1
|
Khilwani B, Kour B, Shukla N, Vuree S, Ansari AS, Lohiya NK, Suravajhala P, Suravajhala R. Characterization of lncRNA-protein interactions associated with Prostate cancer and Androgen receptors by molecular docking simulations. Biochem Biophys Rep 2025; 42:101959. [PMID: 40124994 PMCID: PMC11929892 DOI: 10.1016/j.bbrep.2025.101959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 02/12/2025] [Accepted: 02/14/2025] [Indexed: 03/25/2025] Open
Abstract
Long non-coding RNA (lncRNAs) are known to be implicated in pathogenesis of a broad spectrum of malignancies. These are found to have a significant role as signal transduction mediators in cancer signaling pathways. Prostate Cancer (PCa) is emerging with increasing cases worldwide even as advanced approaches in clinical diagnosis and treatment of PCa are still challenging to address. To enhance patient stratification, there is an indefatigable need to understand risk that can allow new approaches of treatment based on prognosis. While PCa is known to have mediated androgen receptor (AR) stimulation, the latter plays a critical role in regulating transcription of genes via nuclear translocation which in turn leads to response to androgens. LncRNAs have been implicated in developing clinical diagnostic and prognostic biomarkers in a broad spectrum of cancers. In our present study, 12 lncRNAs identified from clinical samples from our erstwhile PCa patients were docked with PCa and AR targeted 36 proteins. We identified three lncRNAs, viz. SCARNA10, NPBWR1, ANKRD20A9P are common between the targeted proteins and discern that SCARNA10 lncRNA could serve as a prognostic signature for PCa and AR biogenesis. We also sought to check the coding potential of interfacial residues associated with lncRNA docking sites.
Collapse
Affiliation(s)
- Barkha Khilwani
- Department of Zoology, University of Rajasthan, Jaipur, Rajasthan, India
| | - Bhumandeep Kour
- Department of Molecular Biology and Genetic Engineering, School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar, Punjab, India
| | - Nidhi Shukla
- School of Interdisciplinary Health Sciences, Central University of Rajasthan, Bandarsindri, Ajmer, Rajasthan, India
- The CA Prostate Consortium of India (CAPCI), Bioclues.org, Hyderabad, India
| | - Sugunakar Vuree
- The CA Prostate Consortium of India (CAPCI), Bioclues.org, Hyderabad, India
- Department of Biotechnology, Vignan's Foundation for Science, Technology & Research, Vadlamudi, Guntur, India
| | - Abdul S. Ansari
- Department of Zoology, University of Rajasthan, Jaipur, Rajasthan, India
| | - Nirmal K. Lohiya
- Department of Zoology, University of Rajasthan, Jaipur, Rajasthan, India
| | - Prashanth Suravajhala
- The CA Prostate Consortium of India (CAPCI), Bioclues.org, Hyderabad, India
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Clappana, 690525, Kerala, India
| | - Renuka Suravajhala
- The CA Prostate Consortium of India (CAPCI), Bioclues.org, Hyderabad, India
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Clappana, 690525, Kerala, India
| |
Collapse
|
2
|
Singh M, Becker M, Godwin AR, Baldock C. Structural studies of elastic fibre and microfibrillar proteins. Matrix Biol Plus 2021; 12:100078. [PMID: 34355160 PMCID: PMC8322146 DOI: 10.1016/j.mbplus.2021.100078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/26/2021] [Accepted: 06/28/2021] [Indexed: 11/27/2022] Open
Abstract
Elastic tissues owe their functional properties to the composition of their extracellular matrices, particularly the range of extracellular, multidomain extensible elastic fibre and microfibrillar proteins. These proteins include elastin, fibrillin, latent TGFβ binding proteins (LTBPs) and collagens, where their biophysical and biochemical properties not only give the matrix structural integrity, but also play a vital role in the mechanisms that underlie tissue homeostasis. Thus far structural information regarding the structure and hierarchical assembly of these molecules has been challenging and the resolution has been limited due to post-translational modification and their multidomain nature leading to flexibility, which together result in conformational and structural heterogeneity. In this review, we describe some of the matrix proteins found in elastic fibres and the new emerging techniques that can shed light on their structure and dynamic properties.
