapse
|
49
|
Leipply D, Draper DE. Effects of Mg2+ on the free energy landscape for folding a purine riboswitch RNA. Biochemistry 2011; 50:2790-9. [PMID: 21361309 DOI: 10.1021/bi101948k] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
There are potentially several ways Mg2+ might promote formation of an RNA tertiary structure: by causing a general "collapse" of the unfolded ensemble to more compact conformations, by favoring a reorganization of structure within a domain to a form with specific tertiary contacts, and by enhancing cooperative linkages between different sets of tertiary contacts. To distinguish these different modes of action, we have studied Mg2+ interactions with the adenine riboswitch, in which a set of tertiary interactions that forms around a purine-binding pocket is thermodynamically linked to the tertiary "docking" of two hairpin loops in another part of the molecule. Each of four RNA forms with different extents of tertiary structure were characterized by small-angle X-ray scattering. The free energy of interconversion between different conformations in the absence of Mg2+ and the free energy of Mg2+ interaction with each form have been estimated, yielding a complete picture of the folding energy landscape as a function of Mg2+ concentration. At 1 mM Mg2+ (50 mM K+), the overall free energy of stabilization by Mg2+ is large, -9.8 kcal/mol, and about equally divided between its effect on RNA collapse to a partially folded structure and on organization of the binding pocket. A strong cooperative linkage between the two sets of tertiary contacts is intrinsic to the RNA. This quantitation of the effects of Mg2+ on an RNA with two distinct sets of tertiary interactions suggests ways that Mg2+ may work to stabilize larger and more complex RNA structures.
Collapse
Affiliation(s)
- Desirae Leipply
- Program in Molecular Biophysics and Department of Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | | |
Collapse
|
50
|
Pollack L. Time resolved SAXS and RNA folding. Biopolymers 2011; 95:543-9. [PMID: 21328311 DOI: 10.1002/bip.21604] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Revised: 01/19/2011] [Accepted: 01/19/2011] [Indexed: 01/04/2023]
Abstract
Small angle X-ray scattering provides low resolution structural information about macromolecules in solution. When coupled with rapid mixing methods, SAXS reports time-dependent conformational changes of RNA induced by the addition of Mg(2+) to trigger folding. Thus time-resolved SAXS provides unique information about the global or overall structures of transient intermediates populated during folding. Notably, SAXS provides information about the earliest folding events, which can evade detection by other methods.
Collapse
Affiliation(s)
- Lois Pollack
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|