Collapse
Affiliation(s)
- Mukti Singh
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK
| | - Mark Becker
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK
| | - Alan R.F. Godwin
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK
| | - Clair Baldock
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK
| |
Collapse
|
3
|
Wei X, Li ZC, Li SJ, Peng XB, Zhao Q. Protein structure determination using a Riemannian approach. FEBS Lett 2019; 594:1036-1051. [PMID: 31769509 DOI: 10.1002/1873-3468.13688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 10/31/2019] [Accepted: 11/14/2019] [Indexed: 11/05/2022]
Abstract
Protein NMR structure determination is one of the most extensively studied problems. Here, we adopt a novel method based on a matrix completion technique - the Riemannian approach - to rebuild the protein structure from the nuclear Overhauser effect distance restraints and the dihedral angle restraints. In comparison with the cyana method, the results generated via the Riemannian approach are more similar to the standard X-ray crystallographic structures as a result of the simple but powerful internal calculation processing function. In addition, our results demonstrate that the Riemannian approach has a comparable or even better performance than the cyana method on other structural assessment metrics, including the stereochemical quality and restraint violations. The Riemannian approach software is available at: https://github.com/xubiaopeng/Protein_Recon_MCRiemman.
Collapse
Affiliation(s)
- Xian Wei
- Center for Quantum Technology Research, School of Physics, Beijing Institute of Technology, China.,Department of Science, Taiyuan Institute of Technology, China
| | - Zhi-Cheng Li
- Department of Physics, Taiyuan Normal University, China
| | - Shi-Jian Li
- Center for Quantum Technology Research, School of Physics, Beijing Institute of Technology, China
| | - Xu-Biao Peng
- Center for Quantum Technology Research, School of Physics, Beijing Institute of Technology, China
| | - Qing Zhao
- Center for Quantum Technology Research, School of Physics, Beijing Institute of Technology, China
| |
Collapse
|
4
|
Maaß T, Bayley CP, Mörgelin M, Lettmann S, Bonaldo P, Paulsson M, Baldock C, Wagener R. Heterogeneity of Collagen VI Microfibrils: STRUCTURAL ANALYSIS OF NON-COLLAGENOUS REGIONS. J Biol Chem 2016; 291:5247-58. [PMID: 26742845 PMCID: PMC4777857 DOI: 10.1074/jbc.m115.705160] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 12/23/2015] [Indexed: 11/29/2022] Open
Abstract
Collagen VI, a collagen with uncharacteristically large N- and C-terminal non-collagenous regions, forms a distinct microfibrillar network in most connective tissues. It was long considered to consist of three genetically distinct α chains (α1, α2, and α3). Intracellularly, heterotrimeric molecules associate to form dimers and tetramers, which are then secreted and assembled to microfibrils. The identification of three novel long collagen VI α chains, α4, α5, and α6, led to the question if and how these may substitute for the long α3 chain in collagen VI assembly. Here, we studied structural features of the novel long chains and analyzed the assembly of these into tetramers and microfibrils. N- and C-terminal globular regions of collagen VI were recombinantly expressed and studied by small angle x-ray scattering (SAXS). Ab initio models of the N-terminal globular regions of the α4, α5, and α6 chains showed a C-shaped structure similar to that found for the α3 chain. Single particle EM nanostructure of the N-terminal globular region of the α4 chain confirmed the C-shaped structure revealed by SAXS. Immuno-EM of collagen VI extracted from tissue revealed that like the α3 chain the novel long chains assemble to homotetramers that are incorporated into mixed microfibrils. Moreover, SAXS models of the C-terminal globular regions of the α1, α2, α4, and α6 chains were generated. Interestingly, the α1, α2, and α4 C-terminal globular regions dimerize. These self-interactions may play a role in tetramer formation.
Collapse
Affiliation(s)
- Tobias Maaß
- From the Center for Biochemistry, Medical Faculty
| | - Christopher P Bayley
- the Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Matthias Mörgelin
- the Department of Clinical Sciences, Division of Infection Medicine, Lund University, SE-221 84 Lund, Sweden, and
| | | | - Paolo Bonaldo
- the Department of Molecular Medicine, University of Padova, 35131 Padova, Italy
| | - Mats Paulsson
- From the Center for Biochemistry, Medical Faculty, Center for Molecular Medicine, Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases, and Center for Musculoskeletal Biomechanics, University of Cologne, D-50931 Cologne, Germany
| | - Clair Baldock
- the Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester M13 9PT, United Kingdom,
| | - Raimund Wagener
- From the Center for Biochemistry, Medical Faculty, Center for Molecular Medicine,
| |
Collapse
|
5
|
Eigenbrot C, Ultsch M, Lipari MT, Moran P, Lin SJ, Ganesan R, Quan C, Tom J, Sandoval W, van Lookeren Campagne M, Kirchhofer D. Structural and functional analysis of HtrA1 and its subdomains. Structure 2012; 20:1040-50. [PMID: 22578544 DOI: 10.1016/j.str.2012.03.021] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 03/15/2012] [Accepted: 03/30/2012] [Indexed: 11/27/2022]
Abstract
The homotrimeric human serine protease HtrA1 is homologous to bacterial HtrA proteases regarding the trypsin-like catalytic and PDZ domains but differs by the presence of an N-terminal domain with IGFBP and Kazal homology. The crystal structures and SAXS analysis presented herein reveal the rare tandem of IGFBP- and Kazal-like modules, a protease active site that adopts a competent conformation in the absence of substrate or inhibitor and a model for the intact protein in solution. Highly sensitive enzymatic assays and binding studies demonstrate that the N-terminal tandem has no apparent effect on protease activity, and in accordance with the structure-based predictions, neither the IGFBP- nor Kazal-like module retains the function of their prototype proteins. Our structures of the unliganded HtrA1 active site suggest two-state equilibrium and a "conformational selection" model, in which substrate binds to the active conformer.
Collapse
Affiliation(s)
- Charles Eigenbrot
- Department of Structural Biology, Genentech, Inc., South San Francisco, CA 94080, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
A family of diverse Kunitz inhibitors from Echinococcus granulosus potentially involved in host-parasite cross-talk. PLoS One 2009; 4:e7009. [PMID: 19759914 PMCID: PMC2740865 DOI: 10.1371/journal.pone.0007009] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2009] [Accepted: 08/03/2009] [Indexed: 11/19/2022] Open
Abstract
The cestode Echinococcus granulosus, the agent of hydatidosis/echinococcosis, is remarkably well adapted to its definitive host. However, the molecular mechanisms underlying the successful establishment of larval worms (protoscoleces) in the dog duodenum are unknown. With the aim of identifying molecules participating in the E. granulosus-dog cross-talk, we surveyed the transcriptomes of protoscoleces and protoscoleces treated with pepsin at pH 2. This analysis identified a multigene family of secreted monodomain Kunitz proteins associated mostly with pepsin/H(+)-treated worms, suggesting that they play a role at the onset of infection. We present the relevant molecular features of eight members of the E. granulosus Kunitz family (EgKU-1 - EgKU-8). Although diverse, the family includes three pairs of close paralogs (EgKU-1/EgKU-4; EgKU-3/EgKU-8; EgKU-6/EgKU-7), which would be the products of recent gene duplications. In addition, we describe the purification of EgKU-1 and EgKU-8 from larval worms, and provide data indicating that some members of the family (notably, EgKU-3 and EgKU-8) are secreted by protoscoleces. Detailed kinetic studies with native EgKU-1 and EgKU-8 highlighted their functional diversity. Like most monodomain Kunitz proteins, EgKU-8 behaved as a slow, tight-binding inhibitor of serine proteases, with global inhibition constants (K(I) (*)) versus trypsins in the picomolar range. In sharp contrast, EgKU-1 did not inhibit any of the assayed peptidases. Interestingly, molecular modeling revealed structural elements associated with activity in Kunitz cation-channel blockers. We propose that this family of inhibitors has the potential to act at the E. granulosus-dog interface and interfere with host physiological processes at the initial stages of infection.
Collapse
|
7
|
Chakrabarty A, MacLean JA, Hughes AL, Roberts RM, Green JA. Rapid evolution of the trophoblast kunitz domain proteins (TKDPs)-a multigene family in ruminant ungulates. J Mol Evol 2006; 63:274-82. [PMID: 16830095 DOI: 10.1007/s00239-005-0264-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2005] [Accepted: 04/19/2006] [Indexed: 11/25/2022]
Abstract
The trophoblast Kunitz domain proteins (TKDPs) are products of the outer cells (trophoblasts) of the placenta of cattle, sheep, and related species. Most are expressed abundantly for only a few days during the time at which the ruminant conceptus is first establishing intimate contacts with the uterine lining. The TKDPs are secretory proteins that possess a carboxyl-terminal peptidase inhibitory domain related to the Kunitz family of serine peptidase inhibitors. On the amino-terminal end are one or more highly unusual regions that are unique to the TKDP genes and have no apparent similarity to any other known sequences. The TKDPs are a rather divergent family that exhibits a good deal of variation among the members. To better understand the reason for such variation, the rates of synonymous (dS) and nonsynonymous (dN), as well as radical (pNR) and conservative (pNC), substitutions were assessed. Phylogenetic trees revealed that the Kunitz domains represented three related groups, whereas the amino-terminal domains formed four groupings. Pairwise comparisons between Kunitz and amino-terminal domain groups demonstrated that dN was consistently greater than dS. In addition, nonsynonymous substitutions in the Kunitz domains tended to be radical (changing charge or polarity), while those in the amino-terminal domains exhibited neither a preponderance of conservative nor radical substitution rates. In summary, the rapid evolution of the TKDPs, coupled with their restricted temporal expression during development, likely reflects the establishment of protein-protein interactions that have evolved to serve the unusual synepitheliochorial placenta of ruminant ungulates.
Collapse
Affiliation(s)
- Anindita Chakrabarty
- Department of Veterinary Pathobiology, University of Missouri-Columbia, Columbia, Missouri 65211, USA
| | | | | | | | | |
Collapse
|
8
|
Fessler JH, Kramerova I, Kramerov A, Chen Y, Fessler LI. Papilin, a novel component of basement membranes, in relation to ADAMTS metalloproteases and ECM development. Int J Biochem Cell Biol 2004; 36:1079-84. [PMID: 15094122 DOI: 10.1016/j.biocel.2003.12.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2003] [Revised: 12/17/2003] [Accepted: 12/29/2003] [Indexed: 11/28/2022]
Abstract
Papilins are homologous, secreted extracellular matrix proteins which share a common order of protein domains. They occur widely, from nematodes to man, and can differ in the number of repeats of a given type of domain. Within one species the number of repeats can vary by differential RNA splicing. A distinctly conserved cassette of domains at the amino-end of papilins is homologous with a cassette of protein domains at the carboxyl-end of the ADAMTS subgroup of secreted, matrix-associated metalloproteases. Papilins primarily occur in basement membranes. Papilins interact with several extracellular matrix components and ADAMTS enzymes. Papilins are essential for embryonic development of Drosophila melanogaster and Caenorhabditis elegans.
Collapse
Affiliation(s)
- John H Fessler
- Department of Molecular, Cell and Developmental Biology, Molecular Biology Institute, University of California at Los Angeles, Los Angeles, CA 90095-1570, USA.
| | | | | | | | | |
Collapse
|
9
|
Krowarsch D, Dadlez M, Buczek O, Krokoszynska I, Smalas AO, Otlewski J. Interscaffolding additivity: binding of P1 variants of bovine pancreatic trypsin inhibitor to four serine proteases. J Mol Biol 1999; 289:175-86. [PMID: 10339415 DOI: 10.1006/jmbi.1999.2757] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Different families of protein inhibitors of serine proteases share similar conformation of the enzyme-binding loop, while their scaffoldings are completely different. In the enzyme-inhibitor complex, the P1position of the loop makes numerous contacts within the S1pocket and significantly influences the energy of the interaction. Here, we determine the association energies (DeltaGavalues) for the interaction of coded P1variants of bovine pancreatic trypsin inhibitor (BPTI) with bovine beta-trypsin (BT), anionic salmon trypsin (AST), bovine alpha-chymotrypsin (BCHYM), and human neutrophil elastase (HNE). The respective DeltaGaranges are 15, 13, 9, and 8 kcal mol-1(1 cal=4.18 J). Next, through interscaffolding additivity cycles, we compare our set of DeltaGavalues determined for BCHYM and HNE with similar data sets available in the literature for three other inhibitor families. The analysis of the cycles shows that 27 to 83 % of cycles fulfil the criteria of additvity. In one particular case (comparison of associations of P1variants of BPTI and OMTKY3 with BCHYM) there is a structural basis for strongly non-additive behaviour. We argue that the interscaffolding additvity depends on sequential and conformational similarities of sites where the mutation(s) are introduced and on the particular substitution. In the second interscaffolding analysis, we compare binding of the same P1mutants to BT and AST. The high correlation coefficient shows that both trypsins recognize with comparable strength the non-cognate side-chains. However, the cognate Arg and Lys side-chains are recognized significantly more strongly by AST.
Collapse
Affiliation(s)
- D Krowarsch
- Institute of Biochemistry and Molecular Biology, University of Wroclaw, Tamka 2, Wroclaw, 50-137, Poland
| | | | | | | | | | | |
Collapse
|
10
|
Pritchard L, Dufton MJ. Evolutionary trace analysis of the Kunitz/BPTI family of proteins: functional divergence may have been based on conformational adjustment. J Mol Biol 1999; 285:1589-607. [PMID: 9917399 DOI: 10.1006/jmbi.1998.2437] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The structural and functional evolution of the Kunitz/bovine pancreatic trypsin inhibitor (BPTI) family of proteins, which includes serine proteinase inhibitors and potassium channel blockers, was analysed with the evolutionary trace method. This method highlights sites in aligned primary sequences whose side-chain variation can be strongly linked with the past development of different functional classes or subgroups within the family. A total of 16 such "class-specific" positions distributed throughout the molecular fold were identified. On average, the side-chain chemistry at these positions had been more conserved and made greater contribution to molecular stability than the side-chain chemistry at remaining sites of variation. It was possible to use these 16 positions to describe the division of the Kunitz/BPTI family into general functional classes. According to known complexes of inhibitor variants with serine proteinases, only two of the 16 class-specific positions appear to be directly involved in intermolecular recognition via the "antiproteinase site". Instead, from various critical locations in the fold, the remainder seem to have been associated with various degrees of intramolecular conformational adjustment to the underlying framework of the antiproteinase site. It is, therefore, implied that functional diversification in this family has been founded upon both sustained evolutionary selection and conformational adjustment. The findings are important for protein engineers wishing to alter the binding selectivity of these molecules, because it appears that the issue of target recognition is dependent on the conformation of the chain segment to which the interactive side-chains are attached. To retarget members of this family towards potentially novel peptide binding sites, substitutions at certain structurally significant class-specific positions could be a good starting point.
Collapse
Affiliation(s)
- L Pritchard
- Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow, G1 1XL, Scotland
| | | |
Collapse
|
11
|
Frimurer TM, Peters GH, Sørensen MD, Led JJ, Olsen OH. Assignment of side-chain conformation using adiabatic energy mapping, free energy perturbation, and molecular dynamic simulations. Protein Sci 1999; 8:25-34. [PMID: 10210180 PMCID: PMC2144117 DOI: 10.1110/ps.8.1.25] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
NMR spectroscopic analysis of the C-terminal Kunitz domain fragment (alpha3(VI)) from the human alpha3-chain of type VI collagen has revealed that the side chain of Trp21 exists in two unequally populated conformations. The major conformation (M) is identical to the conformation observed in the X-ray crystallographic structure, while the minor conformation (m) cannot structurally be resolved in detail by NMR due to insufficient NOE data. In the present study, we have applied: (1) rigid and adiabatic mapping, (2) free energy simulations, and (3) molecular dynamic simulations to elucidate the structure of the m conformer and to provide a possible pathway of the Trp21 side chain between the two conformers. Adiabatic energy mapping of conformations of the Trp21 side chain obtained by energy minimization identified two energy minima: One corresponding to the conformation of Trp21 observed in the X-ray crystallographic structure and solution structure of alpha3(VI) (the M conformation) and the second corresponding to the m conformation predicted by NMR spectroscopy. A transition pathway between the M and m conformation is suggested. The free-energy difference between the two conformers obtained by the thermodynamic integration method is calculated to 1.77+/-0.7 kcal/mol in favor of the M form, which is in good agreement with NMR results. Structural and dynamic properties of the major and minor conformers of the alpha3(VI) molecule were investigated by molecular dynamic. Essential dynamics analysis of the two resulting 800 ps trajectories reveals that when going from the M to the m conformation only small, localized changes in the protein structure are induced. However, notable differences are observed in the mobility of the binding loop (residues Thr13-Ile18), which is more flexible in the m conformation than in the M conformation. This suggests that the reorientation of Trp2 might influence the inhibitory activity against trypsin, despite the relative large distance between the binding loop and Trp21.
Collapse
Affiliation(s)
- T M Frimurer
- MedChem Research IV, Novo Nordisk Park, Novo Nordisk A/S, Måløv, Denmark
| | | | | | | | | |
Collapse
|
12
|
Netzer KO, Suzuki K, Itoh Y, Hudson BG, Khalifah RG. Comparative analysis of the noncollagenous NC1 domain of type IV collagen: identification of structural features important for assembly, function, and pathogenesis. Protein Sci 1998; 7:1340-51. [PMID: 9655338 PMCID: PMC2144033 DOI: 10.1002/pro.5560070610] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Type IV collagen alpha1-alpha6 chains have important roles in the assembly of basement membranes and are implicated in the pathogenesis of Goodpasture syndrome, an autoimmune disorder, and Alport syndrome, a hereditary renal disease. We report comparative sequence analyses and structural predictions of the noncollagenous C-terminal globular NC1 domain (28 sequences). The inferred tree verified that type IV collagen sequences fall into two groups, alpha1-like and alpha2-like, and suggested that vertebrate alpha3/alpha4 sequences evolved before alpha1/alpha2 and alpha5/alpha6. About one fifth of NC1 residues were identified to confer either the alpha1 or alpha2 group-specificity. These residues accumulate opposite charge in subdomain B of alpha1 (positive) and alpha2 (negative) sequences and may play a role in the stoichiometric chain selection upon type IV collagen assembly. Neural network secondary structure prediction on multiple aligned sequences revealed a subdomain core structure consisting of six hydrophobic beta-strands and one short alpha-helix with a significant hydrophobic moment. The existence of opposite charges in the alpha-helices may carry implications for intersubdomain interactions. The results provide a rationale for defining the epitope that binds Goodpasture autoantibodies and a framework for understanding how certain NC1 mutations may lead to Alport syndrome. A search algorithm, based entirely on amino acid properties, yielded a possible similarity of NC1 to tissue inhibitor of metalloproteinases (TIMP) and prompted an investigation of a possible functional relationship. The results indicate that NC1 preparations decrease the activity of matrix metalloproteinases 2 and 3 (MMP-2, MMP-3) toward a peptide substrate, though not to [14C]-gelatin. We suggest that an ancestral NC1 may have been incorporated into type IV collagen as an evolutionarily mobile domain carrying proteinase inhibitor function.
Collapse
Affiliation(s)
- K O Netzer
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City 66160-7421, USA
| | | | | | | | | |
Collapse
|
13
|
Xu Y, Carr PD, Guss JM, Ollis DL. The crystal structure of bikunin from the inter-alpha-inhibitor complex: a serine protease inhibitor with two Kunitz domains. J Mol Biol 1998; 276:955-66. [PMID: 9566199 DOI: 10.1006/jmbi.1997.1582] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Bikunin is a serine protease inhibitor found in the blood serum and urine of humans and other animals. Its sequence shows internal repetition, suggesting that it contains two domains that resemble bovine pancreatic trypsin inhibitor (BPTI). A fragment of bikunin has been crystallised, its structure solved and subsequently refined against 2.5 A data. The two BPTI-like domains pack closely together and are related by an approximate 60 degrees rotation combined with a translation. These domains are very similar to each other and other proteins with this fold. The largest variations occur in the loops responsible for protease recognition. The loops of the first domain are unobstructed by the remaining protein. However, the loops of the second domain are close to the first domain and it is possible that protease binding may be affected or, in some cases, abolished by the presence of the first domain. Thus, cleavage of the two domains could alter the substrate specificity of domain II. Bikunin has a hydrophobic patch close to the N terminus of domain I, which is the most likely site for cell-surface receptor binding. In addition, there is a basic patch at one end of domain II that may be responsible for the inhibition of calcium oxalate crystallization in urine.
Collapse
Affiliation(s)
- Y Xu
- Research School of Chemistry, Australian National University, Canberra, Australia
| | | | | | | |
Collapse
|
14
|
Krokoszynska I, Dadlez M, Otlewski J. Structure of single-disulfide variants of bovine pancreatic trypsin inhibitor (BPTI) as probed by their binding to bovine beta-trypsin. J Mol Biol 1998; 275:503-13. [PMID: 9466927 DOI: 10.1006/jmbi.1997.1460] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Native bovine pancreatic trypsin inhibitor (BPTI) contains three disulfide bonds: Cys5-Cys55, Cys14-Cys38 and Cys30-Cys51. Correct cysteine pairing, native structure, and full anti-proteinase activity can be restored in the process of oxidative refolding of reduced BPTI. Oxidative refolding starts with the formation of single disulfide intermediates. All 15 single-disulfide variants of BPTI (three native and 12 non-native combinations) have been expressed in Escherichia coli. In each variant the remaining four cysteine residues were replaced by alanine. Four of these variants are shown here to inhibit bovine beta-trypsin: three of them contain native and one non-native (Cys5-Cys51) disulfide. All but one (Cys5-Cys55) variant are slowly digested by the enzyme, therefore measurements were performed at pH 4.0, at which trypsin activity is low. Binding constants of these four single disulfide variants were at least two orders of magnitude lower than for native BPTI. Remarkably, in some of the variants the binding constants were found to be higher for the reduced rather than for the oxidized form of the variant. Also for the fully reduced native BPTI, determined here, the binding constant is of considerable value. Two sets of control experiments demonstrated that the binding of reduced native BPTI to trypsin is specific. In the first, mutation of Lys15 (P1 position) in the binding loop abolished binding of the reduced forms to trypsin. In the second, the binding of reduced native BPTI to anhydrotrypsin yielded the expected UV difference spectra. In general, the results obtained indicate that the inhibitor activity can be induced even in the reduced protein. This activity is not a local effect, such as the nature of residues surrounding the binding loop, but rather is induced by residual structure in the unfolded protein. This structure has been shown to consist of a set of hydrophobic residues and the data presented here indicate that reduced cysteine residues provide further stabilization of such a hydrophobic cluster. On the other hand, improper pairing of the cysteine residues in non-native single disulfide variants destabilizes the enzyme-inhibitor complex by inducing deformations of the binding loop region.
Collapse
Affiliation(s)
- I Krokoszynska
- Institute of Biochemistry and Molecular Biology, University of Wroclaw, Poland
| | | | | |
Collapse
|
15
|
McCoy AJ, Kortt AA. The 1.8 A crystal structure of winged bean albumin 1, the major albumin from Psophocarpus tetragonolobus (L.) DC. J Mol Biol 1997; 269:881-91. [PMID: 9223648 DOI: 10.1006/jmbi.1997.1067] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Winged bean albumin-1 (WBA) is the main seed albumin of Psophocarpus tetragonolobus, a legume that has excellent potential as a protein-rich food source for humid tropical climates. WBA crystallises in a tetragonal space group and the structure was solved by X-ray crystallography with a combination of multiple isomorphous replacement using four heavy atom derivatives and molecular replacement with a model based on the structure of Erythrina caffra trypsin inhibitor (ETI). Refinement of the structure proceeded to 1.8 A. WBA has a beta-trefoil fold, similar to that found in the STI-Kunitz type trypsin inhibitors. The final structure has an overall R-factor of 19% for 15 to 1.8 A resolution data, all residues in the allowed regions of the Ramachandran plot, and good agreement with ideal geometry. WBA has sequence similarity with the STI-Kunitz trypsin inhibitors, including the apparent conservation of the functional reactive site residue, lysine 64, at the position of the scissile bond (position P1) in the STI-Kunitz type trypsin inhibitors, however, WBA does not inhibit trypsin. The reason for the lack of inhibitory activity against trypsin is clearly evident from the structure. The loop corresponding to the inhibitory loop in the STI-Kunitz trypsin inhibitors does not conform to the canonical conformation of the inhibitory loops of the "small inhibitors". The lysine residue assigned to the P1 position from sequence alignments is instead part of a four amino acid insertion between residues structurally equivalent to residues P1 and P2 of the inhibitors.
Collapse
Affiliation(s)
- A J McCoy
- Biomolecular Research Institute, Royal Parade, Parkville, Australia
| | | |
Collapse
|
16
|
Zweckstetter M, Czisch M, Mayer U, Chu ML, Zinth W, Timpl R, Holak TA. Structure and multiple conformations of the kunitz-type domain from human type VI collagen alpha3(VI) chain in solution. Structure 1996; 4:195-209. [PMID: 8805527 DOI: 10.1016/s0969-2126(96)00022-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
BACKGROUND The Kunitz-type inhibitor motif is found at the C terminus of the human collagen alpha3(VI) chain. This 76-residue module (domain C5) was prepared in recombinant form and showed high stability against proteases; however, it lacked any inhibitory activity against trypsin, thrombin, kallikrein and several other proteases. We have undertaken the determination of the three-dimensional (3D) structure of domain C5 in solution, by nuclear magnetic resonance (NMR), in order to establish the structural basis for the properties of this protein. RESULTS The 7 N-terminal and 12 C-terminal residues of domain C5 are disordered in the solution structure. The 55-residue core, which shows high homology to bovine pancreatic trypsin inhibitor, retains the characteristic fold of all members of the Kunitz-type inhibitor family. 24 residues of this main structural body show more than one resonance, symptomatic of multiple conformations slowly exchanging on the NMR time scale. In addition, significant proton chemical exchange line broadening is observed for residues in the vicinity of the disulfide bridge between residues 20 and 44: this indicates interconversion, on the micro- to millisecond time scale, between multiple conformations. CONCLUSION The NMR study demonstrates that domain C5 is a highly dynamic molecule at temperatures studied (between 10 and 30 degrees C). Indeed, some 44% of the main body structure of C5 showed multiple conformations. The existence of multiple conformations was not necessarily expected in view of the conformational constraints imposed by the 3D structure of proteins as rigid as C5; it should therefore be considered in the interpretation of its structural and dynamical properties. The accessibility of the inhibitory binding loop (Gly18 [P4] to Leu25 [P4']) should be relatively unaffected by this conformational exchange and thus would not explain the unusual specificity of C5. Most serine proteinase inhibitors that, like C5, have an arginine at the P1 position inhibit trypsin; the lack of trypsin inhibition of C5 must therefore arise from the amino-acid side-chain composition of the adjoining positions in the binding loop.
Collapse
Affiliation(s)
- M Zweckstetter
- Max-Planck-Institut für Biochemie, D-82152 Martinsried, Germany
| | | | | | | | | | | | | |
Collapse
|